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Abstract: Let Xn = {z ∈ C : zn ∈ [0, 1]}, n ∈ N, and let f : Xn → Xn be a
continuous map such that f(0) = 0. In this paper we prove that f is chaotic
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integers A such that the topological sequence entropy of f relative to A is
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1 Introduction

Let (X, d) be a compact metric space and let C(X) denote the set of continuous maps
f : X → X . For any f ∈ C(X), the pair (X, f) is called a discrete (semi)dynamical
system. Given x ∈ X , the sequence (f i(x))∞i=0 is the trajectory of x (also orbit of x).
Recall that a point x ∈ X is periodic if f i(x) = x for some i ∈ N. Denote by Per (f) the
set of periodic points of f . The map f is said to be chaotic in the sense of Li–Yorke (or
simply chaotic) if there is an uncountable set S ⊂ X\Per (f) such that for any x, y ∈ S,
x 6= y, and any p ∈ Per (f) it holds

lim inf
n→∞

d(fn(x), fn(y)) = 0, (1)

lim sup
n→∞

d(fn(x), fn(y)) > 0, (2)

lim sup
n→∞

d(fn(x), fn(p)) > 0. (3)
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The set S is called a scrambled set of f (see [18] or [21]).
The notion of chaos in the sense of Li–Yorke has been studied in the case of X = [0, 1]

and X = S1 (see e.g. [10, 14, 16, 17, 22] or [21]). In this setting, topological sequence
entropy plays a special role to characterize chaotic maps. Given a strictly increasing
sequence of positive integers A, denote by hA(f) the topological sequence entropy of f
with respect to A (see the definition in the next section). Then

Theorem 1 Let f ∈ C([0, 1]) ∪ C(S1). Then:

(1) f is chaotic iff there is a strictly increasing sequence of positive integers A such
that hA(f) > 0;

(2) for any sequence A there is a chaotic map fA ∈ C(I) (resp. fA ∈ C(S1)) such
that hA(fA) = 0.

Statement (1) was proved by Franzová and Smı́tal [14] for interval maps and by
Hric [17] for circle maps. Statement (2) was also proved by Hric [16, 17]).

Theorem 1 (1) is false in general in the case of two dimensional maps (see [13, [20]).
So, the following question remains open: is Theorem 1 true for continuous maps defined
on finite graphs?

In this paper we give a partial answer to this question. More precisely, we consider the
n-star Xn = {z ∈ C : zn ∈ [0, 1]}, n ∈ N. Dynamical systems generated by continuous
maps on the n-star have been studied in the literature (see [1, 3 – 6, 8]). Moreover, the
construction of chaotic n-star maps holding (2) in Theorem 1 was made in [17]. Let
C0(Xn) be the set of continuous maps f ∈ C(Xn) such that f(0) = 0. The aim of this
paper is to prove the following result which extends Theorem 1 (1) to the space C0(Xn).

Theorem 2 Let f ∈ C0(X). Then f is chaotic iff there is an strictly increasing
sequence of positive integers A such that hA(f) > 0.

This paper is organized as follows. Next section is devoted to introduce basic notation
and definitions. In Section 3 we prove useful technical results which are used in the last
section, where the main result is proved.

2 Basic Notation

First we introduce the notion of topological sequence entropy for continuous maps defined
on compact metric spaces. Let (X, d) be a compact metric space and let f ∈ C(X).
Consider a strictly increasing sequence of positive integers A = (ai)

∞
i=1 and let Y ⊆ X

and ε > 0. We say that a subset E ⊂ Y is (A, ε, m, Y, f)-separated if for any x, y ∈
E, x 6= y, there is an i ∈ {1, . . . , m} such that d(fai(x), fai(y)) > ε. Denote by
sm(A, ε, Y, f) the cardinality of any maximal (A, ε, m, Y, f)-separated set. Define

s(A, ε, Y, f) = lim sup
m→∞

1

m
log sm(A, ε, Y, f). (4)

Let
hA(f, Y ) = lim

ε→0
s(A, ε, Y, f). (5)

The topological sequence entropy of f respect to the sequence A is

hA(f) = hA(f, X). (6)
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When A = (i)∞i=0, we receive the usual definition of topological entropy (see [2, Chap-
ter 4]).

For x ∈ X , let ω(x, f) denote the set of limit points of the sequence (f i(x))∞i=0.
ω(x, f) is called the omega limit set of f at x. Let ω(f) =

⋃

x∈X ω(x, f) be the omega
limit set of f .

Now, we introduce some definitions on n-star maps. The point 0 ∈ Xn is called the
branching point of Xn. The connected components of Xn\{0} are called branches of X,

denoted by B1, . . . , Bn. For Y ⊂ Xn, Y denotes the closure of Y . |x| denotes the module

of x ∈ X. For a fixed i ∈ {1, . . . , n} and x, y ∈ Bi, we write x < y (resp. x ≤ y) to

denote |x| < |y| (resp. |x| ≤ |y|). For x, y ∈ Bi, x ≤ y, by an interval we understand

the set [x, y] = {z ∈ Bi : x ≤ z ≤ y}, (x, y], [x, y) and (x, y) will be understand in the

obvious way. Then, for 1 ≤ i ≤ n, the closure Bi = [0, zi], with zn
i = 1. Now, define a

metric on Xn as follows. For any x, y ∈ Xn, let

ρ(x, y) =

{

|x − y| if x and y lie in the same branch;

|x| + |y| if x and y do not lie in the same branch.

For any x ∈ Xn and ε > 0, let B(x, ε) = {y ∈ Xn : ρ(x, y) < ε}.
Finally, we recall the notion of horseshoe (see [19]). Let k ∈ N. We say that f has

a k-horseshoe if there is a closed interval J contained in one branch of Xn and there
are k closed subintervals Ji ⊂ J , 1 ≤ i ≤ k, with pairwise disjoint interiors such that
J ⊆ f(Ji) for 1 ≤ i ≤ k.

3 Preliminary Results

This section is devoted to state some results which help us to prove the main theorem. We
use basically two ideas in the proof. The first one is based on the following proposition.

Proposition 3 Let (X, d) be a compact metric space and let f ∈ C(X). Then, for
any k ∈ N the following statements hold:

(1) fk is chaotic iff f is chaotic;
(2) for any strictly increasing sequence A there is a strictly increasing sequence B

such that hB(fk) ≥ hA(f).

Proof (1) is a well-known fact which is due to the uniform continuity of f . (2) was
proved in [17].

We begin with the n-star case. For any x ∈ Xn, let s(x) = (si)
∞
i=0 ∈ {0, 1, . . . , n}N

be defined by si = j iff f i(x) ∈ Bj for some j ∈ {1, . . . , n}, and si = 0 iff f i(x) = 0 .
We say that s(x) is eventually constant if there is k ∈ N such that si = sk for all i ≥ k.
We say that f ∈ C0(Xn) has property P if the condition x ∈ Per (f) implies that s(x)
is a constant sequence. The following remark is immediate but useful in what follows.
We will use it without citation.

Remark 1 If for some k ∈ N we have fk(x) = 0 then f l(x) = 0 for each l ≥ k and,
hence, ω(x, f) = {0} and s(x) is eventually constant.

Property P is the other key which allows us to prove the main result. As we will see
later, any map from C0(Xn) with zero topological entropy has an iterate which holds
property P . This fact jointly with Proposition 3 are the main ideas for proving our result.
Notice that maps from C0(Xn) having property P have every periodic orbit contained
in one branch, which is useful for proving next three lemmas proved previously in the
proof of Lemmas 5 and 6 from [11].
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Lemma 4 Assume f ∈ C0(Xn) has property P. Let x ∈ Bi, 1 ≤ i ≤ n, be such

that f(x) /∈ Bi. Then for any k ∈ N such that fk(x) ∈ Bi it follows that fk(x) < x.

Lemma 5 Assume f ∈ C0(Xn) has property P. Let x ∈ Xn be such that s(x) is
not eventually constant. Then lim

k→∞
fk(x) = 0, that is, ω(x, f) = {0}.

For any Y ⊂ Xn, let τY : Xn → Y be the natural retraction from Xn to Y . For
f ∈ C0(Xn), let fY ∈ C(Y ) be defined by fY = τY ◦ f |Y , where f |Y means the

restriction of f to Y . For each i ∈ {1, . . . , n} define fi = fBi
∈ C(Bi). Notice that fi

is conjugated to a map g ∈ C([0, 1]) holding g(0) = 0.

Lemma 6 Assume f ∈ C0(Xn) has property P. Then for all j ∈ {1, . . . , n}, ω(f)∩

Bj = ω(fj). In particular, ω(f) =
⋃n

j=1 ω(fj) and hence ω(f) is compact.

Let x, y ∈ Xn. We write x ≺ y to mean that either x < y or x ∈ Bi and y ∈ Bj

for some i, j ∈ {1, . . . , n}, i 6= j. Given S, T ⊂ X, we say that S ≺ T if s ≺ t for all
s ∈ S and t ∈ T .

Lemma 7 Assume f ∈ C0(Xn) has property P and h(f) = 0. Let x ∈ Bi for some
1 ≤ i ≤ n and let a ∈ Bi be such that x ≺ a and f(1) = 0. Then f i(x) ≺ a for
all i ∈ N.

Proof Assume the contrary and let j ∈ N be such that a ≺ f j(x). Then a ≤ f j(x),
f j(1) = f j(0) = 0 and 0 < x < a. Therefore [0, a] ⊆ f j([0, x]) and [0, a] ⊆ f j([x, a]),
that is, f j has a 2-horseshoe. By [19, Theorem A], h(f j) > 0. By [2, Chapter 4],
h(f j) = h(f)j. Then h(f) > 0, which leads us to a contradiction.

Let x ∈ Xn and 0 < ε < min{|x|, 1 − |x|}. Denote by x−ε and xε the elements such
that x−ε < x < xε and |x − xε| = |x − x−ε| = ε.

Lemma 8 Assume f ∈ C0(Xn) has property P and h(f) = 0. Let J ⊂ X be an
open interval such that J ∩ ω(f) = ∅. Then, for any y ∈ J there is an interval Jy,
y ∈ Jy, containing at most two points of each orbit.

Proof For y ∈ J ⊂ Bj , j ∈ {1, . . . , n}, we distinguish three cases: f(y) /∈ Bj ,
f(y) ∈ Bj and f(y) = 0.

First, assume that f(y) /∈ Bj . Let (a, b) ⊂ Bj be such that y ∈ (a, b), f(1) = 0 and

f(a, b) ∩ Bj = ∅. If f i(a, b) ≺ (a, b) for all i ∈ N, then the proof concludes. So, let
m ∈ N be the first integer such that fm(a, b) ∩ (a, b) 6= ∅. Assume that if any positive
integer i is big enough, then it is held fm(y−εi

, yεi
)∩(y−εi

, yεi
) 6= ∅ with εi = 1/i. Hence

∩i(f
m(y−εi

, yεi
)∩ (y−εi

, yεi
)) = {y}. Since fm is continuous, we would have fm(y) = y,

which leads us to a contradiction. So there is i ∈ N such that fm(y−εi
, yεi

) ≺ (y−εi
, yεi

)
(cf. Lemma 4) and (y−εi

, yεi
) ⊂ (a, b). Now, we distinguish two cases. If a = 0 then by

Lemma 4 fk(y−εi
, yεi

) ≺ (y−εi
, yεi

) for all k ≥ m and the proof concludes. If a 6= 0,
then applying Lemmas 4 and 7, fk(y−εi

, yεi
) ≺ (y−εi

, yεi
) for all k ≥ m, which finishes

the proof.
Now, assume that f(y) ∈ Bj . Let (a, b) ⊂ Bj be such that y ∈ (a, b) and f(a, b) ⊂

Bj . Assume that any open subinterval J containing y contains at least three points of
some orbit, that is, there is an x ∈ X and there are n1 < n2 < n3 such that fni(x) ∈ J ,
1 ≤ i ≤ 3. By Lemma 6 and [10, Proposition 11, Chapter 4], there is an interval Jy

holding that for any x ∈ Xn with fni(x) ∈ Jy, 1 ≤ i ≤ 3, there is k ∈ N, n1 < k < n3,

such that fk(x) /∈ Bj . Then, fk−1(x) ∈ (c, d) with f(c) = 0 and f(c, d) ∩ Bj = ∅.
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By Lemma 7, (c, d) ≺ Jy. Then, by Lemma 4, for all integer m > k it holds that
fm(x) ≺ Jy, a contradiction.

Finally, assume that f(y) = 0. Since f(0) = 0 and f is uniformly continuous, there
are real numbers εn > · · · > ε1 > 0 such that

f(B(0, εj)) ⊂ B(0, εj+1) for j = 1, 2, . . . , n − 1. (7)

Since f(y) = 0, there is δ > 0 such that f(y−δ, yδ) ⊂ B(0, ε1). On the other hand, let
K = max{|fj(z)| : z ∈ [0, y]} and let z0 ∈ [0, y] be such that |f(z0)| = |fj(z0)| = K.
Clearly εn and δ can be chosen such that

(y−δ, yδ)
⋂

[0, fj(z0)] = ∅ (cf. Lemma 7) (8)

and (y−δ, yδ) ∩ B(0, εn) = ∅. Now, let x ∈ (y−δ, yδ) and notice that f(x) ∈ B(0, ε1).
If f i

j(x) = f i(x) for all i ∈ N then, as (y−δ, yδ) ∩ [0, fj(z0)] = ∅, we conclude that

f i(x) /∈ (y−δ, yδ) for all i ∈ N and we finish. So, let m be the first integer such that

fm(x) /∈ Bj . If m > 1, and k > m holds fk(x) ∈ Bj , then by Lemma 4, fk(x) < f(x)

and hence fk(x) ∈ B(0, ε1). This, jointly with (8) gives us {f i(x) : i ∈ N} ∩ (y−δ, yδ) =
∅. To finish the proof, assume m = 1 and let k be the smallest integer such that
fk(x) ∈ Bj (if such k does not exist we finish). Let l < n be the number of branches

in which the set {f i(x) : 1 ≤ i ≤ k} lies. Notice that if an element z ∈ B(0, εs) ∩ Br,

1 ≤ r, s ≤ n, f i(z) ∈ Br for some i ∈ N and f i+1(z) /∈ Br, then by Lemmas 4 and 7,
f i(z) ∈ B(0, εs). Then, by (7), fk(x) ∈ B(0, εl) and by Lemma 4 and (8) we conclude
that {f i(x) : i ∈ N} ∩ (y−δ, yδ) = ∅, which ends the proof.

The argument of the proof of the following result is very similar to the analogous
result for interval continuous maps.

Corollary 9 Assume f ∈ C0(Xn) has property P and h(f) = 0. For any open
set U ⊃ ω(f) there is a positive integer q = q(U) such that at most q points of any
trajectory lie outside U .

Proof The set Xn\U is compact. By Lemma 8, for any y ∈ Xn\U , there is an open
interval Jy (relative to Xn\U) containing at most two points of any orbit. Since Xn\U
is a compact set we can obtain a finite number of such intervals covering Xn\U , which
ends the proof.

Proposition 10 Assume f ∈ C0(Xn) has property P. Then f is chaotic iff fi ∈

C(Bi) is chaotic for some i ∈ {1, . . . , n}.

Proof First, assume that fi is chaotic for some i ∈ {1, 2, . . . , n}, and let S ⊂ Bi

be a scrambled set. Notice that if x ∈ S then f j
i (x) 6= 0 for all j ∈ N (in other case

ω(x, f) = {0} and x /∈ S). Hence the trajectory of any x ∈ S is contained in Bi which
implies that the trajectories of x under fi and f are the same. Then S is also a scrambled
set for f .

Now, assume that f is chaotic and let S ⊂ Xn be an uncountable scrambled set of
f . Let x ∈ S. By Lemma 5, the sequence s(x) must be eventually constant, because
in other case the orbit of x would be attracted by the fixed point 0. Let r be such
that sj = sr for all j ≥ r, but sr−1 6= sr. On the other hand, let y ∈ S. Since

lim infj→∞ d(f j(x), f j(y)) = 0, we have that the trajectory of y is eventually contained

in Bsr
. Let [0, a] =

⋂

j≥0(fsr
)j(Bsr

). Since fsr
is an interval map, by [9, Lemma 3.5],
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if {(fsr
)j(f r(x)) : j ∈ N}∩ [0, a] is empty, then the trajectory of f r(x) will be attracted

by a periodic orbit and then x cannot belong to any scrambled set. So, there is jx ≥ r
such that f jx(x) ∈ [0, a]. Since fsr

|[0,a] is surjective, there is x0 ∈ [0, a] such that

f jx(x0) = f jx(x). Similarly, there are y0 ∈ [0, a] and jy ≥ r such that f jy(y0) = f jy (y).
Let S0 = {y0 ∈ Bse

: y ∈ S} ⊂ [0, a]. Then it is straightforward to see that S0 is a
scrambled set for fsr

and therefore fsr
is chaotic.

In order to finish the preparatory work to prove our main result, we prove the following
lemma, which is an extension of a similar lemma from [14].

Lemma 11 Assume f ∈ C0(Xn) has property P and h(f) = 0. Suppose f is non-
chaotic. Then, for any ε > 0 there are points x1, . . . , xk ∈ ω(f), and a set U ⊃ ω(f),
relatively open in Xn, with the following property: if

f j(x) ∈ U for 0 ≤ j ≤ r,

then there is some i such that for any j with 0 ≤ j ≤ r

d(f j(x), f j(xi)) < ε.

Proof Let f be non-chaotic. By Proposition 10, fi is non-chaotic for i = 1, . . . , n.
Then, by [12, Theorem 2.3], for i = 1, . . . , n it holds that fi|ω(fi) are Lyapunov stable

(it has equicontinuous powers), and any point y ∈ ω(fi) is almost periodic (for any
neighborhood G of y there is an integer m > 0 such that fm·j(y) ∈ G for any j ≥ 0).
By Lemma 6 it is easy to see that

f |ω(f) is Lyapunov stable (9)

and
every point in ω(f) is almost periodic. (10)

Then, using (9) and (10) and following the proof of the lemma from [14] we obtain the
result.

4 Proof of Theorem 2

First, consider the case h(f) = 0. Following the proof of Theorem 1.5 from [5] we see
that fN , N = n!(n − 1)! . . . 2!1!, holds property P . Additionally, by [2, Chapter 4],
h(fN ) = Nh(f) = 0. So, by Proposition 3 we may assume without loss of generality
that f has property P .

First, assume f is non-chaotic and let A be a strictly increasing sequence of positive
integers. Then, applying Lemma 11 and Corollary 9 and proceeding as in the first part
of the proof of the main result of [14], we obtain that hA(f) = 0 for all A. Now assume
that f is chaotic. By Proposition 10, fi is chaotic for some i ∈ {1, . . . , n}. Following [14],

there is a interval J ⊂ Bi, with f2j

i (J) = f2j

(J) = J for some j ∈ N and such that

fk
i (J) ⊂ Bi for 1 ≤ k ≤ 2j . Additionally, f2j

i |J is chaotic and hence hA(f2j

i |J) > 0.
Then

h2j ·A(f) ≥ h2j ·A(f, J) = h2j ·A(fi, J) = hA(f2j

i |J) = hA(f2j

i , J) > 0,
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where 2j · A = (2j · ai)
∞
i=1.

Finally, assume h(f) > 0. By [19], there is an l ∈ N such that f l has a k-horseshoe.
Since h(f l) = lh(f) > 0, by Proposition 3 we may assume that l = 1. So, there is an
interval J and k subintervals J1, . . . , Jk with pairwise disjoint interiors and such that
J ⊆ f(Ji). There is an invariant compact subset Y included in at most two branches
such that f |Y is semiconjugate to a shift map defined on Σ = {(xj)

∞
j=1 : xj ∈ {0, 1}}

(see e.g. [10, Chapter 2]). Then, it is straightforward to check that f is chaotic, and the
proof concludes.

Corollary 12 Let f ∈ C0(Xn) be such that 0 ∈ Per (f). Then f is chaotic iff there
is an increasing sequence of positive integers A such that hA(f) > 0.

Proof Just apply Proposition 3 and Theorem 2.
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1 Introduction

In this paper we deal with questions regarding the existence, uniqueness, boundedness,
stability and attractivity of solutions u of the following class of initial-boundary-value
problems:

Lu = f(x, t, u, ux, uxx, ut), 0 < x < 1, 0 < t < T, (1.1)

where L = −ε∂xxt − c2∂xx + ∂tt, f is a continuous function of its arguments, c and ε are
positive constants, and

u(x, 0) = u0(x), ut(x, 0) = u1(x), 0 < x < 1, (1.2)

u(0, t) = h1(t), u(1, t) = h2(t), 0 < t < T, (1.3)

c© 2005 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 9
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where T ≤ +∞, h1, h2 ∈ C2([0, T [), u0, u1 ∈ C2([0, 1]) are assigned and fulfill the
consistency condition

h1(0) = u0(0),
dh1(0)

dt
= u1(0),

h2(0) = u0(1),
dh2(0)

dt
= u1(1).

(1.4)

Solutions u of such problems describe a number of physically remarkable continuous
phenomena occurring on a finite space interval. In the operator L the D’Alembertian
−c2∂xx + ∂tt induces wave propagation, −ε∂xxt dissipation. The term on the right-
hand side of (1.1) may contain forcing terms, nonlinear (local) couplings of u to itself,
further dissipative terms. For instance, when f = −b sinu − aut + F (x, t), where a, b
are positive constants, we deal with the perturbed Sine-Gordon equation, which can be
used e.g. to describe the classical Josephson effect with driving force F in the theory
of superconductors [6, 11]. F is a forcing term, −aut is a dissipative one and −b sinu
is a nonlinear coupling. On the other hand it is well known [12] that equation (1.1)
describes the evolution of the displacement u(x, t) of the section of a rod from its rest
position x in a Voigt material when an external force f is applied; in this case c2 = E/ρ,
ε = 1/(ρµ), where ρ is the (constant) linear density of the rod at rest, and E, µ are
respectively the elastic and viscous constants of the rod, which enter the stress-strain
relation σ = Eν + ∂tν/µ, where σ is the stress, ν is the strain. As we shall see in the
sequel, even considering only one of these examples, e.g. the perturbed Sine-Gordon
equation f = −b sinu− aut, it is important to keep room for a more general f because
the latter will naturally appear when asking whether a particular solution u∗ of the
problem is stable or attractive, or when reducing the original problem to one with trivial
boundary conditions.

Several papers [2 – 5, 7 – 9, 13] have already been devoted to the analysis of the op-
erator L and more specifically to the investigation of the boundedness, stability and
attractivity of the solutions of the above problem. Here we improve previous results,
by weakening the assumptions on f , and find some new ones. In Section 2 we improve
the existence and uniqueness Theorem 2.1 proved in [2], in that we require f to satisfy
only locally Lipschitz condition. In Section 3.2 we improve the boundedness and stability
Theorem 3.1 of the same reference, in that we require only a suitable time average of
the quadratic norm of f to be bounded. While doing so we prove two lemmas concern-
ing boundedness and attractivity of the zero solution for a class of first order ordinary
differential equations in one unknown; the second lemma is a generalization of a lemma
due to Hale [10]. In Sections 4 and 5 we respectively improve the exponential asymptotic
stability Theorem 3.3 of [2] and the uniform asymptotic stability Theorem 2 of [5], valid
for some special f , by removing the boundedness assumption on the latter. The trick
we use is to associate to each neighbourhood of the origin with radius σ (the ‘error’) a
Liapunov functional depending on a parameter γ adapted to σ, instead of fixing γ once
and for all.

2 Existence and Uniqueness of the Solution

To discuss the existence and uniqueness of the above problem it is convenient to formulate
it as an equivalent integro-differential equation so as to apply the fixed-point theorem.
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As in [2], we start from the identity

∂ξ(c
2uwξ − c2uξw + εuξwτ − εuwξτ ) + ∂τ (uτw − uwτ − εuξξw)

= fw − u(εwξξτ − c2wξξ + wττ ),
(2.1)

that follows from (1.1) for any smooth function w(ξ, τ), assuming u(ξ, τ) is a smooth
solution of (1.1). We choose w as a function depending also on x, t and fulfilling the
equation Lw = 0, more precisely

w(x, ξ, t− τ) = θ(x − ξ, t− τ) − θ(x + ξ, t− τ), (2.2)

with

θ(x, t) = K(|x|, t) +
∞
∑

m=1

[K(|x+ 2m|, t) +K(|x− 2m|, t)] . (2.3)

The function K represents the fundamental solution of the linear equation LK = 0. It
has been determined and studied in [3], and reads

K(|x|, t) =

t
∫

0

e−c2τ/ε

√
πετ

dτ

∞
∫

0

x2(z + 1)

4ετ
e−x2(z+1)2/4ετ I0

(

c

ε
2|x|

√
z

)

dz, (2.4)

where I0 is the modified Bessel function of order zero. Since θ(−x, t) = θ(x, t) and
θ(x + 2m, t) = θ(x, t), m ∈ N , it is sufficient to restrict our attention to the domain
0 ≤ x < 2, and note that θ is continuous together with its partial derivatives and satisfies
the equation Lθ = 0. Moreover, from the analysis of K developed in [3], we can deduce
that θ is a positive function that has properties similar to ones of the analogous function
θ used for the heat operator, see [1].

As for the data we shall assume that:

f(x, t, n, p, q, r) is defined and continuous on the set (2.5)

{(x, t, n, p, q, r) : 0 ≤ x ≤ 1, 0 ≤ t ≤ T, −∞ < n, p, q, r <∞, T > 0},

it locally satisfies a Lipschitz condition, namely for any bounded (2.6)

set Ω ⊂ [0, T ]× R
¯

4 there exists a constant µΩ such that for any

(t, n1, p1, q1, r1), (t, n2, p2, q2, r2) ∈ Ω and x ∈ [0, 1]

|f(x, t, n1, p1, q1, r1) − f(x, t, n2, p2, q2, r2)|

≤ µΩ{|n1 − n2| + |p1 − p2| + |q1 − q2| + |r1 − r2|},

u0, u
′
0, u

′′

0 , u1 continuous on 0 ≤ x ≤ 1, (2.7)

hi,
dhi

dt
, i = 1, 2, continuous on 0 ≤ t ≤ T, (2.8)

h1(0) = u0(0), h2(0) = u0(1),
dh1(0)

dt
= u1(0),

dh2(0)

dt
= u1(1). (2.9)
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Given a solution u of (1.1) – (1.3), by integrating (2.1) on {(ξ, τ) : 0 < ξ < 1, δ < τ <
t− δ}, δ > 0, and letting δ → 0, we find that it satisfies the following integral equation

u(x, t) =

1
∫

0

wt(x, ξ, t)u0(ξ) dξ +

1
∫

0

w(x, ξ, t)[u1(ξ) − εu′′0(ξ)] dξ (2.10)

− 2

t
∫

0

h1(τ)(c
2 + ε∂t)θx(x, t− τ) dτ + 2

t
∫

0

h2(τ)(c
2 + ε∂t)θx(1 − x, t− τ) dτ

+

t
∫

0

dτ

1
∫

0

w(x, ξ, t− τ)f(ξ, τ, u(ξ, τ), uξ(ξ, τ), uτ (ξ, τ), uξξ(ξ, τ)) dξ.

Conversely, one can immediately verify that under the assumptions (2.5) – (2.9) a
solution u of (2.10) satisfies (1.1) using the fact that Lθ = 0 and Lw = 0. We refer
the reader to [2] for the slightly longer proof that the initial conditions (1.2) and the
boundary conditions are satisfied.

If f = f(x, t), (2.10) gives the unique explicit solution of (1.1) – (1.3). On the contrary,
if f depends on u (2.10) is an integro-differential equation. We shall now discuss the
existence and uniqueness of its solutions.

For any c, d ∈ [0, T ], c ≤ d, we shall denote

B[c,d] := {u(x, t) : u, ux, ut, uxx ∈ C([0, 1] × [c, d])}.

