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Influence of Propellant Burn Pattern on the
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Abstract: This study examines the effect of various propellant burn geome-
tries on the attitude dynamics of a rocket-type variable mass system. The
three burn scenarios studied are the end burn, the centripetal burn, and the
radial burn. Results of this study indicate that a change in burn scenario
changes the predicted attitude motion. The differences are more pronounced
for spin motion than for transverse attitude motion. The end burn is recom-
mended whenever it is practically feasible; it is found to be the least disruptive
from the point of view of attitude dynamics.
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1 Introduction

In the study of the dynamics of rockets, the fact that the system undergoes substantial
mass variation is generally captured in one of two ways. One method is to view the
system as a solid whose mass and inertia vary as functions of time [4, 5]. The exact time
functions used for both the mass and inertia scalars are based on reasonable guesses of
what is likely to occur in real systems. Another approach is to show the propellant as a
subsystem of the rocket, and then specify the physical and geometric manner in which the
propellant mass is depleted. These facts are then used for the precise calculation of the
mass and inertia functions for the system. Naturally, the second approach is preferable,
since it eliminates the need for guessing the time histories of the mass/inertia properties.
However, authors that have utilized this second approach have generally used very simple
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models for both the rocket system and the propellant [2, 3]. When a more complex model
has been used [6], only one propellant burn pattern – the radial burn – is examined. The
radial burn assumes that a cylindrically shaped solid propellant is ignited on its axis,
and burns radially outwards towards its periphery. Yet, there are situations where it
makes sense to assume an end burn for example; that is, a burn in which a cylindrical
propellant is ignited at one of its ends, and burns towards the opposite end.

The goal of this paper is to examine if and how a change in burn pattern influences
predictions of the attitude behavior of a rocket system. Specifically, three different burn
patterns will be compared: the end burn, the centripetal burn, and the radial burn.
This is important for two reasons. First, this study will lead to reasonably accurate
predictions for a case that is in fact best captured by one of the burn scenarios studied,
and for which results were previously unavailable. The second reason is that the results
can be used as design tool in determining the type of propellant burn that should be
implemented in order to produce certain desired dynamic effects.

2 Equations of Attitude Motion

The system studied here is a solid rocket motor and its payload, shown schematically in
Figure 2.1. B represents the rocket’s main body, assumed rigid, and F is the solid fuel.
The products of combustion are expelled through the nozzle. Both B and F are assumed
to be axisymmetric, with a common axis z, and F burns so as to remain axisymmetric
at all times. The mass centers F ∗ of F , B∗ of B, and S∗ of the overall system S all lie on
the axis z. Furthermore, we assume that the motion of the gas products of combustion
relative to the rocket body is either axial, or symmetric with respect to the z-axis and
with no transverse component. Finally, for this study, the velocity distribution of the
exhaust gas particles as they traverse the nozzle exit plane is taken to be uniform as
shown in Figure 2.1. The equations of attitude motion for this system can be written in
the form (see, for example, [1, 6]):

Iω̇1 +

[

İ − ṁ

(

z2
e +

R2
1

4

)]

ω1 + [(J − I)ω3]ω2 = 0, (1)

Iω̇2 +

[

İ − ṁ

(

z2
e +

R2
1

4

)]

ω2 − [(J − I)ω3]ω1 = 0, (2)

Jω̇3 +

(

J̇ − ṁ
R2

1

2

)

ω3 = 0, (3)

where J and I are the system’s overall central axial and transverse moments of inertia
respectively, m is the mass, ωi (i = 1, 2, 3) are the components of the inertial angular
velocity of B in the b1, b2, b3 directions (see Figure 2.1), R1 is the radius of the nozzle
at the exit plane, and ze is the distance from the overall system mass center, S∗, to the
nozzle exit plane.

