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Abstract: We study the close approach between a planet and a cloud of
particles. It is assumed that the dynamical system is formed by two main
bodies in circular orbits and a cloud of particles in planar motion. The goal is
to study the change of the orbit of this cloud after the close approach with the
planet. It is assumed that all the particles have semi-major axis a±∆a and
eccentricity e ± ∆e before the close approach with the planet. It is desired
to known those values after the close approach.
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1 Introduction

In astronautics, the close approach between a spacecraft and a planet is a very popular
technique used to decrease fuel expenditure in space missions. This maneuver modifies
the velocity, energy and angular momentum of a spacecraft. There are many important
applications very well known, like the Voyager I and II that used successive close encoun-
ters with the giant planets to make a long journey to the outer Solar System; the Ulysses
mission that used a close approach with Jupiter to change its orbital plane to observe
the poles of the Sun, etc.

In the present paper we study the close approach between a planet and a cloud of par-
ticles. It is assumed that the dynamical system is formed by two main bodies (usually
the Sun and one planet) which are in circular orbits around their center of mass and a
cloud of particles that is moving under the gravitational attraction of the two primaries.
The motion is assumed to be planar for all the particles and the dynamics given by the
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“patched-conic” approximation is used, which means that a series of two-body prob-
lems are used to generate analytical equations that describe the problem. The standard
canonical system of units is used and it implies that the unit of distance is the distance
between the two primaries and the unit of time is chosen such that the period of the
orbit of the two primaries is 2π.

The goal is to study the change of the orbit of this cloud of particles after the close
approach with the planet. It is assumed that all the particles that belong to the cloud
have semi-major axis a ± ∆a and eccentricity e ± ∆e before the close approach with
the planet. It is desired to known those values after the close approach.

Among the several sets of initial conditions that can be used to identify uniquely one
swing-by trajectory, a modified version of the set used in the papers written by [18 – 20]
is used here. It is composed by the following three variables: 1) Vp, the velocity of the
spacecraft at periapse of the orbit around the secondary body; 2) the angle ψ, that is
defined as the angle between the line M1 –M2 (the two primaries) and the direction of
the periapse of the trajectory of the spacecraft around M2; 3) rp, the distance from the
spacecraft to the center of M2 in the moment of the closest approach to M2 (periapse
distance). The values of Vp and ψ are obtained from the initial orbit of the spacecraft
around the Sun using the “patched-conics” approximation and rp is a free parameter
that is varied to obtain the results.

2 Review of the Literature for the Swing-By

The literature shows several applications of the swing-by technique. Some of them can
be found in [1], that studied a mission to Neptune using swing-by to gain energy to
accomplish the mission; [2], that made a similar study for a mission to Pluto; [3], that
formulated a mission to study the Earth’s geomagnetic tail; [4 – 6], that planned the mis-
sion ISEE-3/ICE; [7], that made the first studies for the Voyager mission; [8], that design
a mission to flyby the Halley comet; [9, 10] that studied multiple flyby for interplanetary
missions; [11, 12], that design missions with multiple lunar swing-bys; [13], that studied
the effects of the atmosphere in a swing-by trajectory; [14], that used a swing-by in Venus
to reach Mars; [15], that studied numerically a swing-by in three dimensions, including
the effects in the inclination; [16], that considered the possibility of applying an impulse
during the passage by the periapsis; [17], that classified trajectories making a swing-by
with the Moon. The most usual approach to study this problem is to divide the problem
in three phases dominated by the “two-body” celestial mechanics. Other models used to
study this problem are the circular restricted three-body problem (like in [18 – 20] and
the elliptic restricted three-body problem [21]).

3 Orbital Change of a Single Particle

This section will briefly describe the orbital change of a single particle subjected to a
close approach with the planet under the “patched-conics” model. It is assumed that the
particle is in orbit around the Sun with given semi-major axis (a) and eccentricity (e).
The swing-by is assumed to occur in the planet Jupiter for the numerical calculations
shown below, but the analytical equations are valid for any system of primaries. The
periapse distance (rp) is assumed to be known. As an example for the numerical cal-
culations, the following numerical values are used: a = 1.2 canonical units, e = 0.3,
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Figure 3.1. The swing-by in the three-dimensional space.

