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1 Introduction

In this paper we are concerned with the oscillatory behavior of the fourth order functional
differential equations of the type

d

dt

(

1

a3(t)

(

d

dt

(

1

a2(t)

(

d

dt

(

1

a1(t)

(

d

dt
x(t)

)α1
))α2

)α3
))

+ q(t)f(x[g(t)]) = 0,

or, written more compactly as

L4x(t) + q(t)f(x[g(t)]) = 0, (1.1)
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where

L0x(t) = x(t), L4x(t) =
d

dt
L3x(t),

Lkx(t) =
1

ak(t)

(

d

dt
Lk−1x(t)

)αk

, k = 1, 2, 3.

(1.2)

In what follows, we shall assume that

(i) ai(t), q(t) ∈ C([t0,∞), R+), where R+ = (0,∞), t0 ≥ 0 and

∞
∫

a
1/αi

i (s) ds = ∞, i = 1, 2, 3; (1.3)

(ii) g(t) ∈ C([t0,∞), R), where R = (−∞,∞), g′(t) ≥ 0 for t ≥ t0 and
lim

t→∞
g(t) = ∞;

(iii) f ∈ C(R, R), xf(x) > 0 and f ′(x) ≥ 0 for x 6= 0;
(iv) αi, i = 1, 2, 3, are the ratios of positive odd integers.

The domain D(L4) of L4 is defined to be the set of all functions x : [tx,∞) → R,
tx ≥ t0 such that Ljx(t), 0 ≤ j ≤ 4 exist and are continuous on [tx,∞). Our attention
is restricted to those solutions x ∈ D(L4) of (1.1) which satisfy sup {|x(t)| : t ≥ T } > 0
for T ≥ tx. We make the standing hypothesis that equation (1.1) does possess such
solutions.

A solution of equation (1.1) is called oscillatory if it has arbitrarily large zeros, other-
wise, it is called nonoscillatory. Equation (1.1) is called B-oscillatory if all its bounded
solutions are oscillatory and is called oscillatory if all its solutions are oscillatory.

In the last three decades there has been an increasing interest in studying the oscilla-
tory and nonoscillatory behavior of solutions of functional differential equations. Most of
the work on the subject, however, has been restricted to first and second order equations,
as well as, higher order equations of the type

Lkx(t) + q(t)f(x[g(t)]) = 0,

where

L0x(t) = x(t), Lkx(t) =
1

ak(t)

d

dt
Lk−1x(t), k = 1, 2, . . . , n−1, Lnx(t) =

d

dt
Ln−1x(t).

For recent contributions, we refer to [1–13] and the references cited therein.

It appears that little is known regarding the oscillation of equation (1.1). Therefore,
our main goal here is to present a systematic study of the oscillation of all bounded
solutions of equation (1.1). We shall establish some necessary and sufficient conditions
for the bounded oscillation and nonoscillation of equation (1.1). Moreover, our equation is
quite general and therefore the results of this paper even in some special cases complement
and generalize some known results appeared recently in the literature (see [4 – 8, 10 – 13]).
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2 Main Results

Consider the inequalities

d

dt

(

1

a1(t)

(

d

dt
x(t)

)α1
)

+ q(t)f(x[g(t)]) ≤ 0, (2.1)

d

dt

(

1

a1(t)

(

d

dt
x(t)

)α1
)

+ q(t)f(x[g(t)]) ≥ 0 (2.2)

and the equation
d

dt

(

1

a1(t)

(

d

dt
x(t)

)α1
)

+ q(t)f(x[g(t)]) = 0, (2.3)

where (ii) and (iii) hold, a1(t) and α1 are as in (i) and (iv) respectively.
Now we shall prove the following lemma.

Lemma 2.1 If inequality (2.1) (inequality (2.2)) has an eventually positive (negative)
solution, then equation (2.3) also has an eventually positive (negative) solution.

Proof Let x(t) be an eventually positive solution of inequality (2.1). It is easy to see
that x′(t) > 0 eventually. Let

y(t) =
1

a1(t)

(

d

dt
x(t)

)α1

.

Then,

x′(t) = (a1(t)y(t))1/α1 ≥ 0 for t ≥ t0 ≥ 0. (2.4)

Integrating (2.4) from t0 to t, we have

x(t) = x(t0) +

t
∫

t0

(a1(s)y(s))1/α1 ds.

Thus, (2.1) becomes

dy

dt
+ q(t)f

(

x(t0) +

g(t)
∫

t0

(a1(s)y(s))1/α1ds

)

≤ 0. (2.5)

Integrating (2.5) from t to T ≥ t ≥ t0 and letting T → ∞, we have

y(t) ≥

∞
∫

t

q(u)f

(

x(t0) +

g(u)
∫

t0

(a1(s)y(s))1/α1 ds

)

du.

Next, we define a sequence of successive approximations {zj(t)} as follows:

z0(t) = y(t),

zj+1(t) =

∞
∫

t

q(u)f

(

x(t0) +

g(u)
∫

t0

(a1(s)zj(s))
1/α1ds

)

du, j = 0, 1, . . . .
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Obviously, we can prove that

0 < zj(t) ≤ y(t) and zj+1(t) ≤ zj(t), j = 0, 1, . . . .

Thus the sequence {zj(t)} is positive nonincreasing in j for each t ≥ t0. This means we
may define z(t) = lim

j→∞
zj(t) > 0. Since 0 < z(t) ≤ zj(t) ≤ y(t) for all j ≥ 0, we see

that

f

(

x(t0) +

g(t)
∫

t0

(a1(s)zj(s))
1/α1 ds

)

≤ f

(

x(t0) +

g(t)
∫

t0

(a1(s)y(s))1/α1 ds

)

.

Now, by the Lebesgue dominated convergence theorem, one can easily obtain

z(t) =

∞
∫

t

q(u)f

(

x(t0) +

g(u)
∫

t0

(a1(s)z(s))1/α1 ds

)

du.

Therefore,

dz

dt
= −q(t)f

(

x(t0) +

g(t)
∫

t0

(a1(s)z(s))1/α1 ds

)

. (2.6)

We denote by

v(t) = x(t0) +

t
∫

t0

(a1(s)z(s))1/α1 ds.

Then, v(t) > 0 and
dv

dt
= (a1(t)z(t))1/α1 ,

or

z(t) =
1

a1(t)

(

dv

dt

)α1

.

Equation (2.6) then gives

d

dt

(

1

a1(t)

(

dv

dt

)α1
)

+ q(t)f(v[g(t)]) = 0.

Hence, equation (2.3) has a positive solution v(t). For the case (2.2) the argument is
similar and hence is omitted. This completes the proof.

We set

Q(t) = a
1/α2

2 (t)

( ∞
∫

t

a
1/α3

3 (s)

( ∞
∫

s

q(u) du

)1/α3

ds

)1/α2

, t ≥ t0 ≥ 0,

and F (x) = f1/(α2α3)(x), x ∈ R.
Now, we present the following comparison result.
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Theorem 2.1 Let conditions (i) – (iv) hold. If the equation

d

dt

(

1

a1(t)

(

d

dt
x(t)

)α1
)

+ Q(t)F (x[g(t)]) = 0 (2.7)

is oscillatory, then equation (1.1) is B-oscillatory.

Proof Let x(t) be a bounded nonoscillatory solution of equation (1.1), say, x(t) > 0
for t ≥ t0 ≥ 0. By condition (1.3), it is easy seen that x(t) satisfies the inequalities

x′(t) > 0, L2x(t) < 0, L3x(t) > 0 and L4x(t) ≤ 0 for t ≥ t1 ≥ t0. (2.8)

Integrating equation (1.1) from t to T ≥ t ≥ t1 and letting T → ∞, we find

L3x(t) ≥

∞
∫

t

q(s)f(x[g(s)]) ds,

or

1

a3(t)

(

d

dt
L2x(t)

)α3

≥

( ∞
∫

t

q(s) ds

)

f(x[g(t)]).

Thus,

d

dt
L2x(t) ≥ a

1/α3

3 (t)

( ∞
∫

t

q(s) ds

)1/α3

f1/α3(x[g(t)]), t ≥ t1. (2.9)

Once again, we integrate (2.9) from t to T1 ≥ t ≥ t1 and let T1 → ∞, to obtain

−L2x(t) ≥

( ∞
∫

t

a
1/α3

3 (u)

( ∞
∫

u

q(s) ds

)1/α3

du

)

f1/α3(x[g(t)]), t ≥ t1,

or

−
d

dt
L1x(t) ≥ a

1/α2

2 (t)

( ∞
∫

t

a
1/α3

3 (u)

( ∞
∫

u

q(s) ds

)1/α3

du

)1/α2

f1/(α2α3)(x[g(t)])

= Q(t)F (x[g(t)]),

(2.10)

for t ≥ t1. By applying Lemma 2.1, we see that equation (2.7) has a positive solution, a
contradiction. This completes the proof.

Now we assume that the function F (x) = f1/(α2α3)(x), x ∈ R, satisfies

−F (−xy) ≥ F (xy) ≥ F (x)F (y) for xy > 0 (2.11)

and
g(t) ≤ t. (2.12)

Also, we let

η[t, t0] =

t
∫

t0

a
1/α1

1 (s) ds

and for g(t) ≥ T for some T ≥ t0,

Q(t) = Q(t)F (η[g(t), T ]).

Now, we present the following result.
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Theorem 2.2 Let conditions (i) – (iv), (2.11) and (2.12) hold. If the first order
equation

d

dt
y(t) + Q(t)F

(

y1/α1 [g(t)]
)

= 0 (2.13)

is oscillatory, then equation (1.1) is B-oscillatory.

Proof Let x(t) be a bounded nonoscillatory solution of equation (1.1), say, x(t) > 0
for t ≥ t0 ≥ 0. As in the proof of Theorem 2.1, we obtain (2.8) and (2.10) for t ≥ t1.
Now

x(t) − x(t1) =

t
∫

t1

x′(s) ds =

t
∫

t1

(

a
−1/α1

1 (s)x′(s)
)

a
1/α1

1 (s) ds.

Using the fact that a
−1/α1

1 (t)x′(t) is nonincreasing on [t1,∞), we find

x(t) ≥
(

a
−1/α1

1 (t)x′(t)
)

t
∫

t1

a
1/α1

1 (s) ds,

or

x(t) ≥ η[t, t1]
(

a
−1/α1

1 (t)x′(t)
)

for t ≥ t1.

Thus, there exists a t2 ≥ t1 such that

x[g(t)] ≥ η[g(t), t1]
(

Z1/α1 [g(t)]
)

for t ≥ t2, (2.14)

where Z(t) = (x′(t))α1/a1(t), t ≥ t2. Using (2.11) and (2.14) in (2.10) we get

d

dt
Z(t) + Q(t)F

(

Z1/α1 [g(t)]
)

≤ 0 for t ≥ t2. (2.15)

Integrating (2.15) from t to T ≥ t ≥ t2 and letting T → ∞, we obtain

Z(t) ≥

∞
∫

t

Q(s)F
(

Z1/α1 [g(s)]
)

ds.

As in [9, 12], it is now easy to conclude that there exists a positive solution y(t) of the
equation (2.13) with lim

t→∞
y(t) = 0. This contradicts the hypothesis and completes the

proof.

By using a well known oscillation result in [9, Corollary 7.6.1], the following corollary
is immediate.

Corollary 2.1 Let conditions (i) – (iv), (2.11) and (2.12) hold. Then, equation (1.1)
is B-oscillatory if one of the following conditions holds:

(I1) F (y1/α1)/y ≥ k > 0, y 6= 0, where k is a constant, (2.16)

and

lim inf
t→∞

t
∫

g(t)

Q(s) ds >
1

ek
. (2.17)
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(I2)

∫

±0

du

F (u1/α1)
< ∞, (2.18)

and
∞
∫

Q(s) ds = ∞. (2.19)

Next, we let F (x) = f1/(α1α2α3)(x), x ∈ R and assume that

±∞
∫

du

F (u)
< ∞. (2.20)

Now, we prove the following oscillation result.

Theorem 2.3 Let conditions (i) – (iv), (2.12) and (2.20) hold. If

∞
∫

g′(u)a
1/α1

1 [g(u)]

( ∞
∫

u

Q(s) ds

)1/α1

du = ∞, (2.21)

then equation (1.1) is B-oscillatory.

Proof Let x(t) be a bounded nonoscillatory solution of equation (1.1), say, x(t) > 0
for t ≥ t0 ≥ 0. As in the proof of Theorem 2.1, we obtain (2.10) for t ≥ t1 ≥ t0. Now,
one can easily see that

L1x(t) ≥

( ∞
∫

t

Q(s) ds

)

F (x[g(t)]), (2.22)

or

a
−1/α1

1 [g(t)]x′[g(t)] ≥ a
−1/α1

1 (t)x′(t) ≥

( ∞
∫

t

Q(s)ds

)1/α1

F (x[g(t)])

for t ≥ t2 ≥ t1. Hence, it follows that

x′[g(t)]g′(t)

F (x[g(t)])
≥ g′(t)a

1/α1

1 [g(t)]

( ∞
∫

t

Q(s) ds

)1/α1

for t ≥ t2. (2.23)

Integrating both sides of (2.23) from t2 to t, we get

t
∫

t2

g′(u)a
1/α1

1 [g(u)]

( ∞
∫

u

Q(s) ds

)1/α1

du ≤

x[g(t)]
∫

x[g(t2)]

dv

F (v)
≤

∞
∫

x[g(t2)]

dv

F (v)
< ∞,

which contradicts condition (2.21). This completes the proof.

In [5], we have compared the oscillation of nonlinear equations of type (2.7) with those
of second order linear equations. In fact, we obtained the following results.
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Lemma 2.2 Let 0 < α1 ≤ 1, g′(t) > 0 for t ≥ t0, 0 < q(t) =
∞
∫

t

Q(s) ds < ∞

and F (x) = xβ, where β is the ratio of positive odd integers. Then, equation (2.7) is
oscillatory if for all large t, the linear second order equation

(

C(t)

g′(t)

(

(q(t))α1−1

a1[g(t)]

)1/α1

y′(t)

)′

+ βQ(t)y(t) = 0 (2.24)

is oscillatory, where

C(t) =











c1, c1 > 0 is any constant, when β > α1,

1, when β = α1,

c2η
(α1−β)/α1 [g(t), t0], c2 > 0 is any constant, when β < α1.

Lemma 2.3 Let α1 ≥ 1, g′(t) > 0 for t ≥ t0 and F (x) = xβ, where β is the ratio
of positive odd integers. Then, equation (2.7) is oscillatory if for all large t, the linear
second order equation

(

C(t)

a
1/α1

1 [g(t)]g′(t)ηα1−1[g(t), t0]
Z ′(t)

)′

+ βQ(t)Z(t) = 0 (2.25)

is oscillatory, where

C(t) =











c1, c1 > 0 is any constant, when β > α1,

1, when β = α1,

c2η
α1−β [g(t), t0], c2 > 0 is any constant, when β < α1.

By Lemmas 2.2 and 2.3 we can replace equation (2.7) in Theorem 2.1 by equation
(2.24), or equation (2.25). The statements and formulations of the results are left to the
reader.

Next, we present the following result.

Theorem 2.4 Let conditions (i) – (iv) hold. If

∞
∫

a
1/α1

1 (u)

( ∞
∫

u

Q(s) ds

)1/α1

du = ∞, (2.26)

then equation (1.1) is B-oscillatory.

Proof Let x(t) be a bounded nonoscillatory solution of equation (1.1), say, x(t) > 0
for t ≥ t0 ≥ 0. As in the proof of Theorem 2.3, we obtain (2.22) for t ≥ t1. Since x(t)
is an increasing function on [t1,∞), there exist a t2 ≥ t1 and a constant C > 0 such
that

x[g(t)] ≥ C for t ≥ t2. (2.27)

Using (2.27) in (2.22), one can easily see that

x′(t) ≥ a
1/α1

1 (t)

( ∞
∫

t

Q(s) ds

)1/α1

F (c), t ≥ t2.

Integrating the above inequality from t2 to t and using (2.26) we arrive at the desired
contradiction.

Next, we will give some necessary and sufficient conditions for all bounded solutions
of equation (1.1) to be oscillatory or nonoscillatory.
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Theorem 2.5 Let conditions (i) – (iv) hold. Then, equation (1.1) is B-oscillatory if
and only if condition (2.26) is satisfied.

Proof Suppose that (2.26) holds and assume that equation (1.1) has a bounded
nonoscillatory solution x(t). The proof is similar to that of Theorem 2.4 and hence
omitted.

Assume that (2.26) does not hold. We may suppose that

∞
∫

t0

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1 < ∞, t0 ≥ 0.

(2.28)
Then, we can choose T ≥ t0 sufficiently large such that for t ≥ T,

∞
∫

T

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

f(γ)q(s) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1 <
γ

2
(2.29)

for some constant γ > 0. Let x(t) be a solution of the following equation

x(t) = γ −

∞
∫

t

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(x[g(s)]) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1.

(2.30)
Then we easily see that x(t) is a solution of equation (1.1). Next, we shall show that equa-
tion (2.30) has a bounded nonoscillatory solution x(t) by using the fixed point theorem
of Schauder.

We introduce the Banach space X of all continuous and bounded real-valued functions
on the interval [t0,∞) endowed with the usual sup norm ‖ · ‖. We define a bounded,
convex and closed subset B of X as

B =

{

x ∈ X :
γ

2
≤ x(t) ≤ γ, t ≥ t0

}

.

Next, let S be a mapping defined on B as follows: For x ∈ B,

(Sx)(t)

=























γ −

∞
∫

t

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(x[g(s)]) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1,

t ≥ T,

(Sx)(T ), t0 ≤ t ≤ T.
(2.31)

Then the mapping S satisfies the following:

(I1) S maps B into B. In fact, for any x ∈ B, from (2.29) and (2.31) we have

γ ≥ (Sx)(t) ≥ γ −
γ

2
=

γ

2
, t ≥ t0.
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So Sx ∈ B.

(I2) The mapping S is continuous on B. Let x ∈ B and {xj} be a sequence in B
converging to x. We shall show that Sxj converges to Sx. By (2.29), for any ǫ > 0,
we can choose T0 ≥ T such that

∞
∫

T0

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(γ) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1 <
ǫ

3
. (2.32)

Furthermore, we can see that the series f(xj) converges to f(x) uniformly with respect
to j. So, we can choose m such that for all j ≥ m,

∣

∣

∣

∣

∣

T0
∫

t0

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(xj [g(s)]) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

−

T0
∫

t0

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(x[g(s)]) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

∣

∣

∣

∣

∣

<
ǫ

3
.

(2.33)
In the following, we shall show that |(Sxj)(t) − (Sx)(t)| < ǫ for any t and j ≥ m.

(i) If t ≥ T0, then from (2.31) and (2.32), we can easily find

|(Sxj)(t) − (Sx)(t)|

≤ 2

∣

∣

∣

∣

∣

∞
∫

t

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(γ) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

∣

∣

∣

∣

∣

<
2ǫ

3
< ǫ for j ≥ m.

(ii) If t ≤ T0, from (2.31), (2.32) and (2.33), we have

|(Sxj)(t) − (Sx)(t)|

≤

∣

∣

∣

∣

∣

T0
∫

t

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(xj [g(s)]) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

−

T0
∫

t

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(x[g(s)]) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∞
∫

T0

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(xj [g(s)]) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∞
∫

T0

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(x[g(s)]) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

∣

∣

∣

∣

∣
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<
ǫ

3
+

ǫ

3
+

ǫ

3
= ǫ for j ≥ m.

Clearly, (i) and (ii) together yield that |(Sxj)(t) − (Sx)(t)| < ǫ for any t and j ≥ m
which completes the proof that the mapping S is continuous on B.

(I3) The set S(B) is relatively compact. For any x ∈ B and every t ≥ t0, we
have |(Sx)(t)| ≤ γ. Therefore, SB is uniformly bounded. Furthermore, we find

|(Sx)(t)−γ| ≤

∣

∣

∣

∣

∣

∞
∫

t

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(γ) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

∣

∣

∣

∣

∣

.

