Nonlinear Dynamics and Systems Theory, 5(3) (2005) 273-284

Publishing

Fault Detection Filter for Linear Time-Delay Systems

Maiying Zhong^{1,2}, Hao Ye¹, Steven X. Ding^{3*}, Guizeng Wang¹ and Zhou Donghua¹

 ¹Department of Automation, Tsinghua University 100084 Beijing, P. R. China,
²Control Science and Engineering School, Shandong University 73 Jingshi Road, 250061 Jinan, China
³Gerhard-Mercator-University Duisburg, Germany

Received: December 12, 2004; Revised: May 12, 2005

Abstract: By extension of a fault detection optimization approach to linear time invariant (LTI) systems, this short paper deals with the fault detection filter (FDF) problem for linear time-delay systems with L_2 -norm bounded unknown inputs. The basic idea is first to introduce a new FDF as the residual generator; and then based on an objective function to formulate the FDF design as an optimization problem. Through appropriate choice of the filter gain matrix and a post-filter, the convergence of the residual generator and satisfactory FDF performance can be achieved. A numerical example is given to illustrate the effectiveness of the proposed method.

Keywords: Fault detection; filter; robustness; sensitivity; time delay. Mathematics Subject Classification (2000): 60G35, 93E11, 94A13.