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0 Introduction

The Peano phenomenon of the existence of a solution continuum of the initial value
problem for ordinary differential systems is well-known. This phenomenon has been
studied by many authors in [3 – 5, 8, 17, 27]. The structure of solution sets for second
order partial differential problems was observed in the authors papers [12, 13].

In this paper we shall study generic properties of quasilinear initial boundary-value
problems for evolution systems of an even order with the continuous or continuous dif-
ferentiable nonlinearities and the general boundary value conditions. In special Hölder
spaces we use the Nikǒlskǐı decomposition theorem from [29, P. 233] for linear Fredholm
operators, the global inversion theorem of [9, 6] and [7, PP. 42 – 43] and the Ambrosetti
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solution quantitive results from [2, P. 216]. In the consideration on surjectivity the gen-
eralized Leray–Schauder condition is employed which is similar to that one in [20]. In the
case of nonlinear Fredholm operators we use the main Quinn and Smale theorem from
[22] and [24].

The present results allow us to observe different problems describing dynamics of me-
chanical processes (bendding, vibration), phisycal-heating processes, reaction-diffusion
processes in chemical and biological technologies or in the ecology.

1 The Formulation of Problem, Assumptions and Spaces

The set Ω ⊂ Rn for n ∈ N means a bounded domain with the boundary ∂Ω. The
real number T will be positive and Q = (0, T ] × Ω, Γ = (0, T ] × ∂Ω. If the multiindex

k = (k1, . . . , kn) with |k| =
n
∑

i=1

ki, then we use the notation Dk
x for the differential

operator
∂|k|

∂xk1
1 . . . ∂xkn

n

and Dt for
∂

∂t
. If the module |k| = 0 then Dk

x means an

identity mapping. The symbol cl M means the closure of the set M in Rn.
In this paper we consider the general system of p ≥ 1 nonlinear differential equations

(parabolic or non-parabolic type) of an arbitrary even order 2b (b is a positive integer)
with p unknown functions in the column vector form (u1, . . . , up)

T = u : cl Q → Rp. Its
matrix form is given as follows:

A(t, x, Dt, Dx)u + f(t, x, D
γ

xu) = g(t, x) for (t, x) ∈ Q, (1.1)

where

A(t, x, Dt, Dx)u = Dtu −
∑

|k|=2b

ak(t, x)Dk
xu −

∑

0≤|k|≤2b−1

ak(t, x)Dk
xu,

and D
γ

xu is a vector function whose components are derivatives Dγ
xul with the different

multiindices 0 ≤ |γ| ≤ 2b − 1 for l = 1, . . . , p.
The system of boundary conditions is given by the vector equation with the bp com-

ponents

B(t, x, Dx)u
∣

∣

∣

cl Γ
= (B1(t, x, Dx)u, . . . , Bb p(t, x, Dx)u)T

∣

∣

cl Γ
= 0 (1.2)

in which
Bj(t, x, Dx)u =

∑

0≤|k|≤rj

bjk(t, x)Dk
xu

for an integer 0 ≤ rj ≤ 2b − 1 and j = 1, . . . , bp.
Further the initial value homogeneous condition

u(0, x) = 0 for x ∈ Ω̄ (1.3)

is considered.
Here the given functions are the following mappings: ak = (ahl

k )p
h,l=1 : cl Q → Rp2

for 0 ≤ |k| ≤ 2b are (p × p)-matrix functions; bjk = (b1
jk, . . . , bp

jk) : cl Γ → Rp for

0 ≤ |k| ≤ rj , j = 1, . . . , bp are row vector functions; f = (f1, . . . , fp)
T: cl Q×Rκ → Rp
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and g = (g1, . . . , gp)
T : cl Q → Rp are column vector functions, where κ is a positive

integer given by the inequality

κ ≤
[(

n − 1
0

)

+

(

n
1

)

+

(

n + 1
2

)

+ · · · +
(

n + |γ| − 2
|γ| − 1

)

+

(

n + |γ| − 1
|γ|

)]

p.

Under several supplementary assumptions, problem (1.1) – (1.3) defines homeomor-
phism between some Hölder spaces. Now, we formulate these suppositions.

(P) A δ-uniform parabolic condition holds for system (1.1) in the sense of J.G. Petro-
vskiǐı, δ > 0.

The system (1.1) and boundary condition (1.2) are connected by

(C) a δ+-uniform complementary condition with δ+ > 0 and
(Q) a compatibility condition.

The coefficients of the operator A(t, x, Dt, Dx) from (1.1) and of B(t, x, Dx) from (1.2)
and the boundary ∂Ω satisfy

(Sl+α) a smoothness condition for a nonnegative integer l and a number α ∈ (0, 1).

We shall be employed with the Banach spaces of continuously differentiable

functions Cl
x(cl Q, Rp) and C

l/2b,l
t,x (cl Q, Rp) and the Hölder spaces Cl+α

x (cl Q, Rp),

C
(l+α)/2b,l+α
t,x (cl Q, Rp) for a nonnegative integer l and α ∈ (0, 1).

For the exact definition of conditions (P), (C), (Q), (Sl+α) see [19, PP. 12–21] and for
the definition of spaces see [19, PP. 8–12] or [11].

The homeomorphism result for (1.1) – (1.3) can be formulated as follows:

Proposition 1.1 (see [19, P. 21] and [15, PP. 182–183]) Let the conditions (P), (C)
and (Sα) be satisfied for α ∈ (0, 1). Necessary and sufficient conditions for the existence
and uniqueness of the solution

u ∈ C
(2b+α)/2b,2b+α
t,x (cl Q, Rp)

of linear problem (1.1)–(1.3) for f = 0 is

g ∈ C
α/2b,α
t,x (cl Q, Rp)

and the compatibility condition (Q).
Moreover, there exists a constant c > 0 independent of g such that

c−1‖g‖α/2b,α,Q,p ≤ ‖u‖(2b+α)/2b,2b+α,Q,p ≤ c‖g‖α/2b,α,Q,p

2 General Results

In this part we remind some notions and assertions from the nonlinear functional analysis
applied in the fundamental lemmas and theorems.

Throughout this paper we shall assume that X and Y are Banach spaces either both
over the real or complex field.

In the Zeidler books [31, PP. 365–366] and [32, PP. 667–668] we find definitions of the
linear and nonlinear Fredholm operator.

The following proposition gives the necessary and sufficient condition for a linear
operator to be Fredholm.
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Proposition 2.1 (S.M. Nikǒlskǐı [29, P. 233]) A linear bounded operator A : X → Y
is Fredholm of the zero index iff A = C+T , where C : X → Y is a linear homeomorphism
and T : X → Y is a linear completely continuous operator.

In the theory and applications of nonlinear operators, the notions as a proper, σ-proper,
closed, coercive operator (for definitions see books [31] and [32]) are very frequent. Their
significant application gives the following statements.