(2.34)
Thus, from (2.28) and (2.34), we conclude that SB is equiconvergent at ∞. Now, for
any x ∈ B and every t1, t2 with T ≤ t1 ≤ t2, we get

|(Sx)(t2) − (Sx)(t1)|

≤

∣

∣

∣

∣

∣

t2
∫

t1

(

a1(s1)

∞
∫

s1

(

a2(s2)

∞
∫

s2

(

a3(s3)

∞
∫

s3

q(s)f(γ) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1

∣

∣

∣

∣

∣

.

From this it follows that SB is equicontinuous. Finally, by the given compactness
criterion (see [13]), we conclude that SB is relatively compact.

Thus, by the Schauder fixed point theorem [13], it follows that (2.30) has a positive
solution x(t). This proves the necessity.

The following theorem provides a necessary and sufficient condition for the existence
of a bounded solution of equation (1.1).

Theorem 2.6 Assume that (i) – (iv) except condition (1.3) hold, and

∞
∫

q(s) ds = ∞. (2.35)

Then a necessary and sufficient condition for equation (1.1) to have a positive solution
x(t) which satisfies β2 ≥ x(t) ≥ β1 > 0 (β1 and β2 are constants) for t ≥ t0 is that

∞
∫

t0

(

a1(s1)

s1
∫

t0

(

a2(s2)

s2
∫

t0

(

a3(s3)

s3
∫

t0

q(s) ds

)1/α3

ds3

)1/α2

ds2

)1/α1

ds1 < ∞. (2.36)

Proof Necessity If x(t) is a positive solution of equation (1.1) and the condition
β2 ≥ x(t) ≥ β1 > 0 is satisfied, then we have in view of equation (1.1),

L3x(t) = L3x(t0) −

t
∫

t0

q(s)f(x[g(s)]) ds ≤ L3x(t0) − f(β1)

t
∫

t0

q(s) ds.
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If t is large enough, in view of (2.35), we have L3x(t) < 0. Then, for all large t0,

L3x(t) < −f(β1)

t
∫

t0

q(s) ds,

or

d

dt
L2x(t) < −f1/α3(β1)

(

a3(t)

t
∫

t0

q(s) ds

)1/α3

.

The rest of the proof is similar to the proof of the sufficiency part of Theorem 2.5 and
hence omitted.

The proof of sufficiency is similar to the proof of necessity part of Theorem 2.5. This
completes the proof.

Remark 2.1 From the above study of B–oscillation of equation (1.1), we are concerned
with the nonexistence of solutions of equation (1.1) satisfying (2.8). This class of solutions
of (1.1) may include some unbounded solutions. Therefore, some modification in the
definition of B-oscillation of equation (1.1) is required to include bounded as well as
some unbounded solutions of equation (1.1). The details are left to the reader.

Remark 2.2 The results of this paper can be extended to neutral equations of the
form

L4(x(t) + p(t)x[τ(t)]) + q(t)f(x[g(t)]) = 0, (2.37)

where p(t) ∈ C([t0,∞), [0,∞)) and τ(t) ∈ C([t0,∞), R), τ ′(t) > 0 for t ≥ t0 and
lim

t→∞
τ(t) = 0. Here, we refer to our papers [4–6] and omit the details.

The following example illustrates some of the results obtained.

Example 2.1 Consider the differential equation

d

dt

(

1

t2

(

d

dt

(

t

(

d

dt

(

t

(

d

dt
x(t)

)3)))3))

+
2

t4
x(t) = 0. (2.38)

This is actually (1.1) with

α1 = 3, α2 = 1, α3 = 3, a1(t) =
1

t
, a2(t) =

1

t
, a3(t) = t2,

q(t) =
2

t4
, g(t) = t, f(x) = x.

By direct computation we obtain

Q(t) =
1

2
t−7/3, η[g(t), T ] ≤

3

2
t2/3, Q(t) = Q(t)F (η[g(t), T ]) ≤ t−19/9.

Clearly, conditions (i) – (iv), (2.11) and (2.12) are fulfilled. Further, it can be easily
checked that (2.17) is not satisfied, and also

∞
∫

Q(s) ds ≤

∞
∫

s−19/9 ds < ∞
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which implies (2.19) is not met. Thus, we see that both conditions (I1) and (I2) of
Corollary 2.1 are not fulfilled.

Moreover, we can verify easily that condition (2.20) is not satisfied but (2.21) and
(2.26) are met. Thus, the conditions of Theorem 2.3 are not all satisfied, whereas those
of Theorems 2.4 and 2.5 are fulfilled.

Hence, on one hand we cannot conclude from Corollary 2.1 and Theorem 2.3 that
(2.38) is B-oscillatory, while on the other hand Theorems 2.4 and 2.5 give that (2.38) is
B-oscillatory. In fact, we observe that (2.38) has a solution given by x(t) = t, which is
unbounded and nonoscillatory.
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Abstract: In this paper we deal with the Peano phenomenon for general ini-
tial boundary-value problems of quasilinear evolution systems with arbitrary
even order space derivatives. The nonlinearity is a continuous or continu-
ously Frechét differentiable function. Qualitative and quantitative structure
of solution sets is studied by the theory of proper, Fredholm and Nemitskǐı
operators. These results can be applied to the different technical and natural
science models.
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0 Introduction

The Peano phenomenon of the existence of a solution continuum of the initial value
problem for ordinary differential systems is well-known. This phenomenon has been
studied by many authors in [3 – 5, 8, 17, 27]. The structure of solution sets for second
order partial differential problems was observed in the authors papers [12, 13].

In this paper we shall study generic properties of quasilinear initial boundary-value
problems for evolution systems of an even order with the continuous or continuous dif-
ferentiable nonlinearities and the general boundary value conditions. In special Hölder
spaces we use the Nikǒlskǐı decomposition theorem from [29, P. 233] for linear Fredholm
operators, the global inversion theorem of [9, 6] and [7, PP. 42 – 43] and the Ambrosetti
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solution quantitive results from [2, P. 216]. In the consideration on surjectivity the gen-
eralized Leray–Schauder condition is employed which is similar to that one in [20]. In the
case of nonlinear Fredholm operators we use the main Quinn and Smale theorem from
[22] and [24].

The present results allow us to observe different problems describing dynamics of me-
chanical processes (bendding, vibration), phisycal-heating processes, reaction-diffusion
processes in chemical and biological technologies or in the ecology.

1 The Formulation of Problem, Assumptions and Spaces

The set Ω ⊂ Rn for n ∈ N means a bounded domain with the boundary ∂Ω. The
real number T will be positive and Q = (0, T ] × Ω, Γ = (0, T ] × ∂Ω. If the multiindex

k = (k1, . . . , kn) with |k| =
n
∑

i=1

ki, then we use the notation Dk
x for the differential

operator
∂|k|

∂xk1

1 . . . ∂xkn

n

and Dt for
∂

∂t
. If the module |k| = 0 then Dk

x means an

identity mapping. The symbol cl M means the closure of the set M in Rn.
In this paper we consider the general system of p ≥ 1 nonlinear differential equations

(parabolic or non-parabolic type) of an arbitrary even order 2b (b is a positive integer)
with p unknown functions in the column vector form (u1, . . . , up)

T = u : cl Q → Rp. Its
matrix form is given as follows:

A(t, x, Dt, Dx)u + f(t, x,D
γ

xu) = g(t, x) for (t, x) ∈ Q, (1.1)

where

A(t, x, Dt, Dx)u = Dtu −
∑

|k|=2b

ak(t, x)Dk
xu −

∑

0≤|k|≤2b−1

ak(t, x)Dk
xu,

and D
γ

xu is a vector function whose components are derivatives Dγ
xul with the different

multiindices 0 ≤ |γ| ≤ 2b − 1 for l = 1, . . . , p.
The system of boundary conditions is given by the vector equation with the bp com-

ponents

B(t, x, Dx)u
∣

∣

∣

cl Γ
= (B1(t, x, Dx)u, . . . , Bb p(t, x, Dx)u)T

∣

∣

cl Γ
= 0 (1.2)

in which
Bj(t, x, Dx)u =

∑

0≤|k|≤rj

bjk(t, x)Dk
xu

for an integer 0 ≤ rj ≤ 2b − 1 and j = 1, . . . , bp.
Further the initial value homogeneous condition

u(0, x) = 0 for x ∈ Ω̄ (1.3)

is considered.
Here the given functions are the following mappings: ak = (ahl

k )p
h,l=1 : cl Q → Rp2

for 0 ≤ |k| ≤ 2b are (p × p)-matrix functions; bjk = (b1
jk, . . . , bp

jk) : cl Γ → Rp for

0 ≤ |k| ≤ rj , j = 1, . . . , bp are row vector functions; f = (f1, . . . , fp)
T: cl Q×Rκ → Rp
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and g = (g1, . . . , gp)
T : cl Q → Rp are column vector functions, where κ is a positive

integer given by the inequality

κ ≤

[(

n − 1
0

)

+

(

n
1

)

+

(

n + 1
2

)

+ · · · +

(

n + |γ| − 2
|γ| − 1

)

+

(

n + |γ| − 1
|γ|

)]

p.

Under several supplementary assumptions, problem (1.1) – (1.3) defines homeomor-
phism between some Hölder spaces. Now, we formulate these suppositions.

(P) A δ-uniform parabolic condition holds for system (1.1) in the sense of J.G. Petro-
vskiǐı, δ > 0.

The system (1.1) and boundary condition (1.2) are connected by

(C) a δ+-uniform complementary condition with δ+ > 0 and
(Q) a compatibility condition.

The coefficients of the operator A(t, x, Dt, Dx) from (1.1) and of B(t, x, Dx) from (1.2)
and the boundary ∂Ω satisfy

(Sl+α) a smoothness condition for a nonnegative integer l and a number α ∈ (0, 1).

We shall be employed with the Banach spaces of continuously differentiable

functions Cl
x(cl Q, Rp) and C

l/2b,l
t,x (cl Q, Rp) and the Hölder spaces Cl+α

x (cl Q, Rp),

C
(l+α)/2b,l+α
t,x (cl Q, Rp) for a nonnegative integer l and α ∈ (0, 1).

For the exact definition of conditions (P), (C), (Q), (Sl+α) see [19, PP. 12–21] and for
the definition of spaces see [19, PP. 8–12] or [11].

The homeomorphism result for (1.1) – (1.3) can be formulated as follows:

Proposition 1.1 (see [19, P. 21] and [15, PP. 182–183]) Let the conditions (P), (C)
and (Sα) be satisfied for α ∈ (0, 1). Necessary and sufficient conditions for the existence
and uniqueness of the solution

u ∈ C
(2b+α)/2b,2b+α
t,x (cl Q, Rp)

of linear problem (1.1)–(1.3) for f = 0 is

g ∈ C
α/2b,α
t,x (cl Q, Rp)

and the compatibility condition (Q).
Moreover, there exists a constant c > 0 independent of g such that

c−1‖g‖α/2b,α,Q,p ≤ ‖u‖(2b+α)/2b,2b+α,Q,p ≤ c‖g‖α/2b,α,Q,p

2 General Results

In this part we remind some notions and assertions from the nonlinear functional analysis
applied in the fundamental lemmas and theorems.

Throughout this paper we shall assume that X and Y are Banach spaces either both
over the real or complex field.

In the Zeidler books [31, PP. 365–366] and [32, PP. 667–668] we find definitions of the
linear and nonlinear Fredholm operator.

The following proposition gives the necessary and sufficient condition for a linear
operator to be Fredholm.
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Proposition 2.1 (S.M. Nikǒlskǐı [29, P. 233]) A linear bounded operator A : X → Y
is Fredholm of the zero index iff A = C+T , where C : X → Y is a linear homeomorphism
and T : X → Y is a linear completely continuous operator.

In the theory and applications of nonlinear operators, the notions as a proper, σ-proper,
closed, coercive operator (for definitions see books [31] and [32]) are very frequent. Their
significant application gives the following statements.

Proposition 2.2 (the Ambrosetti theorem [2, P. 216]) Let F ∈ C(X, Y ) be a proper
mapping. Then the cardinal number cardF−1(q) of the set F−1(q) is constant and finite
(it may be zero) for every q taken from the same component (nonempty and connected
subset) of the set Y \ F (Σ). Here Σ means a closed set of all points u ∈ X at which F
is not locally invertible.

A relation between the local invertibility and homeomorphism of X onto Y gives the
global inverse mapping theorem.

Proposition 2.3 (R. Cacciopoli [9], E. Zeidler [31, P. 174]) Let F ∈ C(X, Y ) be
a locally invertible mapping in X . Then F is a homeomorphism of X onto Y iff F is
proper.

The following propositions give necessary and sufficient conditions for the proper map-
ping.

Proposition 2.4 (see [31, P. 176], [23, P. 49] and [27, P. 20]) Let F ∈ C(X, Y ).

(i) If F is proper, then F is a nonconstant closed mapping.
(ii) If dimX = +∞ and F is a nonconstant closed mapping, then F is proper.

Proposition 2.5 (see [23, PP. 58–59], [31, P. 498] and [27, P. 20]) Suppose that
F : X → Y and F = F1 + F2, where

(i) F1 : X → Y is a continuous proper mapping on X and
(ii) F2 : X → Y is complete continuous.

Then

(i) the restriction of the mapping F to an arbitrary bounded closed set in X is a
proper mapping;

(ii) if moreover, F is coercive, then F is a proper mapping.

Now we can formulate some sufficient conditions for the surjectivity of an operator.

Proposition 2.6 (see [27, PP. 24 and 27]) Let X be a real Banach space. Suppose

(i) P = I − f : X → X is a condensing field, where I : X → X is the identity,
(ii) P is coercive,
(iii) there exists a strictly solvable field G = I − g : X → X and R > 0 such that for

all solutions u ∈ X of the equation

P (u) = kG(u)

and for all k < 0 the estimation ‖u‖X < R holds.

Then the following statements are true:

(i) P is a proper mapping,
(ii) P is strictly surjective,
(iii) cardF−1(q) is constant, finite and nonzero for every q from the same connected

component of the set Y \ F (Σ). For Σ see Proposition 2.2.
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The definition of a condensing field is understood in the sense given in [10, P. 69]. For
the definition of a strict solvable field and strict surjective field see in [29].

Remark 2.1 It is clear that an operator F is strictly surjective, then it is surjective
and if F is strictly solvable, then it is also solvable. Moreover, if F is strictly surjective,
then it is strictly solvable, too.

Proposition 2.7 (the Schauder invariance of domain theorem [31, P. 705]) Let
F : (M ⊆ X) → X be continuous and locally compact perturbation of identity on the
open nonempty set M in the Banach space X . Then

(i) if F is locally injective on M so F is an open mapping;
(ii) if F is injective on M so F is a homeomorphism from M onto the open set F (M).

For the compact perturbation of C1–Fredholm operator we shall use the following
proposition.

Proposition 2.8 (E. Zeidler [32, P. 672]) Let A : D(A) ⊂ X → Y be a C1–Fred-
holm operator on the open set D(A) and B : D(A) → Y be a compact mapping from
the class C1. Then A + B : D(A) → Y is a Fredholm (possible nonlinear) operator with
the same index as A at each point of D(A).

In the following propositions we use the notion of a regular, singular, critical point of
an operator and a regular, singular values of operators. The reader finds these definitions
in [32, P. 668] or [31, P. 184].

Also, we need a residual set. A subset of a topological space Z is called residual iff it
is a countable intersection of dense and open subsets of Z.

By the Baire theorem in any complete metric space or locally compact Hausdorff
topological space, a residual set is dense in this space.

The most important theorem for nonlinear Fredholm mappings is due to S. Smale [24,
P. 862] and Quinn [22]. It is also in [7, PP. 11–12].

Proposition 2.9 (a Smale–Quinn Theorem) If F : X → Y is a Fredholm mapping
(possible nonlinear) of the class Ck(X, Y ) in the Frechét sense and either

(i) X has a countable basis (S. Smale) or
(ii) F is σ-proper (Quinn),

then the set RF of all regular values of F is residual in Y . Moreover, if F is proper, then
RF is open and dense set in Y .

A necessary and sufficient condition for a local diffeomorphism (see [31, p. 171]) is
given in the following proposition.

Proposition 2.10 (a Local Inverse Mapping Theorem, [31, p. 172]) Let F : U(u0) ⊂
X → Y be a C1-mapping in the Frechét sense. Then F is a local C1-diffeomorphism at
u0 iff u0 is a regular point of F .

Proposition 2.11 ([23, P. 89]) Let dimY ≥ 3 and F : X → Y be a Fredholm
mapping of the zero index. If u0 ∈ X is an isolated singular point of F , then F is locally
invertible at u0.

To illustrate the following results we shall need estimations of a Green p × p-matrix
for linear problem (1.1) – (1.3).
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Lemma 2.1 Let the assumptions (P), (C), (Sα) be satisfied for α ∈ (0, 1). Then we
have for the Green matrix G of linear problem (1.1) – (1.3) with f = 0

|Dk0

t Dk
x G(t, x; τ, ξ)| ≤ c(t − τ)−µ‖x − ξ‖

2bµ−(n+2bk0+|k|)
Rn E (2.1)

for 0 ≤ 2bk0 + |k| ≤ 2b and µ ≤ (n + 2bk0 + |k|)/2b, thereby 0 ≤ τ < t ≤ T and
x, ξ ∈ cl Ω, x 6= ξ. The positive constant c does not depend on t, x, τ , ξ and E means
the p × p-matrix consisting only of units, r = 2b/(2b − 1).

Proof Since n+2bk0+|k|−2bµ ≥ 0 and ‖x−ξ‖Rn < diamΩ so for 0 < δ ≤ t−τ ≤ T
we obtain (2.1) by the estimation (see [15, PP. 182–183])

|Dk0

t Dk
x G(t, x; τ, ξ)| ≤ c1(t − τ)−

n+2bk0+|k|
2b exp{−c2

‖x − ξ‖r
Rn

(t − τ)1/(2b−1)
}

≤ c1(t − τ)−µ‖x − ξ‖
2bµ−(n+2bk0+|k|)
Rn

× [ ‖x − ξ‖2b
Rn/(t − τ) ](n+2bk0+|k|−2bµ)/2b exp{−c2[ ‖x − ξ‖2b

Rn/(t − τ) ]1/(2b−1)}E.

If 0 < t − τ < δ with respect to

lim
y→+∞

yu exp{−cyv} = 0

for every u, v ∈ R and c > 0, we get estimation (2.1).

Remark 2.2 For any x = (x1, . . . , xn) ∈ Rn the inequalities

cn

n
∑

i=1

|xi| ≤ ‖x‖Rn ≤
n

∑

i=1

|xi| (2.2)

hold, if cn ∈ (0, 1/(
√

2)n−1), n ∈ N , does not depend of x.

Remark 2.3 Also, we see that the mild solution u ∈ C
|γ|
x (cl Q, R) of problem (1.1) –

(1.3) satisfies the column vector integro-differential equation

u(t, x) =

t
∫

0

dτ

∫

Ω

G(t, x; τ, ξ) [ g(τ, ξ) − f(τ, ξ,D γu(τ, ξ)) ] dξ =:

= (Su)(t, x) for (t, x) ∈ cl Q

(2.3)

for 0 ≤ |γ| ≤ 2b − 1 and on the contrary the solution v ∈ C
|γ|
x (cl Q, Rp) satisfying (2.3)

is a mild solution of (1.1) – (1.3).

3 Operator Formulation and Fundamental Lemmas

Consider the following operators:
(i)

A : X → Y , (3.1)
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where

(Au)(t, x) = A(t, x, Dt, Dx)u(t, x) = Dtu(t, x) −
∑

0≤|k|≤2b

ak(t, x)Dk
xu(t, x)

for (t, x) ∈ cl Q, u ∈ X,

X = {u ∈ Xρ; Bj(t, x, Dx)u|Γ = 0, j = 1, 2, . . . , bp,

u(0, x) = 0 for x ∈ cl Q} ⊂ C(cl Q, Rp).

