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1 Introduction

In this paper we are concerned with the oscillatory behavior of the fourth order functional
differential equations of the type

d

dt

(

1

a3(t)

(

d

dt

(

1

a2(t)

(

d

dt

(

1

a1(t)

(

d

dt
x(t)

)α1
))α2

)α3
))

+ q(t)f(x[g(t)]) = 0,

or, written more compactly as

L4x(t) + q(t)f(x[g(t)]) = 0, (1.1)
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where

L0x(t) = x(t), L4x(t) =
d

dt
L3x(t),

Lkx(t) =
1

ak(t)

(

d

dt
Lk−1x(t)

)αk

, k = 1, 2, 3.

(1.2)

In what follows, we shall assume that

(i) ai(t), q(t) ∈ C([t0,∞), R+), where R+ = (0,∞), t0 ≥ 0 and

∞
∫

a
1/αi

i (s) ds = ∞, i = 1, 2, 3; (1.3)

(ii) g(t) ∈ C([t0,∞), R), where R = (−∞,∞), g′(t) ≥ 0 for t ≥ t0 and
lim

t→∞
g(t) = ∞;

(iii) f ∈ C(R, R), xf(x) > 0 and f ′(x) ≥ 0 for x 6= 0;
(iv) αi, i = 1, 2, 3, are the ratios of positive odd integers.

The domain D(L4) of L4 is defined to be the set of all functions x : [tx,∞) → R,
tx ≥ t0 such that Ljx(t), 0 ≤ j ≤ 4 exist and are continuous on [tx,∞). Our attention
is restricted to those solutions x ∈ D(L4) of (1.1) which satisfy sup {|x(t)| : t ≥ T } > 0
for T ≥ tx. We make the standing hypothesis that equation (1.1) does possess such
solutions.

A solution of equation (1.1) is called oscillatory if it has arbitrarily large zeros, other-
wise, it is called nonoscillatory. Equation (1.1) is called B-oscillatory if all its bounded
solutions are oscillatory and is called oscillatory if all its solutions are oscillatory.

In the last three decades there has been an increasing interest in studying the oscilla-
tory and nonoscillatory behavior of solutions of functional differential equations. Most of
the work on the subject, however, has been restricted to first and second order equations,
as well as, higher order equations of the type

Lkx(t) + q(t)f(x[g(t)]) = 0,

where

L0x(t) = x(t), Lkx(t) =
1

ak(t)

d

dt
Lk−1x(t), k = 1, 2, . . . , n−1, Lnx(t) =

d

dt
Ln−1x(t).

For recent contributions, we refer to [1–13] and the references cited therein.

It appears that little is known regarding the oscillation of equation (1.1). Therefore,
our main goal here is to present a systematic study of the oscillation of all bounded
solutions of equation (1.1). We shall establish some necessary and sufficient conditions
for the bounded oscillation and nonoscillation of equation (1.1). Moreover, our equation is
quite general and therefore the results of this paper even in some special cases complement
and generalize some known results appeared recently in the literature (see [4 – 8, 10 – 13]).
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2 Main Results

Consider the inequalities

d

dt

(

1

a1(t)

(

d

dt
x(t)

)α1
)

+ q(t)f(x[g(t)]) ≤ 0, (2.1)

d

dt

(

1

a1(t)

(

d

dt
x(t)

)α1
)

+ q(t)f(x[g(t)]) ≥ 0 (2.2)

and the equation
d

dt

(

1

a1(t)

(

d

dt
x(t)

)α1
)

+ q(t)f(x[g(t)]) = 0, (2.3)

where (ii) and (iii) hold, a1(t) and α1 are as in (i) and (iv) respectively.
Now we shall prove the following lemma.

Lemma 2.1 If inequality (2.1) (inequality (2.2)) has an eventually positive (negative)
solution, then equation (2.3) also has an eventually positive (negative) solution.

Proof Let x(t) be an eventually positive solution of inequality (2.1). It is easy to see
that x′(t) > 0 eventually. Let

y(t) =
1

a1(t)

(

d

dt
x(t)

)α1

.

Then,

x′(t) = (a1(t)y(t))1/α1 ≥ 0 for t ≥ t0 ≥ 0. (2.4)

Integrating (2.4) from t0 to t, we have

x(t) = x(t0) +

t
∫

t0

(a1(s)y(s))1/α1 ds.

