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1 Introduction

In this paper, we consider a dynamical system which is nonlinear in the state and linear
in the piecewise continuous control u1:

dx

dt
(t) = f(x(t), θ(t)) +B(x(t), θ(t))u1(t),

x(0) = x0,
(1.1)

where x ∈ Rn, x0 is a fixed (known) initial state, u1 is a control, taking values in a
bounded set U1 ⊂ Rr, and θ(t) is a controlled, continuous time Markov process, taking
values in a finite state space S, of cardinality s. Transitions from state i ∈ S to j ∈ S
occur at a rate controlled by a second controller, who chooses at time t an action u2(t)
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from a finite set U2(i) of actions available at state i. Let U2 = ∪i∈SU2(i). The controlled
rate matrix (of transitions within S) is

Λ = {λi,a,j}, i, j ∈ S, a = u2(t) ∈ U2(i), (1.2)

where henceforth we drop the “commas” in the subscripts of λ. The λiaj ’s are real
numbers such that for any i 6= j, and a ∈ U2(i), λiaj ≥ 0, and for all a ∈ U2(i) and
i ∈ S, λiai = −

∑

j 6=i

λiaj . Fix some initial state i0 of the controlled Markov chain S, and

the final time tf (which may be infinite). We consider the class of policies µk ∈ Uk for
controller (k = 1, 2), whose elements (taking values in Uk) are of the form

uk(t) = µk(t, x(t), θ(t)), t ∈ [0, tf). (1.3)

For the finite-horizon case, µk is taken to be piecewise continuous in the first argument
and local Lipschitz in second argument and measurable in the third argument. In the
infinite-horizon case, the dependence of µk on t is dropped, but otherwise it is defined
the same way. Define X = Rn × S to be the combined state space of the system and
U = U1 × U2 to be the class of admissible multi-strategies µ = (u1, u2), appropriately
defined depending on whether tf is finite or infinite. Let 〈·, ·〉 denote the Euclidean inner
product. Define a running cost L : X × U1 → [0,∞) as

L(x, i, u1) = Q(x, i) + 〈u1, R(x, i)u1〉, (1.4)

where the definitions of Q and R will be made precise later in Section 2.1.
To any fixed initial state (x0, i0) and a multi-strategy µ ∈ U , there corresponds a

unique probability measure Pµ
x0,i0

on the canonical probability space of the states and

actions of the players, equipped with the standard Borel σ-algebra. Denote by Eµ
x0,i0

the expectation operator corresponding to Pµ
x0,i0

.

For each fixed initial state (x0, i0), multi-strategy µ ∈ U , and a finite horizon of
duration tf , the discounted (expected) cost function is defined as

Jβ(0;x0, i0, µ; tf ) = Eµ
x0,i0

{

g(x(tf ), θ(tf ))e−βtf +

tf
∫

0

e−βtL(x(t), θ(t), u1(t)) dt

}

, (1.5)

where g is a terminal cost function whose condition will be specified in next section,
β ≥ 0 is the discount factor, and the expectation is over the joint process {x, θ}. For tf
infinite, a corresponding discounted cost function is defined as:

Jβ(0;x0, i0, µ) = Eµ
x0,i0

{ ∞
∫

0

e−βtL(x(t), θ(t), u1(t)) dt

}

. (1.6)

We further denote the cost-to-go from any time-state pair (t;x, i), under a multi-strategy
µ ∈ U by

Jβ(t;x, i, µ; tf ) = Eµ
x,i

{

g(x(tf ), θ(tf ))e−β(tf−t) +

tf
∫

t

e−β(τ−t)L(x(τ), θ(τ), u1(τ)) dτ

}

(1.7)
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and

Jβ(t;x, i, µ) = Eµ
x,i

{ ∞
∫

t

e−β(τ−t)L(x(τ), θ(τ), u1(τ)) dτ

}

, (1.8)

for the finite-horizon and infinite-horizon cases, respectively. The optimal value functions
are then defined by, respectively,