Here
Xρ ⊂ C

(2b+α)/2b,2b+α
t,x (cl Q, Rp)

is the Banach space of continuous functions u : cl Q → Rp with the continuous deriva-
tives Dk

xu for |k| = 1, . . . , 2b and Dk0

x Dk
xu for 1 ≤ 2bk0 + |k| ≤ 2b on cl Q and with

the finite norm

‖u‖Xρ
= max

l=1,...,p

[

∑

0≤2bk0+|k|≤2b

sup
(t,x)∈cl Q

∣

∣

∣
Dk0

t Dk
xul(t, x)

∣

∣

∣
+ 〈Dtul〉

y
x,α,Q

+
∑

|k|=2b

〈Dk
xul〉

y
x,α+ρ,Q + 〈Dtul〉

s
t,α/2b,Q

+
2b−1
∑

|k|=1

〈Dk
xul〉

s
t,(2b+α−|k|)/2b,Q +

∑

|k|=2b

〈Dk
xul〉

s
t,(α+ρ)/2b,Q

]

,

where ρ > 0 and α + ρ < 1. Further

Y = TX ⊂ C
α/2b, α
t, x (cl Q, Rp)

for α ∈ (0, 1) with the norm

‖u‖Y = max
l=1,...,p

[

sup
(t,x)∈cl Q

|ul(t, x)| + 〈ul〉
y
x,α,Q + 〈ul〉

s
t,α/2b,Q

]

.

We understand

〈v〉st,µ,Q = sup
(t,x),(s,x)∈cl Q

t6=s

|v(t, x) − v(s, x)|

|t − s|µ
,

〈v〉yx,µ,Q = sup
(t,x),(t,y)∈clQ

x 6=y

|v(t, x) − v(t, y)|

‖x − y‖µ
Rn

.

for v : cl Q → R.

(ii) The Nemitskǐı operator
N : X → Y , (3.2)

where
(Nu)(t, x) = (f ◦ u)(t, x) = f(t, x,D γ

xu(t, x))

for (t, x) ∈ cl Q, u ∈ X .

(iii) The operator
F : X → Y , (3.3)

where
(Fu)(t, x) = (Au)(t, x) + (Nu)(t, x) for (t, x) ∈ cl Q, u ∈ X.

Together with the solution sets of given problem (1.1) – (1.3) we shall search for the
bifurcation points sets.
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Definition 3.1 (i) A couple (u, g) ∈ X × Y will be called the bifurcation point of
(1.1) – (1.3) iff u is a solution of this problem and there exists a sequence {gk}k∈N ⊂ Y
such that lim

k→∞

gk = g in Y and initial boundary value problem (1.1) – (1.3) with g = gk

has at least two different solutions uk, vk for each k ∈ N and lim
k→∞

uk = lim
k→∞

vk = u

in X .

(ii) The set of all solutions u ∈ X of (1.1) – (1.3) (or the set of all functions g ∈
Y ) such that (u, g) is a bifurcation point of (1.1) – (1.3) will be called the domain of
bifurcation (the bifurcation range) of (1.1) – (1.3).

Example 3.1 The point (ur, 0) ∈ X × Y for r ∈ 〈0, T 〉 is a bifurcation point of the
Neumann problem (parabolic and non-parabolic)

∂u

∂t
= ±

∂2u

∂x2
+ f(t, x, u), (t, x) ∈ (0, T 〉 × Ω = Q ⊂ R2, (3.1*)

∂u

∂x
(t, 0) =

∂u

∂x
(t, 1) = 0, t ∈ 〈0, T 〉, (3.2*)

u(0, x) = 0, x ∈ Ω (3.3*)

for f(t, x, u) = |u|1/2 − au, a > 0. Here for r ∈ (0, T )

ur(t, x) =







0, if (t, x) ∈ 〈0, r〉 × Ω,

1

α2

(

1 − exp
{

−
a

2
(t − r)

})2

, if (t, x) ∈ (r, T 〉 × Ω.

The functions u0(t, x) = 1
α2 (1−exp{−at/2})2, uT (t, x) = 0 are solutions of the given

problem, too.
Really, there is the zero sequence {gk}k∈N of the right hand side of (1.1) for which

there exist two different sequences of solutions

{uk}k∈N =
{

u r(k+1)

k+2

}

k∈N
and {vk}k∈N =

{

v rk

k+1

v
}

k∈N

with the same limit ur ∈ X .

The following equivalence result is true.

Lemma 3.1 (i) The function u ∈ X is a solution of initial boundary-value problem
(1.1) – (1.3) for g ∈ Y iff Fu = g.

(ii) The couple (u, g) ∈ X × Y is a bifurcation point of (1.1) – (1.3) iff Fu = g and
u is a point at which F is not locally invertible, i.e. u ∈ Σ.

Proof The first assertion is clear.
If (u, g) is a bifurcation point of (1.1) – (1.3), then with respect to Definition 3.1 we get

F (u) = g, F (uk) = gk = F (vk), uk 6= vk. Thus F is not locally injective at u. Hence, F
is not locally invertible at u, i.e. u ∈ Σ. On the contrary, if F is not locally invertible at
u and F (u) = g, then F is not locally injective at u. Hence, it follows that the couple
(u, g) ∈ X × Y is a bifurcation point of (1.1) – (1.3). The second assertion is proved.

The following lemma gives sufficient conditions under which the operator A is a Fred-
holm type.
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Assumption A.1 There exists a linear homeomorphism H : X → Y with

Hu = Dtu − H(t, x, Dx)u, u ∈ X,

where
H(t, x, Dx)u =

∑

|k|=2b

hk(t, x)Dk
xu +

∑

0≤|k|≤2b−1

hk(t, x)Dk
xu

satisfies (Sα+ρ) for α ∈ (0, 1), ρ > 0, α + ρ < 1.

Lemma 3.2 Let the operator A from (3.1) satisfy the smoothness hypothesis (Sα+ρ),
α ∈ (0, 1), ρ > 0, α + ρ < 1 (it has not to satisfy the conditions (P), (C), (Q)). Further
let Assumption A.1 hold.

Then

(i) dimX = +∞;

(ii) the operator A : X → Y is a linear bounded Fredholm operator of the zero index.

Proof (i) The equation
dimC∞

0 (Q, R) = +∞

and the inclusion
C∞

0 (Q, R) ⊂ X

imply dimX = +∞.
(ii) Since the coefficients ak for 0 ≤ |k| ≤ 2b are continuous on the compact set cl Q,

there is a positive constant K > 0 such that

‖Au‖Y ≤ K(‖Dtu‖Y +
∑

0≤|k|≤2b

‖Dk
xu‖Y ) = K‖u‖X

for all u ∈ X , whence the operator A is bounded on X .
If the operator A is a homeomorphism, then statement (ii) is clear.

If A is not the homeomorphism, then by the Nikǒlskǐı decomposition theorem from
Proposition 2.1, it is sufficient to show that

Au = Hu + (H(t, x, Dx) − A(t, x, Dx))u = Hu + Tu,

thereby the mapping T : X → Y is the linear completely continuous operator. It will be
proved by generalized Ascoli -Arzelà theorem from [21, P. 31].

From the hypothesis (Sα+ρ), the equi-boundedness of

Tu =
∑

|k|=2b

(hk(t, x) − ak(t, x))Dk
xu +

∑

0≤|k|≤2b−1

(hk(t, x) − ak(t, x))Dk
xu

holds at the bounded set S ⊂ X , i.e. there is a constant K1(n, α, T, Ω) > 0 such that
‖Tu‖Y ≤ K1‖u‖X for all u ∈ S.

Now for the equi-continuity of the set TS ⊂ Y we have to prove the inequality (for
every element ul, l = 1, . . . , p, of u = (u1, . . . , up))

|(Tu)l(t, x) − (Tu)l(s, y)| +
|(Tu)l(t, x) − (Tu)l(t, y)|

‖x − y‖α
Rn

+
|(Tu)l(t, x) − (Tu)l(s, x)|

|t − s|α/2b
< ε
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for all u ∈ S and (t, x), (s, y), (t, y), (s, x) ∈ cl Q, x 6= y, t 6= s for which the norms
‖x − y‖Rn and |t − s| are sufficiently small, ε > 0.

With respect to (Sα+ρ) we obtain for the first member of the previous inequality

|(Tu)l(t, x) − (Tu)l(s, y)|

≤
∑

0≤|k|≤2b

|(hk − ak)(t, x) − (hk − ak)(s, y)| |Dk
xul(t, x)|

+
∑

|k|=2b

|hk(s, y) − ak(s, y)| |Dk
xul(t, x) − Dk

xul(s, y)|

+
∑

0≤|k|≤2b−1

|hk(s, y) − ak(s, y)| |Dk
xul(t, x) − Dk

xul(s, y)|

≤ K2

∑

0≤|k|≤2b

|(hk − ak)(t, x) − (hk − ak)(s, y)|

+ K3

∑

|k|=2b

|Dk
xul(t, x) − Dk

xul(s, y)|

+ K3

∑

0≤|k|≤2b−1

|Dk
xul(t, x) − Dk

xul(s, y|,

where K2, K3 are positive constants dependent only on n, α, T , Ω. For |t − s| < δ,
‖x− y‖Rn < δ with a sufficiently small δ > 0 the every member of the last inequality is
smaller than fixed arbitrary ε > 0. (Since u ∈ S ⊂ X , the number δ does not depend
on u.)

For the second member we get by the condition (Sα+ρ) and using the mean value
theorem

|(Tu)l(t, x) − (Tu)l(t, y)| ‖x − y‖−α
Rn e

≤ K2

∑

0≤|k|≤2b

|(hk − ak)(t, x) − (hk − ak)(t, y)| ‖x − y‖−α
Rn

+ K3

∑

|k|=2b

∣

∣Dk
xul(t, x) − Dk

xul(t, y)
∣

∣ ‖x − y‖−α
Rn

+ K3

∑

0≤|k|≤2b−1

∣

∣Dk
xul(t, x) − Dk

xul(t, y)
∣

∣ ‖x − y‖−α
Rn

≤ K(2‖x− y‖ρ
Rn + ‖x − y‖1−α)

By the similar way we have for the third member

|(Tu)l(t, x) − (Tu)l(s, x)| · |t − s|−α/2b

≤ K2

∑

0≤|k|≤2b

|(hk − ak)(t, x) − (hk − ak)(s, x)| |t − s|−α/2b

+ K3

∑

|k|=2b

∣

∣Dk
xul(t, x) − Dk

xul(s, x)
∣

∣ |t − s|−α/2b

+ K3

∑

0≤|k|≤2b−1

∣

∣Dk
xul(t, x) − Dk

xul(s, x)
∣

∣ |t − s|−α/2b
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≤ K

(

2|t − s|ρ/2b + |t − s|1−α/2b +
2b−1
∑

|k|=1

|t − s|1−|k|/2b

)

.

By these three estimations the assertion (ii) is proved.

Remark 3.1 Necessary and sufficient conditions for the existence of a linear homeomor-
phism H : X → Y from the assumption (A.1) are given in Proposition 1.1. Concretely,

for example, Hu =
∂u

∂t
− ∆u, u ∈ X .

Corollary 3.1 Let L mean the set of all linear differential operators A = Dt −
A(t, x, Dx) : X → Y satisfying the hypothesis (Sα+ρ), α ∈ (0, 1), ρ > 0, α + ρ < 1.
Then for each A ∈ L the initial boundary-value homogeneous problem Au = 0, (1.2),
(1.3) has a nontrivial solution or any A ∈ L is a linear bounded Fredholm operator of
the zero index.

Proof Really, if there exists an operator A ∈ L such that the problem Au = 0, (1.2),
(1.3) has only trivial solution, then A is homeomorphism X onto Y (see Proposition 1.1).
Then by Lemma 3.2 all operators of L are Fredholm of the zero index.

Assumption N.1 The vector function f ∈ C(cl Q × Rκ, Rp) satisfies the following
local grown vector condition

| f(t, x, uγ) − f(s, y, vγ) | ≤ L
[

|t − s|β1 + ‖x − y‖β2

Rn +

p
∑

l=1

∑

0≤|γ|≤2b−1

|uγ
l − vγ

l |
βγ,l

]

J

for (t, x, uγ), (s, y, vγ) from a compact subset of Rκ and β1 > α/2b, β2 > α, βγ,l >
α/(α + ρ), 0 ≤ |γ| ≤ 2b − 1, l = 1, . . . , p, where L > 0.

Lemma 3.3 Suppose Assumption N.1 holds. Then the Nemitskǐı operator N : X → Y
from (3.2) is completely continuous on X.

Proof For any bounded set S ⊂ X the N is equi-bounded in Y . Indeed, for all
u ∈ S using (N.1) the norm

‖Nu‖Y ≤ max
l=1,...,p

[

sup
(t,x)∈cl Q

|fl(t, x,D
γ

xu(t, x))|

+ L sup
(t,x),(t,y)∈clQ

x 6=y

‖x − y‖β2

Rn +
p
∑

l=1

∑

0≤|γ|≤2b−1

|Dγ
xul(t, x) − Dγ

xul(t, y)|βγ,l

‖x − y‖α
Rn

+ sup
(t,x),(s,x)∈clQ

t6=s

|t − s|β1 +
p
∑

l=1

∑

0≤|γ|≤2b−1

|Dγ
xul(t, x) − Dγ

xul(s, x)|βγ,l

|t − s|α/2b

]

Hence, it is bounded by a positive constant K(Ω, T, L, α, β1, β2, βγ,l).
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Also, for |t − s|2 + ‖x − y‖2
Rn < δ2 with a sufficiently small δ > 0 we get the equi-

continuity of N . It is sufficient to prove that for every ε > 0 there exists δ > 0 such
that the inequality

|(Nu)l(t, x) − (Nu)l(s, y)|

+
|(Nu)l(t, x) − (Nu)l(t, y)|

‖x − y‖α
Rn

+
|(Nu)l(t, x) − (Nu)l(s, x)|

|t − s|α/2b
< ε

is true for all u ∈ S, if both t, s and x, y to be sufficiently near and l = 1, . . . , p.

Assumption F.1 For each bounded set S ⊂ Y there is a constant Ka > 0 such
that for all solutions u ∈ X of (1.1) – (1.3) with g ∈ S the inequality

‖u‖a, Q = max
l=1,...,p

∑

0≤|k|≤a

sup
(t,x)∈cl Q

|Dk
xul(t, x)| ≤ Ka (3.4)

holds for a = max{|γ|, r}. Here r is an integer 0 ≤ r ≤ 2b − 1 for which the coefficients
of operators A and H from (3.1) and (A.1), respectively satisfy the relations ak = hk

for |k| = r + 1, . . . , 2b and ak 6= hk for at least one multiindex k with |k| = r on cl Q.

Lemma 3.4 Let (Sα+ρ, α ∈ (0, 1), ρ > 0, α + ρ > 1), (A.1), (N.1) and an almost
coercivity condition of Assumption F.1 be satisfied. Then

(i) F from (3.3) is coercive at X.
(ii) F is proper and continuous at X.

Proof (i) We need to prove that if the set S ⊂ Y is bounded in Y , then the set of
arguments F−1(S) ⊂ X is bounded in X .

By (3.4) and the Assumption F.1 it follows that the set F−1(S) is bounded in the
norm ‖ · ‖a, Q. Hence and by Assumption N.1 one obtains the estimation ‖Nu‖Y ≤ K4

for all u ∈ F−1(S). From Lemma 3.2 (ii) also ‖Au‖Y ≤ ‖Fu‖Y + ‖Nu‖Y ≤ K5 for any
u ∈ F−1(S), where K4, K5 are positive constants.

On the other hand, Assumption A.1 ensures the existence and uniqueness of the
solution u ∈ X of the linear equation Hu = y for any y ∈ Y and (see the Green
representation of solution from (2.3) and [15, PP. 182–183] and estimation (2.1)) the
estimation

‖u‖X ≤ K6‖y‖Y , K6 > 0, : u ∈ F−1(S) (3.5)

is true.
Then for u ∈ F−1(S) we have

Hu = Au +
∑

0≤|k|≤2b

(ak(t, x) − hk(t, x))Dk
xu.

With respect to (Sα) and Assumption F.1

‖y‖Y = ‖Hu‖Y ≤ ‖Au‖Y +
∑

0≤|k|≤r

‖ak − hk‖Y ‖Dk
xu‖Y ≤

K5 + K7‖u‖r, Q ≤ K5 + K7‖u‖a,Q ≤ K5 + K7K
a, K7 > 0.
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Hence and by (3.5)

‖u‖X ≤ K6(K5 + K7K
a), u ∈ F−1(S).

(ii) Since dimX = +∞ and A is a nonconstant and closed mapping on X , then by
Proposition 2.4 (ii) it is proper on X . From Lemma 3.3 the operator N is completely
continuous on X . From (i) of this lemma F is coercive on X . The Proposition 2.5 (ii)
concludes the proof of (ii) and the proof of Lemma 3.4.

In the following lemmas we shall consider the continuous nonlinearity f . Conditions for
the continuous F-differentiability of the Nemitskǐı operator N give the following lemma.

Assumption N.2 For l = 1, . . . , p and the multiindices β with the modulus 0 ≤
|β| ≤ 2b − 1,

∂f

∂vβ, l
∈ C(cl Q × Rκ, Rp)

where κ represents the number of all components in the vector function D
β

xu from (1.1).

Lemma 3.5 Let the Nemitskǐı operator N : X → Y satisfy Assumptions N.1 and N.2.
Then

(i) the operator N is continuously Frechét differentiable on X, i.e. N ∈ C1(X, Y );
(ii) if moreover (Sα+ρ) for α ∈ (0, 1), ρ > 0, α + ρ < 1 holds, then F ∈ C1(X, Y ).

Proof (i) We need to prove that Frechét derivative N ′ : X → L(X, Y ) defined by the
vector equation

N ′(u)h(t, x) =
∑

0≤|β|≤2b−1
card{β,l}=κ

l=1,...,p

∂f

∂vβ
[t, x, D γ

xu(t, x)]Dβ
xhl(t, x) (3.6)

is continuous on X for every u, h ∈ X . Here β = (β1, . . . , βn) represents every multiindex
γ = (γ1, . . . , γn) appearing in the nonlinearity f . It is sufficient to show for every fixed
v ∈ X the implication:

∀ ε > 0 ∃ δ(ε, v) > 0 ∀u ∈ X, ‖u − v‖X < δ ⇒ ‖N ′u − N ′v‖L(X,Y ) < ε,

i.e.
sup

h∈X, ‖h‖X≤1

‖N ′(u)h − N ′(v)h‖Y < ε (3.7)

Let us take an arbitrary ε > 0 and u ∈ X such that ‖u− v‖X < δ, i.e. |Dtul(t, x)−
Dtvl(t, x)| < δ and |Dk

xul(t, x)−Dk
xvl(t, x)| < δ for all multiindices 0 ≤ |k| ≤ 2b on cl Q.

Hence with respect to the uniform continuity of ∂f
∂vβ,l

for 0 ≤ |β| ≤ 2b− 1, l = 1, . . . , p,

on every compact of cl Q × Rκ we get the vector inequality

|N ′(u)h(t, x) − N ′(v)h(t, x)|

≤
∑

0≤|β|≤2b−1
card{β}=κ

l=1,...,p

∣

∣

∣

∣

∂f

∂vβ,l
[t, x, D γ

xu(t, x)] −
∂f

∂vβ,l
[t, x, D γ

xv(t, x)]

∣

∣

∣

∣

∣

∣Dβ
xhl(t, x)

∣

∣ < εJ
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for ‖h‖X ≤ 1 and all (t, x) ∈ cl Q. It finishes the proof of (3.7).