Thus, (2.1) becomes

dy

dt
+ q(t)f

(

x(t0) +

g(t)
∫

t0

(a1(s)y(s))1/α1ds

)

≤ 0. (2.5)

Integrating (2.5) from t to T ≥ t ≥ t0 and letting T → ∞, we have

y(t) ≥

∞
∫

t

q(u)f

(

x(t0) +

g(u)
∫

t0

(a1(s)y(s))1/α1 ds

)

du.

Next, we define a sequence of successive approximations {zj(t)} as follows:

z0(t) = y(t),

zj+1(t) =

∞
∫

t

q(u)f

(

x(t0) +

g(u)
∫

t0

(a1(s)zj(s))
1/α1ds

)

du, j = 0, 1, . . . .
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Obviously, we can prove that

0 < zj(t) ≤ y(t) and zj+1(t) ≤ zj(t), j = 0, 1, . . . .

Thus the sequence {zj(t)} is positive nonincreasing in j for each t ≥ t0. This means we
may define z(t) = lim

j→∞
zj(t) > 0. Since 0 < z(t) ≤ zj(t) ≤ y(t) for all j ≥ 0, we see

that

f

(

x(t0) +

g(t)
∫

t0

(a1(s)zj(s))
1/α1 ds

)

≤ f

(

x(t0) +

g(t)
∫

t0

(a1(s)y(s))1/α1 ds

)

.

Now, by the Lebesgue dominated convergence theorem, one can easily obtain

z(t) =

∞
∫

t

q(u)f

(

x(t0) +

g(u)
∫

t0

(a1(s)z(s))1/α1 ds

)

du.

Therefore,

dz

dt
= −q(t)f

(

x(t0) +

g(t)
∫

t0

(a1(s)z(s))1/α1 ds

)

. (2.6)

We denote by

v(t) = x(t0) +

t
∫

t0

(a1(s)z(s))1/α1 ds.

Then, v(t) > 0 and
dv

dt
= (a1(t)z(t))1/α1 ,

or

z(t) =
1

a1(t)

(

dv

dt

)α1

.

Equation (2.6) then gives

d

dt

(

1

a1(t)

(

dv

dt

)α1
)

+ q(t)f(v[g(t)]) = 0.

Hence, equation (2.3) has a positive solution v(t). For the case (2.2) the argument is
similar and hence is omitted. This completes the proof.

We set

Q(t) = a
1/α2

2 (t)

( ∞
∫

t

a
1/α3

3 (s)

( ∞
∫

s

q(u) du

)1/α3

ds

)1/α2

, t ≥ t0 ≥ 0,

and F (x) = f1/(α2α3)(x), x ∈ R.
Now, we present the following comparison result.
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Theorem 2.1 Let conditions (i) – (iv) hold. If the equation

d

dt

(

1

a1(t)

(

d

dt
x(t)

)α1
)

+ Q(t)F (x[g(t)]) = 0 (2.7)

is oscillatory, then equation (1.1) is B-oscillatory.

Proof Let x(t) be a bounded nonoscillatory solution of equation (1.1), say, x(t) > 0
for t ≥ t0 ≥ 0. By condition (1.3), it is easy seen that x(t) satisfies the inequalities

x′(t) > 0, L2x(t) < 0, L3x(t) > 0 and L4x(t) ≤ 0 for t ≥ t1 ≥ t0. (2.8)

Integrating equation (1.1) from t to T ≥ t ≥ t1 and letting T → ∞, we find

L3x(t) ≥

∞
∫

t

q(s)f(x[g(s)]) ds,

or

1

a3(t)

(

d

dt
L2x(t)

)α3

≥

( ∞
∫

t

q(s) ds

)

f(x[g(t)]).