In order to generate non-dimensional versions of equations (1) – (3), we introduce

mr = −ṁ =

∫

(v · b3)ρ ds = πρUR2
1 (4)

and
mF = mFO −mrt, (5)
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Figure 2.1. Rocket system with solid propellant.

where v is the velocity of exhaust fluid particles relative to the body B, ρ is the mass
density of the exhaust gas, mFO is the mass of the solid fuel at ignition, mF is the
instantaneous mass of the fuel, U is the constant magnitude of the axial velocity of the
exhaust fluid particles as they cross the nozzle exit plane, and t is time. Hence, the time
from ignition to burnout, tb, is given by

tb = mFO/mr. (6)

Dimensionless time τ , is defined as

τ = t/tb = (mr/mFO)t. (7)

This means that τ = 0 at fuel ignition, and τ = 1 at burnout.
Other useful dimensionless quantities are

m̄ = m/mFO, Ī = I/mFOR
2, J̄ = J/mFOR

2, and ω̄i = ωitb, (8)

where R is the outer radius of the cylindrical propellant grain. Equations (1), (2), and
(3) then become respectively

Īω̄′

1 +

{

Ī ′ − m̄′

[(

ze

R

)2

+
β2

4

]}

ω̄1 + [(J̄ − Ī)ω̄3]ω̄2 = 0, (9)

Īω̄′

2 +

{

Ī ′ − m̄′

[(

ze

R

)2

+
β2

4

]}

ω̄2 − [(J̄ − Ī)ω̄3]ω̄1 = 0, (10)

and

J̄ ω̄′

3 +

(

J̄ ′ − m̄′
β2

2

)

ω̄3 = 0. (11)

In the above equations, a prime indicates derivative with respect to the dimensionless
time variable τ , and β is the nozzle expansion ratio (R1/R).

From equation (11),

ω̄3(τ)

ω̄3(0)
= exp

[

−
τ

∫

0

ψ(τ)

J̄
dτ

]

, (12)
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where

ψ(τ) =

(

J̄ ′ − m̄′
β2

2

)

. (13)

Next, we follow established tradition [3, 6], and define complex angular velocity

ω̄T = ω̄1 + iω̄2, (14)

where i =
√
−1. Equations (9) and (10) are then combined to give

ω̄T (τ)

ω̄T (0)
=

〈

exp

[

−
τ

∫

0

ϕ(τ)

J̄
dτ

]〉

·
〈

exp

[

i

τ
∫

0

Θ dτ

]〉

, (15)

where

ϕ(τ) = Ī ′ − m̄′

[(

ze

R

)2

+
β2

4

]

(16)

and

Θ = [(J̄/Ī) − 1]ω̄3. (17)

It is clear from (15) that the magnitude of the transverse angular velocity vector is
controlled by the function ϕ(τ), while Θ(τ) governs the frequency. On the other hand,
the sign of ψ(τ) [see (12)] is an indication of whether the spin rate increases or decreases
with τ .

3 Spin Motion

To study the spin rate of the rocket body during propellant burn, it is necessary [see
equations (12) and (13)] to determine expressions for instantaneous system mass and
inertia. One way to determine these functions is to select a propellant depletion strategy.
For this study, we choose to examine three different propellant depletion scenarios: the
End Burn, the Centripetal Burn, and the Radial Burn. As the names indicate, End Burn
refers to the case where the propellant burns from end to end. Centripetal Burn is the
unusual case where propellant burn proceeds radially inwards from the outermost part of
the fuel, and Radial Burn is the case where combustion starts from the propellant axis,
and proceeds radially outwards.

3.1 End Burn

For the purpose of this study, the solid propellant F is assumed to be a solid cylinder
prior to ignition. For the end burn, this cylindrical fuel burns from the end closest to
the nozzle towards the opposite end. The burn proceeds uniformly, in the sense that the
unburned fuel is always a cylinder of the same radius as at ignition but with diminishing
length as shown in Figures 2.1 and 3.1.

Using the symbols defined in Figure 3.1, the mass of fuel F at ignition is

mFO = ρFOπR
2L (18)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 5(3) (2005) 251–264 255

Figure 3.1. Rocket model with end burning propellant.

and the mass at some intermediate stage of the burn is

mF = ρFOπR
2z, (19)

where z is the instantaneous length of the solid cylindrical propellant and ρFO is its
density. From equations (6), (18), and (19), the time from ignition to burnout is

tb =
mFO

−ṁF

=
ρFOπR

2L

−ρFOπR2ż
=

L

−ż . (20)

Integrating (20), we obtain
z

L
= 1 − τ. (21)

