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Abstract: In this paper, we present a new scheme to design adaptive con-
trollers for single-input single-output uncertain time-varying systems in the
presence of unknown bounded disturbances. No knowledge is assumed on the
sign of the term multiplying the control. The control design is achieved by
introducing certain well defined functions, estimating variation rates of pa-
rameters and incorporating a Nussbaum gain. To overcome the problem of
overparametrization, tuning functions, which are different from the standard
ones due to the use of projection operations, are employed. It is shown that
the proposed controller can guarantee global uniform ultimate boundedness.
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1 Introduction

Adaptive control has seen significant development since the appearance of a Lyapunov-
based recursive design procedure known as backstepping [7]. A great deal of attention
has been paid to tackle both linear and nonlinear systems with unknown parameters
and a number of results have been obtained in [1 – 6]. However, only limited number of
results are available for nonlinear systems with time-varying parameters and/or without
the knowledge on the sign of the term multiplying the control, i.e. high frequency gain
in the case of linear systems, in the presence of external disturbances. In this paper, we
shall also call this term the high frequency gain for nonlinear systems for simplicity.

In [9], output feedback control was considered for linear time-varying systems when
the sign of high-frequency gain is known. In [11], the problem of adaptive control with
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unknown sign of high-frequency gain for linear time invariant systems was studied. In [2],
Nussbaum gain incorporated with the backstepping technique was used to design adaptive
output stabilizer for high order uncertain time invariant nonlinear systems with unknown
sign of high-frequency gain in the absence of external disturbances. The nonlinearities
considered should satisfy sector conditions. In [3], disturbance decoupling was addressed
for nonlinear time invariant systems with known sign of the high frequency gain. The
result obtained is critically depending on a function of the system output y and the
reference trajectory yr. It should be noted that such a function is undefined at the time
instants when y = yr. Therefore, the control signal is undefined at these time instants.
In [4], a flat zone was used to handle the problem of nonlinear time invariant systems
with unknown sign of high frequency gain in the presence of disturbances. The bound of
the disturbance and all the unknown parameters need to be estimated at every step in
the backstepping process. This results in the problem of overparametrization and makes
the implementation complicated. In [6] state-feedback control was considered for a class
of uncertain time-varying nonlinear systems in the presence of disturbances. Due to
state feedback, no filter is required for state estimation. Thus the derivatives of the time
varying parameters and the term of the disturbance need not to be considered in controller
design. This also makes the stability analysis greatly simplified. Again, parameters are
required to be estimated at every step, which results in overparametrization. In the
case of output feedback control of nonlinear time-varying systems in the presence of
disturbances, no result is available. In this case, filters similar to [7] are required to
estimate system states and the state equations of the state estimation error will be used
in the design and analysis. In these equations, the external disturbances and derivatives
of time-varying parameters will appear and have great impact on the errors. This makes
the design and analysis quite difficult, especially when the sign of high frequency gain is
unknown and tuning functions are used.

In this paper, we consider such a case and propose a new control design scheme to solve
the problem. The nonlinearities considered are not required to satisfy the sector type of
conditions like [2]. To handle the disturbances, well defined functions are introduced to
eliminate their effects in the Lyapunov functions employed in the recursive design steps.
To deal with the time variation problem, an estimator is used to estimate the bound of
the variation rates. Furthermore, the overparametrization problem is also solved by using
the concept of tuning functions. As projection operation is used, the design of tuning
functions are different from existing schemes as in [7]. With our proposed controller,
global system stability is ensured.

2 System Model and Problem Formulation

Consider the following class of single-input-single-output (SISO) nonlinear time-varying
systems in the feedback form

ẋ1 = x2 + θa1(t)ψa1(y) + d1(t)φa1(y) + ψ01(y),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ẋρ−1 = xρ + θaρ−1(t)ψaρ−1(y) + dρ−1(t)φaρ−1(y) + ψ0ρ−1(y),

ẋρ = xρ+1 + θaρ(t)ψaρ(y) + dρ(t)φaρ(y) + ψ0ρ(y) + bm(t)u, (1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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ẋn = θan(t)ψan(y) + dn(t)φan(y) + ψ0n(y) + b0(t)u,

y = eT1 x,

where x = [x1, · · · , xn]T ∈ Rn, u ∈ R and y ∈ R are system states, input and output
respectively, bi(t), i = m, . . . , 0, are bounded uncertain time-varying piecewise contin-
uous high-frequency gains, θai(t) ∈ Rpi are uncertain time-varying parameters, di(t),
i = 1, . . . , n, denote unknown time-varying bounded disturbances, ψai and φai are known
smooth nonlinear functions in Rn. Similar class of systems was analyzed in [8].