µJ = 0.00094736, rp = 0.0001285347 (100000 km = 1.4 Jupiter’s radius), where µJ is
the gravitational parameter of Jupiter in canonical units (total mass of the system equals
to one).

The first step is to obtain the energy (EB) and angular momentum (CB) of the
particle before the swing-by. They are given by

EB = −
1 − µJ

2a
= −0.4162, CB =

√

(1 − µJ ) a(1 − e2) = 1.0445. (1)

Then, it is possible to calculate the magnitude of the velocity of the particle with
respect to the Sun in the moment of the crossing with Jupiter’s orbit (Vi), as well as the
true anomaly of that point (θ). They come from

Vi =

√

(1 − µJ )

(

2

rSJ

−
1

a

)

= 1.0796 (2)

and

θ = cos−1

[

1

e

(

a(1 − e2)

rSJ

− 1

)]

= 1.2591

using the fact that the distance between the Sun and Jupiter (rSJ ) is one and taking
only the positive value of the true anomaly.

Next, it is calculated the angle between the inertial velocity of the particle and the
velocity of Jupiter (the flight path angle γ), as well as the magnitude of the velocity of
the particle with respect to Jupiter in the moment of the approach (V∞). They are given
by (assuming a counter-clock-wise orbit for the particle)

γ = tan−1

[

e sin θ

1 + e cos θ

]

= 0.2558

and V∞ =
√

V 2

i + V 2

2
− 2ViV2 cos γ = 0.2767 using the fact that the velocity of Jupiter

around the Sun (V2) is one. Figure 3.1 shows the vector addition used to derive the
equations.



268 A.F.B.A. PRADO

The angle β shown is given by

β = cos−1

(

−
V 2

i − V 2

2
− V −2

∞

2V2V
−

∞

)

= 1.7322.

This information allows us to obtain the turning angle (2δ) of the particle around
Jupiter, from

δ = sin−1

(

1 +
rpV

−2

∞

µJ

)

−1

= 1.4272. (3)

The angle of approach (ψ) has two values, depending if the particle is passing in front
or behind Jupiter. These two values will be called ψ1 and ψ2. They are obtained from
ψ1 = π + β + δ = 6.3011 and ψ2 = 2π + β − δ = 6.5882.

The correspondent variations in energy and angular momentum are obtained from the
equation ∆C = ∆E = −2V2V∞ sin δ sinψ (since ω = 1). The results are:

∆C1 = ∆E1 = −0.009811, ∆C2 = ∆E2 = −0.1644. (4)

By adding those quantities to the initial values we get the values after the swing-by.
They are:

E1 = −0.4260, C1 = 1.0346,

E2 = −0.5806, C2 = 0.8801.

Finally, to obtain the semi-major axis and the eccentricity after the swing-by it is
possible to use the equations

a = −
µ

2E
and e =

√

1 −
C2

µa
. (5)

The results are: a1 = 1.1723, e1 = 0.2937, a2 = 0.8603, e2 = 0.3144.

4 Orbital Change of a Cloud of Particles

The algorithm just described can now be applied to a cloud of particles passing close
to Jupiter. The idea is to simulate a cloud of particles that have orbital elements given
by: a ± ∆a and e ± ∆e. The goal is to map this cloud of particles to obtain the new
distribution of semi-major axis and eccentricities after the swing-by. Figure 4.1 and
Figure 4.2 shows some results for a cloud of particles with rp = 1.4Rj, for the case
∆a = ∆e = 0.001, rp = 1.4RJ and Figure 4.3 and Figure 4.4 shows the equivalent
results with rp = 10.0Rj for ∆a = ∆e = 0.001, rp = 10.0RJ .
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Figure 4.1. Eccentricity vs. Semi-major axis before and after the Swing-By for

”Solution 1”.

Figure 4.2. Eccentricity vs. Semi-major axis after the Swing-By for ”Solution 2”.

Figure 4.3. Eccentricity vs. Semi-major axis before and after the Swing-By for

”Solution 1”.
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Figure 4.4. Eccentricity vs. Semi-major axis after the Swing-By for ”Solution 2”.