For any a ∈ [0, T ], v ∈ B[0,a] and t ∈ [a, T ] we define a mapping of B[a,T ] into itself by

Tvu(x, t) := ωv(x, t) +

t
∫

a

dτ

1
∫

0

w(x, ξ, t− τ)f(ξ, τ, u(ξ, τ), uξ(ξ, τ), uτ (ξ, τ), uξξ(ξ, τ)) dξ

(2.11)
where

ωv(x, t) =

1
∫

0

wt(x, ξ, t)u0(ξ) dξ +

1
∫

0

w(x, ξ, t)[u1(ξ) − εu
′′

0 (ξ)] dξ

− 2

t
∫

0

h1(τ)(c
2 + ε∂t)θx(x, t− τ) dτ + 2

t
∫

0

h2(τ)(c
2 + ε∂t)θx(1 − x, t− τ) dτ

+

a
∫

0

dτ

1
∫

0

w(x, ξ, t− τ)f(ξ, τ, v(ξ, τ), vξ(ξ, τ), vτ (ξ, τ), vξξ(ξ, τ)) dξ.

We fix a ρ > 0 and for any t ∈ [a, T ] we consider the domain

Sv,t := {u ∈ B[a,T ] : ∀x ∈ [0, 1] |u(x, t) − ωv(x, t)| < ρ, |ux(x, t) − ωvx(x, t)| < ρ,

|uxx(x, t) − ωvxx(x, t)| < ρ, |ut(x, t) − ωvt(x, t)| < ρ}
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and define

M = M(a, T, v, ρ) := sup
τ∈[a,T ]
ξ∈[0,1]

sup
u∈Sv,τ

|f(ξ, τ, u(ξ, τ), uξ(ξ, τ), uτ (ξ, τ), uξξ(ξ, τ))|,

b− a = min

{

T − a,
ρ

M
,
cρ

M
,
ερ

M
,

√

2ρ

M

}

,

Ra,b,v := {u ∈ B[a,b] : ∀ (x, t) ∈ [0, 1]× [a, b] |u(x, t) − ωv(x, t)| ≤ ρ,

|ux(x, t) − ωvx(x, t)| ≤ ρ, |uxx(x, t) − ωvxx(x, t)| ≤ ρ,

|ut(x, t) − ωvt(x, t)| ≤ ρ}.

(2.12)

Note that by its definition M is finite because f is continuous and evaluated on a compact
subset of R6. We denote by µ = µ(a, b, v, ρ) the constant µΩ of (2.6) corresponding to
the choice

Ω = {(t, n, p, q, r) : with t ∈ [a, b], and such that ∃x ∈ [0, 1], ∃u ∈ Ra,b,v

such that n = u(x, t), p = ux(x, t), q = uxx(x, t), r = ut(x, t)},

we choose a positive constant λ

λ = λ(a, b, v, ρ) > max

{

1, µ

(

2 +
1

c
+

1 + 2c2

ε

)}

and we introduce a norm

‖u‖a,b := sup
[0,1]×[a,b]

|e−λtu(x, t)| + sup
[0,1]×[a,b]

|e−λtux(x, t)|

+ sup
[0,1]×[a,b]

|e−λtut(x, t)| + sup
[0,1]×[a,b]

|e−λtuxx(x, t)|.
(2.14)

We now show that Tv is a map of Ra,b,v into itself, more precisely a contraction (w.r.t
the above norm). From (2.11) we get for any (x, t) ∈ [0, 1] × [a, b]

|Tvu(x, t) − ωv(x, t)| ≤M(a, T, v, ρ)

t
∫

a

dτ

1
∫

0

|w(x, ξ, t − τ)| dξ,

and, because of the inequality [3]

1
∫

0

|w(x, ξ, t − τ)| dξ =

1
∫

0

|θ(x − ξ, t− τ) − θ(x+ ξ, t− τ)| dξ ≤ t− τ, (2.15)

and the definition of b we find

|Tvu(x, t) − ωv(x, t)| ≤M(a, T, v, ρ)
(b− a)2

2
≤ ρ. (2.16)
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Similarly, one can prove that

|Tvux(x, t) − ωvx(x, t)| ≤ ρ, (2.17)

|Tvuxx(x, t) − ωvxx(x, t)| ≤ ρ, (2.18)

|Tvut(x, t) − ωvt(x, t)| ≤ ρ, (2.19)

making use of the basic properties of K proved in [3], which lead to the following esti-
mates:

1
∫

0

|wx(x, ξ, t− τ)| dξ ≤ 1/c,

1
∫

0

|wt(x, ξ, t− τ)| dξ ≤ 1,

1
∫

0

|wxx(x, ξ, t− τ)| dξ ≤
1

ǫ
[1 + 2c2(t− τ)].

(2.20)

The first two inequalities were already given in [2], together with

1
∫

0

|(∂t − ∂2
x)w(x, ξ, t − τ)| dξ ≤ 1. (2.21)

The third was used but not explicitly written, and easily follows from the latter inequality,
the equation Lθ = 0, and the relation θ(x, 0) = 0. In fact, from Lθ = 0 it immediately
follows that

θt − θxx = ∂t

[

θ +
ǫ

c2
θxx −

1

c2
θt

]

,

and therefore

wt(x, ξ, t− τ)−wxx(x, ξ, t− τ) = ∂t

[

w(x, ξ, t− τ)+
ǫ

c2
wxx(x, ξ, t− τ)−

1

c2
wt(x, ξ, t− τ)

]

.

Integrating over ξ and using (2.21) we find |∂tA(x, t− τ)| ≤ 1, where

A(x, t− τ) :=

1
∫

0

[

w(x, ξ, t− τ) +
ǫ

c2
wxx(x, ξ, t− τ) −

1

c2
wt(x, ξ, t− τ)

]

dξ.

As θ(x, 0) = 0, then A(x, 0) = 0. By the comparison principle we therefore find

τ − t ≤ A(x, t− τ) =

1
∫

0

w dξ +

1
∫

0

ǫ

c2
wxx dξ −

1
∫

0

1

c2
wt dξ ≤ t− τ,

implying
∣

∣

∣

∣

∣

1
∫

0

ǫ

c2
wxx

∣

∣

∣

∣

∣

≤ (t− τ) +

∣

∣

∣

∣

∣

1
∫

0

w dξ

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

1
∫

0

1

c2
wt dξ

∣

∣

∣

∣

∣

;
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using (2.15) and (2.20)2 to bound the integrals on the right hand-side we find (2.20)3.

From the above results we conclude that Tvu(x, t) ∈ Ra,b,v as claimed.

From (2.11), (2.15)) we get for t ∈ [a, b]

|Tvu1(x, t) − Tvu2(x, t)|e
−λt ≤ µ‖u1 − u2‖a,b

t
∫

a

e−λ(t−τ) dτ

1
∫

0

|w(x, ξ, t − τ)| dξ

≤ µ‖u1 − u2‖a,b

t
∫

a

e−λ(t−τ)(t− τ) dτ ≤
µ

λ2
‖u1 − u2‖a,b.

(2.22)

From (2.11), (2.20) one can get analogous results for the partial derivatives ∂x, ∂t, ∂
2
x

of (2.11):

|Tvu1x(x, t) − Tvu2x(x, t)| e−λt ≤
µ

λc
‖u1 − u2‖a,b,

|Tvu1t(x, t) − Tvu2t(x, t)| e
−λt ≤

µ

λ
‖u1 − u2‖a,b,

|Tvu1xx(x, t) − Tvu2xx(x, t)| e−λt ≤
µ

λε

(

1 +
2c2

λ

)

‖u1 − u2‖a,b.

(2.23)

Thus, we obtain

‖Tvu1(x, t) − Tvu2(x, t)‖a,b ≤
µ

λ

[

1

λ
+

1

c
+ 1 +

1

ε
+

2c2

ελ

]

‖u1 − u2‖a,b, (2.24)

with µ ≡ µ(a, b, v, ρ), λ ≡ λ(a, b, v, ρ). Under assumption (2.13), inequality (2.24) shows
that Tv is a contraction of Ra,b,v into itself. Thus we are in the conditions to apply
the fixed point theorem, and we find that there exists a unique solution in Ra,b,v of the
problem Tvu = u in the time interval [a, b].

We now apply the above result iteratively. We start by choosing a = 0 = a0, v = 0;
the last integral disappears from (2.12). From the definition of b we determine the

corresponding b = a1 and by the fixed point theorem a unique solution u(1)(x, t) of the

problem (1.1) – (1.4) in the time interval [0, a1]. Next we choose a = a1, v = u(1); from
(2.12) we determine the corresponding b = a2 and by the fixed point theorem a unique
solution of the problem Tu(1)u = u in the time interval [a1, a2]. This is also a smooth

continuation of u(1), therefore we have found a unique solution u(2)(x, t) of the problem
(1.1) – (1.4) in the time interval [0, a2], and so on. We conclude by stating the following

Theorem Under hypotheses (2.5) – (2.9), the quasilinear problem (1.1) – (1.3) has a
unique smooth solution in the time interval [0, a∞], where

a∞ := lim
k→+∞

ak ≤ T.



16 A. D’ANNA AND G. FIORE

3 Eventual Boundedness and Asymptotic Stability

3.1 Preliminaries

By the rescaling t → t/c, ε → cε and of f → c2f we can factor c out of (1.1), so that
it completely disappears from the problem, without loosing generality. In the sequel we
shall assume we have done this. Moreover, without loss of generality we can also consider
h1(t) = h2(t) ≡ 0 in (1.3), as any problem (1.1) – (1.4) is equivalent to another one of
the same kind with trivial boundary conditions and a different f . In fact, setting for
any t ∈ J = [0,∞[

v(x, t) := u(x, t) + p(x, t), p(x, t) := (1 − x)h1(t) + xh2(t)

we immediately find that v(0, t) = v(1, t) ≡ 0, that the initial condition for v, vt are
completely determined and that v fulfills the equation

−εvxxt + vtt − vxx = f̃(x, t, v, vx, vxx, vt),

where

f̃(x, t, v, vx, vxx, vt) := f(x, t, v − p, vx − h2 + h1, vxx, vt − pt) − ptt.

The difference u = ũ−u∗ between a generic solution ũ and a given one u∗ of the problem
(1.1) – (1.4) is also a solution of a new problem of the same kind, which we denote by
problem P , but with h1(t) ≡ h2(t) ≡ 0, namely

−εuxxt + utt − uxx = f(x, t, u, ux, uxx, ut), x ∈]0, 1[, t > t0 ∈ J,

u(0, t) = 0, u(1, t) = 0, t ∈ J,
(3.1)

with the initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), x∈]0, 1[, (3.2)

fulfilling the consistency conditions

u0(0) = u1(0) = u0(1) = u1(1) = 0. (3.3)

Here

f(x, t, u, ux, uxx, ut) = f(x, t, u+ u∗, ux + u∗x, uxx + u∗xx, ut + u∗xx)

− f(x, t, u∗, u∗x, u
∗
xx, u

∗
t )

and u0(x) := ũ0(x) − u∗0(x), u1(x) = ũ1(x) − u∗1(x). The two solutions ũ, u∗ are ‘close’
to each other iff u is a ‘small’ solution of the latter problem, and coincide iff u is the zero
solution.

We introduce the distance between the origin O and a nonzero element
(

u(·, t), ut(·, t)
)

∈ Γ :=
(

C0([0, 1]) ∩ C2([0, 1])
)

× C0([0, 1]) as the functional d(u, ut),
where for any (ϕ, ψ) ∈ Γ we define

d2(ϕ, ψ) =

1
∫

0

(ϕ2 + ϕ2
x + ϕ2

xx + ψ2) dx. (3.4)

The notions of (eventual) boundedness, stability, attractivity, etc. are formulated using
this distance. Imposing the condition that ϕ, ψ vanish in 0, 1 one easily derives that
|ϕ(x)|, |ϕx(x)| ≤ d(ϕ, ψ) for any x; therefore a convergence in the norm d implies also a
uniform pointwise convergence of ϕ,ϕx.
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Definition 3.1 The solutions of (3.1) – (3.3) are eventually uniformly bounded if for
any α > 0 there exist an s(α) ≥ 0 and a β(α) > 0 such that if t0 ≥ s(α), d(u0, u1) ≤ α,
then d(u(t), ut(t)) < β(α) for all t ≥ t0. If s(α) = 0 the solutions of (3.1) are uniformly
bounded.

Definition 3.2 The origin O of Γ is eventually quasi-uniform-asymptotically stable
in the large for the solutions of (3.1) if for any ρ, α > 0 there exist s(α) ≥ 0, and
̂T (ρ, α) > 0 such that if d(u0, u1) ≤ α, t0 ≥ s(α) then d(u, ut) < ρ for any t ≥ t0 + ̂T .
If s(α) = 0, u(x, t) ≡ 0 is said to be quasi-uniform-asymptotically stable in the large for
the solutions of (3.1).

Suppose now that problem P admits the solution u(x, t) ≡ 0.

Definition 3.3 The solution u(x, t) ≡ 0 is uniform-asymptotical stable in the large
if it is uniformly stable and quasi-uniform-asymptotically stable in the large, and the
solutions of problem P are uniformly bounded.

Definition 3.4 The solution u(x, t) ≡ 0 of the problem P is exponential-asymptoti-
cally stable in the large if for any α > 0 there are two positive constants D(α), C(α)
such that if d(u0, u1) ≤ α, then

d(u(t), ut(t)) ≤ D(α) exp [−C(α)(t− t0)] d(u0, u1), ∀ t ≥ t0. (3.5)

To prove our theorems we shall use the Liapunov direct method. We introduce the
Liapunov functional

V (ϕ, ψ) =
1

2

1
∫

0

{(εϕxx − ψ)2 + γψ2 + (1 + γ)ϕ2
x} dx, (3.6)

where γ is an arbitrary positive constant. Using the inequality |2εϕxxψ| ≤ ε(ϕ2
xx + ψ2)

we find

V ≤
1

2

1
∫

0

{ε2ϕ2
xx + ψ2 + εϕ2

xx + εψ2 + γψ2 + (1 + γ)ϕ2
x} dx.

Setting
c22 = max{ε(1 + ε)/2, (1 + ε+ γ)/2}, (3.7)

we thus derive
V (ϕ, ψ) ≤ c22d

2(ϕ, ψ). (3.8)

Moreover, it is known that [13]

ϕ(0) = 0, ϕ(1) = 0 =⇒



















1
∫

0

ϕ2
x(x) dx ≥ π2

1
∫

0

ϕ2(x) dx

1
∫

0

ϕ2
xx(x) dx ≥ π2

1
∫

0

ϕ2
x(x) dx

(3.9)

(these inequalities can be easily proved by Fourier analysis of ϕ). In view of the bounds
we shall consider below we introduce the notation

ω1 :=
π4

1 + π4
≈ 0.99, ω2 :=

π4

1 + π2 + π4
≈ 0.90, ω3 :=

π2

1 + π2
≈ 0.91. (3.10)
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Using (3.9) and an argument employed in [2], we get

V (ϕ, ψ) ≥ c21d
2(ϕ, ψ). (3.11)

where

c21 = min

{

ε2

8
ω1,

1

2

(

γ −
1

2

)}

, (γ > 1/2). (3.12)

Therefore, from (3.8) and (3.11) we find

V

c22
≤ d2 ≤

V

c21
. (3.13)

On the other hand, choosing γ = 1 in (3.6) and reasoning as it has been done in [2] it
turns out that

dV

dt
=

1
∫

0

{

−
ε

2
u2

xx − εu2
xt +

ε

2
u2

t −
ε

2
(uxx + f)2 −

ε

2
(ut − 2f/ε)2 +Af2

}

dx

≤ −

1
∫

0

{

ε

2
ω2(u

2 + u2
x + u2

xx) + ε

(

π2 −
1

2

)

u2
t +Af2

}

dx

≤ −c23d
2(u, ut) +

1
∫

0

Af2dx

(3.14)

where we have set

A :=
ε

2
+

2

ε
, c23 :=

ω2

2
ε, (3.15)

and we have used (3.9). In the sequel we shall set also p := c23/c
2
2.

3.2 Eventual boundedness and asymptotic stability

We assume that

A

1
∫

0

f2 dx ≤ g(t)c21d
2 + g̃1(t, d

2) + g̃2(t, d
2), (3.16)

where f is the function appearing in (3.1), and g(t), g̃i(t, η) (i = 1, 2 and t ∈ J , η > 0)
denote suitable nonnegative continuous functions fulfilling the following conditions:

(1) there exists a constant σ > 0 such that for any t ≥ t0 ≥ 0

t
∫

t0

g(τ) dτ − p(t− t0) ≤ σ; (3.17)

(2) there exist constants χ ∈ [0, 1], κ ∈ [0, 1] and q ≥ 0 (with q < p if χ = 1) and
M > 0 such that

∣

∣

∣

∣

∣

∣

∣

∣

∣

t
∫

0

g(τ)dτ

1 + tχ
− q

∣

∣

∣

∣

∣

∣

∣

∣

∣

<
M

1 + tκ
; (3.18)
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(3) for any η > 0

lim
t→+∞

g̃1(t, η)e
ξ(tχ−tκ) = 0,

∞
∫

0

g̃2(τ, η)e
ξ(τχ−τκ) dτ = σ2(η) < +∞,

(3.19)

where ξ is some positive constant if χ > κ, while ξ = 0 if χ ≤ κ.

Without loss of generality we can assume that g̃i(t, η) are non-decreasing in η; if
originally this is not the case, we just need to replace g̃i(t, η) by max

0≤u≤η
g̃i(t, u) to fulfill

this condition.
From (3.14), using (3.4), (3.16), (3.13) we now find

dV (u, ut)

dt
≤ −c3d

2(u, ut) + g(t)c21d
2 + g̃1(t, d

2) + g̃2(t, d
2)

≤ −p V + g(t)V + g1(t, V ) + g2(t, V ),

(3.20)

where we have set

gi(t, η) = g̃i

(

t,
η

c21

)

. (3.21)

By the “Comparison Principle” (see e.g. [14]) V is bounded from above

V (t) ≤ y(t), (3.22)

by the solution y(t) of the Cauchy problem

dy

dt
= −p y + g(t)y + g1(t, y) + g2(t, y), y(t0) = y0 ≡ V (t0) ≥ 0. (3.23)

We therefore study the latter, proving first a theorem of eventual uniform boundedness.

Lemma 1 Assume g(t), g̃i(t, η) (i = 1, 2 and t ∈ J , η > 0) are continuous nonnega-
tive functions fulfilling the conditions (3.17) – (3.19). Then ∀ α̃ > 0 there exist s̃(α̃) ≥ 0,

β̃(α̃) > 0 such that if |y0| ≤ α̃, t0 ≥ s̃(α̃), the modulus of the solution y(t; t0, y0) of

(3.23) is bounded by β̃:

|y(t; t0, y0)| < β̃, t ≥ t0 ≥ s̃(α̃); (3.24)

if in particular y0 ∈ [0, α̃], then

0 ≤ y(t; t0, y0) < β̃, t ≥ t0 ≥ s̃(α̃). (3.25)

Proof Problem (3.23) is equivalent to the integral equation

y(t) = y0 e
−p(t−t0)+

t
∫

t0

g(τ)dτ

+ e
−pt+

t
∫

0

g(τ)dτ
t
∫

t0

[g1 (τ, y(τ)) + g2 (τ, y(τ))] e
pτ−

τ
∫

0

g(z)dz

dτ.

(3.26)



20 A. D’ANNA AND G. FIORE

Take β̃(α̃) := α̃(eσ +
e2M

m
+ e2M ), where

m =











p

2
if χ < 1

p− q

2
if χ = 1.

(3.27)

Because of (3.17), if |y0| ≤ α̃, for any t ≥ t0 one finds

|y0|e
−p(t−t0)+

t
∫

t0

g(τ)dτ

≤ α̃eσ. (3.28)

Moreover, because of (3.18), we obtain

q(1 + tχ) −M
1 + tχ

1 + tκ
<

t
∫

0

g(z) dz < q(1 + tχ) +M
1 + tχ

1 + tκ
. (3.29)

Let

ϑ :=



























0 if χ ≤ κ,

min

{

1,
ξ

2M

}

if 1 > χ > κ

min

{

1,
p− q

2M
,
ξ

2M

}

if 1 = χ > κ,

tϑ :=











0 if ϑ = 0,
(

1 − ϑ

ϑ

)1/κ

if ϑ > 0;

considering separately the cases χ ≤ κ, χ > κ and recalling the definition of ξ, we find

1 + tχ

1 + tκ
= 1 +

tχ − tκ

1 + tκ
≤ 1 + ϑ(tχ − tκ)

for any t ≥ tϑ. Then from (3.29)

q(1 + tχ) −M [1 + ϑ(tχ − tκ)] <

t
∫

0

g(z) dz < q(1 + tχ) +M [1 + ϑ(tχ − tκ)] (3.30)

for any t ≥ tϑ. Consequently, for i = 1, 2 and |y| ≤ β̃

e
−pt+

t
∫

0

g(τ)dτ
t
∫

t0

gi(τ, y)e
pτ−

τ
∫

0

g(z)dz

dτ

< e−pt+q(1+tχ)+M [1+ϑ(tχ−tκ)]

t
∫

t0

gi(t, β̃)epτ−q(1+τχ)+M [1+ϑ(τχ−τκ)] dτ

= eqtχ+Mϑ(tχ
−tκ)−pte2M

t
∫

t0

gi(t, β̃)epτ−qτχ+Mϑ(τχ
−τκ)dτ,

(3.31)
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where we have used also the fact that gi(t, η) are non-decreasing functions of η.
Now consider the function

h(τ) := pτ − qτχ −Mϑ(τχ − τκ) (3.32)

and its derivative h′(τ) = p − qχτχ−1 −Mϑ(χτχ−1 − κτκ−1). We now show that, for
any χ ∈ [0, 1],

h′(τ) ≥ h′(t̃) = m if τ ≥ t̃ :=

[

χ(2q + ξ)

p

]
1

1−χ

(3.33)

with the m defined in (3.27) (this implies that for τ ≥ t̃ the function h(τ) is increasing).
In fact, if ϑ > 0, then it is either 0 ≤ κ < χ < 1, implying

h′(τ) > p− (q +Mϑ)χτχ−1 ≥
p

2
= m

for any τ ≥ t̃, or 0 ≤ κ < χ = 1, implying (because of the inequality p− q > 0 and the
definition of ϑ)

h′(τ) = p− q −Mϑ+Mϑκτκ−1 > p− q −Mϑ ≥
p− q

2
= m

for any τ > 0, in particular for τ ≥ t̃. If ϑ = 0, then it is either 0 ≤ χ ≤ κ ≤ 1 with
χ < 1, implying

h′(τ) > p− qχτχ−1 ≥
p

2
= m

for any τ ≥

[

2qχ

p

]
1

1−χ

≡ t̃, or χ = κ = 1, implying also h′(τ) = p− q > m (for any τ),

as claimed.
On the other hand, because of (3.19) there exist s1(α̃), s2(α̃) ≥ 0 (recall that β̃ =

β̃(α̃)) such that

g1(τ, β̃)eξ(τχ−τκ) ≤ α̃ if τ ≥ t0 ≥ s1(α̃),

∞
∫

t0

g2(τ, β̃)eξ(τχ−τκ) dτ ≤ α̃ if t0 ≥ s2(α̃).
(3.34)

Hence, for t ≥ t0 ≥ max{t̃, tϑ, s1(α̃)} we find that if | y(τ)| ≤ β̃ for any τ ∈ [t0, t[ then

e
−pt+

t
∫

0

g(τ)dτ
t
∫

t0

g1
(

τ, y(τ)
)

e
pτ−

τ
∫

0

g(z)dz

dτ

< e−h(t)+2M

t
∫

t0

g1
(

τ, β̃
)

eh(τ)+ξ(τχ−τκ)dτ

≤ e−h(t)+2M α̃

t
∫

t0

h′(τ)

m
eh(τ)dτ = α̃

e−h(t)+2M

m
(eh(t) − eh(t0)) <

e2M

m
α̃

(3.35)
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where in the first line we have used (3.31) and the definition of ϑ, in the second (3.33)

and (3.34)1. Similarly, for t ≥ t0 ≥ max{s2(α̃), tϑ, t̃} we find that if |y(τ)| ≤ β̃ for any
τ ∈ [t0, t[ then

e
−pt+

t
∫

0

g(τ)dτ
t
∫

t0

g2
(

τ, y(τ))e
pτ−

τ
∫

0

g(z)dz

dτ

< e−h(t)+2M

t
∫

t0

g2
(

τ, β̃)eh(τ)+ξ(τχ−τκ)dτ

< e−h(t)+h(t)+2M

∞
∫

t0

g2(τ, β̃)eξ(τχ−τκ)dτ < α̃e+2M ,

(3.36)

(in the first inequality we have used (3.31) and again the definition of ϑ, in the second the
monotonicities of h and g2, in the third (3.34)2). Summarizing, the inequalities (3.28),

(3.35), (3.36) are fulfilled for t ≥ t0 ≥ s̃(α̃) = max{t̃, tϑ, s1(α̃), s2(α̃), }.
Now let us suppose per absurdum that there exists t1 > t0 ≥ s̃(α̃) such that

|y(t; t0, y0)| < β̃ for t0 ≤ t < t1, (3.37)

|y(t1; t0, y0)| = β̃. (3.38)

Because of (3.37) the inequalities (3.35), (3.36) are fulfilled; together with equations
(3.26), (3.28) for t = t1 they imply

|y(t1; t0, y0)| < β̃,

against the assumption (3.38). Finally, from (3.26) and the nonnegativity of the functions
gi we find that 0 ≤ y0 < α̃ implies y(t) > 0 for any t, whence (3.25).

As a result of the previous lemma, for any α̃ > 0 the solution y(t) of the Cauchy

problem (3.23) remains eventually uniformly bounded by β̃(α̃) if 0 ≤ y0 ≤ α̃. By (3.22)
and (3.13), the same applies with V (t) and d2(u, ut).

By the monotonicity of gi(t, η) in η and the comparison principle we find that y(t) is
also bounded

y(t) ≤ z(t), t ≥ t0 (3.39)

by the solution z(t) of the Cauchy problem

dz

dt
= −p z + g(t)z + g1(t, β̃) + g2(t, β̃), z(t0) = z0 (3.40)

(which differs from (3.23) in that the second argument of gi is now a fixed constant

β̃ > 0), provided that z0 = y0, and t0 ≥ s̃(α̃).
We therefore study the Cauchy problem (3.40), keeping in mind that for our final

purposes we will choose β̃ = β̃(α̃), t0 = t0(α̃) ≥ s̃(α̃).
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Lemma 2 Assume g(t), g̃i(t, η) ( i = 1, 2 and t ∈ J , η > 0) are continuous func-
tions fulfilling the conditions (3.17) – (3.19). Then for any ρ̃ > 0, t0 > 0, α̃ > 0 there

exists ̂T (ρ̃, α̃, β̃, t0) > 0 such that for |z0| ≤ α̃ ∈ [0, α̃] the solution z(t; t0, z0) of (3.40)
is bounded as follows:

|z(t; t0, z0)| < ρ̃, if t ≥ t0 + ̂T . (3.41)

If in particular z0 ∈ [0, α̃[, then

0 ≤ z(t; t0, z0) < ρ̃, if t ≥ t0 + ̂T . (3.42)

Proof The solution z(t) = z(t; t0, z0) is of the form

z(t) = z0 e
−p(t−t0)+

t
∫

t0

g(τ)dτ

+ e
−pt+

t
∫

0

g(τ)dτ
t
∫

t0

[

g1(τ, β̃) + g2(τ, β̃)
]

e
pτ−

τ
∫

0

g(λ)dλ

dτ.

(3.43)

We now consider each of the three terms on the right-hand side of (3.43) separately.