In order to cope with the unknown sign of high-frequency gain, the Nussbaum gain
technique is employed in this paper. A function N(χ) is called a Nussbaum-type function
if it has the following properties [10]

lim
s→∞

sup
1

s

s
∫

0

N(χ)dχ = ∞, (2)

lim
s→∞

inf
1

s

s
∫

0

N(χ)dχ = −∞. (3)

In this paper, the even Nussbaum function exp(χ2) cos(π
2χ) is exploited. As in [6] the

following Lemma will be employed in later analysis.

Lemma 1 Let V (t) and χ(t) be a smooth function defined on [0, tf) with V (t) ≥ 0,

∀ t ∈ [0, tf), and N(χ) = exp(χ2) cos(π
2χ) be an even smooth Nussbaum-type function.

If the following inequality holds:

V (t) ≤ f0 + e−f1t

t
∫

0

g1N(χ)χ̇dτ + e−f1t

t
∫

0

χ̇(t)ef1τdτ (4)

where constant f1 > 0, g1 is a parameter which takes values in the unknown closed
intervals I1 = [l−1 , l

+
1 ] with 0 /∈ I1, and f0 represents some suitable constant, then V (t),

χ(t) and
t
∫

0

g1N(χ)χ̇dτ must be bounded on [0, tf).

For the considered system (1), the following assumptions are imposed.

Assumption 1 The uncertain parameter vector θ is inside a compact set Ωθ, where
θ = [bm(t), . . . , b0(t), θa1(t), . . . , θan(t)]T. In addition, there exists an unknown bounded

positive constant q so that q ≥ ‖θ̇‖. Also q is inside a compact intervals Ωq = [I−, I+]
and bm(t) 6= 0, ∀ t.

Assumption 2 The relative degree ρ is fixed and known. This is ensured by As-
sumption 1.

Assumption 3 The reference signal yr and its (ρ− 1)-th order derivatives are also
assumed to be known and bounded.
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Assumption 4 The system is minimum phase in the sense defined in [8].

In order to design the desired adaptive control law with output via backstepping
procedures, we now transform system (1) into the following form

ẋ = Ax+ F (y, u)Tθ + Φa(y)d(t)T + ψ0(y) (5)

where

A =











0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0











, (6)

F (y, u)T =

[ [

0(ρ−1)×(m+1)

Im+1

]

u, Ψa(y)

]

, (7)

Ψa(y) =







ψT
a1 0 . . . 0
0 ψT

a2 . . . 0
. . . . . . . . . . . . . . . . . . . .
0 0 . . . ψT

an






=







Ψa1(y)
...

Ψan(y)






, (8)

Φa(y) =







φT
a1 0 . . . 0
0 φT

a2 . . . 0
. . . . . . . . . . . . . . . . . . .
0 0 . . . φT

an






=







ΦT
a1(y)
...

ΦT
an(y)






, (9)

θ = [bm(t), . . . , b0(t), θa1(t), . . . , θan(t)]T, (10)

d(t) = [d1(t), . . . , dn(t)], (11)

ψ0(y) = [ψ01(y), . . . , ψ0n(y)]T. (12)

We employ the filters similar to those in [7], i.e.

ξ̇ = A0ξ + ky + ψ0(y) (13)

Ω̇T = A0Ω
T + F (y, u)T (14)

where

k , [k1, k2, . . . , kn]T, (15)

A0 = A− keT1 . (16)

The vector k in (15) is chosen such that the matrix A0 is strictly stable. It can be shown
that Ω obtained from (14) satisfies the following equations

ΩT = [vm, . . . , v1, v0,Ξ], (17)

Ξ̇ = A0Ξ + Ψa(y), (18)

λ̇ = A0λ+ enu, (19)

vj = Aj
0λ. (20)
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From our designed filters, system (1) can be represented as

ẏ = bmvm,2 + β + ω̄Tθ + ǫ2 + d(t)Φa1(y), (21)

v̇m,i = vm,i+1 − kivm,1, i = 2, 3, . . . , ρ− 1, (22)

v̇m,ρ = vm,ρ+1 − kρvm,1 + u, (23)

where

β = ξ2 + ψ01, (24)

ω = [vm,2, vm−1,2, . . . , v0,2,Ξ2 + Ψa1]
T, (25)

ω̄ = [0, vm−1,2, . . . , v0,2,Ξ2 + Ψa1]
T. (26)

In the above equations, ǫ2, vi,2 and ξi,2 denote the second entries of ǫ, vi and ξi respec-
tively, ǫ is the estimation error defined in (28).