(ii) We easily see that Fréchet derivative F ′ : X → L(X, Y ) is defined by the vector
equation

F ′(u)h(t, x) = Dth(t, x) −
∑

0≤|k|≤2b

ak(t, x)Dk
xh(t, x) + N ′(u)h(t, x)

for u, h ∈ X . Hence and by (i) we get F ∈ C1(X, Y ).

Lemma 3.6 Let the hypotheses (Sα+ρ), α ∈ (0, 1), ρ > 0, α + ρ < 1, (A.1), (N.1)
and (N.2) be satisfied. Then F = A + N : X → Y is a nonlinear Fredholm operator of
the zero index on X.

Proof According to Lemma 3.2 the operator A : X → Y is a linear continuous and
C1–Fredholm mapping of the zero index. By the statement of Lemma 3.3 the operator
N : X → Y is compact. By Lemma 3.5 it belongs to the class C1. Then Proposition 2.8
implies that F is a nonlinear Fredholm operator with the zero index.

4 The Solution Set for Continuous Nonlinearities

The first results for that proper mapping F give the following theorem.

Theorem 4.1 Let hypotheses (Sα+ρ) for α ∈ (0, 1), ρ > 0, α + ρ < 1, and Assump-
tions A.1, N.1 hold. Then

(a) for any compact set of the right hand sides g ∈ Y of (1.1) the corresponding set
of all solutions of (1.1) – (1.3) is a countable union of compact sets;

(b) for u0 ∈ X there exists a neighborhood U(u0) of u0 and U(F (u0)) of F (u0) ∈ Y
such that for each g ∈ U(F (u0)) there is an unique solution of (1.1) – (1.3) iff
the operator F is locally injective at u0;

(c) let moreover (F.1) hold. Then for any compact set of the right hand sides g ∈ Y
from (1.1), the set of all solutions of (1.1) – (1.3) is compact (possible empty).

Proof (a) Since F = A+ N (see (3.3)) by the decomposition of A = C + T (Propo-
sition 2.1) we have F = C + (T + N), where C is a continuous and proper mapping X
onto Y (see Proposition 2.4), A is a Fredholm operator of the zero index, T and N are
completely continuous mappings. Since X is a countable union of closed balls in X , so
with respect to Proposition 2.5 (i) the operator F is σ-proper (continuous). Lemma 3.1
(i) implies assertion (a).

(b) Suppose that F is injective in a neighborhood U(u0) of u0 ∈ X . From the
decomposition (for H see Lemma 3.2)

F = H + (T + N)

we obtain H−1F = I + H−1(T + N) which is a completely continuous and injective
perturbation of the identity I : X → Y in U(u0). According to Proposition 2.7 (i) the
set H−1F (U(u0)) is open in X and the restriction H−1F |U(u0) is a homeomorphism of

U(u0) onto H−1F (U(u0)). Therefore F is locally invertible at u0. Again by Lemma 3.1
(i) we obtain (b).

(c) By Lemma 3.4 (ii) the operator F : X → Y is proper which implies the given
assertion and includes the proof of Theorem 4.1.

We have the following theorem on further qualitative and quantitative properties of
the set solutions of (1.1) – (1.3).
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Proof First of all we see that conditions (k) and (l) are mutually equivalent to the
conditions

(k′) F (Db) ⊂ F (X \ Db)
and

(l′) Y \ Rb is a connected set and F (X \ Db) \ Rb 6= ∅,
respectively.

From the proof of Theorem 4.2 (f) we have Db = Σ.

(k) From (k′) we have F (X) = F (Db)∪F (X \Db) = F (X \Db). So R(F ) = F (X) is
closed and connected in Y (Theorem 4.2 (e)) as well as open set in Y (see Theorem 4.2
(f)). Thus R(F ) = Y which implies the surjectivity of F .

(l) By (h) of Theorem 4.2, cardF−1({g}) is a constant k ≥ 0 for every g from the
same component of Y \ Rb.

If k = 0 for all g ∈ Y \ Rb such that F (X) = Rb, whence F (X \ Db) ⊂ Rb. It is a
contradiction with (l′).

Assumptions S.1 There exists a constant Ka > 0 such that all solutions u ∈ X
of the initial boundary-value problem for the equation

Hu + µ(Au − Hu + Nu) = 0, µ ∈ (0, 1)

with data (1.2), (1.3) fulfil inequality (3.4) from Lemma 3.4. H is the linear homeomor-
phism from Assumption A.1.

Theorem 4.4 Let ( Sα+ρ) with α ∈ (0, 1), ρ > 0, α + ρ < 1, and Assumptions A.1,
N.1 and F.1 hold together with the hypothesis S.1.

Then

(m) problem (1.1) – (1.3) has at least one solution for each g ∈ Y ;
(n) the number ng of solutions (1.1) – (1.3) is finite, constant and different from zero

on each component of the set Y \ Rb (for all g belonging to the same component
of Y \ Rb).

Proof (m) It is sufficient to prove the surjectivity of F : X → Y . By Lemma 3.2 (see
the proof of (ii)) we can write

F = A + N = H + (T + N)

The mapping
H−1F = I + H−1(T + N) : X → X

is a completely continuous and condensing field (see [31, P. 496]).
Let S ⊂ X be a bounded set. Then H(S) is a bounded set in Y . From the coercivity

of F (see Lemma 3.4 (i)) the set F−1[H(S)] = (H−1F )−1(S) is bounded at X . Hence
H−1F is coercive.

Now we show that condition (iii) from Proposition 2.6 is satisfied for the condensing
and coercive field P = H−1F . Take the strictly solvable field G(u) = u. Then the
equation P (u) = kG(u) implies

(H−1F )(u) = ku.

Hence we get for u ∈ X and k < 0

Hu + (1 − k)−1[Au − Hu + Nu] = 0
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Theorem 4.2 Let hypotheses (Sα+ρ) with α ∈ (0, 1), ρ > 0, α + ρ < 1, and
Assumptions A.1, N.1 and F.1 be satisfied. For solutions of (1.1) – (1.3) the following
statements are true:

(d) the set of solution for each g ∈ Y is compact (possible empty);
(e) the set R(F ) = g ∈ Y such that there exists at least one solution u ∈ X of

(1.1) – (1.3) is closed and connected in Y ;
(f) the domain of bifurcation Db is closed in X and the bifurcation range Rb is closed

in Y . The set F (X \ Db) is open in Y ;
(g) if Y \ Rb 6= ∅, then each component of Y \ Rb is a nonempty open set (i.e.

domain);
(h) if Y \Rb 6= ∅, the number ng of solutions is finite and constant (it may be zero)

on each component of Y \Rb, i.e. ng is the same nonnegative integer for each g
belonging to the same component of Y \ Rb;

(i) if Rb = ∅, then the given problem has a unique solution u ∈ X for each g ∈ Y
and this solution continuously depends on g as a mapping from Y onto X;

(j) if Rb 6= ∅, then the boundary ∂F (X \ Db) is a subset of F (Db) = Rb

(∂F (X \ Db) ⊂ F (Db)).

Proof The assertion (d) follows directly from Theorem 4.1 (c).
(e) Take the sequence {gn}n∈N ⊂ R(F ) ⊂ Y converging to g ∈ Y as n → ∞.

By (d) there is a compact set of all solutions {uγ}γ∈I ⊂ X (here I means an index
set) of the equations F (u) = gn for n = 1, 2, . . . . Thus there exists a subsequence
{unk

}k∈N ⊂ {uγ}γ∈I converging to u ∈ X and F (unk
) = gnk

→ g in Y as n → ∞.
Since the mapping F is proper (Lemma 3.4 (ii)) by Proposition 2.4 (i) it is closed, whence
F (u) = g, i.e. g ∈ R(F ). The set R(F ) is closed. R(F ) = F (X) is connected as a
continuous image of the connected set X .

(f) According to Lemma 3.1 (ii) Db = Σ and Rb = F (Db) = F (Σ). Since X \ Σ is
an open set then Db is closed in X and its continuous image Rb is a closed set in Y .

Since, X \ Db = X \ Σ is the set of all points at which the mapping F is locally
invertible, to each u0 ∈ X \ Db there is a neighborhood U1(F (u0)) ⊂ F (X \ Db). It
means, the set F (X \ Db) is open.

(g) The set Y \ Rb = Y \ F (Db) 6= ∅ is open in Y . Then each its component is
nonempty and open, too.

(h) This directly follows from Proposition 2.2.

(i) By Rb = ∅ is Db = ∅ and the mapping F is locally invertible in X . Proposi-
tion 2.5 (ii) asserts that F is a proper mapping. Then from the global inverse mapping
theorem (Proposition 2.3) implies F is homeomorphism X onto Y .

(j) From Lemma 3.1 (ii) Db = Σ and by (f) Db and F (Db) are closed. Then ∂F (X \
Db) = ∂F (Db) ⊂ F (Db).

This finishes the proof of the theorem.

The following two theorems are on the surjectivity of (1.1) – (1.3).

Theorem 4.3 Under the assumptions (Sα+ρ), α ∈ (0, 1), ρ > 0, α + ρ < 1, and
Assumptions A.1, N.1 and F.1 each of the following conditions is sufficient for the solv-
ability of problem (1.1) – (1.3) for each g ∈ Y :

(k) for each g ∈ Rb there is a solution u ∈ X \ Db of (1.1) – (1.3);
(l) the set Y \ Rb is connected and there is g ∈ R(F ) \ Rb (for R(F ) see Theo-

rem 4.2 (e)).
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where (1 − k)−1 ∈ (0, 1). With respect to Assumption S.1

‖u‖a,Q ≤ Ka

for a = max{|γ|, r}, where |γ| = 0, 1, . . . , 2b − 1 and 0 ≤ r ≤ 2b − 1 are fixed. Using
the same method as in Lemma 3.4 (i) we obtain for all solutions of

(H−1F )u = ku

the estimation ‖u‖X ≤ K8, K8 > 0. By Proposition 2.6 we have the strict surjectivity
of H−1F and so F . This proves (m).

(n) From the surjectivity of F on X it follows ng 6= 0. The other assertions of (n)
follow from Theorem 4.2 (h).

Example 4.1 The simple example illustrating results of this part can be the initial
boundary-value problem for the system of p equations.

∂ul

∂t
− Kl

∂2ul

∂x2
+ fl(u) = 0, (t, x) ∈ 〈0, T 〉 × Ω ⊂ R × R,

where l = 1, . . . , p with the conditions

∂ul

∂x
(t, 0) =

∂ul

∂x
(t, 1) = 0, t ∈ 〈0, T 〉,

ul(0, x) = 0, x ∈ cl Ω.

We take Kl > 0 and

fl(u) =











u
1/2
l , if ul ∈ 〈0, a〉,

a1/2, if ul ∈ 〈a,∞),

0, if ul ≤ 0,

for l = 1, . . . , p. Assumption A.1 is satisfied by Proposition 1.1. The condition N.1
can be verified by elementary calculus. The supposition F.1 follows from equation (2.3)
and Green matrix estimations (2.1). The condition (Sα+ρ) holds for 0 < α < 1/2,
1/2 < ρ < 1 and α + ρ < 1 (for example α = 1/5, ρ = 3/5).

5 The Solution Set for C
1-nonlinearities

With respect to the C1-,differentiability of the operator N from (3.2) we prove here
several stronger results than in Chapter 4 for the solutions of (1.1) – (1.3).

Theorem 5.1 Suppose that (Sα+ρ) for α ∈ (0, 1), ρ > 0, α + ρ < 1 and As-
sumptions A.1, N.1, N.2 and F.1 are satisfied and Rb means the bifurcation range of
(1.1) – (1.3) from Definition 3.1. Then the set Y \ Rb is open and dense in Y and thus
the bifurcation range Rb of initial boundary-value problem (1.1) – (1.3) is nowhere dense
in Y .

Proof The openness of Y \ Rb follows from the statement (f) of Theorem 4.2.



246 V. ĎURIKOVIČ AND M. ĎURIKOVIČOVÁ

From previous lemmas the operator A : X → Y is a linear continuous Fredholm map-
ping of the zero index and the Nemitskǐı operator N : X → Y is compact and N ∈
C1(X, Y ).

For every u ∈ X the linear operator N ′ : X → Y from (3.6) is completely continu-

ous on X . By the Nikǒlskǐı decomposition theorem (see Proposition 2.1) the operator
F ′(u) = A + N ′(u) : X → Y is a linear Fredholm mapping of the zero index for each
u ∈ X . By Lemma 3.5 (ii) there is F ∈ C1(X, Y ) and by Lemma 3.6 the F is a
nonlinear Fredholm operator of the zero index.

According to the Banach open mapping theorem (see [30, P. 77]) the mutual equiva-
lence is true: F ′(u) is a linear homeomorphism iff it is a bijective mapping. Since F ′(u)
for every u ∈ X is a linear Fredholm mapping of the zero index so F ′(u) is bijective
iff it is injective (in this case the injectivity implies surjectivity, see Proposition 8.14 (1)
from [31, P. 366]). We see that u ∈ X is a singular point of the Fredholm operator F iff
u is a critical point of F .

From Proposition 2.10 we obtain that set Σ (of all points u ∈ X for which F is not
locally invertible) is a subset of all critical point F . Then, evidently Σ is a subset of all
singular points S of F , i.e. Σ ⊂ S. Hence we get for the set of regular values RF of the
operator F the relations

RF = Y \ F (S) ⊂ Y \ F (Σ) ⊂ Y \ Rb ⊂ Y,

where Rb ⊂ F (Σ) is a bifurcation range of F .
Since F : X → Y is nonconstant closed mapping with dimX = ∞, by Proposition 2.4

we obtain that F is a proper mapping. By Proposition 2.9 (the Quinn version) the set
RF is residual, open and dense in Y . Hence Y \ Rb is dense in Y , too. With respect to
Lemma 3.1 (ii) we can conclude the proof.

In the following results we shall deal with the linear problem in h ∈ X

Ah(t, x) +
∑

0≤|β|≤2b−1
card{|β|}=κ

∂f

∂vβ
[t, x, Dγ

xu(t, x)]Dβ
xh(t, x) = g(t, x) (5.1)

for (t, x) ∈ Q and some fixed u ∈ X with condition (1.2), (1.3). The left side of equation
(5.1) represents the Frechét derivative F ′(u)h of the operator F = A + N : X → Y .

Theorem 5.2 Let the hypotheses Sα+ρ with α ∈ (0, 1), ρ > 0, α + ρ < 1, and
Assumptions A.1, N.1, N.2 and F.1 are satisfied. Then

(o) the number solutions of (1.1) – (1.3) is constant and finite (it may be zero) on
each connected component of the open set Y \ F (S), i.e. for any g belonging to
the same connected component of Y \ F (S). Here S means the set of all critical
points of the operator F = A + N : X → Y ;

(p) let u0 ∈ X be a regular solution of (1.1) – (1.3) with the right hand side g0 ∈ Y .
Then there exists a neighborhood U(g0) ⊂ Y of g0 such that for any g ∈ U(g0)
initial-boundary value problem (1.1) – (1.3) has one and only one solution u ∈ X.
This solution continuously depends on g.
The associated linear problem (5.1), (1.2), (1.3) for u = u0 has a unique solution
h ∈ X for any g from a neighborhood U(g0) of g0 = F (u0). This solution
continuously depends on g;
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(q) denote by G the set of all right hand side g ∈ Y of equation (1.1) for which the
corresponding solutions u ∈ X of (1.1) – (1.3) are its critical points. Then G is
closed nowhere dense in Y ;

(r) if the singular points set of (1.1) – (1.3) is empty, then this problem has unique
solution u ∈ X for each g ∈ Y . It continuously depends on the right hand side g.

Proof (o) In the proof of Theorem 5.1 we have shown that the set of all singular
points of F is equal to the set of all critical points of F . Then the Ambrosetti theorem
(see Proposition 2.2) implies the statement (o).

(p) Since u0 ∈ X \ S, where S is a set of all singular (in our case all critical) points
then by Proposition 2.10 the mapping F is a local C1-diffeomorphism at u0. This proves
first part of (p) for (1.1) – (1.3).

From F as the C1-diffeomorphism follows that F ′ ∈ C(X, Y ), (F−1)′ ∈ C(X, Y ),
where F ′(u)h is the left hand side of (5.1) and (F−1)′(Fu) = (F ′(u))−1 for every
u ∈ X . Hence linear problem (5.1), (1.2), (1.3) for u = u0 has a unique solution h ∈ X
for any g ∈ U(g0) with g0 = F (u0). This solution continuously depends on all right
hand side g. The proof of (p) is completed.

(q) In our case the equality G = F (S) holds, where S is the set of all critical (all
singular) points of F . By the Smale–Quinn theorem (Proposition 2.9) we obtain the
expected results.

(r) By Proposition 2.10, the operator F : X → Y is a local C1-diffeomorphism at any
point u ∈ X . Hence follows the last assertion.

Assumption H.1 Linear homogeneous problem (5.1), (1.2), (1.3) (for g = 0) has
only zero solution h = 0 ∈ X for any u ∈ X .

By the point (p) of Theorem 5.2 we obtain the following corollary.

Corollary 5.1 Let the hypotheses of Theorem 5.2 and Assumption H.1 hold. Then
initial boundary-value problem (1.1) – (1.3) has a unique solution u ∈ X for any g ∈ Y .
Moreover, linear problem (5.1), (1.2), (1.3) has a unique solution h ∈ X for any u ∈ X
and the right hand side g ∈ Y of (5.1). This solution continuously depends on g.

Corollary 5.2 Let the assumptions of Theorem 5.2 be satisfied. Then we have:

(s) if the set S of all singular (in our case all critical) points of F is nonempty, then
∂F (X \ S) ⊂ F (S);

(t) if F (S) ⊂ F (X \ S), then problem (1.1) – (1.3) has the solution u ∈ X for any
g ∈ Y , i.e. R(F ) = Y (F is a surjectivity of X onto Y );

(u) if Y \ F (S) is connected and X \ S 6= ∅, then R(F ) = Y (the solvability of
(1.1) – (1.3) for any g ∈ Y ).

Proof By Theorem 5.2 (q) the set F (S) is closed in Y and by Proposition 2.9 F (X\S)
is open in Y . Hence we have the equations

F (X) = F (S) ∪ F (X \ S) = F (S) ∪ F (X \ S) = F (X) (5.2)

which implies that F (X) is a closed set.

(s) Since F ∈ C1(X, Y ) we get Σ ⊂ S, as in Theorem 5.1. Hence and by Theo-
rem 4.2 (i)

∂F (X \ S) ⊂ ∂F (X \ Σ) ⊂ F (Σ) ⊂ F (S).
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(t) From the first equation of (5.2) we have F (X) = F (X \ S) and so R(F ) is an
open as well as a closed subset of the connected space Y . Thus R(F ) = Y .

(u) Since Y \F (S) is connected, and by Proposition 2.2 we obtain the cardF−1({g}) =
const = k ≥ 0 for each g ∈ Y \ F (S).

If k = 0, then F (X) = F (S) and F (X \ S) ⊂ F (S) and this is a contradiction with
X \ S 6= ∅. Thus k > 0.

Assumption H.2 Each point u ∈ X is either a regular point or an isolated critical
point of problem (1.1) – (1.3).

Theorem 5.3 Suppose that hypotheses (Sα+ρ) with α ∈ (0, 1), ρ > 0, α + ρ < 1,
and Assumptions A.1, N.1, N.2, F.1 and H.2 hold. Then for every g ∈ Y there exists
one solution u ∈ X of (1.1) – (1.3). It continuously depends on g.

Proof The associated operator F : X → Y is a proper C1-Fredholm mapping of the
zero index. By Proposition 2.10 F is a local C1-diffeomorphism at a regular point of
F . In the isolated singular point, by Proposition 2.11 F is locally invertible. Since F is
proper, the global inverse mapping theorem (see Proposition 2.3) implies the statement
of this problem.