By equation (3.30) for t ≥ tϑ

−p(t− t0) +

t
∫

t0

g(τ) dτ ≤ −(t− t0)

[

p− q
1 + tχ

t− t0
−M

1 + ϑ(tχ − tκ)

t− t0

]

;

the right-hand side is negatively divergent for t− t0 → +∞, and so will be the left-hand
side; this implies that there exists a T0(ρ̃, α̃, t0) ≥ 0 such that

|z0| e
−p(t−t0)+

t
∫

t0

g(τ)dτ

<
ρ̃

3
, t ≥ t0 + T0, z0 ∈ [−α̃, α̃]. (3.44)

As for the second term, given β̃ > 0, ρ̃ > 0, because of (3.19)1 there exist T1(β̃, ρ̃) ≥

max{t̃, tϑ} and σ1(β̃) such that

g1(τ, β̃) ≤ σ1 if τ ≥ 0,

g1(τ, β̃)eξ(τχ−τκ) ≤
1

6
mρ̃ e−2M if τ ≥ T1

(3.45)

(t̃, m have been defined respectively in (3.33), (3.27)). Since the function h(t) defined in

(3.32) is increasing as the first power of t for t ≥ t̃, there exists T2(β̃, ρ̃) ≥ T1 such that
for t ≥ T2

σ1

p
e−h(t)+M+q+pT1 <

ρ̃

6
. (3.46)
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Therefore, for t ≥ T2,

e
−pt+

t
∫

0

g(τ)dτ
t
∫

t0

g1(τ, β̃)e
pτ−

τ
∫

0

g(λ)dλ

dτ

< e−pt+q(1+tχ)+M [1+ϑ(tχ−tκ)]

t
∫

0

g1(τ, β̃)e
pτ−

τ
∫

0

g(λ)dλ

dτ

< e−h(t)+M+q

T1
∫

0

g1(τ, β̃)epτdτ + e−h(t)+2M

t
∫

T1

g1(τ, β̃)eh(τ)+ξ(τχ−τκ)dτ

< e−h(t)+M+qσ1

T1
∫

0

epτdτ + e−h(t)+2Me−2M mρ̃

6

t
∫

T1

h′(τ)

m
eh(τ)dτ

< e−h(t)+M+qσ1
epT1

p
+
ρ̃

6
e−h(t)(eh(t) − eh(T1))

<
ρ̃

6
(1 + 1) =

ρ̃

3
,

(3.47)

where in the first and in the second inequality we have used (3.30), the nonnegativity of

g1, the fact that ξ(τχ − τκ) ≥ 0 and the definition of h(t), in the third (3.45) and (3.33),

in the fourth we have performed integration over τ , and in the last we have used (3.46).

As for the third term on the right-hand side of (3.43), from (3.19)2 it follows that

there exists T3(β̃, ρ̃) ≥ max{t̃, tϑ} such that for t ≥ T3

e2M

t
∫

T3

g2(τ, β̃)eξ(τχ−τκ)dτ <
ρ̃

6
(3.48)

and on the other hand that

T3
∫

0

g2(τ, β̃)epτdτ < σ2, (3.49)

where σ2 has been defined in (3.19). Moreover, there exists T4(β̃, ρ̃) ≥ T3 such that

for t ≥ t̃+ T4

σ2e
−h(t)+q+M <

ρ̃

6
. (3.50)
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Therefore for t ≥ T4

e
−pt+

t
∫

0

g(τ)dτ
t
∫

t0

g2(τ, β̃)e
pτ−

τ
∫

0

g(z)dz

dτ

< e−pt+q(1+tχ)+M [ϑ(tχ−tκ)+1]

t
∫

0

g2(τ, β̃)e
pτ−

τ
∫

0

g(z)dz

dτ

< e−h(t)+q+M

T3
∫

0

g2(τ, β̃)epτdτ + e−h(t)+2M

t
∫

T3

g2(τ, β̃)eξ(τχ
−τκ)eh(τ)dτ

< e−h(t)+q+Mσ2 + e−h(t)+2M+h(t)

t
∫

T3

g2(τ, β̃)eξ(τχ−τκ)dτ

<
ρ̃

6
+
ρ̃

6
=
ρ̃

3
,

(3.51)

where we have used the nonnegativity of g2 and (3.30) in the first inequality, again (3.30),
the fact that ξ(τχ − τκ) ≥ 0 and the nonnegativity of g in the second, (3.49) and the
monotonicity of h(τ) for τ ≥ T3 in the third, (3.48) and (3.50) in the last one.

Let ̂T (ρ̃, β̃, t0) := max{T0, T2, T4}. Collecting the results (3.44), (3.47), (3.51) we find
that the solution z(t) of (3.40) fulfills the condition

z(t, t0, z0) <
ρ̃

3
[1 + 1 + 1] = ρ̃, t ≥ t0 + ̂T .

Remark 1 This lemma is a generalization of Lemma 24.3 in [14], based in turn on an
argument due to Hale [10].

Remark 2 If χ ≤ κ then in the previous proof T0, and therefore ̂T , becomes indepen-
dent of t0. In fact, ϑ = 0 and from (3.30) we find

t
∫

t0

g(z) dz =

t
∫

0

g(z) dz −

t0
∫

0

g(z) dz < q(tχ − tχ0 ) + 2M.

By Lagrange’s theorem there exists a τ ∈]t0, t[ such that tχ − tχ0 =
χ

τ1−χ
(t− t0). Since

t0 ≥ t̃ ≡ (2qχ/p)1/(1−χ) we find tχ − tχ0 <
p

2q
(t− t0)

−p(t− t0) +

t
∫

t0

g(z)dz < −p(t− t0)

[

1 −
1

2

]

+ 2M = −
p

2
(t− t0) + 2M.

This implies that the left-hand side is negatively divergent for t− t0 → +∞ uniformly
in t0, as anticipated. The argument is not applicable in the case χ > κ.

We are now in the conditions to prove the following
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Theorem 1 Assume that the function f of (3.1) is bounded as in (3.16), where
g(t), g̃i(t, η) (i = 1, 2 and t ∈ J , η > 0) are continuous functions fulfilling the conditions
(3.17) – (3.19). Then the solutions of the problem (3.1), (3.2) are eventually uniformly
bounded. Moreover, the origin O is eventually quasi-uniform-asymptotically stable in the
large with respect to the metric d.

Proof Set α̃ := α2c22, and apply Lemma 1. Under the assumption d(u0, u1) ≤ α,
by (3.13) we find y0 = V (t0) ≤ α̃, by (3.22) and the application of the lemma we

find that y(t) (and therefore V (t)) is bounded by β̃(α2c22), and again by (3.13) we find

d(t) ≤ β(α) :=
√

β̃(α2c22)/c
2
1 for t ≥ s(α) := s̃(α2c22), as claimed. Moreover, we can

now apply the comparison principle (3.39) – (3.40) and Lemma 2: chosen ρ > 0, we set
ρ̃ := c21ρ

2. As a consequence of (3.39), (3.42), (3.13) we thus find that for t0 ≥ s(α)

and t ≥ ̂T (c21ρ, t0(α), c22α
2) ≡ T (ρ, α)

d2(t) ≤
V (t)

c21
≤
y(t)

c21
≤
z(t, β̃(α))

c21
<

ρ̃

c21
= ρ2.

Remark 3 This theorem is a generalization of Theorem 3.1 in reference [2]: the claims
are the same, but the hypotheses on the function f are weakened. First, (3.16) is an
upper bound condition only on the mean square value of f2, rather than on its supremum
(as in [2]). Second, this upper bound may depend on t in a more general way than in
that reference. The hypotheses (3.17), (3.18), (3.19) considered here are fulfilled by the
ones considered there with g(t) ≡ const and χ = κ = 1. The former, but not the latter,
are satisfied e.g. by the following family of examples.

Examples Let f = b(t) sinϕ, with a function b(t) such that the integral
t
∫

0

b2(τ) dτ

grows as some power tχ, where χ ≤ 1, and in the case χ = 1 is smaller than pt
for sufficiently large t; then we can set ĝ(t, η) ≡ b2(t). For instance we could take b2 a
continuous function that vanishes everywhere except in intervals centered, say, at equally
spaced points, where it takes maxima increasing with some power law ∼ tβ , but keeps
the integral bounded, e.g.

b2(t) = b20



























4nα+β(t− n+
1

2nα
) if t ∈

[

n−
1

2nα
, n

]

,

4nβ − 4nα+β(t− n) if t ∈

]

n, n+
1

2nα

]

,

0 otherwise,

(3.52)

with b20 < p, α ≥ 1, β ∈ ]α− 1, α] and n ∈ N . (The case α = β = 1 has already been
considered in [5]).

The graph of (b(t)/b0)
2 consists of a sequence of isosceles triangles enumerated by n,

having bases of length 1/nα and upper vertices with coordinates (x, y) = (n, 2nβ) (see
the Figure 3.1). Their areas are An = 1/nγ, where γ := α− β ∈ [0, 1[.

If 0 ≤ t− t0 < 2 then we immediately find

t
∫

t0

g(τ) dτ ≤ b20 2. (3.53)
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Figure 3.1

If on the contrary t − t0 ≥ 2, then there exist integers m, n with 0 ≤ m ≤ n − 2 and
t > t0 ≥ 0 such that t ∈ ]n− 1/2, n+ 1/2] and t0 ∈ ]m− 1/2, m+ 1/2]. Then we find

n−1/2
∫

m+1/2

g(τ) dτ ≤

t
∫

t0

g(τ) dτ ≤

n+1/2
∫

m−1/2

g(τ) dτ,

namely

n−1
∑

k=m+1

b20
kγ

= b20

n−1
∑

k=m+1

Ak ≤

t
∫

t0

g(τ) dτ ≤ b20

n
∑

k=m
k≥1

Ak =

n
∑

k=m
k≥1

b20
kγ
. (3.54)

Consider the function e(y) := y1−γ , γ ∈ [0, 1[. Applying Lagrange’s theorem we find
that for any h ∈ N there exists a ξh ∈ ]h, h+ 1[ such that

(h+ 1)1−γ − h1−γ = (1 − γ)
1

ξγ
h

,

whence, taking h = k and h = k − 1 respectively,

(k + 1)1−γ − k1−γ < (1 − γ)
1

kγ
,

k1−γ − (k − 1)1−γ > (1 − γ)
1

kγ
;

therefore
1

1 − γ
[(k + 1)1−γ − k1−γ ] <

1

kγ
<

1

1 − γ
[k1−γ − (k − 1)1−γ ]. (3.55)

From (3.54), (3.55) we find

b20[n
1−γ − (m+ 1)1−γ ]

1 − γ
<

t
∫

t0

g(τ) dτ <
b20[n

1−γ − (m− 1)1−γ(1 − δm
0 )]

1 − γ
. (3.56)
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where δm
0 denotes a Kronecker δ. Hence,

t
∫

t0

g(τ) dτ =
b20

1 − γ
[n1−γ − (m+ 1)1−γ ] + Lm,n(t) (3.57)

where the remainder Lm,n(t) is bounded by the difference dm on the right-hand side
and left-hand side of (3.56),

0 < Lm,n(t) < dm :=
b20

1 − γ
[(m+ 1)1−γ − (m− 1)1−γ(1 − δm

0 )].

The expression in square bracket equals 1 for m = 0 and 21−γ for m = 1. It is immediate
to check that the function ẽ(y) := (y + 1)1−γ − (y − 1)1−γ is decreasing for y ≥ 1 and
therefore takes its maximum in y = 1. We therefore derive the bound

0 < Lm,n(t) < dm ≤
b20 ẽ(1)

1 − γ
=
b20 21−γ

1 − γ
. (3.58)

Moreover, since t > n− 1, t0 < m+ 1 and g is nonnegative, from (3.57) we find

t
∫

t0

g(τ) dτ <
b20

1 − γ
[(t+ 1)1−γ − t1−γ

0 ] + Lm,n(t).

If t0 ≥ 1, applying again Lagrange’s theorem to the function e(t) = t1−γ we find

b20
1 − γ

[(t+ 1)1−γ − t1−γ
0 ] = b20

t− t0 + 1

t̄γ
< b20(t− t0 + 1)

with a suitable t̄ ∈ ]t0, t+ 1[, and therefore

t
∫

t0

g(τ) dτ − b20(t− t0) < b20

(

1 +
21−γ

1 − γ

)

. (3.59)

If 0 ≤ t0 < 1,

t
∫

t0

g(τ) dτ−b20(t−t0) ≤

1
∫

0

g(τ) dτ−b20(1−t0)+

t
∫

1

g(τ) dτ−b20(t−1) < b20

(

2+
21−γ

1 − γ

)

=: σ,

where we have used (3.59) with t0 = 1 and
1
∫

0

g(τ)dτ ≤ b20, showing (together with (3.59)

itself and (3.53)) that g fulfills condition (3.17) in any case.
On the other hand, choosing t0 = 0 (and therefore m = 0) in (3.57), dividing by

1 + t1−γ and subtracting b20/(1 − γ) we find

t
∫

0

g(τ) dτ

1 + t1−γ
−

b20
1 − γ

=
b20

1 − γ

[

n1−γ − (1 + t1−γ) − 1

1 + t1−γ

]

+
L0,n(t)

1 + t1−γ
.
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But it is n− 1 < t < n+ 1, what implies

1 − 21−γ ≤ n1−γ − (n+ 1)1−γ < n1−γ − t1−γ < (t+ 1)1−γ − t1−γ < 1

(in fact the function ê(y) := (y+1)1−γ −y1−γ is decreasing and therefore has maximum
at the lower extremum of the interval in which we define it); hence, using also (3.58), we
find

−
b20

1 − γ

[

21−γ + 1

1 + t1−γ

]

<

t
∫

0

g(τ)dτ

1 + t1−γ
−

b20
1 − γ

<
b20

1 − γ

[

21−γ − 1

1 + t1−γ

]

<
b20

1 − γ

[

21−γ + 1

1 + t1−γ

]

.

We have proved these inequalities under the current assumption t ≥ 2, showing that
in this domain also condition (3.18), with q = b20/(1 − γ), χ = κ = 1 − γ and M =
b20(2

1−γ + 1)/(1 − γ), is satisfied. For 0 ≤ t ≤ 2 the left-hand side of (3.18) is certainly
bounded by b20 3/[2(1 − γ)], therefore it is sufficient to choose e.g. M = b20 9/[2(1 − γ)]
to fulfill (3.18) for any t ≥ 0.

4 Exponential-Asymptotic Stability for Special f ’s via a Family of Liapunov

Functionals

In this section we specialize the function f of (3.1) as f = F (u)−a(x, t, u, ux, ut, uxx)ut,
where F ∈ C(R) and a ∈ C( ]0, 1[ × J ×R4), and examine the particular problem

Lu = F (u) − a(x, t, u, ux, ut, uxx)ut, x ∈]0, 1[, t > t0,

u(0, t) = 0, u(1, t) = 0, t > t0,
(4.1)

with initial and consistency conditions (3.2) – (3.3). We shall use the one-parameter
family of modified Liapunov functionals

Wγ(ϕ, ψ) =
1

2

1
∫

0

{

(εϕxx − ψ)2 + γψ2 + (1 + γ)ϕ2
x

}

dx

− (1 + γ)

1
∫

0

( ϕ(x)
∫

0

F (z)dz

)

dx

(4.2)

where γ > 1/2 is for the moment an unspecified parameter.

Theorem 2 Under the following assumptions

(1) F (u) ∈ C1(R), F (0) = 0, and moreover there exists a positive constant K such
that

Fu ≤ K < 3π2/4; (4.3)

(2) the function a satisfies

ν := επ2 + inf a > 0; (4.4)

(3) there exist τ ∈ [0, 2[ and constants A > 0, A′ ≥ 0 such that

a(x, t, ϕ, ϕx, ϕxx, ψ) ≤ A[d(ϕ, ψ)]τ +A′, (4.5)
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the zero solution of the problem (4.1) is exponential-asymptotically stable in the large.

As anticipated in the introduction, this should be compared with Theorem 3.3. in
the main reference, [2]: by replacing the requirement that sup a < ∞ and adding the
assumption (4.5) we are still able to prove the exponential-asymptotic stability in the
large of the zero solution. The trick is to associate to each neighbourhood of the origin
with radius σ (the ‘error’) a Liapunov functional (4.2) with parameter γ adapted to σ,
instead of fixing γ once and for all.

Proof We start by improving or recalling some inequalities proved in [2]. From (4.3)
we find

ϕ
∫

0

F (z) dz =

ϕ
∫

0

dz

z
∫

0

Fs(s) ds ≤ K

ϕ
∫

0

dz

z
∫

0

ds = Kϕ2/2. (4.6)

Employing this inequality and the estimate (3.9) we find

Wγ(ϕ, ψ) =
1

2

1
∫

0

{

(εϕxx − 2ψ)2/4 + (εϕxx − ψ)2/2 + (γ − 1/2)ψ2

+ (1 + γ)ϕ2
x + ε2ϕ2

xx/4 − 2(1 + γ)

ϕ
∫

0

F (z) dz
}

dx.

(4.7)

It easy to see that

Wγ(ϕ, ψ) ≥
1

2

1
∫

0

[

(

γ −
1

2

)

ψ2 + (1 + γ)ϕ2
x +

ε2

4
ϕ2

xx − 2(1 + γ)

ϕ
∫

0

F (z) dz

]

dx

≥
1

2

1
∫

0

[(

γ −
1

2

)

ψ2 + (1 + γ)π2ϕ2 +
ε2

4
ω3(ϕ

2
xx + ϕ2

x) − (1 + γ)Kϕ2

]

dx

≥ k2
1d

2(ϕ, ψ),

(4.8)

where we have used again (4.3) and we have introduced the constant k2
1

k2
1 = min{ε2ω3/8, (2γ − 1)/4}, γ > 1/2. (4.9)

Another inequality of [2] reads

Wγ(ϕ, ψ) ≤ c22 [1 +m(d(ϕ, ψ))] d2(ϕ, ψ), (4.10)

where

m(|ϕ|) = max{|Fζ(ζ)| : |ζ| ≤ |ϕ|}. (4.11)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 5(1) (2005) 9–38 31

The map B(d) := [1 + m(d)]1/2d is increasing and continuous, therefore invertible.
Finally,

dWγ(u, ut)

dt
= −

1
∫

0

{εu2
xx + εγu2

xt + a(1 + γ)u2
t + εF (u)uxx − εauxxut} dx

= −

1
∫

0

{

3

4
εu2

xx + ε
[ c

2
uxx −

a

c
ut

]2

+ εγu2
tx + a [1 + γ − εa]u2

t − εFuu
2
x

}

dx

≤ −

1
∫

0

{3ε(1 − λ)u2
xx/4 + ε(3λπ2/4 −K)u2

x

+ [(επ2 + a)γ + a(1 − εa)]u2
t}dx,

(4.12)

dWγ(u, ut)

dt
≤ −

1
∫

0

{3ε(1 − λ)ω1(u
2
xx + u2)/4 + ε(3λπ2/4 −K)u2

x

+ [(επ2 + a)γ + a(1 − εa)]u2
t} dx,

(4.13)

where λ ∈ ]0, 1[ is a constant chosen in such a way that 3λπ2/4 −K > 0, and we have
used (3.9), (4.3).

Now we are going to show that for any “error” σ > 0 there exists a δ ∈ ]0, σ[ such
that d(t0) ≡ d(u0, u1) < δ implies

d(t) ≡ d(u(x, t), ut(x, t)) < σ ∀ t ≥ t0. (4.14)

To this end we associate to the neighbourhood with radius σ of the zero solution the
Liapunov functional (4.2) choosing the parameter γ and δ as the following functions
of σ:

γ(σ) = (Aστ +A′)ε+M, M :=
1 + επ2 + ε3π4

ν
+

1

επ2
+

1

2
, (4.15)

δ(σ) = B−1

(

σk1 (γ(σ))

c2 (γ(σ))

)

; (4.16)

we shall call the corresponding Liapunov functional Wσ. Per absurdum, assume that
there exist a t1 > t0 such that (4.14) is fulfilled for any t ∈ [t0, t1[, whereas

d(t1) = σ. (4.17)

Consider the term in the square bracket on the right-hand side of (4.13). From (4.15),
(4.4), (4.5) considering separately the cases a > 0, −επ2 < a ≤ 0, we find

−
[

(επ2 + a)γ + a(1 − εa)
]

≤ −1, (4.18)

whence
dWσ(u(t), ut(t))

dt
≤ −k2

3d
2(u(t), ut(t)) < 0, (4.19)
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where
k2
3 = min {3ε(1 − λ)ω1/4, ε(3λπ

2/4 −K), 1}. (4.20)

From (4.8), (4.19), (4.10), (4.16), it follows

k2
1d

2(t1) ≤Wσ(u(t1), ut(t1)) < Wσ(u(t0), ut(t0)) ≤ c22 [1 +m(d(t0))] d
2(t0)

< c22 [1 +m(δ)] δ2 = c22 [B(δ)]2 = c22

[

B

(

B−1

(

σk1

c2

))]2

= k2
1σ

2,

against (4.17).
Having proved (4.14), it follows m(d(t)) < m(σ), which replaced in (4.10) gives

Wσ ≤ c22(σ) [1 +m(σ)] d2(t);

together with (4.19) this in turn implies

dWσ(u(t), ut(t))

dt
≤ −C(σ)Wσ(u(t), ut(t)),

with C(σ) := k2
3/[c

2
2(σ)(1+m(σ))]. Using the comparison principle we find that d(t0) ≡

d(u0, u1) < δ implies

d(u(t), ut(t)) ≤ D(σ)e−
C(σ)

2 (t−t0)d(u0, u1), (4.21)

with D(σ) :=
c2
k1

√

1 +m(δ(σ)).

Last, we show that under the present assumptions the function (4.16) can be inverted.
It is evident from (4.9) that k1(σ) is non-decreasing, from (3.7) and (4.5) that σ/c2(γ(σ))
is strictly increasing, therefore that σk1(σ)/c2(γ(σ)) is strictly increasing too, hence
invertible. Since B−1 is invertible, δ(σ) is invertible and its range is J .

Thus we can express D(σ), C(σ) as functions of δ, proving the exponential asymptotic
stability of the zero solution.

Remark 4 The theorem holds also if we replace the right-hand side of (4.5) with A(d),

where A : [0,+∞[ → R+ is any nondecreasing function such that A(σ)/σ2 σ→+∞
−−−−−→ 0.

Remark 5 If (4.5) holds with τ = 2 the function
σ

c2(γ(σ))
is still increasing but

its range is [0, 2/εA], implying that the function
σk1(γ(σ))

c2(γ(σ))
is still increasing but its

range is [0,
√
ω3/

√
2A] . Therefore the condition (3.5) of Definition 3.4 is fulfilled only

for α ∈ ]0, B−1(
√
ω3/

√
2A)[, and the attraction region includes the set d(u0, u1) <

B−1(
√
ω3/

√
2A).

We now give a variant of the preceding theorem, based on a hypothesis slightly different
from (4.5). Beside the distance (3.4), we need also a “weaker” distance d1(u, ut) between
the zero and a nonzero solution u(x, t) of the problem (3.1) – (3.2): for any (ϕ, ψ) ∈
C2

0 ([0, 1]) × C0([0, 1]) we define

d2
1(ϕ, ψ) =

1
∫

0

(ϕ2 + ϕ2
x + ψ2) dx. (4.22)
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Clearly,

d1(ϕ, ψ) ≤ d(ϕ, ψ). (4.23)

The “Hamiltonian” Liapunov functional v(u, ut), with

v(ϕ, ψ) :=
1

2

1
∫

0

{

ψ2 + ϕ2
x − 2

( ϕ(x)
∫

0

F (z) dz

)}

dx, (4.24)

will play w.r.t. the distance d1 a role similar to the one played by the Liapunov functionals
V or Wγ w.r.t. the distance d.

Theorem 3 Under the following assumptions

(1) F (u) ∈ C1(R), F (0) = 0, and there exists a positive constant K such that

Fu ≤ K < 3π2/4; (4.25)

(2) the function a satisfies

inf a > −επ2; (4.26)

(3) there exists a nondecreasing map A : J → J such that

|a(x, t, ϕ, ϕx, ϕxx, ψ)| ≤ A [d1(ϕ, ψ)] , (4.27)

the zero solution of the problem (4.1) is exponential-asymptotically stable in the large.

Proof Some steps of the proof are exactly as in the previous theorem. Employing
inequality (4.6) and the estimate (3.9) we find

v ≥
1

2

1
∫

0

{(

1

8
u2

x +
7

8
u2π2

)

+ u2
t −

3

4
π2u2

}

dx ≥
1

16
d2
1. (4.28)

Setting v(t) ≡ v(u, ut), integrating by parts and using (4.1), (4.26), (3.9) we also find

dv

dt
=

1
∫

0

{ut[−uxx + utt − F (u)]} dx = −

1
∫

0

{

εu2
xt + au2

t

}

dx

≤ −

1
∫

0

(επ2 + a)u2
t dx < 0

(4.29)

Now we are going to prove the uniform boundedness of the solutions of the problem
(4.1). To this end first note that from the definition (4.11) it follows

∣

∣

∣

∣

∣

ϕ
∫

0

F (z)dz

∣

∣

∣

∣

∣

≤ m(|ϕ|)
ϕ2

2
;
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employing this inequality and the one ϕ2 ≤ d2
1(ϕ, ψ) we find

v ≤
1

2
[1 +m (d1(u, ut))] d

2
1(u, ut). (4.30)

From (4.29) we derive the inequality v(t) < v(t0) for any t > t0, whence

1

16
d2
1(t) ≤ v(t) < v(t0) ≤

1

2
[1 +m (d1(t0))] d

2
1(t0).

Therefore, for any t > t0

d(t0) ≤ α =⇒ d1(t0) ≤ α =⇒ d1(t) < β1(α) := 2
√

2 [1 +m(α)]
1/2

α,

so that, in view of the assumption (4.27),

d(t0) ≤ α =⇒ |a(x, t, u, ux, ut, uxx)| ≤ A [β1(α)] ≡ A(α). (4.31)

Now we associate to any α > 0 the Liapunov functional (4.2) with the parameter γ
chosen as the following function of α:

γ(α) = A(α)ε+M, M :=
1 + επ2 + ε3π4

ν
+

1

επ2
+

1

2
; (4.32)

we shall call the corresponding Liapunov functional Wα. Consider the term in the square
bracket on the right-hand side of (4.13). From (4.31), (4.32), we find again (4.18), whence

dWα(u(t), ut(t))

dt
≤ −k2

3d
2(u(t), ut(t)) < 0, (4.33)

with the same k2
3 of (4.20). From (4.8), (4.33), (4.10), it follows for any t > t0

k2
1d

2(t) ≤Wα(u(t), ut(t)) < Wα(u(t0), ut(t0)) ≤ c22 [1 +m(d(t0))] d
2(t0)

< c22(γ(α)) [1 +m(α)]α2 = c22(γ(α))B2(α),

proving the uniform boundedness of u:

d(u(t), ut(t)) <
c2(γ(α))

k1(γ(α))
B(α) ≡ β(α). (4.34)

Having proved this, it follows m(d(t)) < m(β(α)), which replaced in (4.10) gives

Wα ≤ c22(γ(α))[1 +m(β(α))]d2(t);

together with (4.33) this in turn implies

dWα(u(t), ut(t))

dt
≤ −C(α)Wα(u(t), ut(t)),

with C(α) := k2
3(γ(α))/{c22(γ(α))[1+m(β(α))]}. Using the comparison principle we find

that d(t0) ≡ d(u0, u1) ≤ α implies

d(u(t), ut(t)) ≤ D(α)e−C(α)(t−t0)d(u0, u1), (4.35)

with D(α) :=
c2(γ(α))

k1(γ(α))

√

1 +m(β(α)), namely the exponential-asymptotical stability.

5 Uniform Asymptotic Stability in the Large for a Class of Non-Analytic f ’s

Here we give a generalization of Theorem 2 in [5]. As in the preceding sections, using
the trick of the one-parameter family of Liapunov functionals we are able to replace the
boundedness assumption for the function a by a weaker one.
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Theorem 4 Under the following assumptions

F (ϕ) ∈ C(R) such that F (0) = 0, (5.1)

there exist τ ∈ [0, 1[ and D > 0 such that, for any ϕ, ψ (5.2)

0 ≤ −

1
∫

0

( ϕ(x)
∫

0

F (z)dz

)

dx ≤ Ddτ+1(ϕ, ψ),

1
∫

0

F (ϕ(x))ϕxx(x) dx ≥ 0 for any ϕ ∈ C2
0 ([0, 1]), (5.3)

the function a satisfies inf a > −επ2, (5.4)

there exists a nondecreasing map A : [0,∞[→ R+ such that (5.5)

|a(x, t, ϕ, ϕx, ϕxx)| ≤ A (d(ϕ, ψ)) ,

the zero solution of the problem (4.1) is uniformly asymptotically stable in the large.