With the above filters, a state estimate is given by

x̂ = ξ + ΩTθ (27)

and the estimation error ǫ is defined as

ǫ = x− x̂ (28)

From the equations (5), (13), (14), (27) and (28), the estimation error satisfies

ǫ̇ = A0ǫ+ Φa(y)d(t)T − ΩTθ̇. (29)

Remark 1 The error ǫ will be used in our design and analysis given later. As the
disturbances and derivatives of time-varying parameters appear in (29), their effects
should be considered in controller design. However for the state-feedback control in [6],
no filter is required for state estimation. Their effects may not be necessarily considered
in controller design and this makes the problem much simpler.

We now divide the error ǫ into two parts, i.e. ǫ = ǫa + ǫb, where ǫa satisfies

ǫ̇a = A0ǫa + Φa(y)d(t)T (30)

with ǫa(0) = ǫ(0), and ǫb =
t
∫

0

eA0(t−τ)(−ΩTθ̇)dτ . It can be shown that

‖ǫb‖ ≤

t
∫

0

‖eA0(t−τ)‖ ‖Ω‖ ‖θ̇‖ dτ

≤ q

t
∫

0

‖eA0(t−τ)‖ ‖Ω‖ dτ ≤ q

t
∫

0

e−λθ(t−τ)kθ‖Ω‖ dτ,

(31)

where λθ and kθ are chosen positive parameters so that

kθe
−λθt ≥ ‖eA0t‖, ∀ t ≥ 0. (32)
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Thus ǫb satisfies
|ǫb| ≤ h(t)q, (33)

where h(t) is generated by

ḣ = −λθh+ kθ

(

‖Ω‖2 +
1

4

)

. (34)

Suppose P ∈ Rn×n is a positive definite matrix, satisfying PA0 + AT
0 P ≤ −3I and

let
Vǫ = ǫTaPǫa. (35)

It can be shown that

V̇ǫ = ǫTa (PA0 +AT
0 P )ǫa + 2ǫTaPΦa(y)d(t)T

≤ −2‖ǫa‖
2 + ‖PΦa(y)d(t)T‖2.

(36)

The problem of this paper is to design an adaptive controller to make system (1) BIBO
stable.

3 Control Design

In this section, we present the adaptive control design using the backstepping technique
with tuning functions in ρ steps. In order to avoid using the sign of the high frequency
gain, we take the change of coordinates

z1 = y − yr, (37)

zi = vm,i − αi−1, i = 2, 3, . . . , ρ, (38)

where αi−1 is the virtual control at each step and will be determined in later discussions.
Before presenting the detail, a useful function is introduced. Firstly we define s(x) as

s(x) =

{

x2 |x| ≥ δ,

(δ2 − x2)ρ + x2 |x| < δ,
(39)

where δ is a positive design parameter. It can be shown that s(x) is (ρ − 1)-th order
differentiable and bounded below for |x| < δ. Based on s(x), a function H(z1) is defined
as follows

H(z1) =
Φa(y)

s(z1)
=















Φa(y)

z2
1

|z1| ≥ δ,

Φa(y)

(δ2 − z2
1)ρ + z2

1

|z1| < δ.

(40)

Clearly H is well defined and for |z1| < δ, H is bounded as s(z1) is bounded below.

Remark 2 In [3], a similar function to (40) was used to design controllers for distur-
bance decoupling. However, the function is undefined at the time instants when y = yr.
Thus, the controller presented is undefined at these time instants.
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From (36) and (40) it can be shown that

V̇ǫ ≤ −2‖ǫa‖
2 +

1

2
s4‖PH‖4 +

1

2
‖d(t)‖4. (41)

We now illustrate the backstepping design procedures using Nussbaum gain with details
given for the first two steps.