Thus,

d

dt
L2x(t) ≥ a

1/α3

3 (t)

( ∞
∫

t

q(s) ds

)1/α3

f1/α3(x[g(t)]), t ≥ t1. (2.9)

Once again, we integrate (2.9) from t to T1 ≥ t ≥ t1 and let T1 → ∞, to obtain

−L2x(t) ≥

( ∞
∫

t

a
1/α3

3 (u)

( ∞
∫

u

q(s) ds

)1/α3

du

)

f1/α3(x[g(t)]), t ≥ t1,

or

−
d

dt
L1x(t) ≥ a

1/α2

2 (t)

( ∞
∫

t

a
1/α3

3 (u)

( ∞
∫

u

q(s) ds

)1/α3

du

)1/α2

f1/(α2α3)(x[g(t)])

= Q(t)F (x[g(t)]),

(2.10)

for t ≥ t1. By applying Lemma 2.1, we see that equation (2.7) has a positive solution, a
contradiction. This completes the proof.

Now we assume that the function F (x) = f1/(α2α3)(x), x ∈ R, satisfies

−F (−xy) ≥ F (xy) ≥ F (x)F (y) for xy > 0 (2.11)

and
g(t) ≤ t. (2.12)

Also, we let

η[t, t0] =

t
∫

t0

a
1/α1

1 (s) ds

and for g(t) ≥ T for some T ≥ t0,

Q(t) = Q(t)F (η[g(t), T ]).

Now, we present the following result.



220 R.P. AGARWAL, S.R. GRACE AND PATRICIA J.Y. WONG

Theorem 2.2 Let conditions (i) – (iv), (2.11) and (2.12) hold. If the first order
equation

d

dt
y(t) + Q(t)F

(

y1/α1 [g(t)]
)

= 0 (2.13)

is oscillatory, then equation (1.1) is B-oscillatory.

Proof Let x(t) be a bounded nonoscillatory solution of equation (1.1), say, x(t) > 0
for t ≥ t0 ≥ 0. As in the proof of Theorem 2.1, we obtain (2.8) and (2.10) for t ≥ t1.
Now

x(t) − x(t1) =

t
∫

t1

x′(s) ds =

t
∫

t1

(

a
−1/α1

1 (s)x′(s)
)

a
1/α1

1 (s) ds.

Using the fact that a
−1/α1

1 (t)x′(t) is nonincreasing on [t1,∞), we find

x(t) ≥
(

a
−1/α1

1 (t)x′(t)
)

t
∫

t1

a
1/α1

1 (s) ds,

or

x(t) ≥ η[t, t1]
(

a
−1/α1

1 (t)x′(t)
)

for t ≥ t1.

Thus, there exists a t2 ≥ t1 such that

x[g(t)] ≥ η[g(t), t1]
(

Z1/α1 [g(t)]
)

for t ≥ t2, (2.14)

where Z(t) = (x′(t))α1/a1(t), t ≥ t2. Using (2.11) and (2.14) in (2.10) we get

d

dt
Z(t) + Q(t)F

(

Z1/α1 [g(t)]
)

≤ 0 for t ≥ t2. (2.15)

Integrating (2.15) from t to T ≥ t ≥ t2 and letting T → ∞, we obtain

Z(t) ≥

∞
∫

t

Q(s)F
(

Z1/α1 [g(s)]
)

ds.

As in [9, 12], it is now easy to conclude that there exists a positive solution y(t) of the
equation (2.13) with lim

t→∞
y(t) = 0. This contradicts the hypothesis and completes the

proof.

By using a well known oscillation result in [9, Corollary 7.6.1], the following corollary
is immediate.

Corollary 2.1 Let conditions (i) – (iv), (2.11) and (2.12) hold. Then, equation (1.1)
is B-oscillatory if one of the following conditions holds:

(I1) F (y1/α1)/y ≥ k > 0, y 6= 0, where k is a constant, (2.16)

and

lim inf
t→∞

t
∫

g(t)

Q(s) ds >
1

ek
. (2.17)
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(I2)

∫

±0

du

F (u1/α1)
< ∞, (2.18)

and
∞
∫

Q(s) ds = ∞. (2.19)

Next, we let F (x) = f1/(α1α2α3)(x), x ∈ R and assume that

±∞
∫

du

F (u)
< ∞. (2.20)

Now, we prove the following oscillation result.

Theorem 2.3 Let conditions (i) – (iv), (2.12) and (2.20) hold. If

∞
∫

g′(u)a
1/α1

1 [g(u)]

( ∞
∫

u

Q(s) ds

)1/α1

du = ∞, (2.21)

then equation (1.1) is B-oscillatory.