Proposition 2.2 (the Ambrosetti theorem [2, P. 216]) Let F ∈ C(X, Y ) be a proper
mapping. Then the cardinal number cardF−1(q) of the set F−1(q) is constant and finite
(it may be zero) for every q taken from the same component (nonempty and connected
subset) of the set Y \ F (Σ). Here Σ means a closed set of all points u ∈ X at which F
is not locally invertible.

A relation between the local invertibility and homeomorphism of X onto Y gives the
global inverse mapping theorem.

Proposition 2.3 (R. Cacciopoli [9], E. Zeidler [31, P. 174]) Let F ∈ C(X, Y ) be
a locally invertible mapping in X . Then F is a homeomorphism of X onto Y iff F is
proper.

The following propositions give necessary and sufficient conditions for the proper map-
ping.

Proposition 2.4 (see [31, P. 176], [23, P. 49] and [27, P. 20]) Let F ∈ C(X, Y ).

(i) If F is proper, then F is a nonconstant closed mapping.
(ii) If dimX = +∞ and F is a nonconstant closed mapping, then F is proper.

Proposition 2.5 (see [23, PP. 58–59], [31, P. 498] and [27, P. 20]) Suppose that
F : X → Y and F = F1 + F2, where

(i) F1 : X → Y is a continuous proper mapping on X and
(ii) F2 : X → Y is complete continuous.

Then

(i) the restriction of the mapping F to an arbitrary bounded closed set in X is a
proper mapping;

(ii) if moreover, F is coercive, then F is a proper mapping.

Now we can formulate some sufficient conditions for the surjectivity of an operator.

Proposition 2.6 (see [27, PP. 24 and 27]) Let X be a real Banach space. Suppose

(i) P = I − f : X → X is a condensing field, where I : X → X is the identity,
(ii) P is coercive,
(iii) there exists a strictly solvable field G = I − g : X → X and R > 0 such that for

all solutions u ∈ X of the equation

P (u) = kG(u)

and for all k < 0 the estimation ‖u‖X < R holds.

Then the following statements are true:

(i) P is a proper mapping,
(ii) P is strictly surjective,
(iii) cardF−1(q) is constant, finite and nonzero for every q from the same connected

component of the set Y \ F (Σ). For Σ see Proposition 2.2.
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The definition of a condensing field is understood in the sense given in [10, P. 69]. For
the definition of a strict solvable field and strict surjective field see in [29].

Remark 2.1 It is clear that an operator F is strictly surjective, then it is surjective
and if F is strictly solvable, then it is also solvable. Moreover, if F is strictly surjective,
then it is strictly solvable, too.

Proposition 2.7 (the Schauder invariance of domain theorem [31, P. 705]) Let
F : (M ⊆ X) → X be continuous and locally compact perturbation of identity on the
open nonempty set M in the Banach space X . Then

(i) if F is locally injective on M so F is an open mapping;
(ii) if F is injective on M so F is a homeomorphism from M onto the open set F (M).

For the compact perturbation of C1–Fredholm operator we shall use the following
proposition.

Proposition 2.8 (E. Zeidler [32, P. 672]) Let A : D(A) ⊂ X → Y be a C1–Fred-
holm operator on the open set D(A) and B : D(A) → Y be a compact mapping from
the class C1. Then A + B : D(A) → Y is a Fredholm (possible nonlinear) operator with
the same index as A at each point of D(A).

In the following propositions we use the notion of a regular, singular, critical point of
an operator and a regular, singular values of operators. The reader finds these definitions
in [32, P. 668] or [31, P. 184].

Also, we need a residual set. A subset of a topological space Z is called residual iff it
is a countable intersection of dense and open subsets of Z.

By the Baire theorem in any complete metric space or locally compact Hausdorff
topological space, a residual set is dense in this space.

The most important theorem for nonlinear Fredholm mappings is due to S. Smale [24,
P. 862] and Quinn [22]. It is also in [7, PP. 11–12].

Proposition 2.9 (a Smale–Quinn Theorem) If F : X → Y is a Fredholm mapping
(possible nonlinear) of the class Ck(X, Y ) in the Frechét sense and either

(i) X has a countable basis (S. Smale) or
(ii) F is σ-proper (Quinn),

then the set RF of all regular values of F is residual in Y . Moreover, if F is proper, then
RF is open and dense set in Y .

A necessary and sufficient condition for a local diffeomorphism (see [31, p. 171]) is
given in the following proposition.

Proposition 2.10 (a Local Inverse Mapping Theorem, [31, p. 172]) Let F : U(u0) ⊂
X → Y be a C1-mapping in the Frechét sense. Then F is a local C1-diffeomorphism at
u0 iff u0 is a regular point of F .

Proposition 2.11 ([23, P. 89]) Let dimY ≥ 3 and F : X → Y be a Fredholm
mapping of the zero index. If u0 ∈ X is an isolated singular point of F , then F is locally
invertible at u0.

To illustrate the following results we shall need estimations of a Green p × p-matrix
for linear problem (1.1) – (1.3).
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Lemma 2.1 Let the assumptions (P), (C), (Sα) be satisfied for α ∈ (0, 1). Then we
have for the Green matrix G of linear problem (1.1) – (1.3) with f = 0

|Dk0
t Dk

x G(t, x; τ, ξ)| ≤ c(t − τ)−µ‖x − ξ‖2bµ−(n+2bk0+|k|)
Rn E (2.1)

for 0 ≤ 2bk0 + |k| ≤ 2b and µ ≤ (n + 2bk0 + |k|)/2b, thereby 0 ≤ τ < t ≤ T and
x, ξ ∈ cl Ω, x 6= ξ. The positive constant c does not depend on t, x, τ , ξ and E means
the p × p-matrix consisting only of units, r = 2b/(2b − 1).

Proof Since n+2bk0+|k|−2bµ ≥ 0 and ‖x−ξ‖Rn < diamΩ so for 0 < δ ≤ t−τ ≤ T
we obtain (2.1) by the estimation (see [15, PP. 182–183])

|Dk0
t Dk

x G(t, x; τ, ξ)| ≤ c1(t − τ)−
n+2bk0+|k|

2b exp{−c2
‖x − ξ‖r

Rn

(t − τ)1/(2b−1)
}

≤ c1(t − τ)−µ‖x − ξ‖2bµ−(n+2bk0+|k|)
Rn

× [ ‖x − ξ‖2b
Rn/(t − τ) ](n+2bk0+|k|−2bµ)/2b exp{−c2[ ‖x − ξ‖2b

Rn/(t − τ) ]1/(2b−1)}E.

If 0 < t − τ < δ with respect to

lim
y→+∞

yu exp{−cyv} = 0

for every u, v ∈ R and c > 0, we get estimation (2.1).

Remark 2.2 For any x = (x1, . . . , xn) ∈ Rn the inequalities

cn

n
∑

i=1

|xi| ≤ ‖x‖Rn ≤
n

∑

i=1

|xi| (2.2)

hold, if cn ∈ (0, 1/(
√

2)n−1), n ∈ N , does not depend of x.