Step 1 It follows from (21) and (37) that

ż1 = bmvm,2 + β + ω̄Tθ + ǫ2 + d(t)Φa1(y) − ẏr. (42)

Without using the sign of bm, the following virtual control law α1 is designed

α1 = N(χ)ᾱ1e
−ft, (43)

N(χ) = exp(χ2) cos
π

2
χ, (44)

where f is a positive real design parameter, χ is generated by

χ̇ = z1ᾱ1 (45)

and ᾱ1 is chosen to be

ᾱ1 =
(

c1 + l1 + (eT1 θ̂)
2
)

z1 + β + ω̄Tθ̂ − ẏr

+ z1h
2q̂ +

1

4
z1‖Φa1(y)‖

2 +

ρ
∑

i=1

1

8li
z1s

3(z1)‖PH‖4,
(46)

where c1 and l1 are two positive real design parameters, θ̂ and q̂ denote the estimates of
θ and q. Notice that

bmvm,2 = bm(z2 + α1) = b̂mz2 + bmα1 + b̃mz2, (47)

where b̃m = bm − b̂m, b̂m is the first element of θ̂, i.e. b̂m = eT1 θ̂. Then from (42) and
(46) we have

ż1 − ᾱ1 = −(c1 + l1 + b̂2m)z1 + (ω̄T + z2e
T
1 )θ̃ + ǫa,2 + ǫb,2 − z1h

2q̂ + b̂mz2 + bmα1

+ d(t)Φa1(y) −
1

4
z1‖Φa1(y)‖

2 −

ρ
∑

i=1

1

8li
z1s

3‖PH‖4,
(48)

where θ̃ = θ − θ̂, ǫa,2 and ǫb,2 represent the second entry of ǫa and ǫb. To proceed, we
define the Lyapunov function

V1 =
1

2
z2
1 +

1

2
θ̃TΓ−1θ̃ +

1

2
q̃2 +

1

4l1
Vǫ, (49)
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where Γ is a positive definite matrix of R(n+2)×(n+2). Then the derivative of V1 along
with (41), (43) and (48) is given by

V̇1 = z1(ż1 − ᾱ1) + z1ᾱ1 + θ̃TΓ−1(θ̇ −
˙̂
θ) + q̃ ˙̃q +

1

4l1
V̇ǫ

≤ −(c1 + b̂2m)z2
1 + b̂mz1z2 + θ̃TΓ−1(τ1 −

˙̂
θ) − l1z

2
1 + ǫa,2z1 −

1

2l1
‖ǫa‖

2

+ ǫb,2z1 − q̃ ˙̂q − h2q̂z2
1 + d(t)Φa1(y)z1 −

1

4
z2
1‖Φa1(y)‖

2 + bmα1z1 + ᾱ1z1

+
1

8l1
s4‖PH‖4 −

ρ
∑

i=1

1

8li
z2
1s

3‖PH‖4 +
1

8l1
‖d(t)‖4 + θ̃TΓ−1θ̇,

(50)

where

τ1 = Γz1(ω̄ + z2e1). (51)

Here we know that

ǫb,2z1 − h2q̂z2
1 ≤ hq|z1| − h2q̂z2

1 ≤ q(h2z2
1 + 1/4)− h2q̂z2

1 = h2q̃z2
1 +

q

4
.

Then we can get

V̇1 ≤ (bmN(χ)e−ft + 1)χ̇− c1z
2
1 + θ̃TΓ−1(τ1 −

˙̂
θ)

+ q̃(ι1 − ˙̂q) −
1

4l1
‖ǫa‖

2 +
1

4
z2
2 +M1,

(52)

where

ι1 = h2z2
1 , (53)

M1 = ‖d(t)‖2 +
1

8l1
‖d(t)‖4 −

ρ
∑

i=2

1

8li
s4‖PH‖4 + θ̃TΓ−1θ̇ +

1

4
q +N, (54)

N =







0, |z1| ≥ δ,
ρ
∑

i=1

1

8li
(δ2 − z2

1)ρs3‖PH‖4, |z1| < δ.
(55)

From (40) we know that N is bounded.