The dimensionless mass of the propellant is

m̄F =
mF

mFO

=
ρFOπR

2z

ρFOπR2L
=
z

L
= 1 − τ. (22)

Hence,
m̄′ = m̄′

F = −1. (23)

The axial moment of inertia of the propellant is

JF =
mFR

2

2
(24)

and the dimensionless version is

J̄F =
JF

mFOR2
=
m̄F

2
=

1 − τ

2
. (25)

The combined axial moment of inertia of the system is

J̄ = J̄B + J̄F = J̄B +
(1 − τ)

2
, (26)
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Figure 3.2. Rocket with propellant in centripetal burn.

where the subscripts B and F refer to bodies B and F respectively of Figure 2.1. Hence,

J̄ ′ = J̄ ′

F = −1

2
. (27)

Substituting (23) and (27) into (13), we get

ψ(τ) = −1

2
(1 − β2). (28)

From (28), ψ(τ) is a constant that can be negative, zero, or positive depending on the
value of the nozzle expansion ratio β. There is thus a threshold value β = βL = 1 for
which the spin rate remains constant throughout the burn. The spin rate increases from
ignition to burnout if β > βL, and decreases from ignition to burnout for β < βL. From
(12), (26) and (28), a closed form solution can be shown to be

ω̄3(τ)

ω̄3(0)
=

[

2J̄B + 1

2J̄B + 1 − τ

][1−β2]

. (29)

This expression confirms the above predictions.

3.2 Centripetal Burn

In centripetal burn, the cylindrical solid fuel is ignited at its periphery but not at any
of its ends. It then burns radially inwards, with the radius decreasing uniformly along
its length in such a way that the intermediate shape of the propellant is always a solid
cylinder that has the same length as at ignition, but of decreasing radius (see Figure 3.2).

The mass of F at ignition remains as given by (18), and the intermediate mass of F
during the burn is

mF = ρFOπLr
2, (30)

where r is the intermediate value of the external radius of the propellant. The time from
ignition to burnout in this case is

tb =
mFO

−ṁF

=
ρFOπLR

2

−ρFOπL
d
dt

(r2)
=

R2

− d
dt

(r2)
. (31)
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This leads to
(

r

R

)2

= 1 − τ. (32)

The dimensionless mass of the fuel is

m̄F =
mF

mFO

=
ρFOπLr

2

ρFOπLR2
=

(

r

R

)2

= 1 − τ (33)

and once more,
m̄′ = m̄′

F = −1. (34)

The axial moment of inertia for the propellant is

JF =
mF r

2

2
. (35)

So,

J̄F =
JF

mFOR2
=
m̄F

2

(

r

R

)2

=
(1 − τ)2

2
. (36)

For the overall system, we have

J̄ = J̄B + J̄F = J̄B +
(1 − τ)2

2
. (37)

Thus
J̄ ′ = J̄ ′

F = −(1 − τ). (38)

We then substitute (34) and (38) into (13) to obtain

ψ(τ) =

(

β2

2
− 1

)

+ τ. (39)

Equation (39) indicates that the function ψ(τ) increases linearly with time with unit
slope, and ψ(1) = β2/2 is greater than ψ(0) = β2/2−1. ψ(1) is always positive; however,
ψ(0) can be negative, zero, or positive depending on the value of β. Figure 3.3 captures

the three possibilities. If the nozzle expansion ratio is equal to or greater than βL =
√

2,
the spin rate will decrease from ignition all the way to burnout. Otherwise, the spin rate
increases initially, changes sign at some point during the burn, then decreases for the
remainder of the burn. The trend reversal occurs at

Figure 3.3. Function ψ for centripetal burn.
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τ = 1 − β2/2. (40)

A closed form solution is also possible for (12) in this case. Using (12), (37) and (39) we
obtain

ω̄3(τ)

ω̄3(0)
=

[

2J̄B + 1

2J̄B + (1 − τ)2

]

· exp

{ −β2

√

2J̄B

[

tan−1 τ
√

2J̄B

2J̄B + 1 − τ

]}

. (41)

Figure 3.4 shows plots of the normalized spin rate as a function of τ . The figure confirms
the inferences given above.