Remark 2.3 Also, we see that the mild solution u ∈ C
|γ|
x (cl Q, R) of problem (1.1) –

(1.3) satisfies the column vector integro-differential equation

u(t, x) =

t
∫

0

dτ

∫

Ω

G(t, x; τ, ξ) [ g(τ, ξ) − f(τ, ξ, D γu(τ, ξ)) ] dξ =:

= (Su)(t, x) for (t, x) ∈ cl Q

(2.3)

for 0 ≤ |γ| ≤ 2b − 1 and on the contrary the solution v ∈ C
|γ|
x (cl Q, Rp) satisfying (2.3)

is a mild solution of (1.1) – (1.3).

3 Operator Formulation and Fundamental Lemmas

Consider the following operators:
(i)

A : X → Y , (3.1)
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where

(Au)(t, x) = A(t, x, Dt, Dx)u(t, x) = Dtu(t, x) −
∑

0≤|k|≤2b

ak(t, x)Dk
xu(t, x)

for (t, x) ∈ cl Q, u ∈ X,

X = {u ∈ Xρ; Bj(t, x, Dx)u|Γ = 0, j = 1, 2, . . . , bp,

u(0, x) = 0 for x ∈ cl Q} ⊂ C(cl Q, Rp).

Here
Xρ ⊂ C

(2b+α)/2b,2b+α
t,x (cl Q, Rp)

is the Banach space of continuous functions u : cl Q → Rp with the continuous deriva-
tives Dk

xu for |k| = 1, . . . , 2b and Dk0
x Dk

xu for 1 ≤ 2bk0 + |k| ≤ 2b on cl Q and with
the finite norm

‖u‖Xρ
= max

l=1,...,p

[

∑

0≤2bk0+|k|≤2b

sup
(t,x)∈cl Q

∣

∣

∣
Dk0

t Dk
xul(t, x)

∣

∣

∣
+ 〈Dtul〉yx,α,Q

+
∑

|k|=2b

〈Dk
xul〉yx,α+ρ,Q + 〈Dtul〉st,α/2b,Q

+
2b−1
∑

|k|=1

〈Dk
xul〉st,(2b+α−|k|)/2b,Q +

∑

|k|=2b

〈Dk
xul〉st,(α+ρ)/2b,Q

]

,

where ρ > 0 and α + ρ < 1. Further

Y = TX ⊂ C
α/2b, α
t, x (cl Q, Rp)

for α ∈ (0, 1) with the norm

‖u‖Y = max
l=1,...,p

[

sup
(t,x)∈cl Q

|ul(t, x)| + 〈ul〉yx,α,Q + 〈ul〉st,α/2b,Q

]

.

We understand

〈v〉st,µ,Q = sup
(t,x),(s,x)∈cl Q

t6=s

|v(t, x) − v(s, x)|
|t − s|µ ,

〈v〉yx,µ,Q = sup
(t,x),(t,y)∈clQ

x 6=y

|v(t, x) − v(t, y)|
‖x − y‖µ

Rn

.

for v : cl Q → R.

(ii) The Nemitskǐı operator
N : X → Y , (3.2)

where
(Nu)(t, x) = (f ◦ u)(t, x) = f(t, x, D γ

xu(t, x))

for (t, x) ∈ cl Q, u ∈ X .

(iii) The operator
F : X → Y , (3.3)

where
(Fu)(t, x) = (Au)(t, x) + (Nu)(t, x) for (t, x) ∈ cl Q, u ∈ X.

Together with the solution sets of given problem (1.1) – (1.3) we shall search for the
bifurcation points sets.
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Definition 3.1 (i) A couple (u, g) ∈ X × Y will be called the bifurcation point of
(1.1) – (1.3) iff u is a solution of this problem and there exists a sequence {gk}k∈N ⊂ Y
such that lim

k→∞
gk = g in Y and initial boundary value problem (1.1) – (1.3) with g = gk

has at least two different solutions uk, vk for each k ∈ N and lim
k→∞

uk = lim
k→∞

vk = u

in X .

(ii) The set of all solutions u ∈ X of (1.1) – (1.3) (or the set of all functions g ∈
Y ) such that (u, g) is a bifurcation point of (1.1) – (1.3) will be called the domain of
bifurcation (the bifurcation range) of (1.1) – (1.3).

Example 3.1 The point (ur, 0) ∈ X × Y for r ∈ 〈0, T 〉 is a bifurcation point of the
Neumann problem (parabolic and non-parabolic)

∂u

∂t
= ±∂2u

∂x2
+ f(t, x, u), (t, x) ∈ (0, T 〉 × Ω = Q ⊂ R2, (3.1*)

∂u

∂x
(t, 0) =

∂u

∂x
(t, 1) = 0, t ∈ 〈0, T 〉, (3.2*)

u(0, x) = 0, x ∈ Ω (3.3*)

for f(t, x, u) = |u|1/2 − au, a > 0. Here for r ∈ (0, T )

ur(t, x) =







0, if (t, x) ∈ 〈0, r〉 × Ω,

1

α2

(

1 − exp
{

− a

2
(t − r)

})2

, if (t, x) ∈ (r, T 〉 × Ω.

The functions u0(t, x) = 1
α2 (1−exp{−at/2})2, uT (t, x) = 0 are solutions of the given

problem, too.
Really, there is the zero sequence {gk}k∈N of the right hand side of (1.1) for which

there exist two different sequences of solutions

{uk}k∈N =
{

u r(k+1)
k+2

}

k∈N
and {vk}k∈N =

{

v rk
k+1

v
}

k∈N

with the same limit ur ∈ X .

The following equivalence result is true.

Lemma 3.1 (i) The function u ∈ X is a solution of initial boundary-value problem
(1.1) – (1.3) for g ∈ Y iff Fu = g.

(ii) The couple (u, g) ∈ X × Y is a bifurcation point of (1.1) – (1.3) iff Fu = g and
u is a point at which F is not locally invertible, i.e. u ∈ Σ.

Proof The first assertion is clear.
If (u, g) is a bifurcation point of (1.1) – (1.3), then with respect to Definition 3.1 we get

F (u) = g, F (uk) = gk = F (vk), uk 6= vk. Thus F is not locally injective at u. Hence, F
is not locally invertible at u, i.e. u ∈ Σ. On the contrary, if F is not locally invertible at
u and F (u) = g, then F is not locally injective at u. Hence, it follows that the couple
(u, g) ∈ X × Y is a bifurcation point of (1.1) – (1.3). The second assertion is proved.

The following lemma gives sufficient conditions under which the operator A is a Fred-
holm type.
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Assumption A.1 There exists a linear homeomorphism H : X → Y with

Hu = Dtu − H(t, x, Dx)u, u ∈ X,

where
H(t, x, Dx)u =

∑

|k|=2b

hk(t, x)Dk
xu +

∑

0≤|k|≤2b−1

hk(t, x)Dk
xu

satisfies (Sα+ρ) for α ∈ (0, 1), ρ > 0, α + ρ < 1.

Lemma 3.2 Let the operator A from (3.1) satisfy the smoothness hypothesis (Sα+ρ),
α ∈ (0, 1), ρ > 0, α + ρ < 1 (it has not to satisfy the conditions (P), (C), (Q)). Further
let Assumption A.1 hold.