Step 2 Now, we evaluate the dynamics of the second state z2. Differentiating (38)
for i = 2 and using (22), we have

ż2 = vm,3 − k2vm,1 − α̇1. (56)

Note that α1 is a function of y, θ̂, q̂, ξ, Ξ, λ, χ and yr and following from similar analysis
to [7] by substituting (38) with i = 3 into (56), we get

ż2 = α2 − β2 −
∂α1

∂y

(

ǫ2 + ωTθ̃ + d(t)Φa1(y)
)

+ z3 −
∂α1

∂y
ωTθ̂ −

∂α1

∂θ̂

˙̂
θ −

∂α1

∂q̂
˙̂q, (57)
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where

β2 , k2vm,1 +
∂α1

∂y
β +

∂α1

∂Π
Π̇ +

m+1
∑

j=1

∂α1

∂λj

(−kjλ1 + λj+1) +
∂α1

∂yr

ẏr +
∂α1

∂χ
χ̇ (58)

where Π = [ξT,Vec (Ξ)T]T. Define the Lyapunov function and choose the virtual control
for this step as

V2 = V1 +
1

2
z2
2 +

1

4l2
Vǫ, (59)

α2 = −

(

c2 +
1

4

)

z2 +
∂α1

∂y
ωTθ̂ − z2

∥

∥

∥

∥

∂α1

∂θ̂

∥

∥

∥

∥

2

‖τ2‖
2 − z2h

2q̂

∥

∥

∥

∥

∂α1

∂y

∥

∥

∥

∥

2

(60)

− z2

∥

∥

∥

∥

∂α1

∂q̂

∥

∥

∥

∥

2

ι22 − l2

∥

∥

∥

∥

∂α1

∂y

∥

∥

∥

∥

2

z2 + β2 −
z2
4

∥

∥

∥

∥

∂α1

∂y
Φa1(y)

∥

∥

∥

∥

2

,

τ2 = τ1 − Γ
∂α1

∂y
ωz2, (61)

ι2 = ι1 + h2

∥

∥

∥

∥

∂α1

∂21

∥

∥

∥

∥

2

z2
2 . (62)

Using (52), (59) and (60), we have that

V̇2 ≤ V̇1 + z2ż2 +
1

4l2
V̇ǫ

≤ −

2
∑

i=1

ciz
2
i + (bmN(χ)e−ft + 1)χ̇+ z2z3 −

2
∑

i=1

1

4li
‖ǫa‖

2 +M2

+ θ̃TΓ−1(τ1 −
˙̂
θ) − z2

∂α1

∂y
ωTθ̃ + z2

2

∥

∥

∥

∥

∂α1

∂θ̂

∥

∥

∥

∥

2

‖
˙̂
θ‖2 − z2

2

∥

∥

∥

∥

∂α1

∂θ̂

∥

∥

∥

∥

2

‖τ2‖
2

+ q̃(ι1 − ˙̂q) + h2q̃

∥

∥

∥

∥

∂α1

∂y

∥

∥

∥

∥

2

z2
2 + z2

2

∥

∥

∥

∥

∂α1

∂q̂

∥

∥

∥

∥

2

˙̂q
2
− z2

2

∥

∥

∥

∥

∂α1

∂q̂

∥

∥

∥

∥

2

ι2

≤ −
2

∑

i=1

ciz
2
i + (bmN(χ)e−ft + 1)χ̇+ z2z3 + θ̃TΓ−1(τ2 −

˙̂
θ) + q̃(ι2 − ˙̂q) +M2

+ z2
2

∥

∥

∥

∥

∂α1

∂θ̂

∥

∥

∥

∥

2

(‖
˙̂
θ‖2 − ‖τ2‖

2) + z2
2

(

∂α1

∂q̂

)2

( ˙̂q
2
− ι22) −

2
∑

i=1

1

4li
‖ǫa‖

2,

(63)

where

M2 =
2

∑

i=1

1

8li
‖d(t)‖4 + 2‖d(t)‖2 −

ρ
∑

i=3

1

8li
s4‖PH‖4 + θ̃TΓ−1θ̇ +

1

2
+

1

2
q +N. (64)

Remark 3 Note that M2 contains s4‖PH‖4 and this term may not be bounded. As
seen from our analysis, 1

8l2
s4‖PH‖4 disappears in M2 due to the use of Vǫ at step 2. If

we use Vǫ at each step, this term will disappear in Mρ on the last step.
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Step i (i = 3, . . . , ρ) These steps are similar to those in [7]. Define

Vi = Vi−1 +
1

2
z2

i +
1

4li
Vǫ, (65)

αi = −cizi − li

∥

∥

∥

∥

∂αi−1

∂y

∥

∥

∥

∥

2

zi − zi−1 + βi +
∂αi−1

∂y
ωTθ̂ −

zi

4

∥

∥

∥

∥

∂αi−1

∂y
Φa1(y)