5 Conclusions

The figures above allow us to get some conclusions. The solution called “Solution 1” has
a larger amplitude than the Solution 2 in both orbital elements, but it concentrates the
orbital elements in a line, while the so-called “Solution 2” generates a distribution close
to a square. The area occupied by the points is smaller for “Solution 1”. Both vertical
and horizontal lines are rotated and become diagonal lines with different inclinations.
The effect of increasing the periapse distance is to generate plots with larger amplitudes,
but with the points more concentrated, close to a straight line.

References

[1] Swenson, B.L. Neptune atmospheric probe mission. AIAA Paper 92-4371, 1992.
[2] Weinstein, S.S. Pluto flyby mission design concepts for very small and moderate spacecraft.

AIAA Paper 92-4372, 1992.
[3] Farquhar, R.W. and Dunham, D.W. A new trajectory concept for exploring the earth’s

geomagnetic tail. J. of Guidance, Control and Dynamics 4(2) (1981) 192–196.
[4] Farquhar, R., Muhonen, D. and Church, L.C. Trajectories and orbital maneuvers for the

ISEE-3/ICE comet mission. J. of Astronautical Sciences 33(3) (1985) 235–254.
[5] Efron, L., Yeomans, D.K. and Schanzle, A.F. ISEE-3/ICE navigation analysis. J. of

Astronautical Sciences 33(3) (1985) 301–323.
[6] Muhonen, D., Davis, S. and Dunham, D. Alternative gravity-assist sequences for the

ISEE-3 escape trajectory. J. of Astronautical Sciences 33(3) (1985) 255–273.
[7] Flandro, G. Fast reconnaissance missions to the outer solar system utilizing energy derived

from the gravitational field of Jupiter. Astronautical Acta 12(4) (1966) 329–337.
[8] Byrnes, D.V. and D’Amario, L.A. A combined Halley flyby Galileo mission. AIAA paper

82-1462, 1982.
[9] D’Amario, L.A., Byrnes, D.V. and Stanford, R.H A new method for optimizing multiple-

flyby trajectories. J. of Guidance, Control, and Dynamics 4(6) (1981) 591–596.
[10] D’Amario, L.A., Byrnes, D.V. and Stanford, R.H. Interplanetary trajectory optimization

with application to Galileo. J. of Guidance, Control, and Dynamics 5(5) (1982) 465–471.
[11] Marsh, S.M. and Howell, K.C. Double Lunar swingby trajectory design. AIAA Paper

88-4289, 1988.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 5(3) (2005) 265–271 271

[12] Dunham, D. and Davis, S. Optimization of a multiple Lunar-swingby trajectory sequence.
J. of Astronautical Sciences 33(3) (1985) 275–288.

[13] Prado, A.F.B.A. and Broucke, R.A. A study of the effects of the atmospheric drag in
swing-by trajectories. J. of the Brazilian Society of Mechanical Sciences XVI (1994)
537–544.

[14] Striepe, S.A. and Braun, R.D. Effects of a Venus swingby periapsis burn during an Earth-
Mars trajectory. J. of Astronautical Sciences 39(3) (1991) 299–312.

[15] Felipe, G. and Prado, A.F.B.A. Classification of out of plane swing-by trajectories. J. of

Guidance, Control and Dynamics 22(5) (1999) 643–649.
[16] Prado, A.F.B.A. Powered swing-by. J. of Guidance, Control and Dynamics 19(5) (1996)

1142–1147.
[17] Prado, A.F.B.A. and Broucke, R.A. A Classification of swing-by trajectories using the

Moon. Appl. Mechanics Reviews 48(11) Part 2 (1995) 138–142.
[18] Broucke, R.A. The celestial mechanics of gravity assist. AIAA Paper 88-4220, 1988.
[19] Broucke, R.A. and Prado, A.F.B.A. Jupiter swing-by trajectories passing near the Earth.

Advances in the Astronautical Sciences 82(2) (1993) 1159-1176.
[20] Prado, A.F.B.A. Optimal Transfer and Swing-By Orbits in the Two- and Three-Body

Problems. Ph.D. Dissertation, Dept. of Aerospace Engineering and Engineering Mechan-
ics, Univ. of Texas, Austin, TX, 1993.

[21] Prado, A.F.B.A. Close-approach trajectories in the elliptic restricted problem. J. of Guid-

ance, Control, and Dynamics 20(4) (1997) 797–802.
[22] Szebehely, V. Theory of Orbits. Academic Press, New York, 1967.