Figure 3.4. Spin behavior for centripetal burn.

3.3 Radial Burn

For radial burn, the cylindrical propellant is ignited along its axis, and burns radially
outwards in such a way that the intermediate shape of the propellant is a hollow cylinder,
as shown in Figure 3.5. This case was studied in detail in [6], but the highlights will be
presented here for completeness.

Figure 3.5. Rocket with radially burning propellant.
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From Figure 3.5, the mass of propellant before ignition is

mFO
= ρFOπL(R2 − r20) (42)

and the propellant mass at some instant after ignition is

mF = ρFOπL(R2 − r2). (43)

In (42), r0 is the internal radius of the propellant at ignition. The time from ignition to
burnout is thus

tb =
mFO

−ṁF

=
ρFOπL(R2 − r20)

ρFOπL
d
dt

(r2)
=
R2 − r20

d
dt

(r2)
. (44)

Equation (44) can be integrated to give

(

r

R

)2

=

(

r0
R

)2

+

[

1 −
(

r0
R

)2]

τ = γ2 + (1 − γ2)τ, (45)

where γ is the ratio r0/R. We get from (42) and (43)

m̄F =
mF

mFO

=
ρFπL(R2 − r2)

ρFπL(R2 − r20)
=

1 − (r/R)2

1 − (r0/R)2
= 1 − τ (46)

and
m̄′ = m̄′

F = −1. (47)

The axial inertia of F is

J̄F =
JF

mFOR2
=
m̄F

2

[

1 +

(

r

R

)2]

=

[

1 − τ

2

]

[1 + γ2 + (1 − γ2)τ ] (48)

and that of the entire system is

J̄ = J̄B + J̄F = J̄B +
1 + γ2

2
− γ2τ − 1 − γ2

2
τ2. (49)

Thus,
J̄ ′ = J̄ ′

F = −[γ2 + (1 − γ2)τ ]. (50)

Equations (13), (47), and (50) give

ψ(τ) =

(

β2

2
− γ2

)

− (1 − γ2)τ. (51)

This time the function ψ(τ) varies linearly with τ , and has a slope of (γ2 − 1). The
quantity γ = r0/R is strictly less than 1; hence, ψ(τ) has a negative slope. At ignition,
ψ(0) = (β2/2 − γ2), and this is likely to be positive for real rockets. At burnout,

ψ(1) = (β2/2 − 1). Hence, when β ≥ βL =
√

2, the spin rate decreases all the way to
burnout, and when β < βL, the spin rate decreases at first, but then reaches a minimum
value when τ = (β2/2 − γ2)/(1 − γ2), and starts to increase all the way to burnout.
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Figure 3.6. Spin rate behavior of radial burn.

Using equations (12), (49), and (51), it is again possible to solve for the spin rate in
closed form:

ω̄3(τ)

ω̄3(0)
=

[

2J̄B(1 − γ2) + 1 − γ4

2J̄B(1 − γ2) + 1 −
[

γ2 + (1 − γ2)τ
]2

]

(52)

×exp

{

−β2

√

2J̄B(1 − γ2) + 1

[

tanh−1

[

γ2 + (1 − γ2)τ
]

√

2J̄B(1 − γ2) + 1
− tanh−1 γ2

√

2J̄B(1 − γ2) + 1

]}

.

Figure 3.6 shows two cases that match the above predictions when J̄B = 0.5 and
γ = 0.1 are used as an example.

4 Transverse Angular Speed

The magnitude of the transverse angular velocity is obtainable from (15), and is

∣

∣

∣

∣

ω̄T (τ)

ω̄T (0)

∣

∣

∣

∣

= exp

[

−
τ

∫

0

ϕ(τ)

Ī
dτ

]

. (53)

The quantity Ī decreases with τ during a propellant burn, but is always positive. Hence,
the sign of ϕ(τ) determines whether the magnitude of the transverse angular velocity
increases or decreases with the burn. The central transverse moment of inertia of the
rocket system can be written, in non-dimensional form as

Ī = ĪB + ĪF +
mBb

2 +mFa
2

mFOR2
, (54)

where the dimensionless transverse inertia of B is ĪB = IB/mFOR
2.
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4.1 End Burn