Then

(i) dimX = +∞;

(ii) the operator A : X → Y is a linear bounded Fredholm operator of the zero index.

Proof (i) The equation
dimC∞

0 (Q, R) = +∞
and the inclusion

C∞
0 (Q, R) ⊂ X

imply dimX = +∞.
(ii) Since the coefficients ak for 0 ≤ |k| ≤ 2b are continuous on the compact set cl Q,

there is a positive constant K > 0 such that

‖Au‖Y ≤ K(‖Dtu‖Y +
∑

0≤|k|≤2b

‖Dk
xu‖Y ) = K‖u‖X

for all u ∈ X , whence the operator A is bounded on X .
If the operator A is a homeomorphism, then statement (ii) is clear.

If A is not the homeomorphism, then by the Nikǒlskǐı decomposition theorem from
Proposition 2.1, it is sufficient to show that

Au = Hu + (H(t, x, Dx) − A(t, x, Dx))u = Hu + Tu,

thereby the mapping T : X → Y is the linear completely continuous operator. It will be
proved by generalized Ascoli -Arzelà theorem from [21, P. 31].

From the hypothesis (Sα+ρ), the equi-boundedness of

Tu =
∑

|k|=2b

(hk(t, x) − ak(t, x))Dk
xu +

∑

0≤|k|≤2b−1

(hk(t, x) − ak(t, x))Dk
xu

holds at the bounded set S ⊂ X , i.e. there is a constant K1(n, α, T, Ω) > 0 such that
‖Tu‖Y ≤ K1‖u‖X for all u ∈ S.

Now for the equi-continuity of the set TS ⊂ Y we have to prove the inequality (for
every element ul, l = 1, . . . , p, of u = (u1, . . . , up))

|(Tu)l(t, x) − (Tu)l(s, y)| + |(Tu)l(t, x) − (Tu)l(t, y)|
‖x − y‖α

Rn

+
|(Tu)l(t, x) − (Tu)l(s, x)|

|t − s|α/2b
< ε
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for all u ∈ S and (t, x), (s, y), (t, y), (s, x) ∈ cl Q, x 6= y, t 6= s for which the norms
‖x − y‖Rn and |t − s| are sufficiently small, ε > 0.

With respect to (Sα+ρ) we obtain for the first member of the previous inequality

|(Tu)l(t, x) − (Tu)l(s, y)|

≤
∑

0≤|k|≤2b

|(hk − ak)(t, x) − (hk − ak)(s, y)| |Dk
xul(t, x)|

+
∑

|k|=2b

|hk(s, y) − ak(s, y)| |Dk
xul(t, x) − Dk

xul(s, y)|

+
∑

0≤|k|≤2b−1

|hk(s, y) − ak(s, y)| |Dk
xul(t, x) − Dk

xul(s, y)|

≤ K2

∑

0≤|k|≤2b

|(hk − ak)(t, x) − (hk − ak)(s, y)|

+ K3

∑

|k|=2b

|Dk
xul(t, x) − Dk

xul(s, y)|

+ K3

∑

0≤|k|≤2b−1

|Dk
xul(t, x) − Dk

xul(s, y|,

where K2, K3 are positive constants dependent only on n, α, T , Ω. For |t − s| < δ,
‖x− y‖Rn < δ with a sufficiently small δ > 0 the every member of the last inequality is
smaller than fixed arbitrary ε > 0. (Since u ∈ S ⊂ X , the number δ does not depend
on u.)

For the second member we get by the condition (Sα+ρ) and using the mean value
theorem

|(Tu)l(t, x) − (Tu)l(t, y)| ‖x − y‖−α
Rn e

≤ K2

∑

0≤|k|≤2b

|(hk − ak)(t, x) − (hk − ak)(t, y)| ‖x − y‖−α
Rn

+ K3

∑

|k|=2b

∣

∣Dk
xul(t, x) − Dk

xul(t, y)
∣

∣ ‖x − y‖−α
Rn

+ K3

∑

0≤|k|≤2b−1

∣

∣Dk
xul(t, x) − Dk

xul(t, y)
∣

∣ ‖x − y‖−α
Rn

≤ K(2‖x− y‖ρ
Rn + ‖x − y‖1−α)

By the similar way we have for the third member

|(Tu)l(t, x) − (Tu)l(s, x)| · |t − s|−α/2b

≤ K2

∑

0≤|k|≤2b

|(hk − ak)(t, x) − (hk − ak)(s, x)| |t − s|−α/2b

+ K3

∑

|k|=2b

∣

∣Dk
xul(t, x) − Dk

xul(s, x)
∣

∣ |t − s|−α/2b

+ K3

∑

0≤|k|≤2b−1

∣

∣Dk
xul(t, x) − Dk

xul(s, x)
∣

∣ |t − s|−α/2b
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≤ K

(

2|t − s|ρ/2b + |t − s|1−α/2b +
2b−1
∑

|k|=1

|t − s|1−|k|/2b

)

.

By these three estimations the assertion (ii) is proved.

Remark 3.1 Necessary and sufficient conditions for the existence of a linear homeomor-
phism H : X → Y from the assumption (A.1) are given in Proposition 1.1. Concretely,

for example, Hu =
∂u

∂t
− ∆u, u ∈ X .

Corollary 3.1 Let L mean the set of all linear differential operators A = Dt −
A(t, x, Dx) : X → Y satisfying the hypothesis (Sα+ρ), α ∈ (0, 1), ρ > 0, α + ρ < 1.
Then for each A ∈ L the initial boundary-value homogeneous problem Au = 0, (1.2),
(1.3) has a nontrivial solution or any A ∈ L is a linear bounded Fredholm operator of
the zero index.

Proof Really, if there exists an operator A ∈ L such that the problem Au = 0, (1.2),
(1.3) has only trivial solution, then A is homeomorphism X onto Y (see Proposition 1.1).
Then by Lemma 3.2 all operators of L are Fredholm of the zero index.

Assumption N.1 The vector function f ∈ C(cl Q × Rκ, Rp) satisfies the following
local grown vector condition

| f(t, x, uγ) − f(s, y, vγ) | ≤ L
[

|t − s|β1 + ‖x − y‖β2

Rn +

p
∑

l=1

∑

0≤|γ|≤2b−1

|uγ
l − vγ

l |βγ,l

]

J

for (t, x, uγ), (s, y, vγ) from a compact subset of Rκ and β1 > α/2b, β2 > α, βγ,l >
α/(α + ρ), 0 ≤ |γ| ≤ 2b − 1, l = 1, . . . , p, where L > 0.

Lemma 3.3 Suppose Assumption N.1 holds. Then the Nemitskǐı operator N : X → Y
from (3.2) is completely continuous on X.