V (t;x, i; tf ) = inf
µ1∈U1

inf
µ2∈U2

Jβ(t;x, i, µ; tf ) (1.9)

and
V (x, i) = inf

µ1∈U1

inf
µ2∈U2

Jβ(t;x, i, µ) (1.10)

for i = 1, 2, . . . , s. Dynamic programming arguments (for background on the approach
that can be used here, see [2, 3]), lead to the two coupled HJB equations (2.11) and (2.12),
corresponding to the finite and infinite-horizon cases, respectively. More precisely, if these
equations admit unique viscosity solutions on Rn, then V (t;x, i; tf ) and V (t;x) thus
defined constitute the optimal value functions for the finite-horizon and infinite-horizon
cases, respectively. Xiao and Başar have showed, under the assumptions given in next
section, that the coupled HJB equations (for finite and infinite-horizon, respectively)
admit viscosity solutions, and moreover the viscosity solutions are unique if β > 0 [4].

In this paper, we study the structures of the optimal controllers for the nonlinear
system (1.1). The major challenge here is that this is not a standard optimal control
problem in which only a single HJB equation is considered (f.g. see [6 – 8]). The optimal
control considered in this paper is related to a system of coupled HJB equations. Based
on the results obtained in [4], we show that the optimal feedback control is determined
by the subdifferential of the viscosity solutions of (2.11) in finite horizon case, and (2.12)
in infinite horizon case. Explicit expression of the optimal feedback controller is obtained
in terms of the subdifferential of viscosity solutions of (2.11) or (2.12).

The remainder of this paper is structured as follows. In Section 2, we provide the
necessary assumptions for the system (1.1), and the definitions of viscosity solutions of
the coupled HJB equations (2.11) and (2.12). In Section 3, we give a detail discussion
of the structure of the optimal controller by using the concept of viscosity solution and
the concept of subdifferential of a continuous function. The pair of optimal feedback
controller, one is the control which enters through the system dynamics, and the another
is the control of transitions for the underlying Markov chain process, is explicitly given
in this section. As an illustration, in Section 4 we apply the result to the linear quadratic
case. The paper ends with the concluding remarks.

2 Assumptions and Definitions

2.1 Assumptions

Assumption 1 For each i, f is an n-vector function, and there exists a constant
Lf ≥ 0 such that

sup
i
{|f(x, i) − f(y, i)|} ≤ Lf |x− y|, x ∈ Rn,

where | · | stands for the Euclidean norm of Rn.
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Assumption 2 For each i, B(x, i) is an n× r matrix, and

sup
i

{‖B(x, i)‖} ≤ Cb1, sup
i
{‖B(x, i) −B(y, i)‖} ≤ Cb2|x− y|, ∀x, y ∈ Rn,

for some positive constants Cb1 and Cb2, where ‖ · ‖ stands for the matrix’s norm.

Assumption 3 For each i, Q(·, i) : Rn → [0,+∞), with

0 ≤ sup
i
{Q(x, i)} ≤ Cq|x|

2, ∀x ∈ Rn,

for some Cq > 0.

Assumption 4 For each i, R(x, i) is an n× n matrix with R(x, i) = R(x, i)T > 0,
for all x ∈ Rn, and

sup
i
{‖R(x, i)‖} ≤ Cr, sup

i
{‖R(x, i) −R(y, i)‖} ≤ C′

r|x− y|, x, y ∈ Rn,

for some Cr, C
′
r > 0, and there exists LR > 0 such that

sup
i
{‖R−1(x, i) −R−1(y, i)‖} ≤ LR|x− y|, ∀x, y ∈ Rn.

Assumption 5 For i 6= j, 0 ≤ λiaj ≤ Cλ, where Cλ is a positive constant, and

λiai +
∑

j 6=i

λiaj ≡ 0, 1 ≤ i ≤ s.

Assumption 6 For each i and any g(·, i) : Rn → [0,∞),

sup
i
{|g(x, i)|} ≤ (1 + Cg)|x|

2,

sup
i
{|g(x, i) − g(y, i)|} ≤ C′

g(1 + |x| + |y|)|x− y|

for all x, y ∈ Rn, where Cg, C
′
g are positive constants.