Proof From (4.7), (5.2)

Wγ(ϕ, ψ) ≥
1

2

1
∫

0

{(γ − 1/2)ψ2 + (1 + γ)ϕ2
x + ε2ϕ2

xx/4} dx

≥
1

2

1
∫

0

{(γ − 1/2)ψ2 + (1 + γ)ω3(ϕ
2 + ϕ2

x) + ε2ϕ2
xx/4} dx ≥ k′1

2d2(ϕ, ψ),

(5.6)

where

k′1
2 :=

1

2
min

{

γ −
1

2
,
ε2

4
, (1 + γ)ω3

}

, γ >
1

2
. (5.7)

Moreover, taking into account (4.2), assumption (5.2), noting that (εϕxx−ψ)2 ≤ ε2ϕ2
xx+

ψ2 + ε(ϕ2
xx + ψ2), and considering (3.7) it follows

Wγ(ϕ, ψ) ≤ Gγ(d(ϕ, ψ)), (5.8)

where
Gγ(d) := c22(γ)d2 +D(γ + 1)dτ+1. (5.9)

For any choice of γ >
1

2
the map Gγ(d) is increasing and continuous in d, therefore

invertible. Finally, with the help of (3.9) we obtain from (4.12)

dWγ(u, ut)

dt
≤ −

1
∫

0

{(3/4)εu2
xx + [εγ + a(1 + γ − εa)]u2

t} dx

≤ −

1
∫

0

{εω2(u
2
xx + u2

x + u2)/4 + [(ε+ a)γ + a(1 − εa)]u2
t} dx.

(5.10)
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Now we are going to show that for any “error” σ > 0 there exists a δ ∈ ] 0, σ [ such
that d(t0) ≡ d(u0, u1) < δ implies

d(t) ≡ d (u(x, t), ut(x, t)) < σ ∀ t ≥ t0. (5.11)

To this end we choose the parameter γ in the Liapunov functional (4.2) as in (4.32) and
δ as the following function of the error σ:

δ(σ) = G−1
γ(σ)

(

σ2k′1
2 (γ(σ))

)

; (5.12)

we shall indicate the corresponding Liapunov functional Wγ(σ) simply by Wσ. Per ab-

surdum, assume that there exist a t1 > t0 such that (4.14) is fulfilled for any t ∈ [t0, t1[,
whereas (4.17) holds for t = t1. Consider the term in the square bracket on the right-hand
side of (5.10). From (4.32), (4.4), (5.5) we get again (4.18), whence

dWσ(u(t), ut(t))

dt
≤ −k′3

2d2(u(t), ut(t)) < 0, (5.13)

where now k′3
2 := min{εω2/4, 1}. From (5.6), (5.8), (5.13),(5.12), it follows

k′1
2d2(t1) ≤Wσ(u(t1), ut(t1)) < Wσ(u(t0), ut(t0))

≤ Gγ(σ)(d(t0)) < Gγ(σ)(δ(σ)) = k′1
2σ2,

against (4.17). So we have proved the uniform stability of the zero solution.
Note now that the function δ(σ) is invertible, since it is the composition of two in-

creasing functions. Therefore Wσ can be expressed as a function Wδ of the parameter δ.
By (5.13) it is Wδ(t) ≤Wδ(t0) so by (5.6), (5.8) we find that for d(t0) ≡ d(u0, u1) ≤ δ

d2(t) ≤
Wδ(t)

k′1
2

≤
Wδ(t0)

k′1
2

≤
Gγ(d(t0))

k′1
2

≤
Gγ(δ)

k′1
2
(

γ(δ)
) =: β2(δ),

proving the uniform boundedness of u.
Employing an argument of [5] one can now show that for any choice of the initial

condition d(t0) < δ the functional Wδ decreases to zero (at least) as a negative power of
(t− t0) as (t− t0) → ∞. From (5.8) we find

d2 ≥ min

{

Wδ

2c22(γ(σ))
,

(

Wδ

2D(γ + 1)

)
2

τ+1
}

,

which considered in (5.13) gives

dWδ(u, ut)

dt
≤ −k′3 min

{

Wδ

2c22
,

(

Wδ

2D(γ + 1)

)
2

τ+1
}

≤ 0. (5.14)

If at t = t0

Wδ

2c22
≥

(

Wδ

2D(γ + 1)

)
2

τ+1

, (5.15)

then setting

E(δ) :=
k′3

[

2D
(

γ(δ) + 1
)]

2
τ+1

1 − τ

1 + τ
> 0

one finds

d2(t) ≤
Wδ(t)

k′1
2

≤
1

k′1
2[Wδ(t0) + E(t− t0)]

1+τ
1−τ

≤
1

k′1
2[E(t− t0)]

1+τ
1−τ

(5.16)
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for t ≥ t0. If on the contrary

Wδ(t0)

2c22
<

(

Wδ(t0)

2D(γ + 1)

)
2

τ+1

,

(5.14) will imply for some time

dWδ(u, ut)

dt
≤ −k′3Wδ

and by the comparison principle an (at least) exponential decrease of Wδ. Hence there

will exist a ˜T (δ) > 0 such that

Wδ(t0 + T̃ )

2c22
=

(

Wδ(t0 + ˜T )

2D(γ + 1)

)
2

τ+1

,

after which (5.14) will take again the form considered in the previous case and thus imply

d2(t) ≤
Wδ(t)

k′1
≤

1

k′1
2[Wδ(t0 + ˜T ) + E(t− t0 − ˜T )]

1+τ

1−τ

≤
1

k′1
2[E(t− t0 − ˜T )]

1+τ

1−τ

(5.17)

for t ≥ t0 + ˜T . Formula (5.17) will be valid also if δ is so small that inequality (5.15)

occurs, provided we correspondingly define ˜T := 0, so that it reduces to (5.16). Formula
(5.17) evidently implies the quasi-uniform asymptotic stability in the large of the zero
solution.
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[5] D’Anna, A. and Fiore, G. Stability and attractivity for a class of dissipative phenomena.
Rend. Mat. Serie VII 21 (2000) 191–206.

[6] Davydov, A.S. Solitons in Molecular Systems. Reidel Publishing Company, 1985.
[7] Ghidaglia, J.M. and Marzocchi, A. Long time behaviour of strongly damped wave equa-

tions, global attractors and their dimensions. SIAM J. Math. Anal. 22 (1991) 879–895.
[8] Greenberg, J.M., MacCamy, R.C. and Mizel, V.J. On the existence, uniqueness, and

stability of solutions of the equation σ′(ux)uxx + λuxtx = ρ0utt. J. Math. Mech. 17(7)
(1968) 707–728.

[9] Greenberg, J.M. and MacCamy, R.C. On the exponential stability of solutions of
E(ux)uxx + λuxtx = ρutt. J. Math. Anal. Appl. 31 (1970) 406–417.



38 A. D’ANNA AND G. FIORE

[10] Hale, J.K. Asymptotic behaviour of solutions of differential-difference equations. Proc. of
Symp. Nonlinear Oscillations, IUTAM, Kiev, September 1961, II, P.409–426.

[11] Lomdhal, P.S., Soerensen, O.H. and Christiansen, P.L. Soliton excitations in Josephson
tunnel junctions. Phys. Rev. B 25 (1982) 5737–5748.

[12] Morrison, J.A. Wave propagations in rods of Voigt material and visco-elastic materials
with three-parameters models. Quart. Appl. Math. 14 (1956) 153–169.

[13] Flavin, N. and Rionero, S. Qualitative Estimates for Partial Differential Equations. CRC
Press, 1996.

[14] Yoshizawa, T. Stability Theory by Liapunov’s Second Method. The Mathematical Society
of Japan, 1966.



Nonlinear Dynamics and Systems Theory, 5(1) (2005) 39–48

Optimal Maneuvers Using a Three
Dimensional Gravity Assist

G. Felipe and A.F.B.A. Prado

Instituto Nacional de Pesquisas Espaciais,
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Abstract: In the present paper the swing-by maneuvers are studied and clas-
sified under the model given by the three-dimensional restricted three-body
problem. The modification in the orbit of the spacecraft due to the close ap-
proach is shown in plots that specify from which type of orbits the spacecraft
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to solve optimal problems, such as finding trajectories that satisfy some given
constraints (such as achieving an escape or a capture) with some parameters
being extremized (position, velocity, etc...).
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1 Introduction

Applications of the swing-by technique can be found in several publications in the lit-
erature [1 – 9]. In the present paper the swing-by maneuvers are studied and classified
under the model given by the three-dimensional circular restricted three-body problem.
The goal is to simulate a large variety of initial conditions for those orbits and classify
them according to the effects caused by the close approach in the orbit of the spacecraft.
This swing-by is assumed to be performed around the secondary body of the system. For
a large number of values of these three variables, the equations of motion are integrated
numerically forward and backward in time, until the spacecraft is at a distance that
can be considered far enough from M2. It is necessary to integrate in both directions
of time because the set of initial conditions used gives information about the spacecraft
exactly at the moment of the closest approach. At these two points, the effect of M2

can be neglected and the system formed by M1 and the spacecraft can be considered a
two-body system. At these two points, two-body celestial mechanics formulas are valid

c© 2005 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 39



40 G. FELIPE AND A.F.B.A. PRADO

to compute the energy and the angular momentum before and after the close approach.
With those results, the orbits are classified in four categories: elliptic direct (negative en-
ergy and positive angular momentum), elliptic retrograde (negative energy and angular
momentum), hyperbolic direct (positive energy and angular momentum) and hyperbolic
retrograde (positive energy and negative angular momentum). Then, the problem is to
identify the category of the orbit of the spacecraft before and after the close encounter
with M2. After that, those results are used to identify up to sixteen classes of transfers,
accordingly to the changes in the category of the orbit caused by the close encounter.
They are named with the first sixteen letters of the alphabet. After that, several optimal
problems involving this maneuver can be formulated and solved with the help of the
plots shown. Some examples include finding specific types of orbits (escape, capture,
etc.) that have maximum or minimum velocity at periapsis (or any other parameters,
such as the distance of the periapsis or the angle of approach).

2 The Swing-By in Three Dimensions

This maneuver can be identified by four independent parameters: i) Vp, the magnitude
of the velocity of the spacecraft at periapsis. For the most general case, it would be
necessary to give an information about the direction of the velocity. In this paper, only
velocities parallel to the x–y plane are considered. This constraint is assumed, because
it is the most usual situation in interplanetary research, since the planets have orbits
that are almost coplanar. Under this approximation, and taking into account that the
velocity at periapse is perpendicular to the periapsis vector, the information about the
magnitude of the velocity is enough to completely specify the velocity vector; ii) Rp,
the distance between the spacecraft and the celestial body during the closest approach;
iii) α, the angle between the projection of the periapsis line in the x–y plane and the line
that connects the two primaries; iv) β, the angle between the periapsis line and the x–y
plane.

Figure 2.1. The swing-by in the three-dimensional space.
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Figure 2.1 shows the sequence for this maneuver and some of those and other impor-
tant variables. It is assumed that the system has three bodies: a primary (M1) and a
secondary (M2) body with finite masses that are in circular orbits around their common
center of mass and a third body with negligible mass (the spacecraft) that has its motion
governed by the two other bodies. The spacecraft leaves the point A, passes by the point
P (the periapsis of the trajectory of the spacecraft in its orbit around M2) and goes to the
point B. The points A and B are chosen in a such way that the influence of M2 at those
two points can be neglected and, consequently, the energy can be assumed to remain
constant after B and before A (the system follows the two-body celestial mechanics).
The initial conditions are clearly identified in the Figure 2.1: the periapsis distance Rp

(distance measured between the point P and the center of M2), the angles α and β and
the velocity Vp. The distance Rp is not to scale, to make the figure easier to understand.
The result of this maneuver is a change in velocity, energy and angular momentum in
the keplerian orbit of the spacecraft around the central body.

3 The Three-Dimensional Circular Restricted Problem

For the research performed in this paper, the equations of motion for the spacecraft
are assumed to be the ones valid for the well-known three-dimensional restricted circular
three-body problem. The standard dimensionless canonical system of units is used, which
implies that: the unit of distance is the distance between M1 and M2; the mean angular
velocity (ω) of the motion of M1 and M2 is assumed to be one; the mass of the smaller
primary (M2) is given by µ = m2

m1+m2
(where m1 and m2 are the real masses of M1 and

M2, respectively) and the mass of M2 is (1 − µ); the unit of time is defined such that
the period of the motion of the two primaries is 2π and the gravitational constant is one.
There are several systems of reference that can be used to describe the three-dimensional
restricted three-body problem [10; Chapter 10]. In this paper the rotating system is used.
In this system of reference, the origin is the center of mass of the two massive primaries.
The horizontal axis (x) is the line that connects the two primaries at any time. It rotates
with a variable angular velocity in a such way that the two massive primaries are always
on this axis. The vertical axis (y) is perpendicular to the (x) axis. In this system, the
positions of the primaries are: x1 = −µ, x2 = 1 − µ, y1 = y2 = 0. In this system, the
equations of motion for the massless particle are [10; Chapter 10]:

ẍ − 2ẏ = x − (1 − µ)
x + µ

r3
1

− µ
x − 1 + µ

r3
2

, (1)

ÿ + 2ẋ = y − (1 − µ)
y

r3
1

− µ
y

r3
2

, (2)

z̈ = −(1 − µ)
z

r3
1

− µ
z

r3
2

, (3)

where r1 and r2 are the distances from M1 and M2.

4 Algorithm to Solve the Problem

A numerical algorithm to solve the problem has the following steps: 1. Arbitrary values
for the three parameters Rp, Vp, α and β are given; 2. With these values the initial
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conditions in the rotating system are computed. The initial position is the point
(Xi, Yi, Zi) and the initial velocity is (VXi, VY i, VZi), where:

Xi = 1 − µ + Rp cos(β) cos(α), (4)

Yi = Rp cos(β) sin(α), (5)

Zi = Rp sin(β), (6)

VXi = −Vp sin(α) + Rp cos(β) sin(α), (7)

VY i = Vp cos(α) − Rp cos(β) cos(α), (8)

VZi = 0, (9)

where the last equation comes from the decision of studying the maneuvers with Vp paral-
lel to the orbital plane of the primaries; 3. With these initial conditions, the equations of
motion are integrated forward in time until the distance between M2 and the spacecraft
is larger than a specified limit d. At this point the numerical integration is stopped and
the energy (E+) and the angular momentum (C+) after the encounter are calculated;
4. Then, the particle goes back to its initial conditions at the point P , and the equations
of motion are integrated backward in time, until the distance d is reached again. Then
the energy (E−) and the angular momentum (C−) before the encounter are calculated.

For all the simulations shown, a Runge–Kutta of 8th order was used for numerical
integration. The criteria to stop numerical integration is the distance between the space-
craft and M2. When this distance reaches the value d = 0.5 (half of the semimajor
axis of the two primaries) the numerical integration is stopped. The value 0.5 is larger
than the sphere of influence of M2, which avoids any important effects of M2 at these
points. Simulations using larger values for this distance were performed, and it increased
the integration time, but did not significantly change the results. To study the effects
of numerical accuracy, several cases were simulated using different integration methods
and/or different values for the accuracy required with no effects in the results.

With this algorithm available, the given initial conditions (values of Rp, Vp, α, β)
are varied in any desired range and the effects of the close approach in the orbit of the
spacecraft are studied.

5 Classification of the Orbits

The main results consist of plots that show the change of the orbit of the spacecraft,
due to the close encounter with M2. The Earth–Moon, Sun–Uranus and the Sun–Saturn
systems of primaries are used. Any mission using a swing-by with one of those system
can use those results. First of all, it is necessary to classify all the close encounters
between M2 and the spacecraft, according to the change obtained in the orbit of the
spacecraft. The letters A –P are used for this classification. They are assigned to the
orbits according to the rules showed in Table 5.1.

With those rules defined, the results consist of assigning one of those letters to a
position in a two-dimensional diagram that has the angle α (in degrees) in the vertical
axis and the angle β (in degrees) in the horizontal axis. One plot is made for every value
of Rp and Vp. This type of diagram is called here a “letter-plot” and it was used before
in [2].
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Table 5.1. Rules to assign letters to orbits.

After

Before

Direct
Ellipse

Retrograde
Ellipse

Direct
Hyperbola

Retrograde
Hyperbola

Direct Ellipse A E I M

Retrograde Ellipse B F J N

Direct Hyperbola C G K O

Retrograde Hyperbola D H L P

In the present paper several simulations were made and they are shown in Figures 5.1 –
5.3. For each plot a total of 961 trajectories were generated, dividing each axis in 31
segments. The interval plotted for α is 180 ≤ α ≤ 360 deg because there is a symmetry
with respect to the vertical line α = 180 deg. The plot for the interval 0 ≤ α ≤ 180 deg
is a mirror image of the region 180 ≤ α ≤ 360 deg with the following letter substitutions:
L becomes O, N becomes H, I becomes C, B becomes E, M becomes D and J becomes
G. The letters K, P, F and A remain unchanged.

Figure 5.1. Simulations for Rp = 0.00008464 in the Sun–Saturn system.

By examining Figures 5.1 – 5.3 it is possible to identify the following families of orbits:
a) Orbits that result in an escape (transfer from elliptic to hyperbolic), that are repre-
sented by the letters I, J, M, N and that appear between the center (α = 270◦) and the
bottom part of some of the plots (the ones for lower velocities); b) Orbits that result in a
capture (transfer from hyperbolic to elliptic), that are represented by the letters C, D, G,
H that do not appear in the plots shown in this paper (but exist in the symmetric part
not shown here); c) Elliptic orbits (transfer from elliptic to elliptic), that are represented
by the letters A, B, E, F and that appear at the bottom of some of the plots (the ones
for lower velocities); d) Hyperbolic orbits (transfer from hyperbolic to hyperbolic), that
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Figure 5.2. Simulations in the Earth–Moon system.

are represented by the letters K, L, O, P and that appears at the upper part of the plots
and that are the only families available for higher velocities; e) Orbits that change the
direction of motion from direct to retrograde that are represented by the letters E, M, G,
O and that do not appear in the plots shown in this paper (but exist in the symmetric
part not shown here); f) Orbits that change the direction of motion from retrograde to
direct, that are represented by the letters B, D, J, L, that appear in the lower-center of
the plot; g) Retrograde orbits that are represented by the letters F, H, N, P that appear
in the majority of the bottom part of the plots; h) Direct orbits that are represented by
the letters A, C, I, K that appear in the top of the plots.
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Figure 5.3. Simulations for Rp = 0.000082 in the Sun–Uranus system.

6 Optimal Problems

The results generated in this research can be used to help mission designers to plan
missions that involve optimization of parameters. It is possible to use the plots made
here to find situations where a specific case (represented by the letters A –P) can be
obtained with one or more variables (like Vp or Rp) extremized. The parameters Vp and
Rp are important parameters to be extremized. If the goal of the mission is to collect
data from M2, it is interesting to minimize Rp (to get closer to M2) and Vp (to stay
more time close to M2). In the opposite, if M2 is necessary to be used to change the
trajectory of the spacecraft, but it represents a risk to the vehicle due to the presence of
an atmosphere and/or radiation, etc., it is necessary to maximize Rp and/or Vp, subject
to the restriction of obtaining the desired change in the trajectory. To use a real case
as an example, the Earth–Moon, Sun–Saturn and the Sun–Uranus systems are used to
solve the problems described below.

Problem 1: It is desired to find a trajectory of type N (a retrograde escape) in the Earth–
Moon system, subject to the constraints Vp = 3.0 and requiring that Rp is maximized.
Figure 5.2 shows that the trajectory type N, in the case Vp = 3.0, appear for Rp = 0.00476
and Rp = 0.00675, but do not appear for Rp = 0.009. Figure 6.1 shows plots of the
sequence made to find the solution. The solution to this problem is Rp = 0.0075234375.
The complete values for the set of variables are: α = 192◦; β = 0◦.

Problem 2: It is desired to find a trajectory of type B (an ellipse that changes the
motion from retrograde to direct) in the Sun–Saturn system, subject to the constraints
Rp = 0.00008464 (2.0 radius of Saturn) and requiring that the velocity at periapsis be a
maximum. Figure 5.1 shows that the trajectory type B appears for Vp = 3.0, but do not
appear for Vp = 3.5. To find the solution, plots were made for several values of Vp in this
interval. Figure 6.2 shows two plots of this sequence. The solution to this problem is
Vp = 3.12, since for Vp = 3.13, B does not occur anymore. It is also possible to see that
this problem has four solutions: α = 216◦, β = −54◦; α = 210◦, β = −24◦; α = 210◦,
β = 24◦; α = 216◦, β = 54◦.
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Figure 6.1. Solution for the Problem 1 in the Earth–Moon system.

Figure 6.2. Solution for the Problem 2 for Rp = 0.00008464 in the Sun–Saturn

system.

Problem 3: It is desired to obtain a trajectory of type N (a retrograde ellipse before
the swing-by and a retrograde hyperbola after) in the Sun–Uranus system, subject to
the constraints Rp = 0.000082 (10.0 radius of Uranus) and requiring that the velocity
at periapsis be a maximum. Figure 5.3 shows that the trajectory type N appears for
Vp = 2.5, but do not appear for Vp = 3.0. To find the solution, plots were made for
several values of Vp in this interval. Figure 6.3 shows two plots of this sequence. The
solution to this problem is Vp = 2.62, since for Vp = 2.63, N does not occur anymore. In
this example, it is possible to see that there is a range of values of β that allows solutions.
So, the complete values for the set of variables are: −48◦ ≤ β ≤ 48◦; α = +186◦.

This information constitutes a set of initial conditions to design the trajectory. Several
improvements can be made: 1) more plots can be generated to get more accuracy for
the data, in particular in the solutions of the optimal problems; 2) many other types of
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Figure 6.3. Solution for the Problem 3 for Rp = 0.000082 in the Sun–Uranus

system.

optimization problems can be solved, combining different constraints and/or variables to
be extremized; 3) others systems can be used; etc.

7 Conclusions

In this paper the three-dimensional restricted three-body problem is described and used
to study the swing-by maneuver. Several letter-plot type of graphics are made to repre-
sent the effect of a close approach in the orbit of a spacecraft. In particular, the effects of
the third dimension in this maneuver are studied. It is shown that the hyperbolic orbits
(family K) dominate the region where α is larger than 270◦ and that when the velocity
increases, the families K, L and P dominate the plots. Families with particularities, like
parabolic or zero angular momentum orbits, are shown to exist in the borders between
the main families. After that, the results available here were used in the solution of
optimal problems. In this type of problem, it is necessary to find the initial conditions
that generates a given orbit change, subject to the extremization of some parameters
like Vp or Rp.
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1 Introduction

Estimation of switching systems has rapidly increased in importance with the develop-
ment of new circuits technologies. Recently, we witnessed an increasing interest in the
so-called switching systems. We call herein switching systems all dynamical systems
described by differential inclusions of the form

ẋ(t) ∈ {fσ(x(t), u(t))}σ∈A ,

where x(t) is the state variable, u(t) is the control input, and fσ( · , · ) is a collection
of continuously differentiable functions parameterized by σ belonging to some given set
A. Such systems are composed of both discrete and continuous subsystems. Control,
observation, and supervision of this kind of systems appear in many ongoing research
projects such as multimedia protocols, electrical circuits, systems subject to failure and
so on.

Numerous control procedures are based on the knowledge of all state variables of
the considered system. This assumption is not always true since the measurements
of the states variables are, in most cases, not possible or simply too expensive. For
this reason, observer design has received widespread attention since the introduction of
Kalman theory and remains of great importance nowadays.
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Estimation of hybrid systems is one of the challenging research problems that necessi-
tate a particular attention. Extension of available results in observation of linear systems
to hybrid linear systems is not quite easy due to the variation of nominal models and
others technical problems. Switching between different models to compensate or analyze
system variations is a well-known technique in modern control theory. It is obvious that
if both the switching instants and the switching modes are known, then it is easy to
construct a switching gain observer that switches among different gains. We refer the
reader to the references [1 – 5], and [6] for more details.

The question we are addressing in this paper is how one can estimate the unmeasured
states of a given switching system if the current mode is unknown? The answer to this
question will be detailed in the present work where we assume that there is no switching
law that defines the passage of the switching system from a mode to another. The goal
of this paper is to develop a new observation technique for switching linear systems. The
developed observers are nonlinear and do not necessitate the mode estimation of the
system to be observed. We mean by mode estimation, the ability to track a system’s
discrete dynamics as it moves between different behavioral modes. We show that a
constant high-gain observer is sufficient to observe the unmeasured dynamics whatever
the changes in the nominal matrices of the considered switching system. The present work
eliminates two major frequently-faced problems: detection of the switching instants and
identification of the current mode. The whole observer design is efficiently accomplished
by using an LMI procedure.

The paper is organized as follows. Section 2 is devoted to the design of the observer
for regular switching systems. In Section 3, the results of the previous section are then
extended to uncertain switching systems. Section 4 treats a numerical observation exam-
ple of a switching system. The paper ends with general conclusions and some concluding
remarks. Throughout this paper, we note by I and 0 the identity matrix and the null
matrix of appropriate dimensions, respectively. A > 0 (resp. A < 0) denotes that the
matrix A is a symmetric and positive-definite (resp. symmetric and negative-definite).
We note by A′ the matrix transpose of the matrix A. ‖ ·‖ stands for the Euclidean norm.

2 Constant-Gain Observer for Switching Systems

Our objective is to conceive an observer for the following switching system

dx(t)

dt
= A(σ(t))x(t) + B(σ(t))u(t),

y(t) = Cx(t),

(2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the control input, and y(t) ∈ Rp is the
system output. σ(t) is a switching signal that maps the index time [0, +∞[ into an index
set S = {1, 2, . . . , s}. Each mode j ∈ S corresponds to a specific model characterized
by A(j) ∈ A = {A(1), A(2), . . . , A(s)} and B(j) ∈ B = {B(1), B(2), . . . , B(s)}. We
assume that the switchs in the output matrix C are absent. For the observer design, we
suppose that the following assumptions are verified.
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Assumption 1 The switch between two different modes is instantaneous and arbi-
trary.

Assumption 2 There is no information on the current mode of the switching system,
and the switching instants are not known.

Assumption 3 For any time t, the control input u(t) is smooth, i.e., it can be written
as

u(t) =

t
∫

0

v(τ) dτ. (3)

where v(t) ∈ Rm is the new control input.

For the class of systems we are considering, different types of observability have been
studied in the past and for more details on this subject, we refer the reader to [1] and
the references therein. Here, we will assume that the pairs (A(σ(t)), C), ∀σ(t) are
observable. This means that the system is observable, in the sense of Kalman, for each
mode.

Based on the last assumptions, the switching system is rewritten in the following form:

dx(t)

dt
= A(σ(t))x(t) + B(σ(t))u(t),

du(t)

dt
= v(t),

y(t) = Cx(t).

(4)

For the simplicity of the representation, let

˜A(σ(t)) =

[

A(σ(t)) B(σ(t))
0 0

]

, ˜B =

[

0
I

]

,

z =

[

x(t)
u(t)

]

, ˜C = [ C 0 ] ,

then the dynamics (4) is rewritten as:

dz(t)

dt
= ˜A(σ(t))z + ˜Bv(t),

y(t) = ˜Cz(t).

(5)

We propose an observer of the following form:

dẑ(t)

dt
=

(

s
∑

j=1

˜A(j)

)

ẑ(t) + ˜Bv(t) +

(

s
∑

i=1

Pi

)−1

Y
(

y(t) − ˜Cẑ(t)
)

− ρ(y(t), ẑ(t)), (6)

where P1, P2, . . . , Ps are (m+n)× (n+m) symmetric and positive definite matrices, Y
is a constant matrix of appropriate dimensions, and ρ(y(t), ẑ(t)) is a nonlinear additive
term that depends on the output y(t), and the observer state vector ẑ(t). The dynamics
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of the proposed observer is the sum of the dynamics of classical Luemberger observers
written for each mode plus a nonlinear additive term ρ(·, ·) that attenuates the effects
of the difference between the observer and the system outputs. The design of (Pi)1≤i≤s,

and ρ(·, ·) will be given latter. Let e(t) = ẑ(t) − z(t) be the observation error, and let

de(t)

dt
=

(

s
∑

j=1

˜A(j)

)

ẑ(t) − ˜A(σ(t))z(t) − ρ(y(t), ẑ(t)) −

(

s
∑

i=1

Pi

)−1

Y ˜Ce(t),

be the dynamics of the observer error, then we can write

de(t)

dt
=

(

˜A(σ(t)) −

(

s
∑

i=1

Pi

)−1

Y ˜C

)

e(t) +
∑

j∈S
j 6=σ

˜A(j)ẑ(t) − ρ(y(t), ẑ(t)). (7)

The time derivative of the Lyapunov function V (e(t)) = eT(t)

(

s
∑

i=1

Pi

)

e(t) along the

trajectory of (7) is

dV (e(t))

dt
=

deT(t)

dt

( s
∑

i=1

Pi

)

e(t) + eT(t)

( s
∑

i=1

Pi

)

de(t)

dt

= eT(t)

(

˜AT(σ(t))

( s
∑

i=1

Pi

)

+

( s
∑

i=1

Pi

)

˜A(σ(t)) − ˜CTY T − Y ˜C

)

e(t)

− 2eT(t)

( s
∑

i=1

Pi

)

ρ(y(t), ẑ(t)) + eT(t)

( s
∑

i=1

Pi

)

∑

j∈S
j 6=σ

˜A(j)ẑ(t)

+ ẑT(t)
∑

j∈S
j 6=σ

˜A T(j)

( s
∑

i=1

Pi

)

e(t).