Proof For any bounded set S ⊂ X the N is equi-bounded in Y . Indeed, for all
u ∈ S using (N.1) the norm

‖Nu‖Y ≤ max
l=1,...,p

[

sup
(t,x)∈cl Q

|fl(t, x, D
γ

xu(t, x))|

+ L sup
(t,x),(t,y)∈clQ

x 6=y

‖x − y‖β2

Rn +
p
∑

l=1

∑

0≤|γ|≤2b−1

|Dγ
xul(t, x) − Dγ

xul(t, y)|βγ,l

‖x − y‖α
Rn

+ sup
(t,x),(s,x)∈clQ

t6=s

|t − s|β1 +
p
∑

l=1

∑

0≤|γ|≤2b−1

|Dγ
xul(t, x) − Dγ

xul(s, x)|βγ,l

|t − s|α/2b

]

Hence, it is bounded by a positive constant K(Ω, T, L, α, β1, β2, βγ,l).
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Also, for |t − s|2 + ‖x − y‖2
Rn < δ2 with a sufficiently small δ > 0 we get the equi-

continuity of N . It is sufficient to prove that for every ε > 0 there exists δ > 0 such
that the inequality

|(Nu)l(t, x) − (Nu)l(s, y)|

+
|(Nu)l(t, x) − (Nu)l(t, y)|

‖x − y‖α
Rn

+
|(Nu)l(t, x) − (Nu)l(s, x)|

|t − s|α/2b
< ε

is true for all u ∈ S, if both t, s and x, y to be sufficiently near and l = 1, . . . , p.

Assumption F.1 For each bounded set S ⊂ Y there is a constant Ka > 0 such
that for all solutions u ∈ X of (1.1) – (1.3) with g ∈ S the inequality

‖u‖a, Q = max
l=1,...,p

∑

0≤|k|≤a

sup
(t,x)∈cl Q

|Dk
xul(t, x)| ≤ Ka (3.4)

holds for a = max{|γ|, r}. Here r is an integer 0 ≤ r ≤ 2b − 1 for which the coefficients
of operators A and H from (3.1) and (A.1), respectively satisfy the relations ak = hk

for |k| = r + 1, . . . , 2b and ak 6= hk for at least one multiindex k with |k| = r on cl Q.

Lemma 3.4 Let (Sα+ρ, α ∈ (0, 1), ρ > 0, α + ρ > 1), (A.1), (N.1) and an almost
coercivity condition of Assumption F.1 be satisfied. Then

(i) F from (3.3) is coercive at X.
(ii) F is proper and continuous at X.

Proof (i) We need to prove that if the set S ⊂ Y is bounded in Y , then the set of
arguments F−1(S) ⊂ X is bounded in X .

By (3.4) and the Assumption F.1 it follows that the set F−1(S) is bounded in the
norm ‖ · ‖a, Q. Hence and by Assumption N.1 one obtains the estimation ‖Nu‖Y ≤ K4

for all u ∈ F−1(S). From Lemma 3.2 (ii) also ‖Au‖Y ≤ ‖Fu‖Y + ‖Nu‖Y ≤ K5 for any
u ∈ F−1(S), where K4, K5 are positive constants.

On the other hand, Assumption A.1 ensures the existence and uniqueness of the
solution u ∈ X of the linear equation Hu = y for any y ∈ Y and (see the Green
representation of solution from (2.3) and [15, PP. 182–183] and estimation (2.1)) the
estimation

‖u‖X ≤ K6‖y‖Y , K6 > 0, : u ∈ F−1(S) (3.5)

is true.
Then for u ∈ F−1(S) we have

Hu = Au +
∑

0≤|k|≤2b

(ak(t, x) − hk(t, x))Dk
xu.

With respect to (Sα) and Assumption F.1

‖y‖Y = ‖Hu‖Y ≤ ‖Au‖Y +
∑

0≤|k|≤r

‖ak − hk‖Y ‖Dk
xu‖Y ≤

K5 + K7‖u‖r, Q ≤ K5 + K7‖u‖a,Q ≤ K5 + K7K
a, K7 > 0.
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Hence and by (3.5)

‖u‖X ≤ K6(K5 + K7K
a), u ∈ F−1(S).

(ii) Since dimX = +∞ and A is a nonconstant and closed mapping on X , then by
Proposition 2.4 (ii) it is proper on X . From Lemma 3.3 the operator N is completely
continuous on X . From (i) of this lemma F is coercive on X . The Proposition 2.5 (ii)
concludes the proof of (ii) and the proof of Lemma 3.4.

In the following lemmas we shall consider the continuous nonlinearity f . Conditions for
the continuous F-differentiability of the Nemitskǐı operator N give the following lemma.

Assumption N.2 For l = 1, . . . , p and the multiindices β with the modulus 0 ≤
|β| ≤ 2b − 1,

∂f

∂vβ, l
∈ C(cl Q × Rκ, Rp)

where κ represents the number of all components in the vector function D
β

xu from (1.1).

Lemma 3.5 Let the Nemitskǐı operator N : X → Y satisfy Assumptions N.1 and N.2.
Then

(i) the operator N is continuously Frechét differentiable on X, i.e. N ∈ C1(X, Y );
(ii) if moreover (Sα+ρ) for α ∈ (0, 1), ρ > 0, α + ρ < 1 holds, then F ∈ C1(X, Y ).

Proof (i) We need to prove that Frechét derivative N ′ : X → L(X, Y ) defined by the
vector equation

N ′(u)h(t, x) =
∑

0≤|β|≤2b−1
card{β,l}=κ

l=1,...,p

∂f

∂vβ
[t, x, D γ

xu(t, x)]Dβ
xhl(t, x) (3.6)

is continuous on X for every u, h ∈ X . Here β = (β1, . . . , βn) represents every multiindex
γ = (γ1, . . . , γn) appearing in the nonlinearity f . It is sufficient to show for every fixed
v ∈ X the implication:

∀ ε > 0 ∃ δ(ε, v) > 0 ∀u ∈ X, ‖u − v‖X < δ ⇒ ‖N ′u − N ′v‖L(X,Y ) < ε,

i.e.
sup

h∈X, ‖h‖X≤1

‖N ′(u)h − N ′(v)h‖Y < ε (3.7)

Let us take an arbitrary ε > 0 and u ∈ X such that ‖u− v‖X < δ, i.e. |Dtul(t, x)−
Dtvl(t, x)| < δ and |Dk

xul(t, x)−Dk
xvl(t, x)| < δ for all multiindices 0 ≤ |k| ≤ 2b on cl Q.

Hence with respect to the uniform continuity of ∂f
∂vβ,l

for 0 ≤ |β| ≤ 2b− 1, l = 1, . . . , p,

on every compact of cl Q × Rκ we get the vector inequality

|N ′(u)h(t, x) − N ′(v)h(t, x)|

≤
∑

0≤|β|≤2b−1
card{β}=κ

l=1,...,p

∣

∣

∣

∣

∂f

∂vβ,l
[t, x, D γ

xu(t, x)] − ∂f

∂vβ,l
[t, x, D γ

xv(t, x)]

∣

∣

∣

∣

∣

∣Dβ
xhl(t, x)

∣

∣ < εJ
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for ‖h‖X ≤ 1 and all (t, x) ∈ cl Q. It finishes the proof of (3.7).