Example 5.1 Example 4.1 illustrates the results of Chapter 5 for fl(u) = sin

(

l
∑

i=1

u2
i

)

.

6 Conclusion

The studied models describe different natural science phenomena (a reaction-diffusion
and environment models, a diffusive waves in fluid dynamics — the Burges equation, the
wave propagation in a large number of biological and chemical systems — the Fisher
equation, a nerve pulse propagation in nerve fibers and wall motion in liquid crystals).

We can apply the Fredholm theory to hyperbolic equations modeling different non-
linear vibration problems, to a nonlinear dispersion (the nonlinear Klein–Gordan equa-
tion), a propagation of magnetic flux and the stability of fluid notions (the nonlinear
Sine–Gordan equation) and so on.
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[12] Ďurikovič, V. and Ďurikovičová, Ma. Some generic properties of nonlinear second order
diffusional type problem. Arch. Math. (Brno) 35 (1999) 229 – 244.
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Abstract: This study examines the effect of various propellant burn geome-
tries on the attitude dynamics of a rocket-type variable mass system. The
three burn scenarios studied are the end burn, the centripetal burn, and the
radial burn. Results of this study indicate that a change in burn scenario
changes the predicted attitude motion. The differences are more pronounced
for spin motion than for transverse attitude motion. The end burn is recom-
mended whenever it is practically feasible; it is found to be the least disruptive
from the point of view of attitude dynamics.
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1 Introduction

In the study of the dynamics of rockets, the fact that the system undergoes substantial
mass variation is generally captured in one of two ways. One method is to view the
system as a solid whose mass and inertia vary as functions of time [4, 5]. The exact time
functions used for both the mass and inertia scalars are based on reasonable guesses of
what is likely to occur in real systems. Another approach is to show the propellant as a
subsystem of the rocket, and then specify the physical and geometric manner in which the
propellant mass is depleted. These facts are then used for the precise calculation of the
mass and inertia functions for the system. Naturally, the second approach is preferable,
since it eliminates the need for guessing the time histories of the mass/inertia properties.
However, authors that have utilized this second approach have generally used very simple
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models for both the rocket system and the propellant [2, 3]. When a more complex model
has been used [6], only one propellant burn pattern – the radial burn – is examined. The
radial burn assumes that a cylindrically shaped solid propellant is ignited on its axis,
and burns radially outwards towards its periphery. Yet, there are situations where it
makes sense to assume an end burn for example; that is, a burn in which a cylindrical
propellant is ignited at one of its ends, and burns towards the opposite end.

The goal of this paper is to examine if and how a change in burn pattern influences
predictions of the attitude behavior of a rocket system. Specifically, three different burn
patterns will be compared: the end burn, the centripetal burn, and the radial burn.
This is important for two reasons. First, this study will lead to reasonably accurate
predictions for a case that is in fact best captured by one of the burn scenarios studied,
and for which results were previously unavailable. The second reason is that the results
can be used as design tool in determining the type of propellant burn that should be
implemented in order to produce certain desired dynamic effects.

2 Equations of Attitude Motion

The system studied here is a solid rocket motor and its payload, shown schematically in
Figure 2.1. B represents the rocket’s main body, assumed rigid, and F is the solid fuel.
The products of combustion are expelled through the nozzle. Both B and F are assumed
to be axisymmetric, with a common axis z, and F burns so as to remain axisymmetric
at all times. The mass centers F ∗ of F , B∗ of B, and S∗ of the overall system S all lie on
the axis z. Furthermore, we assume that the motion of the gas products of combustion
relative to the rocket body is either axial, or symmetric with respect to the z-axis and
with no transverse component. Finally, for this study, the velocity distribution of the
exhaust gas particles as they traverse the nozzle exit plane is taken to be uniform as
shown in Figure 2.1. The equations of attitude motion for this system can be written in
the form (see, for example, [1, 6]):

Iω̇1 +

[

İ − ṁ

(

z2
e +

R2
1

4

)]

ω1 + [(J − I)ω3]ω2 = 0, (1)

Iω̇2 +

[

İ − ṁ

(

z2
e +

R2
1

4

)]

ω2 − [(J − I)ω3]ω1 = 0, (2)

Jω̇3 +

(

J̇ − ṁ
R2

1

2

)

ω3 = 0, (3)

where J and I are the system’s overall central axial and transverse moments of inertia
respectively, m is the mass, ωi (i = 1, 2, 3) are the components of the inertial angular
velocity of B in the b1, b2, b3 directions (see Figure 2.1), R1 is the radius of the nozzle
at the exit plane, and ze is the distance from the overall system mass center, S∗, to the
nozzle exit plane.

In order to generate non-dimensional versions of equations (1) – (3), we introduce

mr = −ṁ =

∫

(v · b3)ρ ds = πρUR2
1 (4)

and
mF = mFO −mrt, (5)
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Figure 2.1. Rocket system with solid propellant.

where v is the velocity of exhaust fluid particles relative to the body B, ρ is the mass
density of the exhaust gas, mFO is the mass of the solid fuel at ignition, mF is the
instantaneous mass of the fuel, U is the constant magnitude of the axial velocity of the
exhaust fluid particles as they cross the nozzle exit plane, and t is time. Hence, the time
from ignition to burnout, tb, is given by

tb = mFO/mr. (6)

Dimensionless time τ , is defined as

τ = t/tb = (mr/mFO)t. (7)

This means that τ = 0 at fuel ignition, and τ = 1 at burnout.
Other useful dimensionless quantities are

m̄ = m/mFO, Ī = I/mFOR
2, J̄ = J/mFOR

2, and ω̄i = ωitb, (8)

where R is the outer radius of the cylindrical propellant grain. Equations (1), (2), and
(3) then become respectively

Īω̄′

1 +

{

Ī ′ − m̄′

[(

ze

R

)2

+
β2

4

]}

ω̄1 + [(J̄ − Ī)ω̄3]ω̄2 = 0, (9)

Īω̄′

2 +

{

Ī ′ − m̄′

[(

ze

R

)2

+
β2

4

]}

ω̄2 − [(J̄ − Ī)ω̄3]ω̄1 = 0, (10)

and

J̄ ω̄′

3 +

(

J̄ ′ − m̄′
β2

2

)

ω̄3 = 0. (11)

In the above equations, a prime indicates derivative with respect to the dimensionless
time variable τ , and β is the nozzle expansion ratio (R1/R).

From equation (11),

ω̄3(τ)

ω̄3(0)
= exp

[

−

τ
∫

0

ψ(τ)

J̄
dτ

]

, (12)
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where

ψ(τ) =

(

J̄ ′ − m̄′
β2

2

)

. (13)

Next, we follow established tradition [3, 6], and define complex angular velocity

ω̄T = ω̄1 + iω̄2, (14)

where i =
√
−1. Equations (9) and (10) are then combined to give

ω̄T (τ)

ω̄T (0)
=

〈

exp

[

−

τ
∫

0

ϕ(τ)

J̄
dτ

]〉

·

〈

exp

[

i

τ
∫

0

Θ dτ

]〉

, (15)

where

ϕ(τ) = Ī ′ − m̄′

[(

ze

R

)2

+
β2

4

]

(16)

and

Θ = [(J̄/Ī) − 1]ω̄3. (17)

It is clear from (15) that the magnitude of the transverse angular velocity vector is
controlled by the function ϕ(τ), while Θ(τ) governs the frequency. On the other hand,
the sign of ψ(τ) [see (12)] is an indication of whether the spin rate increases or decreases
with τ .

3 Spin Motion

To study the spin rate of the rocket body during propellant burn, it is necessary [see
equations (12) and (13)] to determine expressions for instantaneous system mass and
inertia. One way to determine these functions is to select a propellant depletion strategy.
For this study, we choose to examine three different propellant depletion scenarios: the
End Burn, the Centripetal Burn, and the Radial Burn. As the names indicate, End Burn
refers to the case where the propellant burns from end to end. Centripetal Burn is the
unusual case where propellant burn proceeds radially inwards from the outermost part of
the fuel, and Radial Burn is the case where combustion starts from the propellant axis,
and proceeds radially outwards.

3.1 End Burn

For the purpose of this study, the solid propellant F is assumed to be a solid cylinder
prior to ignition. For the end burn, this cylindrical fuel burns from the end closest to
the nozzle towards the opposite end. The burn proceeds uniformly, in the sense that the
unburned fuel is always a cylinder of the same radius as at ignition but with diminishing
length as shown in Figures 2.1 and 3.1.

Using the symbols defined in Figure 3.1, the mass of fuel F at ignition is

mFO = ρFOπR
2L (18)
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Figure 3.1. Rocket model with end burning propellant.

and the mass at some intermediate stage of the burn is

mF = ρFOπR
2z, (19)

where z is the instantaneous length of the solid cylindrical propellant and ρFO is its
density. From equations (6), (18), and (19), the time from ignition to burnout is

tb =
mFO

−ṁF
=

ρFOπR
2L

−ρFOπR2ż
=

L

−ż
. (20)

Integrating (20), we obtain
z

L
= 1 − τ. (21)

The dimensionless mass of the propellant is

m̄F =
mF

mFO
=
ρFOπR

2z

ρFOπR2L
=
z

L
= 1 − τ. (22)

Hence,
m̄′ = m̄′

F = −1. (23)

The axial moment of inertia of the propellant is

JF =
mFR

2

2
(24)

and the dimensionless version is

J̄F =
JF

mFOR2
=
m̄F

2
=

1 − τ

2
. (25)

The combined axial moment of inertia of the system is

J̄ = J̄B + J̄F = J̄B +
(1 − τ)

2
, (26)
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Figure 3.2. Rocket with propellant in centripetal burn.

where the subscripts B and F refer to bodies B and F respectively of Figure 2.1. Hence,

J̄ ′ = J̄ ′

F = −
1

2
. (27)

Substituting (23) and (27) into (13), we get

ψ(τ) = −
1

2
(1 − β2). (28)

From (28), ψ(τ) is a constant that can be negative, zero, or positive depending on the
value of the nozzle expansion ratio β. There is thus a threshold value β = βL = 1 for
which the spin rate remains constant throughout the burn. The spin rate increases from
ignition to burnout if β > βL, and decreases from ignition to burnout for β < βL. From
(12), (26) and (28), a closed form solution can be shown to be

ω̄3(τ)

ω̄3(0)
=

[

2J̄B + 1

2J̄B + 1 − τ

][1−β2]

. (29)

This expression confirms the above predictions.

3.2 Centripetal Burn

In centripetal burn, the cylindrical solid fuel is ignited at its periphery but not at any
of its ends. It then burns radially inwards, with the radius decreasing uniformly along
its length in such a way that the intermediate shape of the propellant is always a solid
cylinder that has the same length as at ignition, but of decreasing radius (see Figure 3.2).

The mass of F at ignition remains as given by (18), and the intermediate mass of F
during the burn is

mF = ρFOπLr
2, (30)

where r is the intermediate value of the external radius of the propellant. The time from
ignition to burnout in this case is

tb =
mFO

−ṁF
=

ρFOπLR
2

−ρFOπL
d
dt (r2)

=
R2

− d
dt (r2)

. (31)
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This leads to
(

r

R

)2

= 1 − τ. (32)

The dimensionless mass of the fuel is

m̄F =
mF

mFO
=

ρFOπLr
2

ρFOπLR2
=

(

r

R

)2

= 1 − τ (33)

and once more,
m̄′ = m̄′

F = −1. (34)

The axial moment of inertia for the propellant is

JF =
mF r

2

2
. (35)

So,

J̄F =
JF

mFOR2
=
m̄F

2

(

r

R

)2

=
(1 − τ)2

2
. (36)

For the overall system, we have

J̄ = J̄B + J̄F = J̄B +
(1 − τ)2

2
. (37)

Thus
J̄ ′ = J̄ ′

F = −(1 − τ). (38)

We then substitute (34) and (38) into (13) to obtain

ψ(τ) =

(

β2

2
− 1

)

+ τ. (39)

Equation (39) indicates that the function ψ(τ) increases linearly with time with unit
slope, and ψ(1) = β2/2 is greater than ψ(0) = β2/2−1. ψ(1) is always positive; however,
ψ(0) can be negative, zero, or positive depending on the value of β. Figure 3.3 captures

the three possibilities. If the nozzle expansion ratio is equal to or greater than βL =
√

2,
the spin rate will decrease from ignition all the way to burnout. Otherwise, the spin rate
increases initially, changes sign at some point during the burn, then decreases for the
remainder of the burn. The trend reversal occurs at

Figure 3.3. Function ψ for centripetal burn.
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τ = 1 − β2/2. (40)

A closed form solution is also possible for (12) in this case. Using (12), (37) and (39) we
obtain

ω̄3(τ)

ω̄3(0)
=

[

2J̄B + 1

2J̄B + (1 − τ)2

]

· exp

{

−β2

√

2J̄B

[

tan−1 τ
√

2J̄B

2J̄B + 1 − τ

]}

. (41)

Figure 3.4 shows plots of the normalized spin rate as a function of τ . The figure confirms
the inferences given above.

Figure 3.4. Spin behavior for centripetal burn.

3.3 Radial Burn

For radial burn, the cylindrical propellant is ignited along its axis, and burns radially
outwards in such a way that the intermediate shape of the propellant is a hollow cylinder,
as shown in Figure 3.5. This case was studied in detail in [6], but the highlights will be
presented here for completeness.

Figure 3.5. Rocket with radially burning propellant.
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From Figure 3.5, the mass of propellant before ignition is

mFO
= ρFOπL(R2 − r20) (42)

and the propellant mass at some instant after ignition is

mF = ρFOπL(R2 − r2). (43)

In (42), r0 is the internal radius of the propellant at ignition. The time from ignition to
burnout is thus

tb =
mFO

−ṁF
=
ρFOπL(R2 − r20)

ρFOπL
d
dt (r2)

=
R2 − r20

d
dt (r2)

. (44)

Equation (44) can be integrated to give

(

r

R

)2

=

(

r0
R

)2

+

[

1 −

(

r0
R

)2]

τ = γ2 + (1 − γ2)τ, (45)

where γ is the ratio r0/R. We get from (42) and (43)

m̄F =
mF

mFO
=
ρFπL(R2 − r2)

ρFπL(R2 − r20)
=

1 − (r/R)2

1 − (r0/R)2
= 1 − τ (46)

and
m̄′ = m̄′

F = −1. (47)

The axial inertia of F is

J̄F =
JF

mFOR2
=
m̄F

2

[

1 +

(

r

R

)2]

=

[

1 − τ

2

]

[1 + γ2 + (1 − γ2)τ ] (48)

and that of the entire system is

J̄ = J̄B + J̄F = J̄B +
1 + γ2

2
− γ2τ −

1 − γ2

2
τ2. (49)

Thus,
J̄ ′ = J̄ ′

F = −[γ2 + (1 − γ2)τ ]. (50)

Equations (13), (47), and (50) give

ψ(τ) =

(

β2

2
− γ2

)

− (1 − γ2)τ. (51)

This time the function ψ(τ) varies linearly with τ , and has a slope of (γ2 − 1). The
quantity γ = r0/R is strictly less than 1; hence, ψ(τ) has a negative slope. At ignition,
ψ(0) = (β2/2 − γ2), and this is likely to be positive for real rockets. At burnout,

ψ(1) = (β2/2 − 1). Hence, when β ≥ βL =
√

2, the spin rate decreases all the way to
burnout, and when β < βL, the spin rate decreases at first, but then reaches a minimum
value when τ = (β2/2 − γ2)/(1 − γ2), and starts to increase all the way to burnout.
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Figure 3.6. Spin rate behavior of radial burn.

Using equations (12), (49), and (51), it is again possible to solve for the spin rate in
closed form:

ω̄3(τ)

ω̄3(0)
=

[

2J̄B(1 − γ2) + 1 − γ4

2J̄B(1 − γ2) + 1 −
[

γ2 + (1 − γ2)τ
]2

]

(52)

×exp

{

−β2

√

2J̄B(1 − γ2) + 1

[

tanh−1

[

γ2 + (1 − γ2)τ
]

√

2J̄B(1 − γ2) + 1
− tanh−1 γ2

√

2J̄B(1 − γ2) + 1

]}

.

Figure 3.6 shows two cases that match the above predictions when J̄B = 0.5 and
γ = 0.1 are used as an example.

4 Transverse Angular Speed

The magnitude of the transverse angular velocity is obtainable from (15), and is

∣

∣

∣

∣

ω̄T (τ)

ω̄T (0)

∣

∣

∣

∣

= exp

[

−

τ
∫

0

ϕ(τ)

Ī
dτ

]

. (53)

The quantity Ī decreases with τ during a propellant burn, but is always positive. Hence,
the sign of ϕ(τ) determines whether the magnitude of the transverse angular velocity
increases or decreases with the burn. The central transverse moment of inertia of the
rocket system can be written, in non-dimensional form as

Ī = ĪB + ĪF +
mBb

2 +mFa
2

mFOR2
, (54)

where the dimensionless transverse inertia of B is ĪB = IB/mFOR
2.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 5(3) (2005) 251–264 261

4.1 End Burn

For the case of End Burn [see Figure 3.1], the transverse inertia of the propellant F is

ĪF =
IF

mFOR2
= m̄F

[

1

4
+

1

12

(

z

R

)2]

= (1 − τ)

[

1

4
+

1

12
δ2(1 − τ)2

]

, (55)

where δ is the ratio L/R, which can be referred to as the shape factor of the solid
propellant. In subsequent equations, we will use δi = Li/R, for i = 1, 2, 3 (see Figure 3.1
for L1, L2, L3). The distances a and b can be expressed as

a =
mB

mB +mF

[

L2 +
L(1 − τ)

2

]

(56)

and

b =
mF

mB +mF

[

L2 +
L(1 − τ)

2

]

. (57)

Substituting equations (55), (56), and (57) into (54), and simplifying, we obtain

Ī = ĪB + (1 − τ)

[

1

4
+
δ2(1 − τ)2

12

]

+
m̄B(1 − τ)

m̄B + 1 − τ

[

δ2 +
δ(1 − τ)

2

]2

. (58)

Hence,

Ī ′ =

[

1

4
+
δ2(1 − τ)2

4

]

−

[

m̄B

m̄B + 1 − τ

]2[

δ2+
δ(1 − τ)

2

]2

−

[

m̄B(1 − τ)δ

m̄B + 1 − τ

][

δ2+
δ(1 − τ)

2

]

.

(59)
Again from Figure 3.1, the distance

ze = L1 + L+ a−
z

2
. (60)

Thus
ze

R
=
m̄B[δ2 + δ(1 − τ)/2] + (m̄B + 1 − τ)[δ1 + δ(1 + τ)/2]

m̄B + 1 − τ
. (61)

Finally, from (16), (23), (59), and (61), we get

ϕ(τ) = −
1

4
+
β2

4
+δ21+δ2τ+δδ1(1+τ)+

2m̄B[δ1 + δτ ]

m̄B + 1 − τ

[

δ2+
δ(1 − τ)

2

]

= −
1

4
+ϕe(τ), (62)

where

ϕe(τ) =
β2

4
+ δ21 + δ2τ + δδ1(1 + τ) +

2m̄B[δ1 + δτ ]

m̄B + 1 − τ

[

δ2 +
δ(1 − τ)

2

]

. (63)

Since each parameter that appears in ϕ(τ) is positive, and 0 ≤ τ ≤ 1, it is clear that
ϕe is always positive. In fact, it is most likely greater than 1

4 . Hence the function ϕ(τ)
is likely to be always positive. We conclude then that in the case of End Burn, the



262 F.O. EKE AND J. SOOKGAEW

magnitude of the transverse angular velocity is damped as the propellant burns. The
term “jet damping” truly applies in this case.