Assumption 7 β is a positive real number.

Assumption 8 For any z ∈ Rn, there exists a nondecreasing function ω : {0} ∪
R+ → {0} ∪R+ such that ω(0) = 0, lim

ρ→+∞
ω(ρ)/ρ = +∞ and

〈z, B(x, i)R−1(x, i)B(x, i)Tz〉 ≥ ω(|z|), ∀x ∈ Rn, ∀ i ∈ S,

where B(x, i)T represents the transpose of B(x, i).

Throughout the paper, the following conventions will be adopted, unless otherwise
indicated:

(1) u2 and a are used interchangeably to denote the second control;
(2) by an abuse of notation µ1(t) will be used to denote µ1(x(t), θ(t)).
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2.2 Two coupled Hamilton–Jacobi–Bellman (HJB) equations

Let Ω be a nonempty open set of Rn. We here introduce two coupled Hamilton-Jacobi-
Bellman (HJB) equations.

(I) Finite horizon:

βV (t, x, i) + sup
u1∈U1,u2∈U2(i)

[

−A(u1,u2)V (t, x, i) − L(x, i, u1)
]

= 0 in (0, tf ] × Ω;

V (tf , x, i) = g(x, i) on Ω, i = 1, 2, . . . , s, where s is a positive integer,

(2.11)
and U1 ⊂ Rr, U2(i) is a finite set for each i ∈ S = {1, 2, . . . , s}.

(II) Infinite horizon:

βV (x, i) + sup
u1∈Rr ,u2∈U2(i)

[

−G(u1,u2)V (x, i) − L(x, i, u1)
]

= 0 in Ω (2.12)

for i = 1, 2, . . . , s, where again U1 ⊂ Rr and U2(i) is a finite set for each i ∈ S.
Here, the operators A and G are defined, respectively, as follows for each u1 ∈ Rr,

a ∈ U2(i), i ∈ S:

A(u1,a)V (t, x, i) =
∂V (t, x, i)

∂t
+ [DxV (t, x, i)] · F (x, u1, i) +

∑

j∈S

λiajV (t, x, j) (2.13)

and

G(u1,a)V (x, i) = [DxV (x, i)] · F (x, u1, i) +
∑

j∈S

λiajV (x, j), (1.14)

with

F (x, u1, i) = f(x, i) +B(x, i)u1, L(x, i, u1) = Q(x, i) + 〈u1, R(x, i)u1〉. (2.15)

Definition 2.1 Let V be a vector function

V = (V (·, ·, 1), V (·, ·, 2), . . . , V (·, ·, s)) : ([0, tf ] × Ω)s → Rn.

We say that

(1) V is a viscosity subsolution of (2.11), if for any i, V (·, ·, i) is upper semi-continuous
and

βΦ(t0, x0, i) + sup
(u1,u2)

[

−A(u1,u2)Φ(t0, x0, i) − L(x0, i, u1)
]

≤ 0 on Ω,

Φ(tf , x, i) ≤ g(tf , x, i) on Ω,

whenever Φ(·, ·, i) ∈ C1([0, tf ] × Ω) is such that V (t, x, i) − Φ(t, x, i) attains a
local maximum at (t0, x0) with Φ(t0, x0, j) = V (t0, x0, j) for each j ∈ S, and
(u1, u2) ∈ U1 × U2;
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(2) V is a viscosity supersolution of (2.11) if for any i, V (·, ·, i) is lower semi-
continuous and

βΦ(t0, x0, i) + sup
(u1,u2)

[

−A(u1,u2)Φ(t0, x0, i) − L(x0, i, u1)
]

≥ 0 on Ω,

Φ(tf , x, i) ≥ g(tf , x, i),

whenever Φ(·, ·, i) ∈ C1([0, tf ] × Ω) is such that V (t, x, i) − Φ(t, x, i) attains a
local minimum at (t0, x0) with Φ(t0, x0, j) = V (t0, x0, j) for each j ∈ S, and
(u1, u2) ∈ U1 × U2;

(3) V is a viscosity solution of (2.11) if V is both a viscosity supersolution and a
viscosity subsolution.