We have for arbitrary vectors w1 and w2 and a given positive definite matrix Z of
appropriate dimensions [7]

2wT
1 w2 ≤ wT

1 Z−1w1 + wT
2 Zw2.

If we take

w1 =

( s
∑

i=1

Pi

)

e(t), w2 =
∑

j∈S
j 6=σ

˜A(j)ẑ(t), Z = µσI,

then

eT(t)

( s
∑

i=1

Pi

)

∑

j∈S
j 6=σ

˜A(j)ẑ(t) + ẑT(t)
∑

j∈S
j 6=σ

˜A T(j)

( s
∑

i=1

Pi

)

e(t)

= 2eT(t)

( s
∑

i=1

Pi

)

∑

j∈S
j 6=σ

˜A(j)ẑ(t)

≤ µ−1
σ eT(t)

( s
∑

i=1

Pi

)( s
∑

i=1

Pi

)

e(t) + µσ ẑT(t)
∑

j∈S
j 6=σ

˜A T(j)
∑

j∈S
j 6=σ

˜A(j)ẑ(t).
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If the matrices (Pi)1≤i≤s are selected so as to

˜A T(σ(t))

( s
∑

i=1

Pi

)

+

( s
∑

i=1

Pi

)

˜A(σ(t)) − ˜CTY T − Y ˜C

+ µ−1
σ

( s
∑

i=1

Pi

)( s
∑

i=1

Pi

)

= −Q(σ) < 0,

(8)

then we obtain

dV (e(t))

dt
= −eT(t)Q(σ)e(t) + µẑT(t)

∑

j∈S
j 6=σ

˜A T(j)
∑

j∈S
j 6=σ

˜A(j)ẑ(t) − ρ(y(t), ẑ(t)).

If we choose µmax = max
σ

µσ and

ρ(y(t), ẑ(t)) =



















µmax̟ẑT(t)ẑ(t)

(

s
∑

i=1

Pi

)−1

˜CT
˜Ce(t)

2‖ ˜Ce(t)‖2
if ‖ ˜Ce(t)‖ 6= 0,

0 if ‖ ˜Ce(t)‖ = 0,

(9)

where

̟ = sup
σ(t)

∥

∥

∥

∥

∥

∥

∥

∑

j∈S
j 6=σ

˜A T(j)
∑

j∈S
j 6=σ

˜A(j)

∥

∥

∥

∥

∥

∥

∥

, (10)

then
dV (e(t))

dt
≤ −eT(t)Q(σ)e(t),

which implies that the observer error decays exponentially to the origin.

Remark 1 The formulae of ρ(·, ·) given by equation (9) is just a conceptual one. When
the observation error is close to zero, it is recommended to modify the nonlinear term
ρ(·, ·) as follows:

ρ(y(t), ẑ(t)) =



















µmax̟ẑT(t)ẑ(t)

(

s
∑

i=1

Pi

)−1

˜CT
˜Ce(t)

2‖ ˜Ce(t)‖2
if ‖ ˜Ce(t)‖ > ǭ,

0 if ‖ ˜Ce(t)‖ ≤ ǭ,

where ǭ > 0 is some prescribed small parameter. We summarize the result in the following
statement.

Theorem 1 System

ẑ(t)

dt
=

(

s
∑

j=1

˜A(j)

)

ẑ(t) + ˜Bv(t) +

(

s
∑

i=1

Pi

)−1

Y
(

y(t) − ˜Cẑ(t)
)

− ρ(y(t), ẑ(t)), (11)
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is an asymptotic observer for system (5) if there exist a set of positive constants M =
{µ1, µ2, . . . , µs}, and a set of symmetric and positive definite matrices P = {P1, P2,
. . . , Ps} such that the following coupled LMIs are feasible









J (P1, . . . , Ps, Y, j)

(

s
∑

i=1

Pi

)

(

s
∑

i=1

Pi

)

−µjI









< 0, 1 ≤ j ≤ s,

where

J (P1, . . . , Ps, Y, j) = ˜A T(j)

( s
∑

i=1

Pi

)

+

( s
∑

i=1

Pi

)

˜A(j) − ˜C TY T − Y ˜C.

Proof The LMIs conditions (12) and (8) are equivalent by the Schur complement
lemma.

3 Extension to Uncertain Switching Systems

Consider the uncertain switching system

dx(t)

dt
= (A(σ(t)) + ∆A(σ(t)))x(t) + (B(σ(t)) + ∆B(σ(t)))u(t),

du(t)

dt
= v(t),

y(t) = Cx(t),

(13)

which satisfies the assumptions of system (4). The aim of this section is to design a robust
nonlinear observer that can estimates the states of (13) without a priori knowledge of the
current mode and or the switching instants. The uncertain terms ∆A(σ(t)) and ∆B(σ(t))
are written respectively as ET

AFA(σ(t))DA and ET
BFB(σ(t))DB . he matrices EA, EB ,

DA, and DB are constant known matrices and FA(σ(t)), FB(σ(t)) are unknown matrices
satisfying the inequalities FT

A (σ(t))FA(σ(t)) < I, FT
B (σ(t))FB(σ(t)) < I, respectively.

In matrix notation system (13) is rewritten as

dξ(t)

dt
=
(

˜A(σ(t)) + ∆ ˜A(σ(t))
)

ξ(t) + ˜Bv(t),

y = ˜Cξ(t),

(14)

where

∆ ˜A(σ(t)) =

[

∆A(σ(t)) ∆B(σ(t))
0m×n 0m×m

]

, ξ(t) =

[

x(t)
u(t)

]

, (15)

and ˜A(σ(t)), ˜B, ˜C are defined as in equation (5). The uncertain term ∆ ˜A(σ(t)) can be

rewritten as ˜ET
A
˜FA(σ(t)) ˜DA where

˜EA =

[

EA 0
EB 0

]

, ˜FA(σ(t)) =

[

FA(σ(t)) 0
0 FB(σ(t))

]

, ˜DA =

[

DA 0
0 DB

]

.

The observer design is given in the following statement:
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Theorem 2 Consider system (13). If there exist a set of (n+m)×(n+m) symmetric
and positive-definite matrices (Pi)1≤i≤s > 0, a matrix Y of appropriate dimensions, and

positive constants (µi)1≤i≤s, (ǫA(i))1≤i≤s, (ǫB(i))1≤i≤s such that the following coupled

LMIs hold

























K (P1, P2, . . . , Ps, Y ) ˜EA

(

s
∑

i=1

Pi

) (

s
∑

i=1

Pi

) (

s
∑

i=1

Pi

)

(

s
∑

i=1

Pi

)

˜EA
T −ǫA(j)I 0 0

(

s
∑

i=1

Pi

)

0 −ǫB(j)I 0
(

s
∑

i=1

Pi

)

0 0 −µjI

























< 0, 1 ≤ j ≤ s,

(16)
where

K (P1, P2, . . . , Ps, Y ) = ˜A T(j)

( s
∑

i=1

Pi

)

+

( s
∑

i=1

Pi

)

˜A(j)− ˜C TY T −Y ˜C + ǫA(j) ˜DT
A
˜DA.

Then system

ξ̂(t)

dt
=

(

s
∑

j=1

˜A(j)

)

ξ̂(t) + ˜Bv(t) +

(

s
∑

i=1

Pi

)−1

Y
(

y(t) − ˜Cξ̂(t)
)

− ρ(y(t), ξ̂(t)),

is an asymptotic observer for the uncertain switching system (13) where ρ(y(t), ξ̂(t)) is
defined as

ρ(y(t), ẑ(t)) =































(

̟µmax + ǫmax‖ ˜EA‖
2‖ ˜DA‖

2
)

ξ̂ T(t)ξ̂(t)

(

s
∑

i=1

Pi

)−1

˜CT
˜Ce(t)

‖ ˜Ce(t)‖2

if ‖ ˜Ce(t)‖ 6= 0,

0 if ‖ ˜Ce(t)‖ = 0,

where ǫmax = max
σ

(ǫA(σ)) and ̟ is defined as in Theorem 1.

Proof Let e(t) = ξ̂(t)− ξ(t) be the observation error. Then its dynamics is given by

de(t)

dt
=

(

s
∑

j=1

˜A(j)

)

ξ̂(t) − ˜A(σ)ξ(t) − ∆A(σ(t))ξ(t) −

(

s
∑

i=1

Pi

)−1

Y ˜Ce − ρ(y, ξ̂(t))

=



 ˜A(σ(t)) −

(

s
∑

i=1

Pi

)−1

Y ˜C + ∆ ˜A(σ(t))



 e(t)

+
∑

j∈S
j 6=σ

˜A(j)ξ̂(t) − ∆ ˜A(σ(t))ξ̂(t) − ρ(y, ξ̂(t)). (17)
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Choosing the Lyapunov function as V (e(t)) = eT(t)

(

s
∑

i=1

Pi

)

e(t), we obtain

dV (e(t))

dt
= eT(t)

(

˜AT(σ(t)) − ˜CTY T

(

s
∑

i=1

Pi

)−1

+ ∆ ˜AT(σ(t))

)

( s
∑

i=1

Pi

)

e(t)

+ eT(t)

( s
∑

i=1

Pi

)

(

˜A(σ(t)) −

(

s
∑

i=1

Pi

)−1

Y ˜C + ∆ ˜A(σ(t))

)

e(t)

+ 2e(t)

( s
∑

i=1

Pi

)

∑

j∈S
j 6=σ

˜A(j)ξ̂(t) + 2eT(t)

( s
∑

i=1

Pi

)

∆ ˜A(σ(t))ξ̂(t)

− 2eT(t)

( s
∑

i=1

Pi

)

ρ(y, ξ̂(t)).

We have for any µσ > 0

2eT(t)

( s
∑

i=1

Pi

)

∑

j∈S
j 6=σ

˜A(j) ξ̂(t) ≤ µ−1
σ eT(t)

( s
∑

i=1

Pi

)( s
∑

i=1

Pi

)

e(t)

+ µσ ξ̂ T(t)
∑

j∈S
j 6=σ

˜A T(j)
∑

j∈S
j 6=σ

˜A(j)ξ̂(t),

furthermore,

∆ ˜A T(σ(t))

( s
∑

i=1

Pi

)

+

( s
∑

i=1

Pi

)

∆ ˜A(σ(t))

= ˜DT
A
˜FT
A (σ(t)) ˜EA

( s
∑

i=1

Pi

)

+

( s
∑

i=1

Pi

)

˜ET
A
˜FA
˜DA

≤ ǫA(σ) ˜DT
A
˜DA + ǫ−1

A (σ)

( s
∑

i=1

Pi

)

˜ET
A
˜EA

( s
∑

i=1

Pi

)

.

In addition, we have

2eT(t)

( s
∑

i=1

Pi

)

∆ ˜A(σ(t))ξ̂(t) ≤ ǫ−1
B (σ)eT(t)

( s
∑

i=1

Pi

)( s
∑

i=1

Pi

)

e(t)

+ ǫB(σ)ξ̂ T(t)∆ ˜A T(σ(t))∆ ˜A(σ(t))ξ̂(t).

Using the definition of ρ(·, ·), we obtain

ǫB(σ)ξ̂ T(t)∆ ˜A T(σ(t))∆ ˜A(σ(t))ξ̂(t) + µσ ξ̂ T(t)
∑

j∈S
j 6=σ

˜A T(j)
∑

j∈S
j 6=σ

˜A(j)ξ̂(t)

− 2eT(t)

( s
∑

i=1

Pi

)

ρ(·, ·)

≤
(

̟µmax + ǫmax‖ ˜EA‖
2
‖ ˜DA‖

2
)

ξ̂ T(t)ξ̂(t) − 2eT(t)

( s
∑

i=1

Pi

)

ρ(·, ·) ≤ 0.
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This implies that

dV (e(t))

dt
≤ eT(t)

(

˜A T(σ(t))

( s
∑

i=1

Pi

)

+

( s
∑

i=1

Pi

)

˜A(σ(t)) − ˜CTY T − Y ˜C

+ ǫA(σ) ˜D
′

A
˜DA + ǫ−1

B (σ)

( s
∑

i=1

Pi

)( s
∑

i=1

Pi

)

+ µ−1
σ

( s
∑

i=1

Pi

)( s
∑

i=1

Pi

)

)

e(t).

(18)

If for each mode 1 ≤ j ≤ s the matrices

˜A T(j)

( s
∑

i=1

Pi

)

+

( s
∑

i=1

Pi

)

˜A(j) − ˜CTY T − Y ˜C + ǫA(j) ˜D
T

A
˜DA

+ ǫ−1
A (j)

( s
∑

i=1

Pi

)

˜ET
A
˜EA

( s
∑

i=1

Pi

)

+ ǫ−1
B

( s
∑

i=1

Pi

)( s
∑

i=1

Pi

)

+ µ−1
j

( s
∑

i=1

Pi

)( s
∑

i=1

Pi

)

< 0,

(19)

then dV (e(t))/dt becomes always negative and the observer error decays exponentially
to the origin. The last inequality is equivalent by the Schur complement to (12). This
ends the proof.

An observer for uncertain single-mode systems can be deduced from result of Theo-

rem 2. It is sufficient to replace

(

s
∑

i=1

Pi

)

by a one positive definite matrix X in the LMIs

of Theorem 2 to deliver a sufficient conditions for the existence of the observer gain. We
summarize the result in the following corollary.

Corollary 1 Consider the uncertain system

dx(t)

dt
= (A + ∆A)x(t) + (B + ∆B)u(t),

du(t)

dt
= v(t),

y(t) = Cx(t),

(20)

where x(t) ∈ Rn, u(t) ∈ Rm, and y ∈ Rp. The uncertain parts of ∆A = ET
AFA(x(t))DA

and ∆B(σ(t)) = ET
BFB(x(t))DB are supposed to satisfy the inequalities FT

A (σ(t)) ×

FA(σ(t)) < I, FT
B (σ(t))FB(σ(t)) < I, respectively. If there exist a matrix X > 0, a

matrix Y of appropriate dimensions, and positive constants ǫA, and ǫB such that the
following LMI is feasible





H(X, Y ) ˜EAX X

X ˜ET
A −ǫAI 0

X 0 −ǫBI



 < 0, (21)
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where

H(X, Y ) = ˜A TX + X ˜A − ˜C TY T − Y ˜C + ǫA
˜DT

A
˜DA,

then system

ξ̂(t

dt
) = Aξ̂(t) + ˜Bv(t) + X−1Y

(

y(t) − ˜Cξ̂(t)
)

− ϕ(y(t), ξ̂(t)), (22)

is an asymptotic observer for the uncertain switching system (22) where ϕ(y(t), ξ̂(t)) is
defined as

ϕ(y(t), ẑ(t)) =











ǫB‖ ˜EA‖
2‖ ˜DA‖

2ξ̂ T(t)ξ̂(t)
X−1

˜CT
˜Ce(t)

‖ ˜Ce(t)‖2
if ‖ ˜Ce(t)‖ 6= 0,

0 if ‖ ˜Ce(t)‖ = 0,

where ˜EA and ˜DA are defined as in Section 3.

4 Illustrative Example

4.1 Observation of a switching system without uncertainties

Consider the following switching system described by:

A(1) =

[

0.1 −0.5
0 −1

]

, A(2) =

[

−1 −1
0.9 −1

]

, B(1) =

[

1
1

]

,

B(2) =

[

0.1
−1

]

, C = [ 1 0 ] .

Applying the result of Theorem 1 with ǫA(j) = ǫB(j) = 1 ∀ j, ̟ = 1.7818, we obtain
µ = 103 and

P1 =





27.8287 −0.1325 5.6453

−0.1325 53.9905 2.6926

5.6453 2.6926 39.0959



 , P2 =





571.9220 −99.1576 −201.2708

−99.1576 140.3128 48.5049

−201.2708 48.5049 176.2018



 ,

Y =





389.7613

−242.2155

260.9596



 ,

and the observer gain is

(P1 + P2)
−1

Y =





1.3246

−1.2869

2.7216



 .
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The nonlinear term in the observer dynamics can be computed in terms of the solutions
P1, P2, µ, and ̟.

4.2 Observation of a switching system with uncertainties

Taking the same switching model with the following additional data:

EA =

[

0.2 0.5
0.4 0.4

]

, DA =

[

0.1 0.2
0.3 0

]

, EB = [ 0.3 0.6 ] , DB = 0.2.

By the application of result of Theorem 2, with µ = 10, and ǫA(j) = ǫB(j) = 1 ∀ j, we
have

P1 =





0.1337 −0.0303 −0.0486

−0.0303 0.0486 0.0143

−0.0486 0.0143 0.0605



 , P2 =





0.2767 −0.0625 −0.1029

−0.0625 0.1010 0.0303

−0.1029 0.0303 0.1248



 ,

Y =





0.9465

−0.1669

0.1946



 , (P1 + P2)
−1

Y =





3.8608

0.0266

4.1977



 .

5 Conclusion

A new observer design methodology is proposed to estimate the unmeasured states of
switching systems and uncertain switching systems. We showed that a constant-gain
observer is sufficient to observe the system states whatever the switch in the nominal
matrices, and the existence of the observer gain is related to the feasibility of a set of
coupled LMIs. The proposed observer design is an alternative to the technique of switch-
ing observers that necessitates both the construction of several observers and estimation
of the current modes of the switching system being observed.
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Abstract: In this work, a new approach is developed for dynamic analysis of
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straint, leading to taking account of a force of contact interaction of the crack
faces and to nonlinearity of the formulated boundary value problem. Longi-
tudinal force resultants in the delaminated parts of the beam are taken into
account also, which is another source of the nonlinearity. The shear defor-
mation and rotary inertia terms are included into the formulation, to achieve
better accuracy. The model is based on the first order shear deformation the-
ory, i.e. the longitudinal displacement is assumed to vary linearly through the
beam’s thickness. A variational formulation of the problem, nonlinear partial
differential equations of motion with boundary conditions, a weak form for
the partial differential equations and a finite element formulation on the basis
of the weak form are developed. An example problem of a clamped-free beam
with a piezoelectric actuator is considered, and its finite element solution
is obtained. A noticeable difference of forced vibrations of the delaminated
and undelaminated beams due to the contact interaction of the crack faces is
predicted by the developed model. Besides, linear eigenvalue analysis shows
decrease of natural frequencies upon increase of the crack length, and crack
opening and closing during the vibration in higher mode shapes, beginning
from the fifth one.
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1 Introduction

A model of a composite beam with the delamination and with a piezoelectric actuator,
with account of contact interaction of the delamination crack faces, based on the classical
beam theory, was presented in Reference [1]. This model did not take the shear strain
energy into account, and, therefore, produced sufficiently accurate results only for thin
beams. To model thicker beams with delamination, one needs to use a beam theory,
based on simplifying assumptions, which do not lead to vanishing of the shear strains.
The first order shear deformation theory [2], based on assumed linear variation of a
longitudinal displacement in the thickness direction, is the simplest approach that satisfies
the requirement of a non-zero shear strain. This approach is used in the present paper for
modeling a composite delaminated beam with a piezoelectric actuator. In this model, the
interpenetration of the crack faces is prevented by imposing a constraint, written with
the use of the Heaviside function in one of its analytical forms, leading to taking account
of a force of contact interaction of the crack faces and to nonlinearity of the formulated
boundary value problem.

2 Variational Formulation of The Problem

Total Potential Energy for Zone 0 (Part 0), i.e. for 0 ≤ x ≤ a (Figure 2.1).

Assumptions of the first-order shear deformation beam theory:

u0(x, z, t) = zφ0(x, t), w0(x, z, t) = w0(x, t), (1)

where u0(x, z, t) and w0(x, z, t) are longitudinal and transverse displacements of Zone
0 (Part 0). The subscript 0 in the notations u0(x, z, t) and w0(x, z, t) indicates that
the quantities u0 and w0 are associated with the Zone 0 (Part 0). The notation u0 =
u0(x, z, t) is not a notation for the axial longitudinal displacement (at z = 0). The axial
longitudinal displacement is considered to be negligibly small here, because this model
is developed for the beam to which an external longitudinal force is not applied.

Strain-displacement relations:

ε(0)
xx =

∂u0

∂x
, ε(0)

xz =
1

2

(

∂u0

∂z
+

∂w0

∂x

)

. (2a)

In this text, εxz is a notation for a component of the strain tensor, not an engineering
strain. With account of Equation (1), Equations (2a) take the form

ε(0)
xx = zφ′

0, ε(0)
xz =

1

2
(φ0 + w′

0), (2b)

where prime denotes differentiation with respect to x.

Stress-strain relations for an orthotropic piezoelectric layer of a composite beam (plane
stress with respect to the y-direction), Appendix A:

σ(p)
xx =

1

S11

ε(p)
xx −

d31

S11

V

τ
, σ(p)

xz =
1

S55

2ε(p)
xz , (3)
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Figure 2.1. Cantilever beam with delamination and piezoelectric actuator.

a is length of the actuator; α is x-coordinate of the left crack tip; β is x-coordinate of

the right crack tip; γ is z-coordinate of the crack (distance from x-axis to crack); τ
is thickness of the actuator; w0 is transverse displacement of zone 0; w1 is transverse

displacement of zone 1; w2 is transverse displacement of lower part of zone 2 (under

the crack); w3 is transverse displacement of upper part of zone 2 (above the crack);

w4 is transverse displacement of zone 3.

where τ is thickness of the actuator, and V = V (x, t) is a voltage, applied to the actuator.
It is implied that this voltage creates an electric field in the z-direction.

Stress-strain relations for an orthotropic layer that does not have piezoelectric properties,
Appendix A:

σ(0)
xx =

1

S11

ε(0)
xx , σ(0)

xz =
1

S55

2ε(0)
xz . (4)

Total potential energy where K is a shear correction factor and b is the beam’s width

U0 =
1

2
b

a
∫

0

h/2
∫

−h/2

1

S
(0)

11 (z)

(

ε(0)
xx

)2
dz dx

+
1

2
b

a
∫

0

h/2+τ
∫

h/2

(

1

S
(p)

11 (z)

(

ε(p)
xx

)2
−

2d31(z)

S11(z)

V

τ
ε(p)

xx

)

dz dx

+ 2Kb

a
∫

0

h/2
∫

−h/2

1

S
(0)

55 (z)

(

ε(0)
xz

)2
dz dx + 2Kb

a
∫

0

h/2+τ
∫

−h/2

1

S
(p)

55 (z)

(

ε(p)
xz

)2
dz dx,

(5)
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where K is a shear correction factor and b is the beam’s width. Substitution of equation
(2b) into Equation (5) yields

U0 =

a
∫

0

(

A0

2
(φ′

0)
2 + K

G0

2
(φ0 + w′

0)
2 − IpV φ′

0

)

dx, (6)

where the constants A0, Ip and G0 are defined as

A0 = b

h/2
∫

−h/2

z2

S
(0)

11 (z)
dz + b

h/2+τ
∫

h/2

z2

S
(p)

11 (z)
dz,

Ip =

(

b

τ

h/2+τ
∫

h/2

d31(z)

S
(p)

11 (z)
z dz

)

, G0 = b

h/2
∫

−h/2

1

S
(0)

55 (z)
dz + b

h/2+τ
∫

h/2

1

S
(p)

55 (z)
dz.

(7)

Kinetic Energy for Zone 0 (Part 0), i.e. for 0 ≤ x ≤ a:

T0 =
1

2
b

a
∫

0

h/2
∫

−h/2

ρ(0)(z)(ẇ2
0 + u̇2

0) dz dx +
1

2
b

a
∫

0

h/2+τ
∫

h/2

ρ(p)(z)(ẇ2
0 + u̇2

0) dz dx, (8)

where ρ(0)(z) is a mass density of composite layers of Zone 0 without piezoelectric

properties and ρ(p)(z) is the mass density of the piezoelectric actuator (ρ(p) may depend
on the z-coordinate if the actuator has plies with different densities).

Substitution of Equations (1) into Equation (8) produces the result

T0 =

a
∫

0

(

1

2
B0ẇ

2
0 +

1

2
C0φ̇

2
0

)

dx, (9)

where the constants B0 and C0 are defined as follows:

B0 = b

( h/2
∫

−h/2

ρ(0)(z) dz +

h/2+τ
∫

h/2

ρ(p)(z) dz

)

,

C0 = b

( h/2
∫

−h/2

ρ(0)(z) z2 dz +

h/2+τ
∫

h/2

ρ(p)(z) z2 dz

)

.

(10)

In a similar manner we obtain the strain and kinetic energy for Zone 1 (Part 1) and
Zone 3 (Part 4).

Strain Energy for Zone 1 (Part 1), i.e. for a ≤ x ≤ α:

U1 =

α
∫

a

(

A1

2
(φ′

1)
2 + K

G1

2
(φ1 + w′

1)
2

)

dx, (11)
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where the constants A1 and G1 are defined as follows:

A1 ≡ b

h/2
∫

−h/2

z2

S
(1)

11 (z)
dz G1 ≡ b

h/2
∫

−h/2

1

S
(1)

55 (z)
dz. (12)

Kinetic energy for Zone 1 (Part 1), i.e. for a ≤ x ≤ α:

T1 =

α
∫

a

(

1

2
B1ẇ

2
1 +

1

2
C1φ̇

2
1

)

dx, (13)

where the constants B1 and C1 are defined as follows:

B1 = b

h/2
∫

−h/2

ρ(1)(z) dz, C1 = b

h/2
∫

−h/2

ρ(1)(z) z2 dz. (14)

Strain Energy for Zone 3 (Part 4), i.e. for β ≤ x ≤ L:

U4 =

L
∫

β

(

A4

2
(φ′

4)
2 + K

G4

2
(φ4 + w′

4)
2

)

dx, (15)

where the constants A4 and G4 are defined as follows:

A4 = b

h/2
∫

−h/2

z2

S
(4)

11 (z)
dz G4 = b

h/2
∫

−h/2

1

S
(4)

55 (z)
dz. (16)

Kinetic Energy for Zone 3 (Part 4), i.e. for β ≤ x ≤ L:

T4 =

L
∫

β

(

1

2
B4ẇ

2
4 +

1

2
C4φ̇

2
4

)

dx, (17)

where the constants B4 and C4 are defined as follows:

B4 = b

h/2
∫

−h/2

ρ(4)(z) dz, C4 = b

h/2
∫

−h/2

ρ(4)(z) z2 dz. (18)
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Strain Energy for Zone 2 (Part 2 and Part 3), i.e. for α ≤ x ≤ β.
In the Zone 2, which contains the delamination crack, the longitudinal force resultants

in the delaminated lower and upper parts (Part 2 and Part 3),

N (2)
x = b

γ
∫

−h/2

σ(2)
xx dz, N (3)

x = b

h/2
∫

γ

σ(3)
xx dz,

can be not negligibly small, even if external longitudinal forces are not applied to the
beam. In order for these force resultants to be taken into account, a nonlinear term
1

2
(w′)2 in the Green-Lagrange strain-displacement relation for the strain component εxx

must be taken into account. So, for the Part 2 (lower part of Zone 2) the following
relations are used:

strain-displacement relations:

ε(2)
xx =

∂u2

∂x
+

1

2

(

∂w2

∂x

)2

, (19a)

ε(2)
xz =

1

2

(

∂u2

∂z
+

∂w2

∂x

)

; (19b)

simplifying assumptions:

u2(x, z, t) = zφ2(x, t) w2(x, z, t) = w2(x, t); (20)

stress-strain relations:

σ(2)
xx =

1

S
(2)

11

ε(2)
xx , σ(2)

xz =
1

S
(2)

55

2ε(2)
xz ; (21)

strain energy:

U2 =
1

2
b

β
∫

α

γ
∫

−h/2

σ(2)
xx ε(2)

xx dz dx + Kb

β
∫

α

γ
∫

−h/2

σ(2)
xz ε(2)

xz dz dx. (22)

From Equations (18) – (22) we obtain the following expression for the strain energy:

U2 =

β
∫

α

[

1

2
A2(φ

′
2)

2 +
1

2
KG2(φ2 + w′

2)
2 +

1

4
H2(w

′
2)

2φ′
2 +

1

4
N (2)

x (w′
2)

2

]

dx, (23)

where A2, G2, H2 are constants, defined as

A2 = b

γ
∫

−h/2

1

S
(2)

11 (z)
z2 dz, G2 = b

γ
∫

−h/2

1

S
(2)

55 (z)
dz, H2 = b

γ
∫

−h/2

1

S
(2)

11 (z)
z dz, (24)
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and N
(2)
x is a longitudinal force resultant in the lower delaminated part (Part 2):

N (2)
x = b

γ
∫

−h/2

σ(2)
xx dz = H2φ

′
2 +

1

2
Q2(w

′
2)

2, (25)

where Q2 is a constant, defined as

Q2 = b

γ
∫

−h/2

1

S
(2)

11 (z)
dz. (26)

Similarly, for the Part 3 (upper part of Zone 2) the expression for the strain energy
has the form

U3 =

β
∫

α

[

1

2
A3(φ

′
3)

2 +
1

2
KG3(φ3 + w′

3)
2 +

1

4
H3(w

′
3)

2φ′
3 +

1

4
N (3)

x (w′
3)

2

]

dx, (27)

where

A3 = b

h/2
∫

γ

1

S
(3)

11 (z)
z2 dz, G3 = b

h/2
∫

γ

1

S
(3)

55 (z)
dz, H3 = b

h/2
∫

γ

1

S
(3)

11 (z)
z dz, (28)

N (3)
x = b

h/2
∫

γ

σ(3)
xx dz = H3φ

′
3 +

1

2
Q3(w

′
3)

2, (29)

where

Q3 = b

h/2
∫

γ

1

S
(3)

11 (z)
dz. (30)

Kinetic Energy for Zone 2 (Part 2 and Part 3), i.e. for α ≤ x ≤ β.
Expressions for kinetic energy of Part 2 and Part 3 are obtained similarly to the

expressions for the kinetic energies of all other parts, and they have the form:

T2 =

β
∫

α

(

1

2
B2ẇ

2
2 +

1

2
C2φ̇

2
2

)

dx,

T3 =

β
∫

α

(

1

2
B3ẇ

2
3 dx +

1

2
C3φ̇

2
3

)

dx,

(31)

where

B2 = b

γ
∫

−h/2

ρ(2)(z) dz, C2 = b

γ
∫

−h/2

ρ(2)(z)z2 dz,

B3 = b

h/2
∫

γ

ρ(3)(z) dz, C3 = b

h/2
∫

γ

ρ(3)(z)z2 dz.