For the case of End Burn [see Figure 3.1], the transverse inertia of the propellant F is

ĪF =
IF

mFOR2
= m̄F

[

1

4
+

1

12

(

z

R

)2]

= (1 − τ)

[

1

4
+

1

12
δ2(1 − τ)2

]

, (55)

where δ is the ratio L/R, which can be referred to as the shape factor of the solid
propellant. In subsequent equations, we will use δi = Li/R, for i = 1, 2, 3 (see Figure 3.1
for L1, L2, L3). The distances a and b can be expressed as

a =
mB

mB +mF

[

L2 +
L(1 − τ)

2

]

(56)

and

b =
mF

mB +mF

[

L2 +
L(1 − τ)

2

]

. (57)

Substituting equations (55), (56), and (57) into (54), and simplifying, we obtain

Ī = ĪB + (1 − τ)

[

1

4
+
δ2(1 − τ)2

12

]

+
m̄B(1 − τ)

m̄B + 1 − τ

[

δ2 +
δ(1 − τ)

2

]2

. (58)

Hence,

Ī ′ =

[

1

4
+
δ2(1 − τ)2

4

]

−
[

m̄B

m̄B + 1 − τ

]2[

δ2+
δ(1 − τ)

2

]2

−
[

m̄B(1 − τ)δ

m̄B + 1 − τ

][

δ2+
δ(1 − τ)

2

]

.

(59)
Again from Figure 3.1, the distance

ze = L1 + L+ a− z

2
. (60)

Thus
ze

R
=
m̄B[δ2 + δ(1 − τ)/2] + (m̄B + 1 − τ)[δ1 + δ(1 + τ)/2]

m̄B + 1 − τ
. (61)

Finally, from (16), (23), (59), and (61), we get

ϕ(τ) = −1

4
+
β2

4
+δ21+δ2τ+δδ1(1+τ)+

2m̄B[δ1 + δτ ]

m̄B + 1 − τ

[

δ2+
δ(1 − τ)

2

]

= −1

4
+ϕe(τ), (62)

where

ϕe(τ) =
β2

4
+ δ21 + δ2τ + δδ1(1 + τ) +

2m̄B[δ1 + δτ ]

m̄B + 1 − τ

[

δ2 +
δ(1 − τ)

2

]

. (63)

Since each parameter that appears in ϕ(τ) is positive, and 0 ≤ τ ≤ 1, it is clear that
ϕe is always positive. In fact, it is most likely greater than 1

4 . Hence the function ϕ(τ)
is likely to be always positive. We conclude then that in the case of End Burn, the
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magnitude of the transverse angular velocity is damped as the propellant burns. The
term “jet damping” truly applies in this case.

4.2 Centripetal Burn

We now consider the case of Centripetal Burn [see Figure 3.2]. Here,

ĪF =
IF

mFOR2
= m̄F

[

1

4

(

r

R

)2

+
1

12

(

L

R

)2]

= (1 − τ)

[

1 − τ

4
+

1

12
δ2

]

, (64)

a =
mBL3

mB +mF

(65)

and

b =
mFL3

mB +mF

. (66)

Substituting equations (64), (65), and (66) into (54), we obtain,

Ī = ĪB + (1 − τ)

[

1 − τ

4
+
δ2

12

]

+
m̄B(1 − τ)δ23
m̄B + 1 − τ

(67)

so that

Ī ′ = −
(

1 − τ

2
+
δ2

12

)

−
(

m̄Bδ3
m̄B + 1 − τ

)2

. (68)

In this case [see Figure 3.2],

ze = L1 +
L

2
+ a. (69)

So,
ze

R
=
m̄Bδ3 + (m̄B + 1 − τ)(δ1 + δ/2)

m̄B + 1 − τ
. (70)

From equations (16), (34), (68), and (70)

ϕ(τ) = −1

2
+
τ

2
+
β2

4
+
δ2

6
+ δ21 + δδ1 +

m̄Bδ3
m̄B + 1 − τ

(δ + 2δ1) = −1

2
+ ϕc(τ), (71)

where

ϕc(τ) =
τ

2
+
β2

4
+
δ2

6
+ δ21 + δδ1 +

m̄Bδ3
m̄B + 1 − τ

(δ + 2δ1). (72)

We have here a situation that is similar to the End Burn case. ϕc(τ) is positive and
increases with τ . ϕc(τ) is most likely greater than 1

2 , even at τ = 0. Therefore the
transverse angular speed is again a decreasing function from ignition to burnout.