The notion of a viscosity solution for (2.12) can be introduced analogously. The
following theorem is from [4].

Theorem 2.1 Let the control space U1 be bounded. Under the Assumptions 1 – 8
given above, the coupled Hamilton–Jacobi–Bellman (HJB) equations (2.11) (resp. (2.12))
admit unique viscosity solutions on [0, tf ]×Ω (resp. Ω). The viscosity solutions are the
optimal value functions given by (1.9) (resp. (1.10)).

3 Construction of the Optimum Stochastic Control

We discuss in this section the derivation of the optimal control law of the system (1.1).
We first introduce the notations of a superdifferential and a subdifferential of a continuous
function.

Definition 3.1 Let V ∈ C([0, tf ] ×Rn) and (t, x) ∈ [0, tf ] ×Rn. Then

(1) the superdifferential, D+V (t, x), of V at (t, x) is

D+V (t, x) =

{

(q, p) ∈ Rn+1 : lim sup
(s,y)→(t,x)

V (s, y)−V (t, x)− q(s− t) − p ·(y − x)

|s− t| + |x− y|
≤ 0

}

;

(2) The subdifferential, D−V (t, x), of V at (t, x) is

D−V (t, x) =

{

(q, p) ∈ Rn+1 : lim sup
(s,y)→(t,x)

V (s, y)−V (t, x)− q(s− t) − p ·(y − x)

|s− t| + |x− y|
≥ 0

}

.

Remark 3.1 It is easy to see that when V is differentiable at (t, x), we have

D+V (t, x) = D−V (t, x) =

(

∂

∂t
V (t, x), DxV (t, x)

)

.
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Lemma 3.1 The following propositions hold

(1) {V (· ; · , i; tf )}
s
i=1 is a viscosity subsolution of (2.11) in [0, tf ] × Ω if and only if

for each i ∈ S

−q + βV (t;x, i; tf ) − inf
µ2

{

∑

j∈S

λiajV (t;x, i; tf )

}

+Hi(x, p) ≤ 0 (3.16)

for any (q, p) ∈ D+V (t;x, i; tf ),

(2) {V (· ; · , i; tf )}s
i=1 is a viscosity supersolution of (2.11) in [0, tf ] × Ω if and only

if for each i ∈ S

−q + βV (t;x, i; tf ) − inf
µ2

{

∑

j∈S

λiajV (t;x, i; tf )

}

+Hi(x, p) ≥ 0 (3.17)

for any (q, p) ∈ D−V (t;x, i; tf ).

In both cases, Hi is defined to be where

Hi(x, p) = −〈p, f(x, i)〉 −Q(x, i) +
1

4
〈p, B(x, i)R−1(x, i)B(x, i)Tp〉.

Proof We prove the first part, as the proof of the second part is similar.
Suppose that (3.16) holds. Let ϕ(·, ·, i) ⊂ C1([0, tf ] ×Rn) be such that (t0, x0) is a

local maximizer of V (· ; ·, i; tf ) − ϕ(·, ·, i) for some i with V (t0;x0, k; tf) = ϕ(t0, x0, k),
k = 1, 2, . . . , s. Since ϕ(·, ·, i) ∈ C1([0, tf ] ×Rn) for each i, it yields

ϕ(t, x, i) = ϕ(t0, x0, i) + ϕt(t0, x0, i)(t− t0) + ϕx(t0, x0, i)(x− x0)

+ o(|t− t0|) + o(|x − x0|).

Hence for (t, x) sufficiently close to (t0, x0), that (t0, x0) is a local maximizer of
V (· ; ·, i; tf) − ϕ(·, ·, i) leads to

V (t;x, i; tf ) ≤ ϕ(t0, x0, i) + ϕt(t0, x0, i)(t− t0) + ϕx(t0, x0, i)(x− x0)

+ o(|t− t0|) + o(|x − x0|).