4.2 Centripetal Burn

We now consider the case of Centripetal Burn [see Figure 3.2]. Here,

ĪF =
IF

mFOR2
= m̄F

[

1

4

(

r

R

)2

+
1

12

(

L

R

)2]

= (1 − τ)

[

1 − τ

4
+

1

12
δ2

]

, (64)

a =
mBL3

mB +mF
(65)

and

b =
mFL3

mB +mF
. (66)

Substituting equations (64), (65), and (66) into (54), we obtain,

Ī = ĪB + (1 − τ)

[

1 − τ

4
+
δ2

12

]

+
m̄B(1 − τ)δ23
m̄B + 1 − τ

(67)

so that

Ī ′ = −

(

1 − τ

2
+
δ2

12

)

−

(

m̄Bδ3
m̄B + 1 − τ

)2

. (68)

In this case [see Figure 3.2],

ze = L1 +
L

2
+ a. (69)

So,
ze

R
=
m̄Bδ3 + (m̄B + 1 − τ)(δ1 + δ/2)

m̄B + 1 − τ
. (70)

From equations (16), (34), (68), and (70)

ϕ(τ) = −
1

2
+
τ

2
+
β2

4
+
δ2

6
+ δ21 + δδ1 +

m̄Bδ3
m̄B + 1 − τ

(δ + 2δ1) = −
1

2
+ ϕc(τ), (71)

where

ϕc(τ) =
τ

2
+
β2

4
+
δ2

6
+ δ21 + δδ1 +

m̄Bδ3
m̄B + 1 − τ

(δ + 2δ1). (72)

We have here a situation that is similar to the End Burn case. ϕc(τ) is positive and
increases with τ . ϕc(τ) is most likely greater than 1

2 , even at τ = 0. Therefore the
transverse angular speed is again a decreasing function from ignition to burnout.

4.3 Radial Burn

If the propellant undergoes a radial burn as shown in Figure 3.5,

ĪF =
IF

mFOR2
= m̄F

[

1

4
+

1

4

(

r

R

)2

+
1

12

(

L

R

)2]

= (1 − τ)

[

1 + γ2 + (1 − γ2)τ

4
+
δ2

12

]

.

(73)
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The distances a and b become

a =
mBL3

mB +mF
(74)

and

b =
mFL3

mB +mF
. (75)

Substituting equations (73), (74), and (75) into (54), we obtain, after some algebra,

Ī = ĪB + (1 − τ)

[

1 + γ2 + (1 − γ2)τ

4
+
δ2

12

]

+
m̄B(1 − τ)δ23
m̄B + 1 − τ

(76)

so that

Ī ′ = −

[

γ2 + (1 − γ2)τ

2
+
δ2

12

]

−

[

m̄Bδ3
m̄B + 1 − τ

]2

. (77)

Since, the distance

ze = L1 +
L

2
+ a. (78)

We have,
ze

R
=
m̄Bδ3 + (m̄B + 1 − τ)(δ1 + δ/2)

m̄B + 1 − τ
. (79)

From equations (16), (47), (77), and (79)

ϕ(τ) = −

[

γ2 + (1 − γ2)τ

2

]

+
β2

4
+
δ2

6
+ δ21 + δδ1 +

m̄Bδ3
m̄B + 1 − τ

(δ + 2δ1)

= ϕ1(τ) + ϕ2(τ),

(80)

where

ϕ1(τ) = −

[

γ2 + (1 − γ2)τ

2

]

(81)

and

ϕ2(τ) =
β2

4
+
δ2

6
+ δ21 + δδ1 +

m̄Bδ3
m̄B + 1 − τ

(δ + 2δ1). (82)

Here, the minimum value that ϕ1 can have is − 1
2 , but ϕ2 is always positive and most

likely greater than 1
2 . Hence, we have again that mass loss through radial propellant

burn results in continuous damping of the transverse rate.
In summary, we find that the transverse angular velocity decreases in magnitude as

propellant burn progresses for each of the three propellant-burn scenarios examined. We
note, however, that this conclusion is not absolute. In other words, one cannot absolutely
exclude the possibility of growth in the transverse angular speed with propellant burn.
Some factors that could bring this about include small values of β, δ, δ1, δ2 and δ3. We
note that in [2] a variable mass cylinder model was used to show that the transverse rate
can grow without bounds when the system is “short and fat,” that is, for small δ. This
makes sense because when a cylinder is used to model a rocket system, we automatically
have that δi (i = 1, 2, 3) are all zero and β = 1. If δ is small in addition, then there is a
clear danger of having |ϕ2| < |ϕ1| in (80). We also note that even for the extreme case of
the cylinder, the authors [2] were not able to show divergence in transverse rate for End
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and Centripetal Burns. It is easy to see this by setting δi = 0 and β = 1 in equations
(62) and (71).

5 Conclusion

This study examines how a spinning solid rocket’s propellant depletion scheme affects
the rotational dynamics of the rocket. Three mass loss scenarios – end burn, centripetal
burn, and radial burn – were evaluated.

Results obtained indicate that for End Burn, spin rate can remain constant, increase,
or decrease throughout the propellant burn depending on the value of the nozzle expan-
sion ratio used. For Centripetal Burn, the spin rate will either decrease through the burn
or increase at first then reverse itself and decrease to the end of the burn. In the case of
Radial burn, the spin rate initially decreases then it can either keep decreasing or start
increasing through the end of the burn. The value of the nozzle expansion ratio plays an
important role in determining the character of the spin rate curve.

The transverse angular speed normally decreases with propellant burn irrespective of
the type of burn adopted. For certain extreme choices of the parameters of the system,
it may be possible to have the transverse rate increase with time for the radial burn.
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Abstract: We study the close approach between a planet and a cloud of
particles. It is assumed that the dynamical system is formed by two main
bodies in circular orbits and a cloud of particles in planar motion. The goal is
to study the change of the orbit of this cloud after the close approach with the
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eccentricity e ± ∆e before the close approach with the planet. It is desired
to known those values after the close approach.
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1 Introduction

In astronautics, the close approach between a spacecraft and a planet is a very popular
technique used to decrease fuel expenditure in space missions. This maneuver modifies
the velocity, energy and angular momentum of a spacecraft. There are many important
applications very well known, like the Voyager I and II that used successive close encoun-
ters with the giant planets to make a long journey to the outer Solar System; the Ulysses
mission that used a close approach with Jupiter to change its orbital plane to observe
the poles of the Sun, etc.

In the present paper we study the close approach between a planet and a cloud of par-
ticles. It is assumed that the dynamical system is formed by two main bodies (usually
the Sun and one planet) which are in circular orbits around their center of mass and a
cloud of particles that is moving under the gravitational attraction of the two primaries.
The motion is assumed to be planar for all the particles and the dynamics given by the
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“patched-conic” approximation is used, which means that a series of two-body prob-
lems are used to generate analytical equations that describe the problem. The standard
canonical system of units is used and it implies that the unit of distance is the distance
between the two primaries and the unit of time is chosen such that the period of the
orbit of the two primaries is 2π.

The goal is to study the change of the orbit of this cloud of particles after the close
approach with the planet. It is assumed that all the particles that belong to the cloud
have semi-major axis a ± ∆a and eccentricity e ± ∆e before the close approach with
the planet. It is desired to known those values after the close approach.

Among the several sets of initial conditions that can be used to identify uniquely one
swing-by trajectory, a modified version of the set used in the papers written by [18 – 20]
is used here. It is composed by the following three variables: 1) Vp, the velocity of the
spacecraft at periapse of the orbit around the secondary body; 2) the angle ψ, that is
defined as the angle between the line M1 –M2 (the two primaries) and the direction of
the periapse of the trajectory of the spacecraft around M2; 3) rp, the distance from the
spacecraft to the center of M2 in the moment of the closest approach to M2 (periapse
distance). The values of Vp and ψ are obtained from the initial orbit of the spacecraft
around the Sun using the “patched-conics” approximation and rp is a free parameter
that is varied to obtain the results.

2 Review of the Literature for the Swing-By

The literature shows several applications of the swing-by technique. Some of them can
be found in [1], that studied a mission to Neptune using swing-by to gain energy to
accomplish the mission; [2], that made a similar study for a mission to Pluto; [3], that
formulated a mission to study the Earth’s geomagnetic tail; [4 – 6], that planned the mis-
sion ISEE-3/ICE; [7], that made the first studies for the Voyager mission; [8], that design
a mission to flyby the Halley comet; [9, 10] that studied multiple flyby for interplanetary
missions; [11, 12], that design missions with multiple lunar swing-bys; [13], that studied
the effects of the atmosphere in a swing-by trajectory; [14], that used a swing-by in Venus
to reach Mars; [15], that studied numerically a swing-by in three dimensions, including
the effects in the inclination; [16], that considered the possibility of applying an impulse
during the passage by the periapsis; [17], that classified trajectories making a swing-by
with the Moon. The most usual approach to study this problem is to divide the problem
in three phases dominated by the “two-body” celestial mechanics. Other models used to
study this problem are the circular restricted three-body problem (like in [18 – 20] and
the elliptic restricted three-body problem [21]).

3 Orbital Change of a Single Particle

This section will briefly describe the orbital change of a single particle subjected to a
close approach with the planet under the “patched-conics” model. It is assumed that the
particle is in orbit around the Sun with given semi-major axis (a) and eccentricity (e).
The swing-by is assumed to occur in the planet Jupiter for the numerical calculations
shown below, but the analytical equations are valid for any system of primaries. The
periapse distance (rp) is assumed to be known. As an example for the numerical cal-
culations, the following numerical values are used: a = 1.2 canonical units, e = 0.3,
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Figure 3.1. The swing-by in the three-dimensional space.

µJ = 0.00094736, rp = 0.0001285347 (100000 km = 1.4 Jupiter’s radius), where µJ is
the gravitational parameter of Jupiter in canonical units (total mass of the system equals
to one).

The first step is to obtain the energy (EB) and angular momentum (CB) of the
particle before the swing-by. They are given by

EB = −
1 − µJ

2a
= −0.4162, CB =

√

(1 − µJ ) a(1 − e2) = 1.0445. (1)

Then, it is possible to calculate the magnitude of the velocity of the particle with
respect to the Sun in the moment of the crossing with Jupiter’s orbit (Vi), as well as the
true anomaly of that point (θ). They come from

Vi =

√

(1 − µJ )

(

2

rSJ
−

1

a

)

= 1.0796 (2)

and

θ = cos−1

[

1

e

(

a(1 − e2)

rSJ
− 1

)]

= 1.2591

using the fact that the distance between the Sun and Jupiter (rSJ ) is one and taking
only the positive value of the true anomaly.

Next, it is calculated the angle between the inertial velocity of the particle and the
velocity of Jupiter (the flight path angle γ), as well as the magnitude of the velocity of
the particle with respect to Jupiter in the moment of the approach (V∞). They are given
by (assuming a counter-clock-wise orbit for the particle)

γ = tan−1

[

e sin θ

1 + e cos θ

]

= 0.2558

and V∞ =
√

V 2
i + V 2

2 − 2ViV2 cos γ = 0.2767 using the fact that the velocity of Jupiter
around the Sun (V2) is one. Figure 3.1 shows the vector addition used to derive the
equations.
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The angle β shown is given by

β = cos−1

(

−
V 2

i − V 2
2 − V −2

∞

2V2V
−
∞

)

= 1.7322.

This information allows us to obtain the turning angle (2δ) of the particle around
Jupiter, from

δ = sin−1

(

1 +
rpV

−2
∞

µJ

)−1

= 1.4272. (3)

The angle of approach (ψ) has two values, depending if the particle is passing in front
or behind Jupiter. These two values will be called ψ1 and ψ2. They are obtained from
ψ1 = π + β + δ = 6.3011 and ψ2 = 2π + β − δ = 6.5882.

The correspondent variations in energy and angular momentum are obtained from the
equation ∆C = ∆E = −2V2V∞ sin δ sinψ (since ω = 1). The results are:

∆C1 = ∆E1 = −0.009811, ∆C2 = ∆E2 = −0.1644. (4)

By adding those quantities to the initial values we get the values after the swing-by.
They are:

E1 = −0.4260, C1 = 1.0346,

E2 = −0.5806, C2 = 0.8801.

Finally, to obtain the semi-major axis and the eccentricity after the swing-by it is
possible to use the equations

a = −
µ

2E
and e =

√

1 −
C2

µa
. (5)

The results are: a1 = 1.1723, e1 = 0.2937, a2 = 0.8603, e2 = 0.3144.

4 Orbital Change of a Cloud of Particles

The algorithm just described can now be applied to a cloud of particles passing close
to Jupiter. The idea is to simulate a cloud of particles that have orbital elements given
by: a ± ∆a and e ± ∆e. The goal is to map this cloud of particles to obtain the new
distribution of semi-major axis and eccentricities after the swing-by. Figure 4.1 and
Figure 4.2 shows some results for a cloud of particles with rp = 1.4Rj, for the case
∆a = ∆e = 0.001, rp = 1.4RJ and Figure 4.3 and Figure 4.4 shows the equivalent
results with rp = 10.0Rj for ∆a = ∆e = 0.001, rp = 10.0RJ .
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Figure 4.1. Eccentricity vs. Semi-major axis before and after the Swing-By for

”Solution 1”.

Figure 4.2. Eccentricity vs. Semi-major axis after the Swing-By for ”Solution 2”.

Figure 4.3. Eccentricity vs. Semi-major axis before and after the Swing-By for

”Solution 1”.
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Figure 4.4. Eccentricity vs. Semi-major axis after the Swing-By for ”Solution 2”.

5 Conclusions

The figures above allow us to get some conclusions. The solution called “Solution 1” has
a larger amplitude than the Solution 2 in both orbital elements, but it concentrates the
orbital elements in a line, while the so-called “Solution 2” generates a distribution close
to a square. The area occupied by the points is smaller for “Solution 1”. Both vertical
and horizontal lines are rotated and become diagonal lines with different inclinations.
The effect of increasing the periapse distance is to generate plots with larger amplitudes,
but with the points more concentrated, close to a straight line.
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Abstract: By extension of a fault detection optimization approach to linear
time invariant (LTI) systems, this short paper deals with the fault detection
filter (FDF) problem for linear time-delay systems with L2-norm bounded
unknown inputs. The basic idea is first to introduce a new FDF as the residual
generator; and then based on an objective function to formulate the FDF
design as an optimization problem. Through appropriate choice of the filter
gain matrix and a post-filter, the convergence of the residual generator and
satisfactory FDF performance can be achieved. A numerical example is given
to illustrate the effectiveness of the proposed method.
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1 Introduction

Many significant approaches to the problems of robust fault detection and isolation
(FDI) have been developed during the past two decades, for instance unknown input
observer (UIO), parity space, H∞ optimization, eigenstructure assignment, and H∞ fil-
tering [1, 5, 6, 9, 12]. However, most of these aforementioned works are about delay-free
systems. Time delay is an inherent characteristic of many physical systems, such as
rolling mills, chemical processes, water resources, biological, economic and traffic control
systems. To the best of our knowledge, only few researches on FDI have been carried out
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for time-delay systems [4, 7, 8, 10]. Note that [7] did not consider the influence of unknown
inputs; [10] formulated the fault detection filter (FDF) design problem as a two-objective
nonlinear programing problem where no analytic solution can be constructed in general;
[8] extended the results of [10] to the discrete-time case. The authors’ earlier work in
[4] developed an LMI approach to FDF design for linear time invariant (LTI) time-delay
systems, but the selection of weighting transfer function matrix has strong influence on
FDF performance. Research on fault detection (FD) of time-delay system is as yet an
open and important issue.

The main objective of this short paper is to deal with the FDF design problem for linear
systems with L2-norm bounded unknown input and multiple time delays. An FDF will
be developed such that a robustness/sensitivity based objective function is minimized.
The core of this study is the introduction of a new FDF as a residual generator and an
extension of the optimization FDI method for LTI systems in [2, 3] to time-delay systems.
A sufficient condition to the solvability of FDF is derived and a solution can be obtained
by appropriate choice of a filter gain matrix and post-filter. Finally, a numerical example
is given to illustrate the effectiveness of the proposed method.

Notations. Throughout this paper, the superscript T stands for the matrix trans-
position, Rn denotes the n dimensional Euclidean space. Rn×m is the set of all n × m
real matrices. I is the identity matrix with appropriate dimensions. L2 denotes the
space of square integrable vector functions over [0,∞). For h(t) ∈ L2, ‖h‖2 denotes the
L2-norm of h(t). For a real matrix P, P > 0 (respectively, P < 0), means that P is
real symmetric and positive definite (respectively, negative definite). RH∞ denotes the
set of rational transfer functions analytic in closed right half plane. For G(s) ∈ RH∞,
‖G(s)‖∞ denotes the H∞ norm of transfer function matrix G(s).

2 Preliminaries and Problem Formulation

2.1 Brief review of related FD approach

Consider LTI systems described by

ẋ(t) = Ax(t) + Bu(t) + Bff(t) + Bdd(t) (1)

y(t) = Cx(t) + Du(t) + Dff(t) + Ddd(t) (2)

where x(t) ∈ Rn, u(t) ∈ Rp, y(t) ∈ Rq are the state vector, control input and mea-
surement output respectively. d(t) ∈ Rm denotes the L2-norm bounded unknown input,
f(t) ∈ Rl is the fault to be detected. A, B, Bf , Bd, C, D, Df and Dd are known
matrices with appropriate dimensions. It has been shown by Ding and Frank [3] that the
dynamics of observer-based residual generator for systems (1) – (2) can be expressed as

˙̂x(t) = Ax̂(t) + Bu(t) + H(y(t) − ŷ(t)), (3)

ŷ(t) = Cx̂(t) + Du(t), r(s) = R(s)(y(s) − ŷ(s)) (4)

or the frequency domain description

r(s) = R(s)[(C(sI − A + HC)−1(Bd − HDd) + Dd)d(s)

+ (C(sI − A + HC)−1(Bf − HDf) + Df )f(s)]

= R(s)Gεd(s)d(s) + R(s)Gεf (s)f(s) = Grd(s)d(s) + Grf (s)f(s),
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where x̂(t) ∈ Rn and ŷ(t) ∈ Rq represent the state and output estimation vectors
respectively, r is the so-called residual signal. The transfer function matrix R(s) ∈ RH∞,
also called a post-filter, and observer gain matrix H are parameters to be determined.
In the case of a full decoupling of unknown input being not achievable, the main task
of FDF design is to find a suitable H and R(s) such that the H∞ norm of Grd(s) is
minimized by guaranteeing a desired sensitivity to fault. One widely accepted way is to
formulate the FDF problem as the following optimal problem

J = min
R(s),H

‖R(s)Gεd(s)‖∞
‖R(s)Gεf (s)‖∞

. (5)

Under some assumptions, [2, 3] has developed an optimization method to solve the prob-
lem (5).

Lemma 1 [2, 3] Consider system (1) – (2) and suppose the assumptions

(A1) system (1) – (2) is asymptotically stable when u(t) = 0, d(t) = 0 and f(t) = 0
for t > 0;

(A2) (C, A) is detectable;

(A3)

[

A − jωI Bd

C Dd

]

is of full row rank for ω ∈ [0,∞)

hold, then

R∗(s) = Q−1/2, H∗ = (BdD
T
d + Y CT)Q−1

solve the optimal problem (5), where Q = DdD
T
d and Y ≥ 0 is a solution of the algebraic

Riccati equation

Y (A−BdD
T
d Q−1C)T +(A−BdD

T
d Q−1C)Y −Y CTQ−1CY +Bd(I −DT

d Q−1Dd)B
T
d = 0

Moreover, G∗

rd(s) is a co-inner matrix, where

G∗

rd(s) = R∗(s)
[

C(sI − A + H∗C)−1(Bd − H∗Dd) + Dd

]

.

Remark 1 From the view point of FDI, Assumptions A1 and A2 are trivial and do
not lead to a loss of generality. The results in Lemma 1 are true only under the assump-
tions made, in particular, Assumption A3. Upon removing it, the lemma will lose its
validity [3].