(ii) We easily see that Fréchet derivative F ′ : X → L(X, Y ) is defined by the vector
equation

F ′(u)h(t, x) = Dth(t, x) −
∑

0≤|k|≤2b

ak(t, x)Dk
xh(t, x) + N ′(u)h(t, x)

for u, h ∈ X . Hence and by (i) we get F ∈ C1(X, Y ).

Lemma 3.6 Let the hypotheses (Sα+ρ), α ∈ (0, 1), ρ > 0, α + ρ < 1, (A.1), (N.1)
and (N.2) be satisfied. Then F = A + N : X → Y is a nonlinear Fredholm operator of
the zero index on X.

Proof According to Lemma 3.2 the operator A : X → Y is a linear continuous and
C1–Fredholm mapping of the zero index. By the statement of Lemma 3.3 the operator
N : X → Y is compact. By Lemma 3.5 it belongs to the class C1. Then Proposition 2.8
implies that F is a nonlinear Fredholm operator with the zero index.

4 The Solution Set for Continuous Nonlinearities

The first results for that proper mapping F give the following theorem.

Theorem 4.1 Let hypotheses (Sα+ρ) for α ∈ (0, 1), ρ > 0, α + ρ < 1, and Assump-
tions A.1, N.1 hold. Then

(a) for any compact set of the right hand sides g ∈ Y of (1.1) the corresponding set
of all solutions of (1.1) – (1.3) is a countable union of compact sets;

(b) for u0 ∈ X there exists a neighborhood U(u0) of u0 and U(F (u0)) of F (u0) ∈ Y
such that for each g ∈ U(F (u0)) there is an unique solution of (1.1) – (1.3) iff
the operator F is locally injective at u0;

(c) let moreover (F.1) hold. Then for any compact set of the right hand sides g ∈ Y
from (1.1), the set of all solutions of (1.1) – (1.3) is compact (possible empty).

Proof (a) Since F = A+ N (see (3.3)) by the decomposition of A = C + T (Propo-
sition 2.1) we have F = C + (T + N), where C is a continuous and proper mapping X
onto Y (see Proposition 2.4), A is a Fredholm operator of the zero index, T and N are
completely continuous mappings. Since X is a countable union of closed balls in X , so
with respect to Proposition 2.5 (i) the operator F is σ-proper (continuous). Lemma 3.1
(i) implies assertion (a).

(b) Suppose that F is injective in a neighborhood U(u0) of u0 ∈ X . From the
decomposition (for H see Lemma 3.2)

F = H + (T + N)

we obtain H−1F = I + H−1(T + N) which is a completely continuous and injective
perturbation of the identity I : X → Y in U(u0). According to Proposition 2.7 (i) the
set H−1F (U(u0)) is open in X and the restriction H−1F |U(u0) is a homeomorphism of

U(u0) onto H−1F (U(u0)). Therefore F is locally invertible at u0. Again by Lemma 3.1
(i) we obtain (b).

(c) By Lemma 3.4 (ii) the operator F : X → Y is proper which implies the given
assertion and includes the proof of Theorem 4.1.

We have the following theorem on further qualitative and quantitative properties of
the set solutions of (1.1) – (1.3).
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Theorem 4.2 Let hypotheses (Sα+ρ) with α ∈ (0, 1), ρ > 0, α + ρ < 1, and
Assumptions A.1, N.1 and F.1 be satisfied. For solutions of (1.1) – (1.3) the following
statements are true:

(d) the set of solution for each g ∈ Y is compact (possible empty);
(e) the set R(F ) = g ∈ Y such that there exists at least one solution u ∈ X of

(1.1) – (1.3) is closed and connected in Y ;
(f) the domain of bifurcation Db is closed in X and the bifurcation range Rb is closed

in Y . The set F (X \ Db) is open in Y ;
(g) if Y \ Rb 6= ∅, then each component of Y \ Rb is a nonempty open set (i.e.

domain);
(h) if Y \Rb 6= ∅, the number ng of solutions is finite and constant (it may be zero)

on each component of Y \Rb, i.e. ng is the same nonnegative integer for each g
belonging to the same component of Y \ Rb;

(i) if Rb = ∅, then the given problem has a unique solution u ∈ X for each g ∈ Y
and this solution continuously depends on g as a mapping from Y onto X;

(j) if Rb 6= ∅, then the boundary ∂F (X \ Db) is a subset of F (Db) = Rb

(∂F (X \ Db) ⊂ F (Db)).

Proof The assertion (d) follows directly from Theorem 4.1 (c).
(e) Take the sequence {gn}n∈N ⊂ R(F ) ⊂ Y converging to g ∈ Y as n → ∞.

By (d) there is a compact set of all solutions {uγ}γ∈I ⊂ X (here I means an index
set) of the equations F (u) = gn for n = 1, 2, . . . . Thus there exists a subsequence
{unk

}k∈N ⊂ {uγ}γ∈I converging to u ∈ X and F (unk
) = gnk

→ g in Y as n → ∞.
Since the mapping F is proper (Lemma 3.4 (ii)) by Proposition 2.4 (i) it is closed, whence
F (u) = g, i.e. g ∈ R(F ). The set R(F ) is closed. R(F ) = F (X) is connected as a
continuous image of the connected set X .

(f) According to Lemma 3.1 (ii) Db = Σ and Rb = F (Db) = F (Σ). Since X \ Σ is
an open set then Db is closed in X and its continuous image Rb is a closed set in Y .

Since, X \ Db = X \ Σ is the set of all points at which the mapping F is locally
invertible, to each u0 ∈ X \ Db there is a neighborhood U1(F (u0)) ⊂ F (X \ Db). It
means, the set F (X \ Db) is open.

(g) The set Y \ Rb = Y \ F (Db) 6= ∅ is open in Y . Then each its component is
nonempty and open, too.

(h) This directly follows from Proposition 2.2.

(i) By Rb = ∅ is Db = ∅ and the mapping F is locally invertible in X . Proposi-
tion 2.5 (ii) asserts that F is a proper mapping. Then from the global inverse mapping
theorem (Proposition 2.3) implies F is homeomorphism X onto Y .

(j) From Lemma 3.1 (ii) Db = Σ and by (f) Db and F (Db) are closed. Then ∂F (X \
Db) = ∂F (Db) ⊂ F (Db).

This finishes the proof of the theorem.

The following two theorems are on the surjectivity of (1.1) – (1.3).

Theorem 4.3 Under the assumptions (Sα+ρ), α ∈ (0, 1), ρ > 0, α + ρ < 1, and
Assumptions A.1, N.1 and F.1 each of the following conditions is sufficient for the solv-
ability of problem (1.1) – (1.3) for each g ∈ Y :

(k) for each g ∈ Rb there is a solution u ∈ X \ Db of (1.1) – (1.3);
(l) the set Y \ Rb is connected and there is g ∈ R(F ) \ Rb (for R(F ) see Theo-

rem 4.2 (e)).
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Proof First of all we see that conditions (k) and (l) are mutually equivalent to the
conditions

(k′) F (Db) ⊂ F (X \ Db)
and

(l′) Y \ Rb is a connected set and F (X \ Db) \ Rb 6= ∅,
respectively.