Now let p = ϕx(t0, x0, i) and q = ϕt(t0, x0, i). Then (3.16) implies that

−ϕt(t0, x0, i) + βϕ(t0;x0, i; tf )− inf
µ2

{

∑

j∈S

λiajϕ(t0;x0, i; tf )

}

+Hi (x0, ϕx(t0, x0, i)) ≤ 0.

Thus {V (· ; ·, i; tf)}s
i=1 is a viscosity subsolution of (2.11).

Conversely, let (q, p) ∈ D+V (t;x, i; tf ). When (s, y) is sufficiently close to (t, x),
according to the definition of superdifferential, we have

V (s; y, i; tf ) ≤ V (t;x, i; tf ) + q(s− t) + p · (y − x) + o(|s− t|) + o(|y − x|).

Introduce test functions

ϕ(s, y, i) = V (t;x, i; tf ) + q(s− t) + p · (y − x) + g1(|s− t|) + g2(|x− y|)

for i = 1, 2, . . . , s, and gj : [0,∞) → [0,∞), j = 1, 2, are nondecreasing functions such

that gj(r) = o(r) and
d

dr
gj(r)

∣

∣

∣

∣

r=0

= 0 (for construction of such functions, see [1] or [2]).

Hence by such choice of g1, g2, one can see that in fact (t, x) is a local strict maximizer
of V (· ; ·, ·; i) − ϕ(·, ·, i) and

ϕx(t, x, i) = p, ϕt(t, x, i) = q,

as a result of which (3.16) holds by the definition of viscosity subsolution.



184 MING-QING XIAO

Definition 3.2 An admissible feedback controller u1(t) = µ1(t, x) for system (1.1) is
a nonlinear mapping F : R+ ×Rn → Rr such that µ1(t, x) = F (t, x) and the following
system

dx

dt
(t) = f(x(t), θ(t)) +B(x(t), θ(t))F (t, x(t))

x(0) = x0

θ(0) = i0

(3.18)

has at least one solution defined on (0,∞) in the Carathéodory sense, i.e., absolutely
continuous functions verifying (3.18) almost everywhere.

Definition 3.3 We say that the system (1.1) is β-stochastically stabilizable if, for
all finite x0 ∈ Rn and i0 ∈ S with x(0) = x0, θ(0) = i0, there exists an admissible
feedback control µ(t, x(t), θ(t)) such that

lim
tf→∞

Ex,i

tf
∫

0

[

e−βtL(x(t, θ(t), µ), θ(t), µ)
]

dt <∞.

Now we are in the position for construction of the optimal control.

Theorem 3.1 Assume that (2.11) has a viscosity solution {V (·; ·, i; tf )}
s
i=1. Suppose

that for each i there exists a p with (q, p) ∈ D−V (t;x, i; tf ) such that

µ∗
1(x, i) = −

1

2
R−1(x, i)BT(x, i)p(t, x, i) (3.19)

is an admissible feedback controller for system (1.1). Let µ∗
2(t, x, i) = f(t, x, i) be the

argument such that
{

∑

j∈S

λiajV (t;x, i; tf )
}

reaches its infimum (which always exists be-

cause the set U2 is a finite set and U1 is a bounded set). Then (µ∗
1, µ

∗
2) is an optimal

feedback control for system (1.1) under the cost function

Jβ(t;x, i, µ; tf ) = Eµ
x,i

{

g(x(tf ), θ(tf ))e−β(tf−t) +

tf
∫

t

e−β(τ−t)L(x(τ), θ(τ), u1(τ)) dτ

}

.