2.2 Problem formulation

In this short paper, we consider the FDF problem for a class of linear time-delay systems
described by

ẋ(t) = Ax(t) +

N
∑

i=1

Aix(t − τi) + Bu(t) +

L
∑

j=1

Bju(t − µj) + Bff(t) + Bdd(t), (6)

y(t) = Cx(t) + Du(t) + Dff(t) + Ddd(t), (7)

x(−t) = 0, u(−t) = 0, t > 0, (8)
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where x(t) ∈ Rn, u(t) ∈ Rp, y(t) ∈ Rq, d(t) ∈ Rm, f(t) ∈ Rl and matrices A, B,
Bf , Bd, C, D, Df and Dd are defined as in system (1) – (2). Ai (i = 1, 2, . . . , N) and
Bj (j = 1, 2, . . . , L) are known matrices with appropriate dimensions. τi and µj denote
known constant time delays. Throughout this work, Assumptions A1 to A3 corresponding
to system (6) – (8) are also made, that is

(A4) system (6) – (8) is asymptotically stable when u(t) = 0, d(t) = 0 and f(t) = 0
for t > 0;

(A5) (C, A) is detectable;

(A6)

[

A − jωI Bd

C Dd

]

is of full row rank for ω ∈ [0,∞).

The type of filter considered in this paper is given by

˙̂x(t) = Ax̂(t) +
N

∑

i=1

Aixu(t − τi) + Bu(t) +
L

∑

j=1

Bju(t − µj) + H(y(t) − ŷ(t)), (9)

ẋu(t) = Axu(t) +

N
∑

i=1

Aixu(t − τi) + Bu(t) +

L
∑

j=1

Bju(t − µj), (10)

ŷ(t) = Cx̂(t) + Du(t), ε(t) = y(t) − ŷ(t), (11)

r(s) = R(s)ε(s), (12)

x̂(−t) = 0, xu(−t) = 0, t > 0, (13)

where x̂(t) ∈ Rn, ŷ(t) ∈ Rq and xu(t) ∈ Rn are vectors, R(s) ∈ RH∞ is a so-called
post-filter, H is the filter gain matrix, r is the generated residual. H and R(s) are
parameters to be determined for achieving perfect FD performance. Especially, in the
case of unknown input full decoupling being not achievable, the main task of FDF design
is to determine H and R(s) such that

(i) When d(t) = 0 and f(t) = 0 for all t, the generated residual r asymptotically
decays to zero for any u(t).

(ii) The residual r achieves best compromise between sensitivity to faults and robust-
ness to known input.

By denoting e(t) = x(t)− x̂(t) and xdf (t) = x(t)− xu(t), the overall dynamics of the
residual generator are governed by

ė(t) = (A − HC)e(t) +

N
∑

i=1

Aixdf (t − τi) + (Bd − HDd)d(t) + (Bf − HDf)f(t), (14)

ẋdf (t) = Axdf (t) +

N
∑

i=1

Aixdf (t − τi) + Bdd(t) + Bff(t), (15)

ε(t) = Ce(t) + Ddd(t) + Dff(t), (16)

r(s) = R(s)ε(s). (17)

It can be seen from the above that u(t) has no influence on the residual r. The main
problem of FDF can be formulated as to determine H and R(s) such that system (14) –
(17) is asymptotically stable, while an FDF designing performance index as in (5) is
satisfied.
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Remark 2 Compared with the residual generator used in [4, 7, 8, 10], here xdf (t − τi)
(i = 1, 2, . . . , N) in equation (14) is used instead of the time-delay state estimate error
e(t− τi) in [4, 7, 8, 10]. Notice that xdf (t), which describes the effect of d and f in state
x, is independent of filter gain matrix H . Especially, under the assumptions on system
(6) – (8) being asymptotically stable and d, f being L2-norm bounded, xdf (t) is also L2-
norm bounded. Finally, the FDF problem for time-delay system can be solved by an
extension of the optimization FD approach in [2, 3].

3 Design of FDF

In this section, an extension of the FD approach presented in [2, 3] will be performed for
the FDF problem of time-delay system (6) – (8).

3.1 Basic idea of our study

Notice that if system (14) – (17) is asymptotically stable, then residual r(t) is convergent
to zero when d(t) = 0 and f(t) = 0. To express clearly the influences of past unknown
input d(t − τi) and fault signal f(t − τi) on residual r(t), we first separate xdf (t) into
xd(t) and xf (t),

ẋd(t) = Axd(t) +

N
∑

i=1

Aixd(t − τi) + Bdd(t), (18)

ẋf (t) = Axf (t) +
N

∑

i=1

Aixf (t − τi) + Bff(t) (19)

and denote

θd(t) = [ xT
d (t − τ1) xT

d (t − τ2) · · · xT
d (t − τN ) ]T ,

θf (t) = [ xT
f (t − τ1) xT

f (t − τ2) · · · xT
f (t − τN ) ]

T
,

Aθ = [ A1 A2 · · · AN ] .

It is obvious that θd(t) and θf (t) respectively describe the influences of past unknown
input d(t − τi) and fault signal f(t − τi) (i = 1, 2, . . . , N), while θd(t) and θf (t) are
independent of H . Recall that for L2-norm bounded d and f , the asymptotic stability of
system (6) – (8) ensures that xd(t), xf (t) and, furthermore, θd(t) and θf (t) are also L2-

norm bounded. Introduce vector w(t) = [ dT(t) θT
d (t) ]

T
to describe both the present

and past unknown input, and let Bw , [ Bd Aθ ] , Dw , [ Dd 0 ]. From the above
definitions, we have

ė(t) = (A − HC)e(t) + (Bw − HDw)w(t) + (Bf − HDf )f(t) + Aθθf (t), (20)

ε(t) = Ce(t) + Dww(t) + Dff(t), (21)

r(s) = R(s)ε(s) (22)

and
r(s) = Grw(s)w(s) + Grf (s)f(s), (23)
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where

Grw(s) = R(s)Gεw(s), Gεw(s) = [C(sI − A + HC)−1(Bw − HDw) + Dw], (24)

Grf (s) = R(s)[Gεθf
(s)Gθf (s) + Gεf (s)], Gεθf

(s) = C(sI − A + HC)−1Aθ, (25)

Gθf (s) = [ e−sτ1I e−sτ2I · · · e−sτN I ]
T

(

sI − A +

N
∑

i=1

Aie
−sτi

)−1

Bf , (26)

Gεf (s) = C(sI − A + HC)−1(Bf − HDf) + Df . (27)

As in [3], we use ‖Grw(s)‖∞ to measure the robustness of residual against unknown
inputs, while the sensitivity of residual to faults is represented by ‖Grf(s)‖∞. Then
the FDF problem for time-delay system (6) – (8) can be further formulated as to find H
and R(s) such that system (14) – (17) is asymptotically stable on one hand, while on the
other hand solves the following optimization problem

J = min
R(s),H

‖Grw(s)‖∞
‖Grf (s)‖∞

. (28)

The procedure to solve the FDF problem is made of two steps, namely (a) the choice of
filter gain matrix H to ensure the asymptotic stability of system (14) – (17), and (b) the
derivation of R(s) so that (H, R(s)) is an optimal solution of the problem (28).

Remark 3 By solving the above formulated FDF problem, not only the convergence
of the residual but also the satisfactory robustness and sensitivity criterion of FD system
defined in (28) are achieved.

3.2 Main results

The following Lemmas are required to solve the FDF problem.

Lemma 2 [11] System

ẋ(t) = Ax(t) +

N
∑

i=1

Aix(t − τi),

x(t) = 0 for t 6 0,

is asymptotically stable, if there exist matrices P > 0 and Ri > 0, (i = 1, 2, . . . , N) such
that LMI

















ATP + PA +
N
∑

i=1

Ri PA1 · · · PAN

AT
1 P −R1

. . .
...

...
. . .

. . . 0
AT

NP · · · 0 −RN

















< 0

holds.
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Lemma 3 [2] Given

̂M1(s) = V1 − V1C(sI − A + H1C)−1H1,

̂M2(s) = V2 − V2C(sI − A + H2C)−1H2,

where H1 and H2 are selected such that A − H1C and A − H2C are Hurwitz, V1 and
V2 are invertible, there exists a stable solution Q(s) for the equation

Q(s)̂M1(s) = ̂M2(s).

Furthermore, the solution can be expressed by

Q(s) = V2[I + C(sI − A + H2C)−1(H1 − H2)]V
−1
1 .

Now we are ready to present the main results of this short paper, which give a sufficient
condition to solve H and parameterize FDF using the obtained solutions of H . By
applying Lemma 2, we first present the determination of filter gain matrix H ensuring
the asymptotic stability of system (14) – (17) (with proof omitted).

Theorem 1 If there exist matrices P1 > 0, P2 > 0, Ri > 0, Si > 0 (i = 1, 2, . . . , N)
and Y such that LMI























ATP1 + P1A − CTY T − Y C +
N
∑

i=1

Ri 0 P1A1 · · · P1AN

0 ATP2 + P2A +
N
∑

i=1

Si P2A1 · · · P2AN

AT
1 P1 AT

1 P2 −S1 0 0
...

... 0
. . . 0

AT
NP1 AT

NP2 0 0 −SN























< 0

holds, then system (14) – (17) is asymptotically stable. Moreover, the observer gain ma-
trix is determined by

H = P−1
1 Y.

After designing the filter gain matrix H , the remained important task for FDF design
is the determination of a post-filter R(s). Following studies show that under Assumptions
of A4 to A6, for all H ensuring the stability of system (14) – (17), there exists an R(s) ∈
RH∞ such that (H, R(s)) is an optimal solution of the problem (28).

Theorem 2 Given system (6) – (8) with Assumptions of A4 to A6, there exists
Rh(s) ∈ RH∞ such that (H, Rh(s)) is an optimal solution of (28), where Rh(s) is
given by

Rh(s) = Q−1/2(I + C(sI − A + H∗C)−1(H − H∗)), (29)

H∗ = (BwDT
w + Y CT)Q−1, Q = DwDT

w, (30)

and Y ≥ 0 is a solution of the following algebraic Riccati equation

Y (A − BwDT
wQ−1C)T + (A − BwDT

wQ−1C)Y − Y CTQ−1CY

+ Bw(I − DT
wQ−1Dw)BT

w = 0.
(31)
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Proof Considering system (6) – (8) and the residual generator (20) – (22), define
Grw(s), Gǫw(s), Grf (s), Gǫf (s), Gǫθf

(s), Gθf(s) as in (24) – (27), and

Gyw(s) = C(sI − A)−1Bw + Dw,

G∗

ǫw(s) = C(sI − A + H∗C)−1(Bw − H∗Dw) + Dw,

G∗

rw(s) = R∗(s)G∗

ǫw(s),

G∗

ǫf (s) = C(sI − A + H∗C)−1(Bf − H∗Df ) + Df ,

G∗

εθf
(s) = C(sI − A + H∗C)−1Aθ,

G∗

rf (s) = R∗(s)[G∗

εθf
(s)Gθf (s) + G∗

εf (s)],

̂Nw(s) = Gǫw(s),

̂N∗

w(s) = G∗

ǫw(s),

̂M(s) = I − C(sI − A + HC)−1H,

̂M∗(s) = I − C(sI − A + H∗C)−1H∗.

Based on the left coprime factorization of Gyw(s), it is easy to get

Gyw(s) = ̂M−1(s) ̂Nw(s) = (̂M∗(s))−1
̂N∗

w(s).

For any available H ensuring the asymptotic stability of system (14) – (17), we then have

Grw(s) = R(s)Gεw(s) = R(s) ̂Nw(s) = R(s)̂M(s)(M̂∗(s))−1
̂N∗

w(s)

= R(s)̂M(s)(̂M∗(s))−1G∗

ǫw(s).
(32)

Moreover, from Lemma 3, it is easy to verify that, for R∗(s) = Q−1/2 and the above

defined ̂M(s) and ̂M∗(s), there exists a matrix Γ(s),

Γ(s) = [I + C(sI − A + HC)−1(H∗ − H)]Q1/2 (33)

such that
̂M(s) = Γ(s)R∗(s)̂M∗(s). (34)

It follows from (32) – (34) that

Grw(s) = R(s)Γ(s)R∗(s)G∗

ǫw(s) = R(s)Γ(s)G∗

rw(s). (35)

Also, from Lemma 3, Rh(s) in (29) and Γ(s) in (33) satisfy

Rh(s)[I − C(sI − A + HC)−1H ] = Q−1/2[I − C(sI − A + H∗C)−1H∗], (36)

Γ(s)(Q−1/2)(I − C(sI − A + H∗C)−1H∗) = I − C(sI − A + HC)−1H. (37)

It is obtained from (36) – (37) that

Rh(s)Γ(s)(Q−1/2)(I − C(sI − A + H∗C)−1H∗) = (Q−1/2)[I − C(sI − A + H∗C)−1H∗]

⇒ Rh(s)Γ(s) = I.
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Thus, for R(s) = Rh(s), we have

Grw(s) = G∗

rw(s).

In the same way, we can get

Gǫθf
(s) = Γ(s)R∗(s)G∗

ǫθf
(s),

Gǫf (s) = Γ(s)R∗(s)G∗

ǫf (s),

Grf (s) = R(s)[Gǫθf
(s)Gθf (s) + Gǫf (s)]

= R(s)Γ(s)R∗(s)[G∗

ǫθf
(s)Gθf (s) + G∗

ǫf (s)],

(38)

and for R(s) = Rh(s), we have
Grf (s) = G∗

rf (s).

Under Assumptions of A4 to A6, from Lemma 1 we know that R∗(s) = Q−1/2 and H∗

given in (30) – (31) is an optimal solution of the problem (28) and, in this case, G∗
rw(s)

is a co-inner matrix. Therefore,

‖R∗(s)G∗

ǫw(s)‖∞ = 1, ‖Rh(s)Gǫw(s)‖∞ = 1,

‖R∗(s)(G∗

ǫθf
(s)Gθf (s) + G∗

ǫf (s))‖∞ = ‖Rh(s)(Gǫθf
(s)Gθf (s) + Gǫf (s))‖∞.

On the other hand, for co-inner matrix G∗
rw(s) = R∗(s)G∗

ǫw(s) and for all R(s) ∈
RH∞, from (35) and (38) it is easy to get

‖Grw(s)‖∞ = ‖R(s)Gǫw(s)‖∞ = ‖R(s)Γ(s)G∗

rw(s)‖∞ = ‖R(s)Γ(s)‖∞
∥

∥R(s)(Gǫθf
(s)Gθf (s) + Gǫf (s))

∥

∥

∞
=

∥

∥R(s)Γ(s)R∗(s)[G∗

ǫθf
(s)Gθf (s) + G∗

ǫf (s)]
∥

∥

∞

6
∥

∥R(s)Γ(s)
∥

∥

∞

∥

∥R∗(s)[G∗

ǫθf
(s)Gθf (s) + G∗

ǫf (s)]
∥

∥

∞
,

Therefore,

‖Rh(s)Gǫw(s)‖∞
‖Rh(s)(Gǫθf

(s)Gθf (s) + Gǫf (s))‖∞
=

‖R∗(s)G∗
ǫw(s)‖∞

‖R∗(s)(G∗
ǫθf

(s)Gθf (s) + G∗
ǫf (s))‖∞

=
1

‖R∗(s)(G∗
ǫθf

(s)Gθf (s) + G∗
ǫf (s))‖∞

,

(39)

‖R(s)Gǫw(s)‖∞
‖R(s)(Gǫθf

(s)Gθf (s) + Gǫf (s))‖∞
>

‖R(s)Γ(s)‖∞
‖R(s)Γ(s)t‖∞‖R∗(s)(G∗

ǫθf
(s)Gθf (s) + G∗

ǫf (s))‖∞

=
1

‖R∗(s)(G∗

ǫθf
(s)Gθf (s) + G∗

ǫf (s))‖∞
, ∀R(s) ∈ RH∞. (40)

It concludes from (39) – (40) that both (H∗, R∗(s)) and (H, Rh(s)) are the optimal so-
lutions of problem (28).

Remark 4 The convergence of residual r is guaranteed by a suitable selection of filter
gain matrix H , while the selection of stable post-filter Rh(s) in (29) delivers an optimal
residual vector. Results in Theorem 2 also show that, for all H ensuring the asymptotic
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stability of system (14) – (17), (H, Rh(s)) is one of the optimal solutions of the FDF
problem.

4 Numerical Example

To illustrate the proposed FDF design method, a numerical example is given in this
section. Consider a time-delay system of (6) – (8) with

A =

[

0 1
−1 −2

]

, A1 =

[

0.1 0
0.1 0.2

]

, B =

[

1
1

]

, Bf =

[

0.1
0.1

]

, Bd =

[

0.1 0
0 0.1

]

,

C = [ 1 1 ] , D = 0, Df = 0, Dd = [ 0 0.1 ] , N = 1, L = 0, τ = 1.

By using the proposed approach, we obtain one solution as follows:

H∗ =

[

1
1.6056

]

, H =

[

1.0026
−0.9212

]

, Q = 100,

Rh(s) = Q−1/2(I + C(sI − A + H∗C)−1(H − H∗)).

Over evaluation time window [0, 100] sec, suppose the unknown input is d(t) =

[ d1(t) d2(t) ]
T
, and d1(t), d2(t) are band-limited white noise as in Figure 4.1 (a) and

(b). Two faulty cases are considered, where the fault signals are respectively given in
Figure 4.2 (a) and (b). Figure 4.3 (a) and (b) show the two cases of residual signal
whatever the control input u(t).

Figure 4.1. a) Unknown input signal d1(t); b) Unknown input signal d2(t).

Figure 4.2. a) Fault signal f(t): case I; b) Fault signal f(t): case II.
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Figure 4.3. a) Residual signal r(t): case I; b) Residual signal r(t): case II.

5 Conclusion

In this short paper, the FDF design problem for linear time-delay systems with unknown
input is studied. The main contributions of this work are the introduction of a new
FDF, the formulation of an optimization problem based on a performance index, and the
extension of the FD optimization approach for LTI systems to the time-delay systems.
The convergence of the residual generator is ensured by suitabe choice of the filter gain
matrix, while the FDF performance can be guaranteed by the selection of a corresponding
stable post-filter in terms of a Riccati equation. A simulation example is given to show
the effectiveness of the proposed method.
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Abstract: In this paper, we present a new scheme to design adaptive con-
trollers for single-input single-output uncertain time-varying systems in the
presence of unknown bounded disturbances. No knowledge is assumed on the
sign of the term multiplying the control. The control design is achieved by
introducing certain well defined functions, estimating variation rates of pa-
rameters and incorporating a Nussbaum gain. To overcome the problem of
overparametrization, tuning functions, which are different from the standard
ones due to the use of projection operations, are employed. It is shown that
the proposed controller can guarantee global uniform ultimate boundedness.

Keywords: Adaptive control; backstepping; time-varying systems; tuning functions;

Nussbaum gain.
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1 Introduction

Adaptive control has seen significant development since the appearance of a Lyapunov-
based recursive design procedure known as backstepping [7]. A great deal of attention
has been paid to tackle both linear and nonlinear systems with unknown parameters
and a number of results have been obtained in [1 – 6]. However, only limited number of
results are available for nonlinear systems with time-varying parameters and/or without
the knowledge on the sign of the term multiplying the control, i.e. high frequency gain
in the case of linear systems, in the presence of external disturbances. In this paper, we
shall also call this term the high frequency gain for nonlinear systems for simplicity.