(32)
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In view of the expressions for strain and kinetic energies, derived above, the Lagrangian
function density (potential energy minus kinetic energy per unit length) for the delam-
inated composite beam with the piezoelectric actuator (Figure 2.1) can be written as
follows

˜L =























˜L0(ẇ0, w′
0, φ0, φ̇0, φ′

0) in Zone 0 (0 ≤ x ≤ a)

˜L1(ẇ1, w′
1, φ1, φ̇1, φ′

1) in Zone 1 (a ≤ x ≤ α)

˜L2(ẇ2, w′
2, φ2, φ̇2, φ′

2, ẇ3, w′
3, φ3, φ̇3, φ′

3) in Zone 2 (α ≤ x ≤ β)

˜L3(ẇ4, w′
4, φ4, φ̇4, φ′

4) in Zone 3 (β ≤ x ≤ L),

(33)

where

˜L0 =
A0

2
(φ′

0)
2 + K

G0

2
(φ0 + w′

0)
2 − IpV φ′

0 −
B0

2
ẇ2

0 −
C0

2
φ̇2

0, (34a)

˜L1 =
A1

2
(φ′

1)
2 + K

G1

2
(φ1 + w′

1)
2 −

B1

2
ẇ2

1 −
C1

2
φ̇2

1, (34b)

˜L2 =
1

2
A2(φ

′
2)

2 +
1

2
KG2(φ2 + w′

2)
2 +

1

2
H2(w

′
2)

2φ′
2 +

1

8
Q2(w

′
2)

4

−
1

2
B2ẇ

2
2 −

1

2
C2φ̇

2
2 +

1

2
A3(φ

′
3)

2 +
1

2
KG3(φ3 + w′

3)
2 (34c)

+
1

2
H3(w

′
3)

2φ′
3 +

1

8
Q3(w

′
3)

4 −
1

2
B3ẇ

2
2 −

1

2
C3φ̇

2
3,

˜L3 =
A4

2
(φ′

4)
2 + K

G4

2
(φ4 + w′

4)
2 −

B4

2
ẇ2

4 −
C4

2
φ̇2

4. (34d)

A variational formulation of the problem includes essential boundary conditions at the
ends of each zone, which will be treated as point-wise constraints, and a nonpenetration
condition for the delamination crack faces (subdomain constraints for Zone 2), Reference
[1]. For a clamped-free beam, the point-wise constraints have the form

Ri(t) = 0 (i = 1, 2, . . . , 12), (35a)

where
R1 ≡ w0(0, t), R2 ≡ φ0(0, t),

R3 ≡ w0(a, t) − w1(a, t) R4 ≡ φ0(a, t) − φ1(a, t),

R5 ≡ w1(α, t) − w2(α, t), R6 ≡ φ1(α, t) − φ2(α, t),

R7 ≡ w1(α, t) − w3(α, t), R8 ≡ φ1(α, t) − φ3(α, t),

R9 ≡ w2(β, t) − w4(β, t), R10 ≡ φ2(β, t) − φ4(β, t),

R11 ≡ w3(β, t) − w4(β, t), R12 ≡ φ3(β, t) − φ4(β, t).

(35b)

In case of other kinds of fixation of the beam’s ends, the first two point-wise constraints
will be different, of course, but the other point-wise constraints will be the same.

During the vibration of the delaminated beam, the upper and lower delaminated parts
touch each other, and the force of their interaction needs to be taken into account. This
force enters into the differential equations of motion as a reaction of constraint, which
prevents overlapping of the upper and lower delaminated parts. Such a constraint can be
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expressed by a relationship between w2 and w3 (i.e. displacements of the lower and upper
delaminated parts) that prevents the difference w3 − w2 to take on negative values:

f(w2(x, t), w3(x, t)) = f(x, t) ≡ (w3 − w2) [1 − H0(w3 − w2)] = 0, (36a)

where H0 is a Heaviside function, defined in Appendix B. If delaminated sublaminates
“attempt” to overlap during the vibration (if w3 − w2 < 0), or if the crack is closed
(w3−w2 = 0), then H0(w3−w2) = 0, and, therefore, due to equation (10), the difference
w3 −w2 is set equal to zero. If the crack is open (w3 −w2 > 0), then H0(w3 −w2) = 1,
and no constraints are imposed on the difference w3−w2. With the use of the analytical
representation of the Heaviside function (equation B-5), the nonpenetration constraint,
expressed by equation (36a), can be written as follows:

f(x, t) ≡ (w3 − w2)

(

1

2
−

1

π
arctan

w3 − w2

ǫ

)

= 0, (36b)

where ǫ is some small number. The nonpenetration constraint (36) is a subdomain con-
straint for the Zone 2 (α ≤ x ≤ β).

Now, the problem can be formulated as a problem of finding a constrained (conditional)
extremum of the functional

J =

t2
∫

t1

L
∫

0

˜L dx dt (37)

with constraints expressed by Equations (35) and (36). The constraints (35) and (36)
can be included into the functional by the method of Lagrange multipliers. This will
produce a modified functional J :

J = J +

t2
∫

t1

12
∑

i=1

λi(t)Ri(t) +

t2
∫

t1

β
∫

α

µ(x, t)f(x, t) dx dt, (39)

where λi(t) and µ(x, t) are the Lagrange multipliers. Now we have a problem of an

unconstrained (unconditional) extremum of the modified functional J . Derivation of
the partial differential equations of motion and natural boundary conditions from the
condition of extremum of the functional (39) can be performed using standard methods
of calculus of variations. In the following text, partial differential equations of motion
with boundary conditions, a weak form of the partial differential equations and a finite
element formulation on the basis of the weak form will be obtained.

3 Partial Differential Equations with Boundary Conditions

To derive the partial differential equations of motion with boundary conditions, the
condition of unconstrained extremum of the functional J (Equation (39)) will be used.

The condition δJ = 0 leads to the following partial differential equations and natural
boundary conditions.
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Partial differential equations:

−
∂

∂t

∂˜L0

∂ẇ0
−

∂

∂x

∂˜L0

∂w′
0

= 0 in x ∈ [0, a] , (41)

∂˜L0

∂φ0
−

∂

∂t

∂˜L0

∂φ̇0

−
∂

∂x

∂˜L0

∂φ′
0

= 0 in x ∈ [0, a] , (42)

−
∂

∂t

∂˜L1

∂ẇ1
−

∂

∂x

∂˜L1

∂w′
1

= 0 in x ∈ [a, α] , (43)

∂˜L1

∂φ1
−

∂

∂t

∂˜L1

∂φ̇1

−
∂

∂x

∂˜L1

∂φ′
1

= 0 in x ∈ [a, α], (44)

µ
∂f

∂w2
−

∂

∂t

∂˜L2

∂ẇ2
−

∂

∂x

∂˜L2

∂w′
2

= 0 in x ∈ [α, β] , (45)

∂˜L2

∂φ2
−

∂

∂t

∂˜L2

∂φ̇2

−
∂

∂x

∂˜L2

∂φ′
2

= 0 in x ∈ [α, β] , (46)

µ
∂f

∂w3
−

∂

∂t

∂˜L2

∂ẇ3
−

∂

∂x

∂˜L2

∂w′
3

= 0 in x ∈ [α, β] , (47)

∂˜L2

∂φ3
−

∂

∂t

∂˜L2

∂φ̇3

−
∂

∂x

∂˜L2

∂φ′
3

= 0 in x ∈ [α, β] , (48)

−
∂

∂t

∂˜L3

∂ẇ4
−

∂

∂x

∂˜L3

∂w′
4

= 0 in x ∈ [β, L] , (49)

∂˜L3

∂φ4
−

∂

∂t

∂˜L3

∂φ̇4

−
∂

∂x

∂˜L3

∂φ′
4

= 0 in x ∈ [β, L] . (50)

Natural boundary conditions:

∂˜L0

∂w′
0

+ λ3 = 0 at x = a,
∂˜L0

∂φ′
0

+ λ4 = 0 at x = a, (51)

−
∂˜L1

∂w′
1

− λ3 = 0 at x = a,
∂˜L1

∂w′
1

+ λ5 + λ7 = 0 at x = α, (52)

−
∂˜L1

∂φ′
1

− λ4 = 0 at x = a,
∂˜L1

∂φ′
1

+ λ6 + λ8 = 0 at x = α (53)

−
∂˜L2

∂w′
2

− λ5 = 0 at x = α,
∂˜L2

∂w′
2

+ λ9 = 0 at x = β, (54)

−
∂˜L2

∂φ′
2

− λ6 = 0 at x = α,
∂˜L2

∂φ′
2

+ λ10 = 0 at x = β, (55)

−
∂˜L2

∂w′
3

− λ7 = 0 at x = α,
∂˜L2

∂w′
3

+ λ11 = 0 at x = β, (56)

−
∂˜L2

∂φ′
3

− λ8 = 0 at x = α,
∂˜L2

∂φ′
3

+ λ12 = 0 at x = β, (57)
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−
∂˜L3

∂w′
4

− λ9 − λ11 = 0 at x = β,
∂˜L3

∂w′
4

= 0 at x = L, (58)

−
∂˜L3

∂φ′
4

− λ10 − λ12 = 0 at x = β,
∂˜L3

∂φ′
4

= 0 at x = L. (59)

Elimination of the Lagrange multipliers from Equations (51) – (59) leads to the following
eight natural boundary conditions:

∂˜L0

∂w′
0

−
∂˜L1

∂w′
1

= 0 at x = a, (60)

∂˜L0

∂φ′
0

−
∂˜L1

∂φ′
1

= 0 at x = a, (61)

∂˜L1

∂w′
1

−
∂˜L2

∂w′
2

−
∂˜L2

∂w′
3

= 0 at x = α, (62)

∂˜L1

∂φ′
1

−
∂˜L2

∂φ′
2

−
∂˜L2

∂φ′
3

= 0 at x = α, (63)

∂˜L2

∂w′
2

+
∂˜L2

∂w′
3

−
∂˜L3

∂w′
4

= 0 at x = β, (64)

∂˜L2

∂φ′
2

+
∂˜L2

∂φ′
3

−
∂˜L3

∂φ′
4

= 0 at x = β, (65)

∂˜L3

∂w′
4

= 0 at x = L, (66)

∂˜L3

∂φ′
4

= 0 at x = L. (67)

Substitution of Equations (34) into Equations (41) – (50) and into Equations (60) – (67)
produces the following result.

Partial differential equations:

KG0(w
′′
0 + φ′

0) − B0ẅ0 = 0 in x ∈ [0, a] , (68)

A0φ
′′
0 − KG0(w

′
0 + φ0) − C0φ̈0 = IpV

′ in x ∈ [0, a] , (69)

KG1(w
′′
1 + φ′

1) − B1ẅ1 = 0 in x ∈ [a, α] , (70)

A1φ
′′
1 − KG1(w

′
1 + φ1) − C1φ̈1 = 0 in x ∈ [a, α] , (71)

KG2(w
′′
2 + φ′

2) − B2ẅ2 − µ

(

1

2
−

1

π
arctan

w3 − w2

ǫ

)

− H2φ
′
2w

′′
2 −

3

2
Q2(w

′
2)

2w′′
2 = 0 in x ∈ [α, β] , (72)

A2φ
′′
2 − KG2(w

′
2 + φ2) − C2φ̈2 − H2w

′
2w

′′
2 = 0 in x ∈ [α, β] , (73)

KG3(w
′′
3 + φ′

3) − B3ẅ3 + µ

(

1

2
−

1

π
arctan

w3 − w2

ǫ

)

− H3φ
′
3w

′′
3 −

3

2
Q3(w

′
3)

2w′′
3 = 0 in x ∈ [α, β] , (74)
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A3φ
′′
3 − KG3(w

′
3 + φ3) − C3φ̈3 − H3w

′
3w

′′
3 = 0 in x ∈ [α, β] , (75)

KG4(w
′′
4 + φ′

4) − B4ẅ4 = 0 in x ∈ [β, L] , (76)

A4φ
′′
4 − KG4(w

′
4 + φ4) − C4φ̈4 = 0 in x ∈ [β, L] , (77)

Natural boundary conditions:

G0(φ0 + w′
0) − G1(φ1 + w′

1) = 0 at x = a, (78)

A0φ
′
0 − A1φ

′
1 = IpV at x = a, (79)

KG1(φ1 + w′
1) − KG2(φ2 + w′

2) − H2w
′
2φ

′
2

−
1

2
Q2(w

′
2)

3 − KG3(φ3 + w′
3) − H3w

′
3φ

′
3 −

1

2
Q3(w

′
3)

3 = 0 at x = α, (80)

A1φ
′
1 − A2φ

′
2 −

1

2
H2(w

′
2)

2 − A3φ
′
3 −

1

2
H3(w

′
3)

2 = 0 at x = α, (81)

KG2(φ2 + w′
2) + H2w

′
2φ

′
2 +

1

2
Q2(w

′
2)

3 + KG3(φ3 + w′
3)

+ H3w
′
3φ

′
3 +

1

2
Q3(w

′
3)

3 − KG4(φ4 + w′
4) = 0 at x = β, (82)

A2φ
′
2 + A3φ

′
3 − A4φ

′
4 = 0 at x = β, (83)

φ4 + w′
4 = 0 at x = L, (84)

φ′
4 = 0 at x = L. (85)

In computation of derivatives
∂f

∂w2
and

∂f

∂w3
in Equations (45) and (47), which led

to Equations (72) and (74), the following chain of transformations was used:

∂f

∂w2
= lim

ǫ→0

∂

∂w2

(

(w3 − w2)

(

1

2
−

1

π
arctan

w3 − w2

ǫ

))

= lim
ǫ→0

(

−

(

1

2
−

1

π
arctan

w3 − w2

ǫ

)

+
1

ǫπ

ǫ2(w3 − w2)

ǫ2 + (w3 − w2)2

)

= − lim
ǫ→0

(

1

2
−

1

π
arctan

w3 − w2

ǫ

)

.

So,
∂f

∂w2
≈ −

(

1

2
−

1

π
arctan

w3 − w2

ǫ

)

, (86)

where ǫ is some small number. Similarly

∂f

∂w3
≈

(

1

2
−

1

π
arctan

w3 − w2

ǫ

)

. (87)

So, the formulation of the problem includes eleven equations for subdomains: ten
partial differential equations (68) – (77) and one algebraic equation of constraint (36b)
for Zone 2. The number of unknown functions is also eleven. The unknown functions
are: µ(x, t), wk(x, t), φk(x, t) (k = 0, 1, 2, 3, 4). The total order of spatial derivatives
of the partial differential equations is twenty, and the number of boundary conditions
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is also twenty: twelve essential boundary conditions (Equations (35)) and eight natural
boundary conditions (Equations (78) – (85)).

The formulation of the problem in terms of partial differential equations can be sim-
plified, if the penalty function method [2] is used for the nonpenetration constraint, i.e.
if the Lagrange multiplier µ(x, t), associated with the nonpenetration constraint (36), is
written as

µ(x, t) = χf(x, t), (88)

where the function f(x, t) is defined by Equation (36b), and χ is some large number,
which has to be chosen by an analyst. Then, Equation (72) takes the form

KG2(w
′′
2 + φ′

2)−B2ẅ2 −χ(w3 −w2)

(

1

2
−

1

π
arctan

w3 − w2

ǫ

)

= 0 in x ∈ [α, β] , (89)

and Equation (74) takes the form

KG3(w
′′
3 + φ′

3)−B3ẅ3 + χ(w3 −w2)

(

1

2
−

1

π
arctan

w3 − w2

ǫ

)

= 0 in x ∈ [α, β] . (90)

In transition from Equations (72) and (74) to Equations (89) and (90) respectively, the
following transformation was used

(

1

2
−

1

π
arctan

w3 − w2

ǫ

)2

= (1 − H0(w3 − w2))
2

= 1 − H0(w3 − w2) =
1

2
−

1

π
arctan

w3 − w2

ǫ
.

(91)

Now, the formulation of the problem contains ten partial differential equations (68) –
(71), (89), (73), (90), (75) – (77) with ten unknown functions wk(x, t), φk(x, t), (k =
0, 1, 2, 3, 4).

The natural boundary condition (79) is nonhomogeneous, because the externally ap-
plied voltage V (a, t) enters into it. To avoid having the nonhomogeneous boundary
condition, one can consider that the voltage, applied to the actuator, is distributed not
over the subdomain x ∈ [0, a], but over the subdomain x ∈ [0, a − ε], where ε is some
very small positive number. Then the physics of the problem is not changed, and the
voltage V (a, t) does not enter into the boundary condition (79), i.e. this boundary
condition takes a simpler homogeneous form

A0φ
′
0 − A1φ

′
1 = 0 at x = a. (92)

Let us consider, for example, the voltage distributed uniformly over the length of the
actuator , i.e.

V (x, t) = V (t) in x ∈ [0, a]. (93a)

Then, without altering the physical formulation of the problem, we can write

V (x, t) = V (t) in x ∈ [0, a − ε]. (93b)

Then, the voltage V (x, t) can be presented in the form

V (x, t) = [1 − Ha−ε(x)] V (t) in x ∈ [0, a] (94)
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where Ha−ε(x) is the Heaviside function (Appendix B). Then, the right side of the
differential equation (69) takes the form

IpV
′ = −IpV (t) H

′
a−ε(x) = −IpV (t) δa−ε(x), (95)

where δa−ε(x) is the delta-function (Appendix B).
In computation of the example problems for the clamped-free beams, presented below,

the formulation based on the penalty function method will be used, and the voltage will be
distributed uniformly along the length of the actuator. For convenience, this formulation
is summarized below.

Partial differential equations:

KG0(w
′′
0 + φ′

0) − B0ẅ0 = 0 in x ∈ [0, a], (96)

A0φ
′′
0 − KG0(w

′
0 + φ0) − C0φ̈0 = −IpV (t)δa−ε(x) in x ∈ [0, a], (97)

KG1(w
′′
1 + φ′

1) − B1ẅ1 = 0 in x ∈ [a, α], (98)

A1φ
′′
1 − KG1(w

′
1 + φ1) − C1φ̈1 = 0 in x ∈ [a, α], (99)

KG2(w
′′
2 + φ′

2) − B2ẅ2 − χ(w3 − w2)

(

1

2
−

1

π
arctan

w3 − w2

ǫ

)

− H2φ
′
2w

′′
2 −

3

2
Q2(w

′
2)

2w′′
2 = 0 in x ∈ [α, β], (100)

A2φ
′′
2 − KG2(w

′
2 + φ2) − C2φ̈2 − H2w

′
2w

′′
2 = 0 in x ∈ [α, β], (101)

KG3(w
′′
3 + φ′

3) − B3ẅ3 + χ(w3 − w2)

(

1

2
−

1

π
arctan

w3 − w2

ǫ

)

− H3φ
′
3w

′′
3 −

3

2
Q3(w

′
3)

2w′′
3 = 0 in x ∈ [α, β]. (102)

A3φ
′′
3 − KG3(w

′
3 + φ3) − C3φ̈3 − H3w

′
3w

′′
3 = 0 in x ∈ [α, β], (103)

KG4(w
′′
4 + φ′

4) − B4ẅ4 = 0 in x ∈ [β, L], (104)

A4φ
′′
4 − KG4(w

′
4 + φ4) − C4φ̈4 = 0 in x ∈ [β, L]. (105)

Essential boundary conditions:

Ri = 0 (i = 1, 2, . . . , 12), (106a)

where
R1 ≡ w0(0, t), R2 ≡ φ0(0, t),

R3 ≡ w0(a, t) − w1(a, t), R4 ≡ φ0(a, t) − φ1(a, t),

R5 ≡ w1(α, t) − w2(α, t), R6 ≡ φ1(α, t) − φ2(α, t),

R7 ≡ w1(α, t) − w3(α, t), R8 ≡ φ1(α, t) − φ3(α, t),

R9 ≡ w2(β, t) − w4(β, t), R10 ≡ φ2(β, t) − φ4(β, t),

R11 ≡ w3(β, t) − w4(β, t), R12 ≡ φ3(β, t) − φ4(β, t).

(106b)

Natural boundary conditions:

G0(φ0 + w′
0) − G1(φ1 + w′

1) = 0 at x = a, (107)
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A0φ
′
0 − A1φ

′
1 = 0 at x = a, (108)

KG1(φ1 + w′
1) − KG2(φ2 + w′

2) − H2w
′
2φ

′
2 −

1

2
Q2(w

′
2)

3

− KG3(φ3 + w′
3) − H3w

′
3φ

′
3 −

1

2
Q3(w

′
3)

3 = 0 at x = α,

(109)

A1φ
′
1 − A2φ

′
2 −

1

2
H2(w

′
2)

2 − A3φ
′
3 −

1

2
H3(w

′
3)

2 = 0 at x = α, (110)

KG2(φ2 + w′
2) + H2w

′
2φ

′
2 +

1

2
Q2(w

′
2)

3 + KG3(φ3 + w′
3)

+ H3w
′
3φ

′
3 +

1

2
Q3(w

′
3)

3 − KG4(φ4 + w′
4) = 0 at x = β,

(111)

A2φ
′
2 + A3φ

′
3 − A4φ

′
4 = 0 at x = β, (112)

φ4 + w′
4 = 0 at x = L, (113)

φ′
4 = 0 at x = L. (114)

4 Finite Element Formulation

The finite element formulation is made on the basis of weak forms for the derived partial
differential equations (96) – (105).

Finite element within Zone 0 (Part 0), i.e. within a subdomain x ∈ [0, a].
The weak form for a finite element within Zone 0 is obtained by multiplying equations

(96) and (97) by weight functions (variations) δw0 and δφ0 respectively, integrating
them over an element’s length, performing integration by parts and adding the resulting
equations. The weak form thus obtained is

0 =

XB
∫

XA

[

A0φ
′
0 δφ′

0 + KG0(w
′
0 + φ0) δw′

0 + KG0(w
′
0 + φ0) δφ0

+ B0ẅ0 δw0 + C0φ̈0 δφ0 − IpV (t) δa−ε(x) δφ0

]

dx

+
[

KG0(w
′
0 + φ0) δw0

]

x=XA

−
[

KG0(w
′
0 + φ0) δw0

]

x=XB

+
(

A0φ
′
0 δφ0

)

x=XA

−
(

A0φ
′
0 δφ0

)

x=XB

,

(115)

where XA and XB are coordinates of the element’s left and right boundary points.
In the boundary terms of the weak form, variations of the unknown functions w0 and
φ0 themselves (not their derivatives) are present, therefore, the Lagrange interpolation
polynomials are appropriate for approximation of the unknown functions within a finite
element [3]. In this analysis, the author chose to approximate both unknown functions
w0(x, t) and φ0(x, t), within a finite element, by the Lagrange interpolation polynomials
of a fifth degree:

w0(x, t) ≈
6
∑

i=1

Ni(x)w0i(t), φ0(x, t) ≈
6
∑

i=1

Ni(x)φ0i(t), (116)
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where

w0i(t) ≡ w0(xi, t), φ0i(t) ≡ φ0(xi, t), (117)

Ni(x) =

6
∏

j=1
j 6=i

x − xj

xi − xj

, (118)

x1 ≡ XA, x6 ≡ XB. (119)

So, the finite element has six nodes, and two unknown nodal parameters w0i and φ0i are
associated with each i-th node. The nodes are chosen to be equidistant. Denoting the
element’s length as l, the nodal coordinates, in the local element coordinate system (the
origin of which coincides with the left boundary point of the element), can be written as

xi =
(i − 1)l

5
(i = 1, . . . , 6). (120)

Explicit expressions for the shape functions are written below

N1(x) = −
625

24l5
x5 +

625

8l4
x4 −

2125

24l3
x3 +

375

8l2
x2 −

137

12l
x + 1,

N2(x) =
3125

12

x5

l5
− 625

x4

l4
+

6625

12

x3

l3
−

425

2

x2

l2
+ 30

x

l
,

N3(x) = −
3125

12

x5

l5
+

8125

12

x4

l4
−

7375

12

x3

l3
+

2675

12

x2

l2
− 25

x

l
,

N4(x) =
3125

12

x5

l5
− 625

x4

l4
+

6125

12

x3

l3
−

325

2

x2

l2
+

50

3

x

l
,

N5(x) = −
3125

24

x5

l5
+

6875

24

x4

l4
−

5125

24

x3

l3
+

1525

24

x2

l2
−

25

4

x

l
,

N6(x) =
625

24

x5

l5
−

625

12

x4

l4
+

875

24

x3

l3
−

125

12

x2

l2
+

x

l
.