∥

∥

∥

∥

2

− zi

∥

∥

∥

∥

∂αi−1

∂θ̂

∥

∥

∥

∥

2

‖τi‖
2 +

( i−1
∑

k=2

z2
k

∥

∥

∥

∥

∂αk−1

∂θ̂

∥

∥

∥

∥

2)

(τi + τi−1)
TΓ

∂αi−1

∂y
ω (66)

− zi

∥

∥

∥

∥

∂αi−1

∂q̂

∥

∥

∥

∥

2

ι2i −

( i−1
∑

k=2

z2
k

∥

∥

∥

∥

∂αk−1

∂q̂

∥

∥

∥

∥

2)

(ιi + ιi−1)
Th2

∥

∥

∥

∥

∂αi−1

∂y

∥

∥

∥

∥

2

zi

− zih
2q̂

∥

∥

∥

∥

∂αi−1

∂y

∥

∥

∥

∥

2

,

τi = τi−1 − Γ
∂αi−1

∂y
ωzi, (67)

ιi = ιi−1 + h2

∥

∥

∥

∥

∂αi−1

∂y

∥

∥

∥

∥

2

z2
i , (68)

where

βi , kivm,1+
∂αi−1

∂y
β+

∂αi−1

∂Π
Π̇+

∂αi−1

∂yr

ẏr +

m+1
∑

j=1

∂αi−1

∂λj

(−kjλ1 +λj+1)+
∂αi−1

∂χ
χ̇. (69)

Also note that

‖τi‖
2 = τT

i τi = τT
i τi − τT

i−1τi−1 + τT
i−1τi−1 = (τi + τi−1)

T(τi − τi−1) + τT
i−1τi−1

= −(τi + τi−1)
TΓ

∂αi−1

∂y
ωzi + τT

i−1τi−1,

ι2i = (ιi + ιi−1)
Th2

∥

∥

∥

∥

∂αi−1

∂y

∥

∥

∥

∥

2

z2
i + ι2i−1.

(70)

Then the actual adaptive controller is obtained and given by

u(t) = αρ − vm,ρ+1, (71)

˙̂
θ = Proj (τρ), (72)

˙̂q = Proj (ιρ), (73)

where Proj (·) is a smooth projection operation to ensure the estimates belong to com-
pact sets for all time. Such an operation can be found in [7].

Remark 4 Note that the designed tuning functions are different from existing schemes
in [7] as the projection operations are used in the parameter estimators.
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By using the properties that −θ̃TΓ−1 Proj (τ) ≤ −θ̃TΓ−1τ and Proj (τ)T Proj (τ) ≤
τTτ the final Lyapunov function Vρ satisfies

V̇ρ ≤ −

ρ
∑

k=1

ckz
2
k + (bmN(χ)e−ft + 1)χ̇+Mρ −

ρ
∑

i=1

1

4li
‖ǫa‖

2

+ θ̃TΓ−1(τρ − Proj (τρ)) +

( ρ
∑

k=2

z2
k

∥

∥

∥

∥

∂αk−1

∂θ̂

∥

∥

∥

∥

2)

(Proj (τρ)
T Proj (τρ) − ‖τρ‖

2)

+ q̃(ιρ − Proj (ιρ)) +

( ρ
∑

k=2

z2
k

(

∂αk−1

∂q̂

)2)

(Proj (ιρ)
2 − ι2ρ)

≤ −

ρ
∑

k=1

ckz
2
k + bmN(χ)e−ftχ̇+ χ̇+Mρ −

ρ
∑

i=1

1

4li
‖ǫa‖

2,

(74)

where

Mρ =

ρ
∑

i=1

1

8li
‖d(t)‖4 + ρ‖d(t)‖2 + θ̃TΓ−1θ̇ +

ρ− 1

2
+
ρ

4
q +N (75)

Integrating both sides of (74) over the interval [0, t] gives

t
∫

0

V̇ρe
fτdτ ≤ −

t
∫

0

ρ
∑

k=1

ckz
2
ke

fτdτ +

t
∫

0

bmN(χ)χ̇ dτ +

t
∫

0

χ̇efτdτ

+

t
∫

0

Mρe
fτdτ −

t
∫

0

ρ
∑

i=1

1

4li
‖ǫa‖

2efτdτ.