(3.20)

Proof According to Theorem 2.1, we know that

V (t;x, i; tf ) = inf
µ∈U

Eµ
x,i

{

g(x(tf ), θ(tf ))e−β(tf−t) +

tf
∫

t

e−β(τ−t)L(x(τ), θ(τ), u1(τ)) dτ

}

(3.21)
and thus V (t;x, i; tf ) is absolutely continuous with respect to t for each fixed x. For
(q, p) ∈ D−V (t;x, i; tf ), (t, x) ∈ [0, tf ] × Ω, by the definition of subdifferential, one can
see that

V (s; y, i; tf) ≥ V (t;x, i; tf ) + q(s− t) + p · (y − x) + o(|s− t|) + o(|y − x|) (3.22)
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when (s, y) is sufficiently close to (t, x). Similar to the proof of Lemma 3.1, we define a
C1 function

ψ(s, y, i) = V (t;x, i; tf ) + q(s− t) + p · (y − x) + g1(|s− t|) + g2(|y − x|) (3.23)

where gj : [0,∞) → [0,∞), j = 1, 2, are nondecreasing functions such that gj(r) = o(r)
and dfracddrg(r)|r=0 = 0. It is now ready to see that V (s; y, i; tf ) − ψ(s, y, i) has a
local strict minimizer at (t, x). The definition of viscosity subsolution leads to

−ψt(t, x, i) + βψ(t, x, i) − inf
µ2

{

∑

j∈S

λiajψ(t, x, i)

}

+Hi(x, ψx(t, x, i)) ≥ 0. (3.24)

According to the definition of Hi, the above inequality can be written as

ψt(t, x, i) + L(x, i, u1) −
∣

∣

∣
R1/2(x, i)u1 +

1

2
R−1/2BT(x, i)p(t, x, i)

∣

∣

∣

2

ψx(t, x, i)[f(x, i) +B(x, i)u1] − βψ(t, x, i) + inf
µ2

{

∑

j∈S

λiajψ(t, x, i)

}

≤ 0.
(3.25)

According to Dynkin’s formula (see [2]), we know that

Ex,ie
−(βtf−t)ψ(tf , x(tf ), θ(tf )) − ψ(t, x, i) =

tf
∫

t

A(µ1,µ2)e−β(τ−t)ψ(τ, x(τ), θ(τ)) dτ.

Integrating (3.25) from t to tf one obtains

V (t;x, i; tf ) ≥ Eµ
x,i

{

g(x(tf ), θ(tf ))e−β(tf−t) +

tf
∫

t

e−β(τ−t)L(x, θ, u1) dτ

}

−

tf
∫

t

e−β(τ−t)|R1/2(x, i)u1 +R−1/2BT(x, i)p(τ, x, i)|2 dτ.

If we set

u1 = µ∗
1(t, x, i) = −

1

2
R−1(x, i)BT(x, i)p(t, x, i)

u2 = µ∗
2(t, x, i) = f(t, x, i) = argmin

a∈U2

{

∑

j∈S

λiajV (t;x, i; tf )

}

then we have

V (t;x, i; tf ) = E
(µ∗

1
,µ∗

2
)

x,i

{

g(x(tf ), θ(tf ))e−βtf +

tf
∫

t

e−βτL(x(τ), θ(τ), µ∗
1) dt

}

= inf
µ∈U

Eµ
x,i

{

g(x(tf ), θ(tf ))e−β(tf−t) +

tf
∫

t

e−β(τ−t)L(x(τ), θ(τ), u1(τ)) dτ

}

since V (t;x, i; tf ) is the optimal value function according to Theorem 2.1, and this
completes the proof of the theorem.

For the infinite horizon case we have a similar result:



186 MING-QING XIAO

Theorem 3.2 Assume that (2.12) has viscosity solution {V (·, i)}s
i=1. Suppose that

for each i there exists a p with (q, p) ∈ D−V (x, i) such that

µ∗
1(x, i) = −

1

2
R−1(x, i)BT(x, i)p(x, i) (3.26)

is an admissible feedback controller for system (1.1). Let

µ∗
2(x, i) = argmin

a∈U2

{

∑

j∈S

λiajV (x, i)

}

. (3.27)

Then (µ∗
1, µ

∗
2) is a pair of optimal feedback controls for system (1.1) under the cost func-

tion

Jβ(t;x, i, µ) = Eµ
x,i

{ ∞
∫

t

e−β(τ−t)L(x(τ), θ(τ), u1(τ)) dτ

}

, (3.28)

Proof According to Theorem 2.1, the value function V (x, i) given by (1.10) is the
viscosity solution of (2.12). For any tf ∈ (t,∞), V (x, i) is also the (steady-state) solution
of the Cauchy problem

βV (t;x, i; tf ) + sup
(u1,u2)

[

A(u1,u2)V (t;x, i; tf ) − L(x, i, u1)
]

= 0 in (t, tf ) × Ω,

V (tf ;x, i; tf ) = V (x, i) on Rn.