4.3 Radial Burn

If the propellant undergoes a radial burn as shown in Figure 3.5,

ĪF =
IF

mFOR2
= m̄F

[

1

4
+

1

4

(

r

R

)2

+
1

12

(

L

R

)2]

= (1 − τ)

[

1 + γ2 + (1 − γ2)τ

4
+
δ2

12

]

.

(73)
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The distances a and b become

a =
mBL3

mB +mF

(74)

and

b =
mFL3

mB +mF

. (75)

Substituting equations (73), (74), and (75) into (54), we obtain, after some algebra,

Ī = ĪB + (1 − τ)

[

1 + γ2 + (1 − γ2)τ

4
+
δ2

12

]

+
m̄B(1 − τ)δ23
m̄B + 1 − τ

(76)

so that

Ī ′ = −
[

γ2 + (1 − γ2)τ

2
+
δ2

12

]

−
[

m̄Bδ3
m̄B + 1 − τ

]2

. (77)

Since, the distance

ze = L1 +
L

2
+ a. (78)

We have,
ze

R
=
m̄Bδ3 + (m̄B + 1 − τ)(δ1 + δ/2)

m̄B + 1 − τ
. (79)

From equations (16), (47), (77), and (79)

ϕ(τ) = −
[

γ2 + (1 − γ2)τ

2

]

+
β2

4
+
δ2

6
+ δ21 + δδ1 +

m̄Bδ3
m̄B + 1 − τ

(δ + 2δ1)

= ϕ1(τ) + ϕ2(τ),

(80)

where

ϕ1(τ) = −
[

γ2 + (1 − γ2)τ

2

]

(81)

and

ϕ2(τ) =
β2

4
+
δ2

6
+ δ21 + δδ1 +

m̄Bδ3
m̄B + 1 − τ

(δ + 2δ1). (82)

Here, the minimum value that ϕ1 can have is − 1
2 , but ϕ2 is always positive and most

likely greater than 1
2 . Hence, we have again that mass loss through radial propellant

burn results in continuous damping of the transverse rate.
In summary, we find that the transverse angular velocity decreases in magnitude as

propellant burn progresses for each of the three propellant-burn scenarios examined. We
note, however, that this conclusion is not absolute. In other words, one cannot absolutely
exclude the possibility of growth in the transverse angular speed with propellant burn.
Some factors that could bring this about include small values of β, δ, δ1, δ2 and δ3. We
note that in [2] a variable mass cylinder model was used to show that the transverse rate
can grow without bounds when the system is “short and fat,” that is, for small δ. This
makes sense because when a cylinder is used to model a rocket system, we automatically
have that δi (i = 1, 2, 3) are all zero and β = 1. If δ is small in addition, then there is a
clear danger of having |ϕ2| < |ϕ1| in (80). We also note that even for the extreme case of
the cylinder, the authors [2] were not able to show divergence in transverse rate for End
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and Centripetal Burns. It is easy to see this by setting δi = 0 and β = 1 in equations
(62) and (71).

5 Conclusion

This study examines how a spinning solid rocket’s propellant depletion scheme affects
the rotational dynamics of the rocket. Three mass loss scenarios – end burn, centripetal
burn, and radial burn – were evaluated.

Results obtained indicate that for End Burn, spin rate can remain constant, increase,
or decrease throughout the propellant burn depending on the value of the nozzle expan-
sion ratio used. For Centripetal Burn, the spin rate will either decrease through the burn
or increase at first then reverse itself and decrease to the end of the burn. In the case of
Radial burn, the spin rate initially decreases then it can either keep decreasing or start
increasing through the end of the burn. The value of the nozzle expansion ratio plays an
important role in determining the character of the spin rate curve.

The transverse angular speed normally decreases with propellant burn irrespective of
the type of burn adopted. For certain extreme choices of the parameters of the system,
it may be possible to have the transverse rate increase with time for the radial burn.
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