(121)

The column-matrix of element nodal parameters is introduced as follows

{θ}
(12×1)

≡ ⌊w01 φ01 w02 φ02 w03 φ03 w04 φ04 w05 φ05 w06 φ06 ⌋
T

. (122)

Then, in view of formulas (116), the unknown functions w0(x, t) and φ0(x, t) can be
expressed in terms of the column-matrix of nodal parameters {θ} by the formulas

w0 = ⌊Φ⌋
(1×12)

{θ} , φ0 = ⌊Ψ⌋
(1×12)

{θ} , (123)

where

⌊Φ⌋
(1×12)

≡ ⌊N1 0 N2 0 N3 0 N4 0 N5 0 N6 0 ⌋ , (124a)

⌊Ψ⌋
(1×12)

≡ ⌊ 0 N1 0 N2 0 N3 0 N4 0 N5 0 N6 ⌋ . (124b)
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Substitution of equations (124) into the integral part of the weak form (115) produces
the result

{δθ}
(1×12)

T
(

[m]
(12×12)

{

θ̈
}

(12×1)

+ [k]
(12×12)

{θ}
(12×1)

− {f}
(12×1)

)

= 0, (125)

where {δθ} is a column-matrix of variations of the nodal parameters, and the other
matrices are defined as follows:

element mass matrix:

[m]
(12×12)

= B0

l
∫

0

⌊Φ⌋
(12×1)

T ⌊Φ⌋
(1×12)

dx + C0

l
∫

0

⌊Ψ⌋
(12×1)

T ⌊Ψ⌋
(1×12)

dx, (126)

element stiffness matrix:

[k]
(12×12)

= A0

l
∫

0

(

d

dx
⌊Ψ⌋

(12×1)

T

)(

d

dx
⌊Ψ⌋

(1×12)

)

dx

+ KG0

l
∫

0

(

d

dx
⌊Φ⌋ + ⌊Ψ⌋

)

(12×1)

T

(

d

dx
⌊Φ⌋ + ⌊Ψ⌋

)

(1×12)

dx,

(127)

element force vector for the element adjacent to the right boundary of Zone 0:

{f}
(12×1)

=

{

{0}
(11×1)

IpV (t)

}

, (128a)

element force vector for all other elements of Zone 0:

{f}
(12×1)

= {0}
(12×1)

. (128b)

Similar derivations can be used for deriving equations of motion of a finite element within
Zone 1 (Part 1) and Zone 3 (Part 4).

Finite element within Zone 2 (Part 2 and Part 3), i.e. within a subdomain x ∈ [α, β]
and z ∈ [−h/2, γ].

The weak form for a finite element within Zone 2 is obtained by multiplying equations
(100) and (101) by weight functions (variations) δw2 and δφ2 respectively, multiplying
equations (102) and (103) by δw3 and δφ3 respectively, integrating them over an element’s
length, performing integration by parts and adding the resulting equations. The integral
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part of the weak form thus obtained is

0 =

l
∫

0

[A2φ
′
2 δφ′

2 + KG2(w
′
2 + φ2) δw′

2 + KG2(w
′
2 + φ2) δφ2

+ B2ẅ2 δw2 + C2φ̈2 δφ2] dx

+

l
∫

0

[A3φ
′
3 δφ′

3 + KG3(w
′
3 + φ3) δw′

3 + KG3(w
′
3 + φ3) δφ3

+ B3ẅ3 δw3 + C3φ̈3 δφ3] dx

−

l
∫

0

[(

H2φ
′
2 +

3

2
Q2(w

′
2)

2

)

w′′
2 δw2 + H2w

′
2w

′′
2 δφ2

]

dx

−

l
∫

0

[(

H3φ
′
3 +

3

2
Q3(w

′
3)

2

)

w′′
3 δw3 + H3w

′
3w

′′
3 , δφ3

]

dx

−

l
∫

0

χ(w3 − w2)

(

1

2
−

1

π
arctan

w3 − w2

ǫ

)

δw2 dx

+

l
∫

0

χ(w3 − w2)

(

1

2
−

1

π
arctan

w3 − w2

ǫ

)

δw3 dx.

(129)

The same interpolation polynomials are used for the Zone 2 as for the Zone 0, i.e.

w2(x, t) ≈

6
∑

i=1

Ni(x)w2i(t), w3(x, t) ≈

6
∑

i=1

Ni(x)w3i(t),

(130)

φ2(x, t) ≈
6
∑

i=1

Ni(x)φ2i(t), φ3(x, t) ≈
6
∑

i=1

Ni(x)φ3i(t),

where

w2i(t) ≡ w2(xi, t), w3i(t) ≡ w3(xi, t), φ2i(t) ≡ φ2(xi, t), φ3i(t) ≡ φ3(xi, t), (131)

and shape functions Ni(x) are defined by equations (121).
The column-matrix of the element nodal parameters for Zone 2 are introduced as

follows:

{θ}
(24×1)

=











{θ}
(2)

(12×1)

{θ}(3)

(12×1)











, (132)

where

{θ}(2) ≡ ⌊w21 φ21 w22 φ22 w23 φ23 w24 φ24 w25 φ25 w26 φ26 ⌋
T

,
(133)

{θ}(3) ≡ ⌊w31 φ31 w32 φ32 w33 φ33 w34 φ34 w35 φ35 w36 φ36 ⌋
T

(134)
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are column-matrices of nodal parameters of Part 2 and Part 3 respectively (of lower and
upper delaminated parts of Zone 2). Then, using the weak form (equation (129)) and
following the same procedures as for an element in Zone 0, the following expressions for
the element mass and stiffness matrices of Zone 2 are obtained.

Element mass matrix for Zone 2:

[m]
(24×24)

=







[m](2)

(12×12)

[0]
(12×12)

[0]
(12×12)

[m](3)

(12×12)






, (135)

where

[m](i)

(12×12)

= Bi

l
∫

0

⌊Φ⌋
(12×1)

T ⌊Φ⌋
(1×12)

dx + Ci

l
∫

0

⌊Ψ⌋
(12×1)

T ⌊Ψ⌋
(1×12)

dx (i = 2, 3), (136)

and row-matrices ⌊Φ⌋ and ⌊Ψ⌋ are defined by equations (124).

Element stiffness matrix for Zone 2:

[k]
(24×24)

=







[k](2)

(12×12)

[0]
(12×12)

[0]
(12×12)

[k](3)

(12×12)






, (137)

where

[k](i)

(12×12)

= Ai

l
∫

0

(

d

dx
⌊Ψ⌋

(12×1)

T

)(

d

dx
⌊Ψ⌋

(1×12)

)

dx

+ KGi

l
∫

0

(

d

dx
⌊Φ⌋ + ⌊Ψ⌋

)

(12×1)

T

(

d

dx
⌊Φ⌋ + ⌊Ψ⌋

)

(1×12)

dx (i = 2, 3).

(138)

The last two integrals in the weak form (129) represent virtual works of forces of mutual
impact of the crack’s faces, acting, correspondingly, on the lower and upper crack’s face.
The computation of contribution of these integrals to the discretized equations of motion
of a finite element within Zone 2 is presented below. Let us consider one of these integrals

I2 ≡

l
∫

0

χ(w3 − w2)

(

1

2
−

1

π
arctan

w3 − w2

ǫ

)

(δw2) dx, (140)

which represent virtual work of force of impact acting on the lower face of the crack. Sub-
stitution of functions w2(x, t) and w3(x, t) by their polynomial approximation (equa-
tions (130)) yields

I2 =

l
∫

0

χ

( 6
∑

i=1

(δw2i)Ni

)( 6
∑

j=1

(w3j − w2j)Nj

)

×

(

1

2
−

1

π
arctan

(

ǫ−1
6
∑

m=1

(w3m − w2m)Nm

))

dx.

(141)
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Let the function under the integral sign in the last integral be denoted as g(x). Then,
using the trapezoidal rule of numerical integration, with evaluation of the function g(x)
at the nodal points x1 = 0, x2, x3, x4, x5, x6 = l of the finite element,

l
∫

0

g(x) dx ≈
l

10

[

g(0) + g(l) + 2

5
∑

k=2

g(xk)

]

, (142)

and using the property Ni(xj) = δij of the shape functions, defined by equation (118),
one can obtain

I2 = χ
{

δθ(2)
}

(1×12)

T {f}
(12×1)

, (143)

where

fi =
l

10
(w3i − w2i)

(

1

2
−

1

π
arctan

w3i − w2i

ǫ

)

for i = 1, 11,

fi =
l

5
(w3i − w2i)

(

1

2
−

1

π
arctan

w3i − w2i

ǫ

)

for i = 3, 5, 7, 9,

fi = 0 for i = 2, 4, 6, 8, 10, 12.

(144)

Similarly, the last integral in equation (129) can be written as

I3 ≡

l
∫

0

χ(w3 − w2)

(

1

2
−

1

π
arctan

w3 − w2

ǫ

)

(δw3) dx = χ
{

δθ(3)
}

(1×12)

T {f}
(12×1)

. (145)

The nonlinear terms

−

l
∫

0

[(

H2φ
′
2 +

3

2
Q2(w

′
2)

2

)

w′′
2 δw2 + H2w

′
2w

′′
2 δφ2

]

dx

−

l
∫

0

[(

H3φ
′
3 +

3

2
Q3(w

′
3)

2

)

w′′
3 δw3 + H3w

′
3w

′′
3 δφ3

]

dx

in the weak form (129), which are due to taking account of longitudinal force resultants in
the delaminated parts (i.e. due to the von Karman nonlinearity of the strain-displacement
relations), lead to the presence of a column-matrix in the equations of motion of a finite
element, the components of which depend nonlinearly on the nodal parameters w2i and
w3i (i = 1, 2, . . . , 6). This column-matrix will be denoted as

{g}
(24×1)

≡











{g}(2)

(12×1)

{g}(3)

(12×1)











, (146)

where {g}(2) is a column-matrix the components of which depend nonlinearly on nodal

parameters w2i (associated with the lower delaminated part), and {g}(3) is a column-
matrix the components of which depend nonlinearly on nodal parameters w3i (associated
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with the upper delaminated part). Components of {g}(2) and {g}(3) are not written here
explicitly, because of their large size.

So, equations of motion of a finite element in the delaminated zone of the beam
(Zone 2) have the form







[m](2)

(12×12)

[0]
(12×12)

[0]
(12×12)

[m](3)

(12×12)





















{

θ̈
}(2)

(12×1)
{

θ̈
}(3)

(12×1)















+







[k](2)

0(12×12)

[0]
(12×12)

[0]
(12×12)

[k](3)

(12×12)

















{θ}(2)

(12×1)

{θ}(3)

(12×1)











+ χ







− {f}
(12×1)

{f}
(12×1)







+











{g}(2)

(12×1)

{g}(3)

(12×1)











= {0}
(24×1)

.

(147)

In Equation (147), the nonlinear internal force vector χ ⌊−{f}T {f}T ⌋
T

depends on
nodal parameters, associated with both lower and upper delaminated parts (Part 2 and

Part 3). Therefore, in the system of equations (147), the nodal parameters {θ}(2),
associated with the lower delaminated part (Part 2) are coupled to the nodal parameters

{θ}(3), associated with the upper delaminated part.
So, the derivation of the finite element matrices is completed, and an example problem

will be considered next.

5 Solution of Example Problems

As an example problem, a clamped-free wooden beam with the following characteristics
(Figure 2.1) is considered: length L = 20 × 10−2m, width b = 2.76 × 10−2m, thickness

h = 0.99 × 10−2m, wood density ρ(0) = 418.02 kg
m3 , Young’s modulus of the wood in

the direction of fibers E
(0)
1 = 1.0897 × 1010 N

m2 . The piezoelectric actuator is QP10W

(Active Control Experts). Thickness of the actuator is τ = 3.81 × 10−4m, its length
is a = 5.08 × 10−2m , the piezoelectric constant in the range of applied voltage (from

0 to 200V ) is d31 ≈ −1.05 × 10−9 m
V

, the Young’s modulus of the actuator with its

packaging is E
(p)
1 = 2.57 × 1010 N

m2 , mass density of the actuator with its packaging is

ρ(p) = 6151.1 kg
m3 . The voltage V (t), applied to the piezoelectric actuator, is distributed

uniformly along the length of the actuator and varies with time as

V (t) = Va sin(Ωt),

where Va = 200 V , Ω = 600 1
s
. The wooden beam is cut along its fibers, so that the angle

θ in the formula (6) is equal to zero, and, therefore, the elastic compliance coefficient

S11 for the wood is equal to S
(0)

11 = 1

E
(0)
1

= 9.1768 × 10−11 m2

N
. For the piezoelectric

actuator, the material coordinate system coincides with the problem coordinate system,
so that the elastic compliance coefficient S11 for the material of the piezo-actuator is

S
(p)

11 = 1

E
(p)
1

= 3.8911 × 10−11 m2

N
. Coordinates of the crack tips are: α = 10 × 10−2m,

β = 15 × 10−2m, γ = 0.66 × 10−2 − h
2 = 1.65 × 10−3m . Then the constants, entering

into the variational formulation and the differential equations of the problem, have the
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following values in SI units: A0 = 31.463, B0 = 0.178 9, C0 = 2.642 9 × 10−6, G0 =
1.299 10× 106, A1 = 24.319, B1 = 0.114 22, C1 = 9.328 9× 10−7, G1 = 1.190999× 106,
A2 = 12.61, B2 = 7.614 7×10−2, C2 = 4.837 2×10−7, G2 = 7.93999×105, A3 = 11.709,
B3 = 3.807 3 × 10−2, C3 = 4.491 7 × 10−7, G3 = 3.969995 × 105 , A4 = 24.319,
B4 = 0.114 22, C4 = 9.328 9 × 10−7, G4 = 1.190999 × 106, Ip = −3.828 5 × 10−3,

a = 5.08 × 10−2, Va = 200, Ω = 600, α = 10 × 10−2, β = 15 × 10−2, γ = 1.65 × 10−3,
b = 2.76 × 10−2, h = 0.99 × 10−2, Q2 = 1.985005666× 106, Q3 = 9.925028332× 105,
H2 = −3275.25935, H3 = 3275.25935. The small constant ǫ and the large constant χ
are chosen to be ǫ = 1 × 10−3 and χ = 1 × 106.

5.1 Time-domain response to dynamic excitation

Time integration of a system of ordinary differential equations of a global (assembled)
semi-discrete finite element model

[M ]
{

Θ̈
}

+ [K]{Θ} + {R}nonlin = {F}

was performed with the use of the backward-difference method [4]. In the last equation,
{R}nonlin is a column-matrix, which contains components that depend nonlinearly on
the unknown nodal parameters Θi. Transverse displacements as functions of time at free
ends of delaminated and undelaminated beams are shown in graphs of Figure 5.1. These
graphs are noticeably different. Numerical experiments show that neglecting nonlinear
terms in the strain-displacement relations (19a), and, therefore, neglecting the longitu-

dinal force resultants N
(2)
x and N

(3)
x in the delaminated parts of the beam (equations

(25) and (29)), produces much smaller effect on the transverse displacement of the de-
laminated beam than neglecting the force of contact interaction of the crack faces.

5.2 Eigenvalue analysis

For the same beam, natural frequencies and mode shapes were computed from a linear
eigenvalue analysis. Results of calculation of frequencies for beams with different crack
lengths are presented in tables below. For some crack lengths, comparison is made
between frequencies computed on the basis of the first order shear deformation theory,
presented in this paper, and the frequencies computed on the basis of the Euler-Bernoulli
beam theory, presented in Reference [1]. Rotary inertia terms are taken into account in
both types of solutions.

Let us consider, at first, the first seven circular frequencies of a clamped-free beam
without the delamination and with the actuator, obtained by setting equal the x-
coordinates of the crack tips. The frequencies for this case are presented below. Notation
FOSDT stands for the First Order Shear Deformation Theory of the beam, notation E-B
stands for the Euler-Bernoulli beam theory.

ω1 ω2 ω3 ω4 ω5 ω6 ω7

FOSDT 1395.535 8130.531 21436.8 40361.9 64915.31 9.36739 × 104 1.25461 × 105

E-B 1397.435 8217.911 21986.6 42205.0 69331.23 1.02371 × 105 1.40641 × 105
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Figure 5.1. Transverse displacement of free end of delaminated beam (solid line)

and undelaminated beam (dashed line). Coordinates of the crack tips of the delam-

inated beam are α = 0, 1m, β = 0, 15m, γ = 1, 65× 10−3m.

In the next table, results are presented for a beam with the delamination and with
the actuator, with the following coordinates of the crack tips: α = 0.1m, β = 0.11m,
γ = 1.65 × 10−3m.

ω1 ω2 ω3 ω4 ω5 ω6 ω7

FOSDT 1395.5 8130.5 21436.0 40361.5 64909.9 9.3669 × 104 1.2545 × 105

E-B 1397.435 8217.909 21986.1 42204.9 69331.2 1.02371 × 105 1.40641 × 105

In the next table, results are presented for a beam with the delamination and with
the actuator, with the following coordinates of the crack tips: α = 0.1m, β = 0.12m,
γ = 1.65 × 10−3m.

ω1 ω2 ω3 ω4 ω5 ω6 ω7

FOSDT 1395.5 8130.5 21433.6 40356.8 64900.7 9.3629 × 104 1.2544 × 105

E-B 1397.433 8217.9 21986.0 42200.0 69330.0 1.02368 × 105 1.40625 × 105

In the next table, results are presented for a beam with the delamination and with
the actuator, with the following coordinates of the crack tips: α = 0.1m, β = 0.13m,
γ = 1.65 × 10−3m.
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ω1 ω2 ω3 ω4 ω5 ω6 ω7

FOSDT 1395.49 8130.46 21431.655 40345.03 64894.09 9.3576 × 104 1.2535 × 105

In the next table, results are presented for a beam with the delamination and with
the actuator, with the following coordinates of the crack tips: α = 0.1m, β = 0.14m,
γ = 1.65 × 10−3m.

ω1 ω2 ω3 ω4 ω5 ω6 ω7

FOSDT 1395.47 8130.28 21430.371 40330.58 64850.16 9.3541 × 104 1.2504 × 105

In the next table, results are presented for a beam with the delamination and with
the actuator, with the following coordinates of the crack tips: α = 0.1m, β = 0.15m,
γ = 1.65 × 10−3m.

ω1 ω2 ω3 ω4 ω5 ω6 ω7

FOSDT 1395.456 8129.95 21427.848 40320.39 64719.1 9.31501 × 104 1.10100 × 105

E-B 1397.432 8217.62 21980.0 42201.0 69094.0 1.01932 × 105 1.33019 × 105

So, the frequencies decrease as the crack length increases. This phenomenon is more
pronounced for higher frequencies.

The first four mode shapes of delaminated beams are nearly the same as the corre-
sponding mode shapes of the undelaminated beams, so that the difference is not notice-
able on graphs. But the higher mode shapes of the delaminated beams, beginning from
the fifth mode shape, show the crack opening and closure during the vibration, as can
be seen in Figures 5.2, 5.3 and 5.4.

Figure 5.2a. Fifth mode shape of clamped-free beam without delamination.
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Figure 5.2b. Fifth mode shape of clamped-free beam with delamination.

Figure 5.3a. Sixth mode shape of clamped-free beam without delamination.

Figure 5.3b. Sixth mode shape of clamped-free beam with delamination.

Figure 5.4a. Seventh mode shape of clamped-free beam without delamination.
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Figure 5.4b. Seventh mode shape of clamped-free beam with delamination.

Experimental verification of the developed theory and the finite element program will
be presented in a subsequent publication. The theory, presented in this work, and the
finite element program, based on this theory, are developed for the purpose of their sub-
sequent use in nondestructive detection of delamination cracks in composite structures.

Appendix A

Constitutive Equations for a Piezoelectric Orthotropic Layer of a Thin

Composite Beam

The constitutive equations of a generally anisotropic piezoelectric material can be writ-
ten in a matrix form as follows (in these equations, the bars over characters are put to
emphasize that the quantities are presented in a problem coordinate system, the coordi-
nate planes of which do not necessarily coincide with the planes of elastic or dielectric
symmetry)

{ε}
(6×1)

= [S]
(6×6)

{σ}
(6×1)

+ [d]
(6×3)

T {E}
(3×1)

, (A-1)

{D}
(3×1)

= [d]
(3×6)

{σ}
(6×1)

+ [ζ]
(3×3)

{E}
(3×1)

, (A-2)

where
{ε}

(6×1)

= ⌊ εxx εyy εzz 2εyz 2εxz 2εxy ⌋
T (A-3)

is a column-matrix of components of the strain tensor,

{σ}
(6×1)

= ⌊σxx σyy σzz σyz σxz σxy ⌋
T

(A-4)

is a column-matrix of components of the stress tensor,

{E}
(3×1)

= ⌊ Ex Ey Ez ⌋
T

(A-5)
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is a column-matrix of components of the electric field intensity vector, [S]
(6×6)

is a matrix of

elastic coefficients (compliance coefficients) and [d]
(3×6)

and [ζ]
(3×3)

are matrices of material

constants that characterize electrical properties.
For an orthotropic material, in the principal material coordinate system (whose co-

ordinate planes coincide with the planes of elastic symmetry), the matrix of compliance
coefficients is denoted as [S] (without a bar) and has the form

[S] =















S11 S12 S13 0 0 0
S12 S22 S23 0 0 0
S13 S23 S33 0 0 0
0 0 0 S44 0 0
0 0 0 0 S55 0
0 0 0 0 0 S66















(A-6)

where the compliance coefficients Sij are expressed in terms of engineering constants by
the formulas

S11 =
1

E1
, S12 = −

ν12

E1
, S13 = −

ν13

E1
, S22 =

1

E2
, S23 = −

ν23

E2
,

S33 =
1

E3
, S44 =

1

G23
, S55 =

1

G13
, S66 =

1

G12
.

(A-7)

The matrices, characterizing electric properties of the material, in the principle material
coordinate system, will be denoted without the bar also, i.e. as [d]

(3×6)

and [ζ]
(3×3)

.

In the laminate (problem) coordinate system, rotated clockwise by an angle θ with
respect to the principle material coordinate system, the matrix of compliance coefficients
and the matrices, characterizing electric properties of the material, [d]

(3×6)

and [ζ]
(3×3)

, have

the form

[S]
(6×6)

= [T ]
(6×6)

T [S]
(6×6)

[T ]
(6×6)

, (A-8)

[ζ]
(3×3)

= [R]
(3×3)

T [ζ]
(3×3)

[R]
(3×3)

, (A-9)

[d]
(3×6)

= [R]
(3×3)

T [d]
(3×6)

[T ]
(6×6)

, (A-10)

where the transformation matrices [T ] and [R] are defined as follows (with the use of
notation c = cos θ, s = sin θ):

[T ]
(6×6)

=















c2 s2 0 0 0 2sc
s2 c2 0 0 0 −2sc
0 0 1 0 0 0
0 0 0 c −s 0
0 0 0 s c 0

−sc sc 0 0 0 c2 − s2















, (A-11)

[R]
(3×3)

=





c s 0
−s c 0
0 0 1



 . (A-12)
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For the composite piezoelectric layer of a thin and narrow composite beam, which bends
in the x-z plane, the following assumptions can be adopted

σzz = σxz = σyz = σyy = 0. (A-13)

Besides, in the problem under consideration, the electrical field is applied to the actuator
only in the thickness direction (in the direction of the z-axis), i.e.

Ex = Ey = 0. (A-14)

If equations (A-13) and (A-14) are substituted into the constitutive equations (A-1) and
(A-2) with account of transformation relations (A-8), (A-9) and (A-10) and with account
of equations (A-6) and (A-7) for compliance matrix in the principle material coordinate
system, then the constitutive equations take the form

{

εxx

2εxz

}

=

[

S11 0
0 S55

]{

σxx

σxz

}

+

[

d31

d35

]

{ Ez } , (A-15)

{Dz } = [ d31 d35 ]

{

σxx

σxz

}

+ [ ζ33 ] { Ez } . (A-16)

From the constitutive equations (A-15) and (A-16), one can obtain the constitutive equa-
tions in a different form:







σxx

σxz

Dz







=



















1

S11

0 −
d31

S11

0
1

S55

−
d35

S55

d31

S11

d35

S55

(

ζ33 −
d
2

31

S11

−
d
2

35

S55

)

























εxx

2εxz

Ez







, (A-17a)

or, in view of the relationship Ez = −∂ϕ
∂z

, where ϕ is the electric potential,







σxx

σxz

Dz







=



















1

S11

0
d31

S11

0
1

S55

d35

S55

d31

S11

d35

S55

(

− ζ33 +
d
2

31

S11

+
d
2

35

S55

)

























εxx

2εxz
∂ϕ
∂z







. (A-17b)

According to equations (A-7) and (A-8), the compliance coefficients S11 and S55 in
the problem coordinate system that enter into equations (A-17), are expressed in terms
of the engineering constants by the formulas

S55 =
1

G23
s2 +

1

G13
c2,

S11 =
1

E1
c4 +

1

E2
s4 +

(

1

G12
− 2

ν12

E1

)

s2c2.

(A-18)
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The material constants d31 and d35, which characterize the piezoelectric properties in
the problem coordinate system, are expressed in terms of the piezoelectric constants dij

of the material coordinate system by the formulas (derived from matrix transformation
equations A-10)

d31 = d31c
2 + d32s

2 − d36sc, (A-19a)

d35 = −d34s + d35c, (A-19b)

and, according to the transformation equation (A-9),

ζ33 = ζ33. (A-20)

We consider a piezoelectric material with orthorhombic mm2 symmetry, such as
polyvinylidene (PVDF) or lead zirconate-titanate (PZT), in which the planes of elastic
symmetry are made, in the manufacturing process, the same as the planes of piezoelectric
symmetry. In this case, the piezoelectric constants d34 and d35 are equal to zero (see [5]

and [6]). Then, according to equation (A-19b), d35 = 0, and equation (A-17b) takes the
form







σxx

σxz

Dz







=

















1

S11

0
d31

S11

0
1

S55

0

d31

S11

0

(

− ζ33 +
d
2

31

S11

)























εxx

2εxz
∂ϕ
∂z







. (A-21)

These are the constitutive equations for a layer of orthotropic piezoelectric material with
orthorhombic mm2 symmetry, in which the planes of elastic symmetry are the same as the
planes of piezoelectric symmetry, in a narrow and thin composite beam. Obviously, for
a layer of orthotropic material, in a thin narrow beam, which does not have piezoelectric
properties, the constitutive equations have the form

{

σxx

σxz

}

=







1

S11

0

0
1

S55







{

εxx

2εxz

}

. (A-22)

Appendix B

Properties of the Heaviside Function

It can be shown [7] that the Heaviside function (unit step-function) Hα(x), defined by
formula

Hα(x) =

{

0 for x < α,

1 for x > α,
(B-1)

has the following property
dHα(x)

dx
= δα(x), (B-2)
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where δα(x) is the Dirac’s delta-function, defined as a function that has the following
properties:

δα(x) =

{

0 for x 6= α,

∞ for x = α
(B-3)

and
x2
∫

x1

f(x)δα(x) dx =

{

f(α) for x1 < α < x2,

0 for α < x1 and for α > x2.
(B-4)

The delta-function has several analytical representations, one of which has the form [8]:

δα(x) = lim
ǫ→0

1

π

ǫ

ǫ2 + (x − α)2
. (B-5)

According to formula (B-2), the analytical representation of the Heaviside function, cor-
responding to the analytical representation of the delta-function (B-5) is

Hα(x) = lim
ǫ→0

1

π
arctan

x − α

ǫ
+

1

2
=















0 for x < α,
1

2
for x = α,

1 for x > α.

(B-6)

Carrying out the Heaviside function Hα(x) beyond the integral sign in an indefinite
integral is done with the use of the formula

∫

Hα(x) f(x) dx = Hα(x)

x
∫

α

f(η) dη. (B-7)

With the use of properties (B-2) and (B-4), it can be shown that

x2
∫

x1

f(x)
d2Hα(x)

dx2
dx =

{

−
df

dx
(α) for x1 < α < x2,

0 for α < x1 and for α > x2.
(B-8)
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Abstract: This paper is concerned with tracking control of nonlinear multi-
variable systems whose relative degree is more than one. The control method
is based on a direct steepest descent method using the gradient of a perfor-
mance index. Simulation results demonstrate the usefulness of the proposed
method.
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1 Introduction

Studies on nonlinear feedback control have been extensively made in recent years. Need-
less to say, stabilization and optimization are central concerns. Lyapunov stability theory
and the Hamilton–Jacobi–Bellman equation for optimal control appear to be main tools
for designing stabilizing feedback control laws. For affine nonlinear systems, lots of re-
searches have been done based on feedback linearization, nonlinear optimal regulator
[13, 5], the Hamilton–Jacobi–Bellman equation and inverse optimality theory [4], control
Lyapunov function stabilization [20], back stepping technique [11], nonlinear H∞ con-
trol and passivity-based control theory [22], etc. For general nonlinear systems, receding
horizon control [12] is known as one of the few studies on on-line nonlinear optimal con-
trol. Besides, there are many studies on neuro-controllers [19, 15] based on the error
back propagation method, but their stability and generalization ability remain unsolved
questions.

c© 2005 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 91
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In this paper the following general nonlinear system is considered as a controlled
object:

ẋ(t) = f(x(t), u(t)),

y(t) = h(x(t)),
(1)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rr is the control input, y(t) ∈ Rm

is the measured output, and we study the problem of output tracking so that y(t)
tracks a desired output yd(t) (the reference signal). Output tracking control (output
regulation or servo mechanism) for nonlinear systems has intensively been investigated
[23, 9, 21, 7, 10, 6, 1]. Among them, Vidyasagar [23] and Tsinias [21] showed that if the
system (1) is stabilizable and weakly detectable by means of a continuous state feedback
u(t) = α(x(t)), then the system is also stabilized by α(z(t)), where z(t) is the output of
a weak detector for the state x(t). More precisely, when

ż(t) = g(z(t), y(t), u(t))

is an observer (i.e., z(t)−x(t) → 0 as t → ∞ for every x(0) and z(0)) and u(t) = α(z(t))
is an asymptotically stabilizing control law, then the closed-loop system

ẋ(t) = f(x(t), α(z(t))), y(t) = h(x(t)),

ż(t) = g(z(t), y(t), α(z(t)))

is asymptotically stable in a neighborhood of (x, z) = (0, 0). Note that, however, it is
another hard task to obtain the state feedback law u = α(x).