Proof Let x(t) be a bounded nonoscillatory solution of equation (1.1), say, x(t) > 0
for t ≥ t0 ≥ 0. As in the proof of Theorem 2.1, we obtain (2.10) for t ≥ t1 ≥ t0. Now,
one can easily see that

L1x(t) ≥

( ∞
∫

t

Q(s) ds

)

F (x[g(t)]), (2.22)

or

a
−1/α1

1 [g(t)]x′[g(t)] ≥ a
−1/α1

1 (t)x′(t) ≥

( ∞
∫

t

Q(s)ds

)1/α1

F (x[g(t)])

for t ≥ t2 ≥ t1. Hence, it follows that

x′[g(t)]g′(t)

F (x[g(t)])
≥ g′(t)a

1/α1

1 [g(t)]

( ∞
∫

t

Q(s) ds

)1/α1

for t ≥ t2. (2.23)

Integrating both sides of (2.23) from t2 to t, we get

t
∫

t2

g′(u)a
1/α1

1 [g(u)]

( ∞
∫

u

Q(s) ds

)1/α1

du ≤

x[g(t)]
∫

x[g(t2)]

dv

F (v)
≤

∞
∫

x[g(t2)]

dv

F (v)
< ∞,

which contradicts condition (2.21). This completes the proof.

In [5], we have compared the oscillation of nonlinear equations of type (2.7) with those
of second order linear equations. In fact, we obtained the following results.
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Lemma 2.2 Let 0 < α1 ≤ 1, g′(t) > 0 for t ≥ t0, 0 < q(t) =
∞
∫

t

Q(s) ds < ∞

and F (x) = xβ, where β is the ratio of positive odd integers. Then, equation (2.7) is
oscillatory if for all large t, the linear second order equation

(

C(t)

g′(t)

(

(q(t))α1−1

a1[g(t)]

)1/α1

y′(t)

)′

+ βQ(t)y(t) = 0 (2.24)

is oscillatory, where

C(t) =











c1, c1 > 0 is any constant, when β > α1,

1, when β = α1,

c2η
(α1−β)/α1 [g(t), t0], c2 > 0 is any constant, when β < α1.

Lemma 2.3 Let α1 ≥ 1, g′(t) > 0 for t ≥ t0 and F (x) = xβ, where β is the ratio
of positive odd integers. Then, equation (2.7) is oscillatory if for all large t, the linear
second order equation

(

C(t)

a
1/α1

1 [g(t)]g′(t)ηα1−1[g(t), t0]
Z ′(t)

)′

+ βQ(t)Z(t) = 0 (2.25)

is oscillatory, where

C(t) =











c1, c1 > 0 is any constant, when β > α1,

1, when β = α1,

c2η
α1−β [g(t), t0], c2 > 0 is any constant, when β < α1.

By Lemmas 2.2 and 2.3 we can replace equation (2.7) in Theorem 2.1 by equation
(2.24), or equation (2.25). The statements and formulations of the results are left to the
reader.

Next, we present the following result.

Theorem 2.4 Let conditions (i) – (iv) hold. If

∞
∫

a
1/α1

1 (u)

( ∞
∫

u

Q(s) ds

)1/α1

du = ∞, (2.26)

then equation (1.1) is B-oscillatory.

Proof Let x(t) be a bounded nonoscillatory solution of equation (1.1), say, x(t) > 0
for t ≥ t0 ≥ 0. As in the proof of Theorem 2.3, we obtain (2.22) for t ≥ t1. Since x(t)
is an increasing function on [t1,∞), there exist a t2 ≥ t1 and a constant C > 0 such
that

x[g(t)] ≥ C for t ≥ t2. (2.27)

Using (2.27) in (2.22), one can easily see that

x′(t) ≥ a
1/α1

1 (t)

( ∞
∫

t

Q(s) ds

)1/α1

F (c), t ≥ t2.

Integrating the above inequality from t2 to t and using (2.26) we arrive at the desired
contradiction.

Next, we will give some necessary and sufficient conditions for all bounded solutions
of equation (1.1) to be oscillatory or nonoscillatory.
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Theorem 2.5 Let conditions (i) – (iv) hold. Then, equation (1.1) is B-oscillatory if
and only if condition (2.26) is satisfied.