From the proof of Theorem 4.2 (f) we have Db = Σ.

(k) From (k′) we have F (X) = F (Db)∪F (X \Db) = F (X \Db). So R(F ) = F (X) is
closed and connected in Y (Theorem 4.2 (e)) as well as open set in Y (see Theorem 4.2
(f)). Thus R(F ) = Y which implies the surjectivity of F .

(l) By (h) of Theorem 4.2, cardF−1({g}) is a constant k ≥ 0 for every g from the
same component of Y \ Rb.

If k = 0 for all g ∈ Y \ Rb such that F (X) = Rb, whence F (X \ Db) ⊂ Rb. It is a
contradiction with (l′).

Assumptions S.1 There exists a constant Ka > 0 such that all solutions u ∈ X
of the initial boundary-value problem for the equation

Hu + µ(Au − Hu + Nu) = 0, µ ∈ (0, 1)

with data (1.2), (1.3) fulfil inequality (3.4) from Lemma 3.4. H is the linear homeomor-
phism from Assumption A.1.

Theorem 4.4 Let ( Sα+ρ) with α ∈ (0, 1), ρ > 0, α + ρ < 1, and Assumptions A.1,
N.1 and F.1 hold together with the hypothesis S.1.

Then

(m) problem (1.1) – (1.3) has at least one solution for each g ∈ Y ;
(n) the number ng of solutions (1.1) – (1.3) is finite, constant and different from zero

on each component of the set Y \ Rb (for all g belonging to the same component
of Y \ Rb).

Proof (m) It is sufficient to prove the surjectivity of F : X → Y . By Lemma 3.2 (see
the proof of (ii)) we can write

F = A + N = H + (T + N)

The mapping
H−1F = I + H−1(T + N) : X → X

is a completely continuous and condensing field (see [31, P. 496]).
Let S ⊂ X be a bounded set. Then H(S) is a bounded set in Y . From the coercivity

of F (see Lemma 3.4 (i)) the set F−1[H(S)] = (H−1F )−1(S) is bounded at X . Hence
H−1F is coercive.

Now we show that condition (iii) from Proposition 2.6 is satisfied for the condensing
and coercive field P = H−1F . Take the strictly solvable field G(u) = u. Then the
equation P (u) = kG(u) implies

(H−1F )(u) = ku.

Hence we get for u ∈ X and k < 0

Hu + (1 − k)−1[Au − Hu + Nu] = 0
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where (1 − k)−1 ∈ (0, 1). With respect to Assumption S.1

‖u‖a,Q ≤ Ka

for a = max{|γ|, r}, where |γ| = 0, 1, . . . , 2b − 1 and 0 ≤ r ≤ 2b − 1 are fixed. Using
the same method as in Lemma 3.4 (i) we obtain for all solutions of

(H−1F )u = ku

the estimation ‖u‖X ≤ K8, K8 > 0. By Proposition 2.6 we have the strict surjectivity
of H−1F and so F . This proves (m).

(n) From the surjectivity of F on X it follows ng 6= 0. The other assertions of (n)
follow from Theorem 4.2 (h).

Example 4.1 The simple example illustrating results of this part can be the initial
boundary-value problem for the system of p equations.

∂ul

∂t
− Kl

∂2ul

∂x2
+ fl(u) = 0, (t, x) ∈ 〈0, T 〉 × Ω ⊂ R × R,

where l = 1, . . . , p with the conditions

∂ul

∂x
(t, 0) =

∂ul

∂x
(t, 1) = 0, t ∈ 〈0, T 〉,

ul(0, x) = 0, x ∈ cl Ω.

We take Kl > 0 and

fl(u) =











u
1/2
l , if ul ∈ 〈0, a〉,

a1/2, if ul ∈ 〈a,∞),

0, if ul ≤ 0,

for l = 1, . . . , p. Assumption A.1 is satisfied by Proposition 1.1. The condition N.1
can be verified by elementary calculus. The supposition F.1 follows from equation (2.3)
and Green matrix estimations (2.1). The condition (Sα+ρ) holds for 0 < α < 1/2,
1/2 < ρ < 1 and α + ρ < 1 (for example α = 1/5, ρ = 3/5).

5 The Solution Set for C
1-nonlinearities

With respect to the C1-,differentiability of the operator N from (3.2) we prove here
several stronger results than in Chapter 4 for the solutions of (1.1) – (1.3).

Theorem 5.1 Suppose that (Sα+ρ) for α ∈ (0, 1), ρ > 0, α + ρ < 1 and As-
sumptions A.1, N.1, N.2 and F.1 are satisfied and Rb means the bifurcation range of
(1.1) – (1.3) from Definition 3.1. Then the set Y \ Rb is open and dense in Y and thus
the bifurcation range Rb of initial boundary-value problem (1.1) – (1.3) is nowhere dense
in Y .

Proof The openness of Y \ Rb follows from the statement (f) of Theorem 4.2.
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From previous lemmas the operator A : X → Y is a linear continuous Fredholm map-
ping of the zero index and the Nemitskǐı operator N : X → Y is compact and N ∈
C1(X, Y ).

For every u ∈ X the linear operator N ′ : X → Y from (3.6) is completely continu-

ous on X . By the Nikǒlskǐı decomposition theorem (see Proposition 2.1) the operator
F ′(u) = A + N ′(u) : X → Y is a linear Fredholm mapping of the zero index for each
u ∈ X . By Lemma 3.5 (ii) there is F ∈ C1(X, Y ) and by Lemma 3.6 the F is a
nonlinear Fredholm operator of the zero index.

According to the Banach open mapping theorem (see [30, P. 77]) the mutual equiva-
lence is true: F ′(u) is a linear homeomorphism iff it is a bijective mapping. Since F ′(u)
for every u ∈ X is a linear Fredholm mapping of the zero index so F ′(u) is bijective
iff it is injective (in this case the injectivity implies surjectivity, see Proposition 8.14 (1)
from [31, P. 366]). We see that u ∈ X is a singular point of the Fredholm operator F iff
u is a critical point of F .

From Proposition 2.10 we obtain that set Σ (of all points u ∈ X for which F is not
locally invertible) is a subset of all critical point F . Then, evidently Σ is a subset of all
singular points S of F , i.e. Σ ⊂ S. Hence we get for the set of regular values RF of the
operator F the relations

RF = Y \ F (S) ⊂ Y \ F (Σ) ⊂ Y \ Rb ⊂ Y,

where Rb ⊂ F (Σ) is a bifurcation range of F .
Since F : X → Y is nonconstant closed mapping with dimX = ∞, by Proposition 2.4

we obtain that F is a proper mapping. By Proposition 2.9 (the Quinn version) the set
RF is residual, open and dense in Y . Hence Y \ Rb is dense in Y , too. With respect to
Lemma 3.1 (ii) we can conclude the proof.