In the pioneering work of Isidori and Byrnes [9], nonlinear output regulation problem
has been formulated and solved, in which the objective is to design a dynamic controller
such that the closed-loop system is stable and the error approaches zero asymptotically.
Supposing the reference signal yd(t) to be generated by the exosystem

ẇ(t) = s(w(t)), yd(t) = q(w(t))

and considering the extended system

ẋ(t) = f(x(t), u(t)), y(t) = h(x(t)),

ẇ(t) = s(w(t)), yd(t) = q(w(t)), (2)

e(t) = yd(t) − y(t)

they solved the output regulation problem by means of an error feedback controller (a
dynamic controller)

ż(t) = η(z(t), e(t)),

u(t) = α(z(t)).
(3)

More precisely, the output regulation means that the unforced closed-loop system with
w = 0 is exponentially stable and that the forced closed-loop system (2) – (3) satisfies
lim

t→∞
e(t) → 0 for any initial condition (x(0), z(0), w(0)) in a neighborhood of the origin

(0, 0, 0). Isidori and Byrnes [9] derived a necessary condition for the output regulation,
called the nonlinear regulator equation, using the center manifold theorem. Though the
Isidori–Byrnes theory is precise and sophisticated, it requires many assumptions and, in
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order to synthesize a solution numerically, one has to solve the nonlinear regulator equa-
tion described by a system of nonlinear partial differential equations, which is difficult
to solve as in the Hamilton–Jacobi–Bellman equation. The nonlinear output regulation
can achieve asymptotic disturbance rejection based on the exosystem as well as asymp-
totic output tracking. Actually, in the work of Isidori and Byrnes [9] trajectory tracking
and/or disturbance rejection are unificatively formulated as the problem of output regu-
lation. Furthermore, structurally stable and robust output regulation under parametric
uncertainties has been investigated by Khalil [10], Huang [6] and Byrnes, et al. [1]. Huang
and Rugh [7] also proposed an approximation method of finding a power series expansion
of the solution to the nonlinear regulator equation.

Direct gradient descent control was proposed by Shimizu, et al. [18], which directly
manipulates control inputs so as to decrease a performance index such as the squared
error from a desired equilibrium state based on the gradient of the performance index
with respect to the control inputs. The gradient is derived from sensitivity equations. A
similar method called “speed gradient control” was also proposed by Fradkov, et al. [2, 3].
In their method, however, the performance function F contains only x (not both x and
u). F (x) and F (x, u) makes a big difference in application. Further, their derivation is
not based on the sensitivity equations but on the Lyapunov direct method.

In this paper we investigate output tracking control of nonlinear multivariable sys-
tems by use of the direct gradient descent method. Our main concern is the control of
plants with relative degrees of more than one. The proposed method is an on-line imple-
mentation and can be executed in a very simple and practical manner. Our simulation
results for various plants showed remarkably good performance, one of which will be
demonstrated in the last section.

2 Direct Gradient Descent Control of Nonlinear Systems

The aim of our control is to modify u(t) so that a performance index F (y(t), u(t)) de-
creases. The problem is written as

decrease
u(t)

F (y(t), u(t)), (4a)

subj. to ẋ(t) = f(x(t), u(t)), x(t0) = x0 (4b)

y(t) = h(x(t)) (4c)

where we make the following assumption:

Assumption 1 Plant (4b), (4c) is locally controllable and observable.

To solve this problem, we prepare some fundamental results concerning the gradient
of the performance index. We confine our attention in this section to the basic state
feedback regulation case:

decrease
u(t)

F (x(t), u(t)), (5a)

subj. to ẋ(t) = f(x(t), u(t)), x(t0) = x0, (5b)

where we assume the following:
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Assumption 2 Function f is continuously differentiable; fu, Fx and Fu are Lipschitz
continuous.

For any continuous u : u(t), t ≥ t0, system (4b) has a unique smooth solution x : x(t),
t ≥ t0. We denote the state trajectory x associated with a given u by x(u), whose value
at t will be denoted by x(t; u). Then, for an arbitrarily fixed t, let us define a functional
φt by

φt[u] , F (x(t; u), u(t)). (6)

The derivative of the objective F (x(t; u), u(t)) with respect to u(t) can be conceptually
given as

Fx(x(t; u), u(t))
dx(t; u)

du(t)
+ Fu(x(t; u), u(t)). (7)

Here the notion dx(t; u)/du(t) denotes the effect on x(t; u) caused by the change of u(t),
but it is impossible and impractical to change u(t) freely without any reference to the
past trajectory of u. So we consider a time interval [t′, t], where t′ is an arbitrarily given
time such that t0 ≤ t′ < t, and see the effect on the state at time t caused by the change
of u as a function on the interval.

As a class of admissible control for the fixed interval [t′, t], we consider the space
U[t′,t] consisting of r-dimensional vector-valued continuous functions and define the inner
product:

〈u, v〉U[t′,t]
,

t
∫

t′

u(τ)Tv(τ) dτ. (8)

Then the following theorem holds.

Theorem 1 The operator x(t; · ) : U[t′,t] → Rn is Gâteaux differentiable, and its
Jacobian is given, at time t, as follows:

∇x(t; u)(t) = fu(x(t; u), u(t))T. (9)

Proof We show that the functional x(t; · ) : U[t′,t] → Rn is Gâteaux differentiable,
and calculate the Gâteaux differential

δx(t; u; s) ,
d

dε
x(t; u + εs)

∣

∣

∣

ε=0
.

Integrating (5b) from t′ to t with u + εs, we have

x(t; u + εs) = x(t′) +

t
∫

t′

f(x(τ ; u + εs), u(τ) + εs(τ)) dτ. (10)

Differentiating (10) w.r.t. ε, letting ε = 0, and differentiating it w.r.t. t, we finally obtain

d

dt

d

dε
x(t; u + εs)

∣

∣

∣

∣

ε=0

= fx(x(t; u), u(t))
d

dε
x(t; u + εs)

∣

∣

∣

∣

ε=0

+ fu(x(t; u), u(t))s(t)

with
d

dε
x(t′; u + εs)

∣

∣

∣

∣

ε=0

= 0.
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Since this is a time-variant linear differential equation w.r.t.

δx(t; u; s) =
d

dε
x(t; u + εs)

∣

∣

∣

∣

ε=0

,

its solution exists and is given by

δx(t; u; s) =

t
∫

t′

Φ(t, τ)fu(x(τ ; u), u(τ))s(τ) dτ

where Φ is a continuous transition-matrix function defined on {(t, τ) : t′ ≤ τ ≤ t} by

∂

∂t
Φ(t, τ) = fx(x(t; u), u(t))Φ(t, τ), Φ(τ, τ) = I (11)

(see, e.g., Pontryagin [14]). The Gâteaux differential of each component xi(t; ·) : U[t′,t] →
R is then expressed as

δxi(t; u; s) =

t
∫

t′

Φi(t, τ)fu(x(τ ; u), u(τ))s(τ) dτ,

where Φi(t, τ) denotes the i-th row of Φ(t, τ). Comparing this with definition (8), we
can see that there exists ∇xi(t; u) ∈ U[t′,t] satisfying

δxi(t; u; s) = 〈∇xi(t; u), s〉U[t′,t]
∀ s ∈ U[t′,t]

and it is given by

∇xi(t; u)(τ) = fu(x(τ ; u), u(τ))TΦi(t, τ)T, τ ∈ [t′, t].

Each ∇xi(t; u) is an r-dimensional vector-valued function, and here we define an (r×n)-
matrix-valued function ∇x(t; u) by

∇x(t; u)(τ) , (∇x1(t; u)(τ), . . . ,∇xn(t; u)(τ)).

In other words, ∇x(t; u) is given by

∇x(t; u)(τ) = fu(x(τ ; u), u(τ))TΦ(t, τ)T, τ ∈ [t′, t]. (12)

It follows from (11) and (12) that

d

dt
∇x(t; u)(τ) = ∇x(t; u)(τ)fx(x(t; u), u(t))T,

∇x(τ ; u)(τ) = fu(x(τ ; u), u(τ))T
(13)

on the region {(t, τ) : t′ ≤ τ ≤ t}, from which we obtain (9). It is noted that equation
(13) represents the sensitivity equation of the state x with respect to the input u.
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Since (9) does not depend on t′, we regard it as the effect dx(t; u)/du(t) in (7) and
consider the transpose of (7), i.e.,

fu(x(t; u), u(t))TFx(x(t; u), u(t))T + Fu(x(t; u), u(t))T,

as the gradient of the objective F (x(t; u), u(t)) with respect to u(t). We denote it by
∇φt[u](t), i.e.,

∇φt[u](t) = fu(x(t; u), u(t))TFx(x(t; u), u(t))T + Fu(x(t; u), u(t))T. (14)

As an on-line control law for problem (5), we apply the steepest descent method at
each time t ∈ [t0,∞) by using ∇φt[u](t). Namely, u(t) is modified by the direct gradient
descent control algorithm

u̇(t) = −L∇φt[u](t) (15)

where L = diag[α1, α2, . . . , αr], αi > 0, is a proportional constant. Substituting (14)
into (15) yields

u̇(t) = −L
{

fu(x(t; u), u(t))TFx(x(t; u), u(t))T + Fu(x(t; u), u(t))T
}

. (16)

Assumption 2 is a sufficient condition for systems (5b) and (16) to be solvable for a
unique smooth pair (x, u). Furthermore, in order to realize this control, we set F to
satisfy the following assumption:

Assumption 3 For every i,

Fxi
(x, u) 6= 0 ∀ (x, u) 6= (xd, ud)

where xd is a desired stationary state and ud is the corresponding control.

Let us set the performance index F in problem (5) as a quadratic form. Our purpose
of control is then to transfer the state x(t) to a desired stationary state xd. At the
stationary state, it must hold that 0 = f(xd, ud). In general, we can arbitrarily specify
r of n components of xd, but the remaining (n− r) components and ud are dependently
determined. We consider

F (x(t), u(t)) , (xd − x(t))TQ(xd − x(t)) + (ud − u(t))TR(ud − u(t)) (17)

as a performance index to be decreased, where Q and R are (normally diagonal) positive
definite matrices. Then the gradient is written as

∇φt[u](t) = −2fu(x(t; u), u(t))TQ(xd − x(t; u)) − 2R(ud − u(t)) (18)

and hence the direct gradient descent control formula (16) is given by

u̇(t) = 2L
{

fu(x(t; u), u(t))TQ(xd − x(t; u)) + R(ud − u(t))
}

. (19)

The stability of direct gradient descent control is proved in Appendix by use of Lya-
punov’s direct method.

3 Output Tracking via Direct Gradient Descent Control

We define the inverse dynamics of nonlinear systems using the concept of relative degree
of nonlinear dynamical systems (see, e.g., [8]). Let us consider each component yi(t)

of y(t), and denote by y
(j)
i (t) the j-th order derivative of yi(t) with respect to t, which

generally represents a function of x, u, u̇, ü, . . . , u(j−1). Then the relative degree of yi(t)
is defined as follows.
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Definition 1 The integer qi satisfying

∂y
(j)
i (t)

∂u
= 0, j = 1, 2, . . . , qi − 1, (20a)

∂y
(qi)
i (t)

∂u
6= 0 (20b)

is called the relative degree of component yi(t).

Let us denote by αj
i (x(t)) and βqi

i (x(t), u(t)) the j-th derivative of yi(t) as j =
1, 2, . . . , qi − 1 and as j = qi, respectively. Then we have the following system of
equations:

y
(q1)
1 (t) = βq1

1 (x(t), u(t))

. . . . . . . . . . . . . . . . . .

y(qm)
m (t) = βqm

m (x(t), u(t)).

(21)

Assumption 4

rank











∂βq1

1 (x(t), u(t))

∂u
. . . . . . . . . . . . .

∂βqm
m (x(t), u(t))

∂u











= r.

Then, by the implicit function theorem, there exists an inverse mapping of (21) in
regard to u(t). Hence u(t) can be expressed as

u(t) = η
(

x(t), y
(q1)
1 (t), . . . , y

(qi)
i (t), . . . , y(qm)

m (t)
)

(22)

where qi denotes the relative degree of yi(t). Let us call system (22) the inverse dynamics
or the inverse system. The control u(t) represented by (22) can be regarded as an input

by which the qi-th order derivative of yi(t) becomes equal to y
(qi)
i (t) when x(t) is the

present state.

Now we investigate an on-line tracking control for problem (4) based on the preliminary
knowledge on state feedback regulation. Let us consider the case where the performance
index is given in the quadratic form

F (y(t), u(t)) , (yd(t) − y(t))TQ(yd(t) − y(t)) + (ud(t) − u(t))TR(ud(t) − u(t)), (23)

where yd(t) is a desired output, ud(t) is the corresponding control input, and Q, R are
diagonal positive definite matrices. In what follows, we consider the functional

φt[u] , F (y(t; u), u(t)) (24)

where y(t; u) , h(x(t; u)). We assume sufficiently higher order continuous differentiabil-
ity of f and h for a while. Precise description of required assumptions will be given at
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the end of the next section. Applying Theorem 1, we obtain an expression of the gradient
needed for the gradient descent tracking control as follows:

∇φt[u](t) = ∇x(t; u)(t)
∂y(t; u)

∂x

T

Fy(y(t; u), u(t))T + Fu(y(t; u), u(t))T

= −2fu(x(t; u), u(t))T
∂h(x(t; u))

∂x

T

Q(yd(t) − y(t; u))

− 2R(ud(t) − u(t)).

(25)

From this we realize that, for yi(t) with relative degree of more than 1, the error (yid(t)−
yi(t)) cannot be evaluated at all in the calculation of ∇φt[u](t) since

fu(x(t), u(t))T
∂hi(x(t))

∂x

T

= 0.

Therefore the error information on yi(t) is not used in modifying u(t) by the direct gradi-
ent descent control with (25), which implies that it is not always possible to accomplish
the tracking control.

In order to control those plants with higher relative degrees, it is essential to incor-
porate some information on higher order derivatives into the algorithm, and we consider
the following performance index:

F
(

y
(q1−1)
1 (t), . . . , y(qm−1)

m (t), u(t)
)

,

m
∑

i=1

ωi

(

y
(qi−1)
id (t) − y

(qi−1)
i (t)

)2

+ (ud(t) − u(t))TR(ud(t) − u(t)),

(26)

where y
(qi−1)
id (t) denotes the (qi − 1)-th order derivative of the i-th component yid(t)

of the desired output (qi is the relative degree of yi(t)). Taking account of the inverse
dynamics given by (22), it seems that we need the qi-th order derivative for each output
component, but, actually, the (qi − 1)-th order derivative turns out to be enough by the
nature of the direct gradient descent control and by the definition of relative degree. We
again use the same notation

φt[u] , F
(

y
(q1−1)
1 (t; u), . . . , y(qm−1)

m (t; u), u(t)
)

. (27)

The gradient ∇φt[u](t) is then given by

∇φt[u](t) =

m
∑

i=1

∇x(t; u)(t)
∂y

(qi−1)
i (t; u)

∂x

T

F
y
(qi−1)

i

+ FT
u

= −2

m
∑

i=1

ωifu(x(t; u), u(t))T
∂αqi−1

i (x(t; u))

∂x

T
(

y
(qi−1)
id (t) − y

(qi−1)
i (t; u)

)

− 2R(ud(t) − u(t))

(28)
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where we eliminated the arguments of F for simplicity. The direct gradient descent
control is given as follows:

u̇(t) = −α∇φt[u](t)

= 2α

[ m
∑

i=1

ωifu(x(t; u), u(t))T
∂αqi−1

i (x(t; u))

∂x

T
(

y
(qi−1)
id (t) − y

(qi−1)
i (t; u)

)

+ R(ud(t) − u(t))

]

.

(29)

4 Convergence of the Output Error

Execution of (29) can enforce y
(qi−1)
i (t) → y

(qi−1)
id (t) for each i, but this does not gua-

rantee that yi(t) → yid(t) when qi > 1. In this section we shall utilize some device

so that y(t) can asymptotically converge to yd(t) whenever y
(qi−1)
i (t) → y

(qi−1)
id (t) for

all i’s.
Let us first consider a component yi(t) whose relative degree is 2. If we use ˙̃yid(t) ,

ẏid(t) + ai,0(yid(t) − yi(t)) instead of ẏid(t) in (26) or (29), we obtain ẏi(t) → ˙̃yid(t)
and hence ẏi(t) = ẏid(t) + ai,0(yid(t) − yi(t)), i.e., ẏid(t) − ẏi(t) = −ai,0(yid(t) − yi(t))
for sufficiently large t. The tracking error ei(t) = yid(t) − yi(t) then satisfies ėi(t) =
−ai,0 ei(t), and hence, if ai,0 > 0, we can expect that ei(t) → 0 (i.e., yi(t) → yid(t))
as t → ∞.

In a similar manner, let us consider the general case where the relative degree is qi. If
we use

ỹ
(qi−1)
id (t) , y

(qi−1)
id (t) + ai,qi−2

(

y
(qi−2)
id (t) − y

(qi−2)
i (t)

)

+ · · ·

+ ai,1(ẏid(t) − ẏi(t)) + ai,0(yid(t) − yi(t))
(30)

instead of y
(qi−1)
id (t), we can expect y

(qi−1)
i (t) → ỹ

(qi−1)
id (t), and hence the tracking error

ei(t) = yid(t) − yi(t) asymptotically satisfies

e
(qi−1)
i (t) + ai,qi−2e

(qi−2)
i (t) + · · · + ai,1ėi(t) + ai,0ei(t) = 0.

If ai,j , j = 0, 1, . . . , qi − 2, are chosen so that every root of the characteristic equation

λqi−1 + ai,qi−2λ
qi−2 + · · · + ai,1λ + ai,0 = 0

is real negative, then we have ei(t) → 0 (i.e., yi(t) → yid(t)) as t → ∞. The output y(t)
can thus track the desired output yd(t) asymptotically. (Such an idea was also suggested
in [24] and [15] for the case with relative degree 1.) If we consider yd(t) as the output of a
reference model, this method can also be regarded as a model reference tracking control
in which y(t) asymptotically follows yd(t).

Hence we modify the performance index as follows:

F
(

y1(t), ẏ1(t), . . . , y
(q1−1)
1 (t), . . . , ym(t), ẏm(t), . . . , y(qm−1)

m (t), u(t)
)

,

m
∑

i=1

wi

(

ỹ
(qi−1)
id (t) − y

(qi−1)
i (t)

)2
+ (ud(t) − u(t))TR(ud(t) − u(t))

(31)
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where ỹ
(qi−1)
id (t) is defined by (30). Letting φt[u] denote the performance index (31), we

have

∇φt[u](t) =

m
∑

i=1

qi−1
∑

j=0

∇x(t; u)(t)
∂y

(j)
i (t; u)

∂x

T

F
y
(j)
i

+ FT
u .

Noting (9) and (20a) and substituting (31), we obtain the gradient for the quadratic case:

∇φt[u](t) = −2
m

∑

i=1

wifu(x(t; u), u(t))T
∂αqi−1

i (x(t; u))

∂x

T

×

{

qi−1
∑

k=0

ai,k

(

y
(k)
id (t) − y

(k)
i (t; u)

)

}

− 2R(ud(t) − u(t)).

(32)

Finally from (15) and (32) we have the following direct gradient descent control for output
tracking:

u̇(t) = 2α

[

m
∑

i=1

wifu(x(t; u), u(t))T
∂αqi−1

i (x(t; u))

∂x

T

×

{

qi−1
∑

k=0

ai,k

(

y
(k)
id (t) − y

(k)
i (t; u)

)

}

+ R(ud(t) − u(t))

]

.

(33)

Remark Let f and fu be Lipschitz continuous; let f be (maxi qi − 1)-times conti-
nuously differentiable in x with Lipschitz continuous derivatives; let hi, i = 1, 2, . . . , m,
be qi-times continuously differentiable with Lipschitz continuous derivatives; let yid, i =
1, 2, . . . , m, be qi-times continuously differentiable and ud be continuously differentiable.
Then a simultaneous system of (1) and (33) has a unique smooth solution for arbitrarily
given initial condition.

5 Simulation Results

Let us consider a link of length 2l and weight m, at one end of which a torque τ(t)
is added as a control input. The single-link manipulator system is then described by

Iθ̈(t) + Dθ̇(t) − mlg sin θ(t) = τ(t), where θ is the angle of rotation, I is the moment of
inertia of the link, and D is the viscous friction coefficient at the other end of the link.

Letting θ(t) = x1(t), θ̇(t) = x2(t), τ(t) = u(t), we have

ẋ1(t) = x2(t),

ẋ2(t) = −
D

I
x2(t) +

mlg

I
sin x1(t) +

1

I
u(t).

We consider this nonlinear plant with output y(t) = x1(t), whose relative degree is 2.
The gradient descent control formula is then given by

u̇(t) = 2α

[

w

I

{

(ẏd(t) − ẏ(t)) + a0(yd(t) − y(t))
}

+ R(ud(t) − u(t))

]

= 2α

[

w

I

{

(x2d(t) − x2(t)) + a0(x1d(t) − x1(t))
}

+ R(ud(t) − u(t))

]

.
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Figure 5.1. yd(t) = π/2.

Case 1: yd(t) = π/2.

Any equilibrium point (x1d, x2d, ud) must satisfy 0 = x2d and 0 = mlg sin x1d + ud. We
set the system parameters as l = 0.5, m = 1, I = 1/3, D = 0.00198, and applied
the direct steepest descent control with α = 10, a0 = 3, R = w = 1. The result
is shown in Figure 5.1 for initial values x(0) = (π, 0)T, u(0) = 0, and desired values
(x1d(t), x2d(t), ud(t)) = (π/2, 0,−mlg).

Figure 5.2. yd(t) = sin 0.5t.

Case 2: yd(t) = sin 0.5t.

The corresponding desired states (x1d(t), x2d(t)) and control ud(t) must satisfy

ẋ1d(t) = x2d(t),

ẋ2d(t) = −
D

I
x2d(t) +

mlg

I
sin x1d(t) +

1

I
ud(t).

By substituting x1d(t) = sin 0.5t here, we obtain

(x1d(t), x2d(t), ud(t)) = (sin 0.5 t, 0.5 cos 0.5 t,

− 0.25I sin 0.5 t + 0.5D cos 0.5 t − mlg sin(sin 0.5 t)).
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Figure 5.3. yd(t) =
π

2

{

1−
1

ω
e−ζt(ζ sin ωt+ω cosωt)

}

, where ω =
√

1 − ζ2,

ζ = 0.1.

Figure 5.2 shows the result for the same initial values by the same control parameters as
in the previous case except α = 20.

Case 3: yd(t) =
π

2

{

1 −
1

ω
e−ζt(ζ sin ωt + ω cosωt)

}

, where ω =
√

1 − ζ2, ζ = 0.1.

This reference yd(t) corresponds to the response of a second-order linear system with
damping ratio ζ, zero initial states, and forced input π/2. For 0 < ζ < 1, each yd(t)
generates an oscillating signal converging to π/2. A result for ζ = 0.1 is shown in
Figure 5.3 for the same initial states and control parameters as in Case 1.

Figure 5.4. yd(t) =
π

2

{

1−
1

ω
e−ζt(ζ sin ωt+ω cosωt)

}

, where ω =
√

1 − ζ2,

ζ = −0.1.

Case 4: yd(t) =
π

2

{

1 −
1

ω
e−ζt(ζ sin ωt + ω cosωt)

}

, where ω =
√

1 − ζ2, ζ = −0.1.

For ζ < 0, the reference yd(t) gives a divergent signal oscillating around π/2. Figure 5.4
shows a result for ζ = −0.1 when the same initial states and control parameters are
applied except α = 20.
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6 Concluding Remarks

We proposed the direct gradient descent control for tracking of general nonlinear systems
with relative degrees of more than one. The effectiveness of the control method was
confirmed by computer simulation, and very good performance was observed with various
examples. Results for a Rayleigh model are given in [17]. In regard to stability, the direct
gradient descent control is considered fairly stable since the resultant control inputs are
always manipulated so as to decrease the squared error of outputs. We also observed
that the choice of the proportional coefficient L did not seriously affect the stability,
but the direct gradient descent control does not guarantee the monotone decrease of
performance index. It is difficult to theoretically verify the stability of the proposed
method in general. For individual plants, however, we can find some asymptotically
stable region in a neighborhood of the desired equilibrium by constructing a Lyapunov
function via Zubov’s successive approximation method [25] as shown in [18]. Stability is
guaranteed as long as the plant is controlled within that region.

Appendix: Stability

In this appendix, we establish the stability of the direct gradient descent control for the
state feedback case, in which the control law is given by

ẋ(t) = f(x(t), u(t)), (34)

u̇(t) = −α
{

fu(x(t), u(t))TFx(x(t), u(t))T + Fu(x(t), u(t))T
}

, α > 0. (35)

As a performance index F , we consider the most practical quadratic error function

F (x(t), u(t)) =
1

2
(xd − x(t))TQ(xd − x(t)) +

1

2
(ud − u(t))T(ud − u(t)), (36)

where Q > 0, and (xd, ud) is a desired equilibrium point, and assume:

Assumption 5 Plant (34) is Lyapunov asymptotically stable for the fixed ud. That
is, for a Lyapunov function

V1(x) =
1

2
(xd − x)TQ(xd − x),

there exists a positive definite function σ such that

V1x(x)f(x, ud) = −(xd − x)TQf(x, ud) ≤ −σ(‖xd − x‖).

Assumption 6 The function V1x(x)f(x, u) = −(xd − x)TQf(x, u) is convex with
respect to u. (This always holds for affine nonlinear systems.)

Assumption 5 is a sufficient condition for the internal stability of plant (34) when
the input is fixed to ud, and this implies that the equilibrium point xd of the plant
ẋ(t) = f(x(t), ud) is asymptotically stable.
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Under these assumptions, one can show the asymptotical stability of extended system
(34) and (35) by means of Lyapunov’s direct method in a similar way to [2]. Let us
consider a Lyapunov function candidate

V (x, u) =
1

2
α(xd − x)TQ(xd − x) +

1

2
(ud − u)T(ud − u) > 0 ∀ (x, u) 6= (xd, ud). (37)

For (34) and (35), the time derivative of V (x, u) is given by

dV (x, u)

dt
= Vx(x, u)f(x, u) − Vu(x, u)α{fu(x, u)TFx(x, u)T + Fu(x, u)T}

= −α(xd − x)TQf(x, u) − α(xd − x)TQfu(x, u)(ud − u) − α(ud − u)T(ud − u).

On the other hand, since, by Assumption 6, Vx(x, u)f(x, u) = αV1x(x)f(x, u) = −α(xd−
x)TQf(x, u) is convex with respect to u, we have

−α(xd − x)TQf(x, ud) ≥ −α(xd − x)TQf(x, u) − α(xd − x)TQfu(x, u)(ud − u).

We thus obtain

dV (x, u)

dt
≤ −α(xd − x)TQf(x, ud) − α(ud − u)T(ud − u).

Since the first term of the right-hand side is negative definite by Assumption 5, we
have dV (x, u)/dt < 0 for all (x, u) 6= (xd, ud). The system (34) and (35) is hence
asymptotically stable by the Lyapunov’s theorem, i.e., x(t) → xd and u(t) → ud as t →
∞.
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