Proof Suppose that (2.26) holds and assume that equation (1.1) has a bounded
nonoscillatory solution x(t). The proof is similar to that of Theorem 2.4 and hence
omitted.

Assume that (2.26) does not hold. We may suppose that

∞
∫

t0

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1 < ∞, t0 ≥ 0.

(2.28)
Then, we can choose T ≥ t0 sufficiently large such that for t ≥ T,

∞
∫

T

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

f(γ)q(s) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1 <
γ

2
(2.29)

for some constant γ > 0. Let x(t) be a solution of the following equation

x(t) = γ −

∞
∫

t

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(x[g(s)]) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1.

(2.30)
Then we easily see that x(t) is a solution of equation (1.1). Next, we shall show that equa-
tion (2.30) has a bounded nonoscillatory solution x(t) by using the fixed point theorem
of Schauder.

We introduce the Banach space X of all continuous and bounded real-valued functions
on the interval [t0,∞) endowed with the usual sup norm ‖ · ‖. We define a bounded,
convex and closed subset B of X as

B =

{

x ∈ X :
γ

2
≤ x(t) ≤ γ, t ≥ t0

}

.

Next, let S be a mapping defined on B as follows: For x ∈ B,

(Sx)(t)

=























γ −

∞
∫

t

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(x[g(s)]) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1,

t ≥ T,

(Sx)(T ), t0 ≤ t ≤ T.
(2.31)

Then the mapping S satisfies the following:

(I1) S maps B into B. In fact, for any x ∈ B, from (2.29) and (2.31) we have

γ ≥ (Sx)(t) ≥ γ −
γ

2
=

γ

2
, t ≥ t0.
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So Sx ∈ B.

(I2) The mapping S is continuous on B. Let x ∈ B and {xj} be a sequence in B
converging to x. We shall show that Sxj converges to Sx. By (2.29), for any ǫ > 0,
we can choose T0 ≥ T such that

∞
∫

T0

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(γ) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1 <
ǫ

3
. (2.32)

Furthermore, we can see that the series f(xj) converges to f(x) uniformly with respect
to j. So, we can choose m such that for all j ≥ m,

∣

∣

∣

∣

∣

T0
∫

t0

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(xj [g(s)]) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

−

T0
∫

t0

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(x[g(s)]) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

∣

∣

∣

∣

∣

<
ǫ

3
.

(2.33)
In the following, we shall show that |(Sxj)(t) − (Sx)(t)| < ǫ for any t and j ≥ m.

(i) If t ≥ T0, then from (2.31) and (2.32), we can easily find

|(Sxj)(t) − (Sx)(t)|

≤ 2

∣

∣

∣

∣

∣

∞
∫

t

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(γ) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

∣

∣

∣

∣

∣

<
2ǫ

3
< ǫ for j ≥ m.

(ii) If t ≤ T0, from (2.31), (2.32) and (2.33), we have

|(Sxj)(t) − (Sx)(t)|

≤

∣

∣

∣

∣

∣

T0
∫

t

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(xj [g(s)]) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

−

T0
∫

t

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(x[g(s)]) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∞
∫

T0

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(xj [g(s)]) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∞
∫

T0

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(x[g(s)]) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

∣

∣

∣

∣

∣
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<
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ for j ≥ m.

Clearly, (i) and (ii) together yield that |(Sxj)(t) − (Sx)(t)| < ǫ for any t and j ≥ m
which completes the proof that the mapping S is continuous on B.

(I3) The set S(B) is relatively compact. For any x ∈ B and every t ≥ t0, we
have |(Sx)(t)| ≤ γ. Therefore, SB is uniformly bounded. Furthermore, we find

|(Sx)(t)−γ| ≤

∣

∣

∣

∣

∣

∞
∫

t

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(γ) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

∣

∣

∣

∣

∣

.

(2.34)
Thus, from (2.28) and (2.34), we conclude that SB is equiconvergent at ∞. Now, for
any x ∈ B and every t1, t2 with T ≤ t1 ≤ t2, we get

|(Sx)(t2) − (Sx)(t1)|

≤

∣

∣

∣

∣

∣

t2
∫

t1

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(γ) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

∣

∣

∣

∣

∣

.

From this it follows that SB is equicontinuous. Finally, by the given compactness
criterion (see [13]), we conclude that SB is relatively compact.