Now by applying the previous theorem it yields that

µ∗
1(x, i) = −

1

2
R−1(x, i)BT(x, i)p(x, i), (3.29)

µ∗
2(x, i) = argmin

a∈U2

{

∑

j∈S

λiajV (x, i)

}

(3.30)

is a pair of optimal feedback controllers in the time duration (0, tf ] for any tf > t, this
leads to

V (x, i) ≥ Ex,i

{ ∞
∫

t

e−β(τ−t)L(x(τ), θ(τ), µ∗
1(τ)) dτ

}

, (3.31)

while Theorem 2.1 implies that the above inequality should be an equality. This yields
the conclusion of the theorem.

Remark 3.2 Theorem 3.2 implies that if (2.12) admits a viscosity solution and µ∗
1

given in the theorem is an admissible feedback control, then (µ∗
1, µ

∗
2) is β-stochastically

stabilizable for (1.1).

4 Linear Quadratic Case

In order to make the outcome of the paper more transparent, let us consider the scalar
linear-quadratic problem. Let n = 1 and

f(x, i) = A(i)x, B(x, i) = B(i), Q(x, i) = Q(i)x2, R(x, i) = R(i),
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and g(x, i) = Qtf
(i)x2 for i = 1, 2, . . . , s. In this case (2.11) admits a unique viscosity

solution V . Moreover, V is convex with respect to x and Lipschitz with respect to t (c.f.
[5]). One can show that x → p(t, x, i) in this case is linear, thus self-adjoint on R, and
therefore

V (t;x, i; tf ) = P (t, i)x2 (4.32)

for any x ∈ R. Substituting (4.32) into (2.11), we obtain a system of coupled ordinary
differential equations

−
∂

∂t
P (t, i) + βP (t, i) − 2A(i)P (t, i) −Q(i)

+ P 2(t, i)B2(i)R−1(i) − inf
u2

∑

j∈S

λiajP (t, j) = 0,

P (tf , i) = Qtf
,

(4.33)

for i = 1, 2, . . . , s. The solution of (4.33) now is in the sense that P (t, i) is absolutely
continuous and satisfies (4.33) almost everywhere on [0, tf ]. According to Theorem 3.1,
the pair of the optimal feedback control µ = (µ1, µ2) is given by

µ∗
1(t, x, i) = −R−1(i)B(i)P (t, i)x, (4.34)

µ∗
2(t, i) = argmin

a∈U2

{

∑

j∈S

λiajP (t, j)

}

. (4.35)

Similarly, in the infinite horizon case, for each i ∈ S

V (x, i) = P (i)x2 (4.36)

where (P (1), P (2), . . . , P (s)) satisfies a system of algebraic coupled equations

βP (i) − 2A(i)P (i) −Q(i) + P 2(i)B2(i)R−1(i) − inf
u2

∑

j∈S

λiajP (j) = 0 (4.37)

for i = 1, 2, . . . , s. In this case the optimal feedback control µ = (µ1, µ2) is given by

µ∗
1(x, i) = −R−1(i)B(i)P (i)x, (4.38)

µ∗
2(i) = argmin

a∈U2

{

∑

j∈S

λiajP (j)

}

(4.39)

from Theorem 3.2.

5 Concluding Remarks

In this paper, we study the optimum stochastic control problem, in which the controls
enter through the system dynamics as well as the transitions for the underlying Markov
chain process, and are allowed to depend on both the continuous state and the current
state of the Markov chain. The structure of the optimal controller is obtained in this
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paper which therefore makes possible to construct the optimal control by the approach
of numerical method.
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