(76)

Note that Vǫ ≤ ‖P‖‖ǫa‖
2. Then

Vρ =

ρ
∑

k=1

1

2
z2

k +
1

2
θ̃TΓ−1θ̃ +

1

2
q̃2 +

ρ
∑

i=1

1

4li
Vǫ

≤

ρ
∑

k=1

1

2
z2

k +
1

2
θ̃TΓ−1θ̃ +

1

2
q̃2 +

ρ
∑

i=1

1

4li
‖P‖‖ǫa‖

2.

(77)

This yields

0 ≤ Vρ(t) ≤ Vρ(0) + e−ft

t
∫

0

bmN(χ)χ̇ dτ +

t
∫

0

χ̇e−f(t−τ) dτ

+

t
∫

0

f

2
(θ̃TΓ−1θ̃) + q̃2)e−f(t−τ) dτ +

t
∫

0

Mρe
−f(t−τ) dτ

(78)
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where f = min
{ 1

‖P‖2
, 2c1, 2c2, . . . , 2cρ,

}

> 0. Due to the utilization of projection

operations for θ̂ and q̂, the boundedness of θ̃ and q̃ can be guaranteed. Together with

the boundedness of d(t), q and θ̇, the boundedness of Mρ and

t
∫

0

f

2
(θ̃TΓ−1θ̃ + q̃2)e−f(t−τ)dτ +

t
∫

0

Mρe
−f(t−τ)dτ

can be guaranteed. Thus by comparing with (4), f0 is selected as the upper bound of

Vρ(0) +

t
∫

0

f

2
(θ̃TΓ−1θ̃ + q̃2)e−f(t−τ)dτ +

t
∫

0

Mρe
−f(t−τ)dτ, g1 = bm

and f1 = f . Using Lemma 1, we can conclude that Vρ(t) and χ(t), hence zi, (i =
1, . . . , ρ) are bounded. Finally, the stability of the whole system can be established as
in [7].

To conclude this section, the results established are presented in the following theorem.

Theorem 1 Consider the uncertain time-varying nonlinear system (1) satisfying
Assumptions 1 – 4. With the application of the controller (71) and the parameter updating
laws (72) and (73), the resulting closed loop system is BIBO stable.

4 A Simulation Example

In this section, the proposed design method is illustrated on the following simple linear
system

ẋ1(t) = x2(t) + θ1(t)y(t),

ẋ2(t) = b(t)u(t) + d(t),

y(t) = x1(t),

(79)

where θ1(t) = 1 + sin(t), b(t) = 1 + exp(−t), d(t) = cos(t) are unknown timevarying
parameters in the controller design. The objective is to control the system output y(t)
to follow a desired trajectory yr(t) = sin(t) + sin(2t). The filters are implemented as

ξ̇ = A0ξ + ky, (80)

λ̇ = A0λ+ e2u, (81)

Ξ̇ = A0Ξ + Ψ, Ψ = [y 0]T, (82)

A0 =

[

−k1 1
−k2 0

]

. (83)

The control law α1 in (43), u(t) in (71), and the parameter update law θ̂ in (72) are used
with θ = [b θ1]

T. The design parameters are chosen as c1 = c2 = 5, Γ = I2, l1 = l2 = 2,

k1 = 6, k2 = 8. The initials y(0) = 0.1, θ̂(0) = [0.2 0.5]T and others are set to zero.
The simulation results presented in the Figure 4.1 show the system output y(t) and the
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Figure 4.1. Output y(−−) and trajectory yr(−).

Figure 4.2. Control signal u(t).

desired trajectory signal yr(t). Figure 4.2 shows the control signal u(t). Clearly, these
simulation results verify that our proposed scheme is effective.

5 Conclusion

In this paper, a scheme is proposed to design an adaptive output-feedback controller for
uncertain time-varying nonlinear systems with unknown sign of high-frequency gains in
the presence of disturbances. No growth conditions on system nonlinearities are imposed.
In the design, certain well defined functions are used to cancel the effects of disturbances.
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To deal with the time variation problem, an estimator is used to estimate the bound of
the variation rates. Furthermore, the overparametrization problem is also solved by
using the concept of tuning functions. It is shown that the controller obtained by the
proposed design scheme can make the whole adaptive control system stable. Simulations
performed on a simple system also verify the effectiveness of the proposed scheme.
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