Thus, by the Schauder fixed point theorem [13], it follows that (2.30) has a positive
solution x(t). This proves the necessity.

The following theorem provides a necessary and sufficient condition for the existence
of a bounded solution of equation (1.1).

Theorem 2.6 Assume that (i) – (iv) except condition (1.3) hold, and

∞
∫

q(s) ds = ∞. (2.35)

Then a necessary and sufficient condition for equation (1.1) to have a positive solution
x(t) which satisfies β2 ≥ x(t) ≥ β1 > 0 (β1 and β2 are constants) for t ≥ t0 is that

∞
∫

t0

(

a1(s1)

s1
∫

t0

(

a2(s2)

s2
∫

t0

(

a3(s3)

s3
∫

t0

q(s) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1 < ∞. (2.36)

Proof Necessity If x(t) is a positive solution of equation (1.1) and the condition
β2 ≥ x(t) ≥ β1 > 0 is satisfied, then we have in view of equation (1.1),

L3x(t) = L3x(t0) −

t
∫

t0

q(s)f(x[g(s)]) ds ≤ L3x(t0) − f(β1)

t
∫

t0

q(s) ds.
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If t is large enough, in view of (2.35), we have L3x(t) < 0. Then, for all large t0,

L3x(t) < −f(β1)

t
∫

t0

q(s) ds,

or

d

dt
L2x(t) < −f1/α3(β1)

(

a3(t)

t
∫

t0

q(s) ds

)1/α3

.

The rest of the proof is similar to the proof of the sufficiency part of Theorem 2.5 and
hence omitted.

The proof of sufficiency is similar to the proof of necessity part of Theorem 2.5. This
completes the proof.

Remark 2.1 From the above study of B–oscillation of equation (1.1), we are concerned
with the nonexistence of solutions of equation (1.1) satisfying (2.8). This class of solutions
of (1.1) may include some unbounded solutions. Therefore, some modification in the
definition of B-oscillation of equation (1.1) is required to include bounded as well as
some unbounded solutions of equation (1.1). The details are left to the reader.

Remark 2.2 The results of this paper can be extended to neutral equations of the
form

L4(x(t) + p(t)x[τ(t)]) + q(t)f(x[g(t)]) = 0, (2.37)

where p(t) ∈ C([t0,∞), [0,∞)) and τ(t) ∈ C([t0,∞), R), τ ′(t) > 0 for t ≥ t0 and
lim

t→∞
τ(t) = 0. Here, we refer to our papers [4–6] and omit the details.

The following example illustrates some of the results obtained.

Example 2.1 Consider the differential equation

d

dt

(

1

t2

(

d

dt

(

t

(

d

dt

(

t

(

d

dt
x(t)

)3)))3))

+
2

t4
x(t) = 0. (2.38)

This is actually (1.1) with

α1 = 3, α2 = 1, α3 = 3, a1(t) =
1

t
, a2(t) =

1

t
, a3(t) = t2,

q(t) =
2

t4
, g(t) = t, f(x) = x.

By direct computation we obtain

Q(t) =
1

2
t−7/3, η[g(t), T ] ≤

3

2
t2/3, Q(t) = Q(t)F (η[g(t), T ]) ≤ t−19/9.

Clearly, conditions (i) – (iv), (2.11) and (2.12) are fulfilled. Further, it can be easily
checked that (2.17) is not satisfied, and also

∞
∫

Q(s) ds ≤

∞
∫

s−19/9 ds < ∞



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 5(3) (2005) 215–227 227

which implies (2.19) is not met. Thus, we see that both conditions (I1) and (I2) of
Corollary 2.1 are not fulfilled.

Moreover, we can verify easily that condition (2.20) is not satisfied but (2.21) and
(2.26) are met. Thus, the conditions of Theorem 2.3 are not all satisfied, whereas those
of Theorems 2.4 and 2.5 are fulfilled.

Hence, on one hand we cannot conclude from Corollary 2.1 and Theorem 2.3 that
(2.38) is B-oscillatory, while on the other hand Theorems 2.4 and 2.5 give that (2.38) is
B-oscillatory. In fact, we observe that (2.38) has a solution given by x(t) = t, which is
unbounded and nonoscillatory.
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