In the following results we shall deal with the linear problem in h ∈ X

Ah(t, x) +
∑

0≤|β|≤2b−1
card{|β|}=κ

∂f

∂vβ
[t, x, Dγ

xu(t, x)]Dβ
xh(t, x) = g(t, x) (5.1)

for (t, x) ∈ Q and some fixed u ∈ X with condition (1.2), (1.3). The left side of equation
(5.1) represents the Frechét derivative F ′(u)h of the operator F = A + N : X → Y .

Theorem 5.2 Let the hypotheses Sα+ρ with α ∈ (0, 1), ρ > 0, α + ρ < 1, and
Assumptions A.1, N.1, N.2 and F.1 are satisfied. Then

(o) the number solutions of (1.1) – (1.3) is constant and finite (it may be zero) on
each connected component of the open set Y \ F (S), i.e. for any g belonging to
the same connected component of Y \ F (S). Here S means the set of all critical
points of the operator F = A + N : X → Y ;

(p) let u0 ∈ X be a regular solution of (1.1) – (1.3) with the right hand side g0 ∈ Y .
Then there exists a neighborhood U(g0) ⊂ Y of g0 such that for any g ∈ U(g0)
initial-boundary value problem (1.1) – (1.3) has one and only one solution u ∈ X.
This solution continuously depends on g.
The associated linear problem (5.1), (1.2), (1.3) for u = u0 has a unique solution
h ∈ X for any g from a neighborhood U(g0) of g0 = F (u0). This solution
continuously depends on g;
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(q) denote by G the set of all right hand side g ∈ Y of equation (1.1) for which the
corresponding solutions u ∈ X of (1.1) – (1.3) are its critical points. Then G is
closed nowhere dense in Y ;

(r) if the singular points set of (1.1) – (1.3) is empty, then this problem has unique
solution u ∈ X for each g ∈ Y . It continuously depends on the right hand side g.

Proof (o) In the proof of Theorem 5.1 we have shown that the set of all singular
points of F is equal to the set of all critical points of F . Then the Ambrosetti theorem
(see Proposition 2.2) implies the statement (o).

(p) Since u0 ∈ X \ S, where S is a set of all singular (in our case all critical) points
then by Proposition 2.10 the mapping F is a local C1-diffeomorphism at u0. This proves
first part of (p) for (1.1) – (1.3).

From F as the C1-diffeomorphism follows that F ′ ∈ C(X, Y ), (F−1)′ ∈ C(X, Y ),
where F ′(u)h is the left hand side of (5.1) and (F−1)′(Fu) = (F ′(u))−1 for every
u ∈ X . Hence linear problem (5.1), (1.2), (1.3) for u = u0 has a unique solution h ∈ X
for any g ∈ U(g0) with g0 = F (u0). This solution continuously depends on all right
hand side g. The proof of (p) is completed.

(q) In our case the equality G = F (S) holds, where S is the set of all critical (all
singular) points of F . By the Smale–Quinn theorem (Proposition 2.9) we obtain the
expected results.

(r) By Proposition 2.10, the operator F : X → Y is a local C1-diffeomorphism at any
point u ∈ X . Hence follows the last assertion.

Assumption H.1 Linear homogeneous problem (5.1), (1.2), (1.3) (for g = 0) has
only zero solution h = 0 ∈ X for any u ∈ X .

By the point (p) of Theorem 5.2 we obtain the following corollary.

Corollary 5.1 Let the hypotheses of Theorem 5.2 and Assumption H.1 hold. Then
initial boundary-value problem (1.1) – (1.3) has a unique solution u ∈ X for any g ∈ Y .
Moreover, linear problem (5.1), (1.2), (1.3) has a unique solution h ∈ X for any u ∈ X
and the right hand side g ∈ Y of (5.1). This solution continuously depends on g.

Corollary 5.2 Let the assumptions of Theorem 5.2 be satisfied. Then we have:

(s) if the set S of all singular (in our case all critical) points of F is nonempty, then
∂F (X \ S) ⊂ F (S);

(t) if F (S) ⊂ F (X \ S), then problem (1.1) – (1.3) has the solution u ∈ X for any
g ∈ Y , i.e. R(F ) = Y (F is a surjectivity of X onto Y );

(u) if Y \ F (S) is connected and X \ S 6= ∅, then R(F ) = Y (the solvability of
(1.1) – (1.3) for any g ∈ Y ).

Proof By Theorem 5.2 (q) the set F (S) is closed in Y and by Proposition 2.9 F (X\S)
is open in Y . Hence we have the equations

F (X) = F (S) ∪ F (X \ S) = F (S) ∪ F (X \ S) = F (X) (5.2)

which implies that F (X) is a closed set.

(s) Since F ∈ C1(X, Y ) we get Σ ⊂ S, as in Theorem 5.1. Hence and by Theo-
rem 4.2 (i)

∂F (X \ S) ⊂ ∂F (X \ Σ) ⊂ F (Σ) ⊂ F (S).
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(t) From the first equation of (5.2) we have F (X) = F (X \ S) and so R(F ) is an
open as well as a closed subset of the connected space Y . Thus R(F ) = Y .

(u) Since Y \F (S) is connected, and by Proposition 2.2 we obtain the cardF−1({g}) =
const = k ≥ 0 for each g ∈ Y \ F (S).

If k = 0, then F (X) = F (S) and F (X \ S) ⊂ F (S) and this is a contradiction with
X \ S 6= ∅. Thus k > 0.

Assumption H.2 Each point u ∈ X is either a regular point or an isolated critical
point of problem (1.1) – (1.3).

Theorem 5.3 Suppose that hypotheses (Sα+ρ) with α ∈ (0, 1), ρ > 0, α + ρ < 1,
and Assumptions A.1, N.1, N.2, F.1 and H.2 hold. Then for every g ∈ Y there exists
one solution u ∈ X of (1.1) – (1.3). It continuously depends on g.

Proof The associated operator F : X → Y is a proper C1-Fredholm mapping of the
zero index. By Proposition 2.10 F is a local C1-diffeomorphism at a regular point of
F . In the isolated singular point, by Proposition 2.11 F is locally invertible. Since F is
proper, the global inverse mapping theorem (see Proposition 2.3) implies the statement
of this problem.

Example 5.1 Example 4.1 illustrates the results of Chapter 5 for fl(u) = sin

(

l
∑

i=1

u2
i

)

.

6 Conclusion

The studied models describe different natural science phenomena (a reaction-diffusion
and environment models, a diffusive waves in fluid dynamics — the Burges equation, the
wave propagation in a large number of biological and chemical systems — the Fisher
equation, a nerve pulse propagation in nerve fibers and wall motion in liquid crystals).

We can apply the Fredholm theory to hyperbolic equations modeling different non-
linear vibration problems, to a nonlinear dispersion (the nonlinear Klein–Gordan equa-
tion), a propagation of magnetic flux and the stability of fluid notions (the nonlinear
Sine–Gordan equation) and so on.
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