In [9], output feedback control was considered for linear time-varying systems when
the sign of high-frequency gain is known. In [11], the problem of adaptive control with
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unknown sign of high-frequency gain for linear time invariant systems was studied. In [2],
Nussbaum gain incorporated with the backstepping technique was used to design adaptive
output stabilizer for high order uncertain time invariant nonlinear systems with unknown
sign of high-frequency gain in the absence of external disturbances. The nonlinearities
considered should satisfy sector conditions. In [3], disturbance decoupling was addressed
for nonlinear time invariant systems with known sign of the high frequency gain. The
result obtained is critically depending on a function of the system output y and the
reference trajectory yr. It should be noted that such a function is undefined at the time
instants when y = yr. Therefore, the control signal is undefined at these time instants.
In [4], a flat zone was used to handle the problem of nonlinear time invariant systems
with unknown sign of high frequency gain in the presence of disturbances. The bound of
the disturbance and all the unknown parameters need to be estimated at every step in
the backstepping process. This results in the problem of overparametrization and makes
the implementation complicated. In [6] state-feedback control was considered for a class
of uncertain time-varying nonlinear systems in the presence of disturbances. Due to
state feedback, no filter is required for state estimation. Thus the derivatives of the time
varying parameters and the term of the disturbance need not to be considered in controller
design. This also makes the stability analysis greatly simplified. Again, parameters are
required to be estimated at every step, which results in overparametrization. In the
case of output feedback control of nonlinear time-varying systems in the presence of
disturbances, no result is available. In this case, filters similar to [7] are required to
estimate system states and the state equations of the state estimation error will be used
in the design and analysis. In these equations, the external disturbances and derivatives
of time-varying parameters will appear and have great impact on the errors. This makes
the design and analysis quite difficult, especially when the sign of high frequency gain is
unknown and tuning functions are used.

In this paper, we consider such a case and propose a new control design scheme to solve
the problem. The nonlinearities considered are not required to satisfy the sector type of
conditions like [2]. To handle the disturbances, well defined functions are introduced to
eliminate their effects in the Lyapunov functions employed in the recursive design steps.
To deal with the time variation problem, an estimator is used to estimate the bound of
the variation rates. Furthermore, the overparametrization problem is also solved by using
the concept of tuning functions. As projection operation is used, the design of tuning
functions are different from existing schemes as in [7]. With our proposed controller,
global system stability is ensured.

2 System Model and Problem Formulation

Consider the following class of single-input-single-output (SISO) nonlinear time-varying
systems in the feedback form

ẋ1 = x2 + θa1(t)ψa1(y) + d1(t)φa1(y) + ψ01(y),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

ẋρ−1 = xρ + θaρ−1(t)ψaρ−1(y) + dρ−1(t)φaρ−1(y) + ψ0ρ−1(y),

ẋρ = xρ+1 + θaρ(t)ψaρ(y) + dρ(t)φaρ(y) + ψ0ρ(y) + bm(t)u, (1)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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ẋn = θan(t)ψan(y) + dn(t)φan(y) + ψ0n(y) + b0(t)u,

y = eT1 x,

where x = [x1, · · · , xn]T ∈ Rn, u ∈ R and y ∈ R are system states, input and output
respectively, bi(t), i = m, . . . , 0, are bounded uncertain time-varying piecewise contin-
uous high-frequency gains, θai(t) ∈ Rpi are uncertain time-varying parameters, di(t),
i = 1, . . . , n, denote unknown time-varying bounded disturbances, ψai and φai are known
smooth nonlinear functions in Rn. Similar class of systems was analyzed in [8].

In order to cope with the unknown sign of high-frequency gain, the Nussbaum gain
technique is employed in this paper. A function N(χ) is called a Nussbaum-type function
if it has the following properties [10]

lim
s→∞

sup
1

s

s
∫

0

N(χ)dχ = ∞, (2)

lim
s→∞

inf
1

s

s
∫

0

N(χ)dχ = −∞. (3)

In this paper, the even Nussbaum function exp(χ2) cos(π
2χ) is exploited. As in [6] the

following Lemma will be employed in later analysis.

Lemma 1 Let V (t) and χ(t) be a smooth function defined on [0, tf) with V (t) ≥ 0,

∀ t ∈ [0, tf), and N(χ) = exp(χ2) cos(π
2χ) be an even smooth Nussbaum-type function.

If the following inequality holds:

V (t) ≤ f0 + e−f1t

t
∫

0

g1N(χ)χ̇dτ + e−f1t

t
∫

0

χ̇(t)ef1τdτ (4)

where constant f1 > 0, g1 is a parameter which takes values in the unknown closed
intervals I1 = [l−1 , l

+
1 ] with 0 /∈ I1, and f0 represents some suitable constant, then V (t),

χ(t) and
t
∫

0

g1N(χ)χ̇dτ must be bounded on [0, tf).

For the considered system (1), the following assumptions are imposed.

Assumption 1 The uncertain parameter vector θ is inside a compact set Ωθ, where
θ = [bm(t), . . . , b0(t), θa1(t), . . . , θan(t)]T. In addition, there exists an unknown bounded

positive constant q so that q ≥ ‖θ̇‖. Also q is inside a compact intervals Ωq = [I−, I+]
and bm(t) 6= 0, ∀ t.

Assumption 2 The relative degree ρ is fixed and known. This is ensured by As-
sumption 1.

Assumption 3 The reference signal yr and its (ρ− 1)-th order derivatives are also
assumed to be known and bounded.
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Assumption 4 The system is minimum phase in the sense defined in [8].

In order to design the desired adaptive control law with output via backstepping
procedures, we now transform system (1) into the following form

ẋ = Ax+ F (y, u)Tθ + Φa(y)d(t)T + ψ0(y) (5)

where

A =











0 1 0 . . . 0
0 0 1 . . . 0
. . . . . . . . . . . . . . . .
0 0 0 . . . 1
0 0 0 . . . 0











, (6)

F (y, u)T =

[ [

0(ρ−1)×(m+1)

Im+1

]

u, Ψa(y)

]

, (7)

Ψa(y) =







ψT
a1 0 . . . 0
0 ψT

a2 . . . 0
. . . . . . . . . . . . . . . . . . . .
0 0 . . . ψT

an






=







Ψa1(y)
...

Ψan(y)






, (8)

Φa(y) =







φT
a1 0 . . . 0
0 φT

a2 . . . 0
. . . . . . . . . . . . . . . . . . .
0 0 . . . φT

an






=







ΦT
a1(y)
...

ΦT
an(y)






, (9)

θ = [bm(t), . . . , b0(t), θa1(t), . . . , θan(t)]T, (10)

d(t) = [d1(t), . . . , dn(t)], (11)

ψ0(y) = [ψ01(y), . . . , ψ0n(y)]T. (12)

We employ the filters similar to those in [7], i.e.

ξ̇ = A0ξ + ky + ψ0(y) (13)

Ω̇T = A0Ω
T + F (y, u)T (14)

where

k , [k1, k2, . . . , kn]T, (15)

A0 = A− keT1 . (16)

The vector k in (15) is chosen such that the matrix A0 is strictly stable. It can be shown
that Ω obtained from (14) satisfies the following equations

ΩT = [vm, . . . , v1, v0,Ξ], (17)

Ξ̇ = A0Ξ + Ψa(y), (18)

λ̇ = A0λ+ enu, (19)

vj = Aj
0λ. (20)
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From our designed filters, system (1) can be represented as

ẏ = bmvm,2 + β + ω̄Tθ + ǫ2 + d(t)Φa1(y), (21)

v̇m,i = vm,i+1 − kivm,1, i = 2, 3, . . . , ρ− 1, (22)

v̇m,ρ = vm,ρ+1 − kρvm,1 + u, (23)

where

β = ξ2 + ψ01, (24)

ω = [vm,2, vm−1,2, . . . , v0,2,Ξ2 + Ψa1]
T, (25)

ω̄ = [0, vm−1,2, . . . , v0,2,Ξ2 + Ψa1]
T. (26)

In the above equations, ǫ2, vi,2 and ξi,2 denote the second entries of ǫ, vi and ξi respec-
tively, ǫ is the estimation error defined in (28).

With the above filters, a state estimate is given by

x̂ = ξ + ΩTθ (27)

and the estimation error ǫ is defined as

ǫ = x− x̂ (28)

From the equations (5), (13), (14), (27) and (28), the estimation error satisfies

ǫ̇ = A0ǫ+ Φa(y)d(t)T − ΩTθ̇. (29)

Remark 1 The error ǫ will be used in our design and analysis given later. As the
disturbances and derivatives of time-varying parameters appear in (29), their effects
should be considered in controller design. However for the state-feedback control in [6],
no filter is required for state estimation. Their effects may not be necessarily considered
in controller design and this makes the problem much simpler.

We now divide the error ǫ into two parts, i.e. ǫ = ǫa + ǫb, where ǫa satisfies

ǫ̇a = A0ǫa + Φa(y)d(t)T (30)

with ǫa(0) = ǫ(0), and ǫb =
t
∫

0

eA0(t−τ)(−ΩTθ̇)dτ . It can be shown that

‖ǫb‖ ≤

t
∫

0

‖eA0(t−τ)‖ ‖Ω‖ ‖θ̇‖ dτ

≤ q

t
∫

0

‖eA0(t−τ)‖ ‖Ω‖ dτ ≤ q

t
∫

0

e−λθ(t−τ)kθ‖Ω‖ dτ,

(31)

where λθ and kθ are chosen positive parameters so that

kθe
−λθt ≥ ‖eA0t‖, ∀ t ≥ 0. (32)
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Thus ǫb satisfies
|ǫb| ≤ h(t)q, (33)

where h(t) is generated by

ḣ = −λθh+ kθ

(

‖Ω‖2 +
1

4

)

. (34)

Suppose P ∈ Rn×n is a positive definite matrix, satisfying PA0 + AT
0 P ≤ −3I and

let
Vǫ = ǫTaPǫa. (35)

It can be shown that

V̇ǫ = ǫTa (PA0 +AT
0 P )ǫa + 2ǫTaPΦa(y)d(t)T

≤ −2‖ǫa‖
2 + ‖PΦa(y)d(t)T‖2.

(36)

The problem of this paper is to design an adaptive controller to make system (1) BIBO
stable.

3 Control Design

In this section, we present the adaptive control design using the backstepping technique
with tuning functions in ρ steps. In order to avoid using the sign of the high frequency
gain, we take the change of coordinates

z1 = y − yr, (37)

zi = vm,i − αi−1, i = 2, 3, . . . , ρ, (38)

where αi−1 is the virtual control at each step and will be determined in later discussions.
Before presenting the detail, a useful function is introduced. Firstly we define s(x) as

s(x) =

{

x2 |x| ≥ δ,

(δ2 − x2)ρ + x2 |x| < δ,
(39)

where δ is a positive design parameter. It can be shown that s(x) is (ρ − 1)-th order
differentiable and bounded below for |x| < δ. Based on s(x), a function H(z1) is defined
as follows

H(z1) =
Φa(y)

s(z1)
=















Φa(y)

z2
1

|z1| ≥ δ,

Φa(y)

(δ2 − z2
1)ρ + z2

1

|z1| < δ.

(40)

Clearly H is well defined and for |z1| < δ, H is bounded as s(z1) is bounded below.

Remark 2 In [3], a similar function to (40) was used to design controllers for distur-
bance decoupling. However, the function is undefined at the time instants when y = yr.
Thus, the controller presented is undefined at these time instants.
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From (36) and (40) it can be shown that

V̇ǫ ≤ −2‖ǫa‖
2 +

1

2
s4‖PH‖4 +

1

2
‖d(t)‖4. (41)

We now illustrate the backstepping design procedures using Nussbaum gain with details
given for the first two steps.

Step 1 It follows from (21) and (37) that

ż1 = bmvm,2 + β + ω̄Tθ + ǫ2 + d(t)Φa1(y) − ẏr. (42)

Without using the sign of bm, the following virtual control law α1 is designed

α1 = N(χ)ᾱ1e
−ft, (43)

N(χ) = exp(χ2) cos
π

2
χ, (44)

where f is a positive real design parameter, χ is generated by

χ̇ = z1ᾱ1 (45)

and ᾱ1 is chosen to be

ᾱ1 =
(

c1 + l1 + (eT1 θ̂)
2
)

z1 + β + ω̄Tθ̂ − ẏr

+ z1h
2q̂ +

1

4
z1‖Φa1(y)‖

2 +

ρ
∑

i=1

1

8li
z1s

3(z1)‖PH‖4,
(46)

where c1 and l1 are two positive real design parameters, θ̂ and q̂ denote the estimates of
θ and q. Notice that

bmvm,2 = bm(z2 + α1) = b̂mz2 + bmα1 + b̃mz2, (47)

where b̃m = bm − b̂m, b̂m is the first element of θ̂, i.e. b̂m = eT1 θ̂. Then from (42) and
(46) we have

ż1 − ᾱ1 = −(c1 + l1 + b̂2m)z1 + (ω̄T + z2e
T
1 )θ̃ + ǫa,2 + ǫb,2 − z1h

2q̂ + b̂mz2 + bmα1

+ d(t)Φa1(y) −
1

4
z1‖Φa1(y)‖

2 −

ρ
∑

i=1

1

8li
z1s

3‖PH‖4,
(48)

where θ̃ = θ − θ̂, ǫa,2 and ǫb,2 represent the second entry of ǫa and ǫb. To proceed, we
define the Lyapunov function

V1 =
1

2
z2
1 +

1

2
θ̃TΓ−1θ̃ +

1

2
q̃2 +

1

4l1
Vǫ, (49)
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where Γ is a positive definite matrix of R(n+2)×(n+2). Then the derivative of V1 along
with (41), (43) and (48) is given by

V̇1 = z1(ż1 − ᾱ1) + z1ᾱ1 + θ̃TΓ−1(θ̇ −
˙̂
θ) + q̃ ˙̃q +

1

4l1
V̇ǫ

≤ −(c1 + b̂2m)z2
1 + b̂mz1z2 + θ̃TΓ−1(τ1 −

˙̂
θ) − l1z

2
1 + ǫa,2z1 −

1

2l1
‖ǫa‖

2

+ ǫb,2z1 − q̃ ˙̂q − h2q̂z2
1 + d(t)Φa1(y)z1 −

1

4
z2
1‖Φa1(y)‖

2 + bmα1z1 + ᾱ1z1

+
1

8l1
s4‖PH‖4 −

ρ
∑

i=1

1

8li
z2
1s

3‖PH‖4 +
1

8l1
‖d(t)‖4 + θ̃TΓ−1θ̇,

(50)

where

τ1 = Γz1(ω̄ + z2e1). (51)

Here we know that

ǫb,2z1 − h2q̂z2
1 ≤ hq|z1| − h2q̂z2

1 ≤ q(h2z2
1 + 1/4)− h2q̂z2

1 = h2q̃z2
1 +

q

4
.

Then we can get

V̇1 ≤ (bmN(χ)e−ft + 1)χ̇− c1z
2
1 + θ̃TΓ−1(τ1 −

˙̂
θ)

+ q̃(ι1 − ˙̂q) −
1

4l1
‖ǫa‖

2 +
1

4
z2
2 +M1,

(52)

where

ι1 = h2z2
1 , (53)

M1 = ‖d(t)‖2 +
1

8l1
‖d(t)‖4 −

ρ
∑

i=2

1

8li
s4‖PH‖4 + θ̃TΓ−1θ̇ +

1

4
q +N, (54)

N =







0, |z1| ≥ δ,
ρ
∑

i=1

1

8li
(δ2 − z2

1)ρs3‖PH‖4, |z1| < δ.
(55)

From (40) we know that N is bounded.

Step 2 Now, we evaluate the dynamics of the second state z2. Differentiating (38)
for i = 2 and using (22), we have

ż2 = vm,3 − k2vm,1 − α̇1. (56)

Note that α1 is a function of y, θ̂, q̂, ξ, Ξ, λ, χ and yr and following from similar analysis
to [7] by substituting (38) with i = 3 into (56), we get

ż2 = α2 − β2 −
∂α1

∂y

(

ǫ2 + ωTθ̃ + d(t)Φa1(y)
)

+ z3 −
∂α1

∂y
ωTθ̂ −

∂α1

∂θ̂

˙̂
θ −

∂α1

∂q̂
˙̂q, (57)
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where

β2 , k2vm,1 +
∂α1

∂y
β +

∂α1

∂Π
Π̇ +

m+1
∑

j=1

∂α1

∂λj
(−kjλ1 + λj+1) +

∂α1

∂yr
ẏr +

∂α1

∂χ
χ̇ (58)

where Π = [ξT,Vec (Ξ)T]T. Define the Lyapunov function and choose the virtual control
for this step as

V2 = V1 +
1

2
z2
2 +

1

4l2
Vǫ, (59)

α2 = −

(

c2 +
1

4

)

z2 +
∂α1

∂y
ωTθ̂ − z2

∥

∥

∥

∥

∂α1

∂θ̂

∥

∥

∥

∥

2

‖τ2‖
2 − z2h

2q̂

∥

∥

∥

∥

∂α1

∂y

∥

∥

∥

∥

2

(60)

− z2

∥

∥

∥

∥

∂α1

∂q̂

∥

∥

∥

∥

2

ι22 − l2

∥

∥

∥

∥

∂α1

∂y

∥

∥

∥

∥

2

z2 + β2 −
z2
4

∥

∥

∥

∥

∂α1

∂y
Φa1(y)

∥

∥

∥

∥

2

,

τ2 = τ1 − Γ
∂α1

∂y
ωz2, (61)

ι2 = ι1 + h2

∥

∥

∥

∥

∂α1

∂21

∥

∥

∥

∥

2

z2
2 . (62)

Using (52), (59) and (60), we have that

V̇2 ≤ V̇1 + z2ż2 +
1

4l2
V̇ǫ

≤ −

2
∑

i=1

ciz
2
i + (bmN(χ)e−ft + 1)χ̇+ z2z3 −

2
∑

i=1

1

4li
‖ǫa‖

2 +M2

+ θ̃TΓ−1(τ1 −
˙̂
θ) − z2

∂α1

∂y
ωTθ̃ + z2

2

∥

∥

∥

∥

∂α1

∂θ̂

∥

∥

∥

∥

2

‖
˙̂
θ‖2 − z2

2

∥

∥

∥

∥

∂α1

∂θ̂

∥

∥

∥

∥

2

‖τ2‖
2

+ q̃(ι1 − ˙̂q) + h2q̃

∥

∥

∥

∥

∂α1

∂y

∥

∥

∥

∥

2

z2
2 + z2

2

∥

∥

∥

∥

∂α1

∂q̂

∥

∥

∥

∥

2

˙̂q
2
− z2

2

∥

∥

∥

∥

∂α1

∂q̂

∥

∥

∥

∥

2

ι2

≤ −
2

∑

i=1

ciz
2
i + (bmN(χ)e−ft + 1)χ̇+ z2z3 + θ̃TΓ−1(τ2 −

˙̂
θ) + q̃(ι2 − ˙̂q) +M2

+ z2
2

∥

∥

∥

∥

∂α1

∂θ̂

∥

∥

∥

∥

2

(‖
˙̂
θ‖2 − ‖τ2‖

2) + z2
2

(

∂α1

∂q̂

)2

( ˙̂q
2
− ι22) −

2
∑

i=1

1

4li
‖ǫa‖

2,

(63)

where

M2 =
2

∑

i=1

1

8li
‖d(t)‖4 + 2‖d(t)‖2 −

ρ
∑

i=3

1

8li
s4‖PH‖4 + θ̃TΓ−1θ̇ +

1

2
+

1

2
q +N. (64)

Remark 3 Note that M2 contains s4‖PH‖4 and this term may not be bounded. As
seen from our analysis, 1

8l2
s4‖PH‖4 disappears in M2 due to the use of Vǫ at step 2. If

we use Vǫ at each step, this term will disappear in Mρ on the last step.
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Step i (i = 3, . . . , ρ) These steps are similar to those in [7]. Define

Vi = Vi−1 +
1

2
z2

i +
1

4li
Vǫ, (65)

αi = −cizi − li

∥

∥

∥

∥

∂αi−1

∂y

∥

∥

∥

∥

2

zi − zi−1 + βi +
∂αi−1

∂y
ωTθ̂ −

zi

4

∥

∥

∥

∥

∂αi−1

∂y
Φa1(y)

∥

∥

∥

∥

2

− zi

∥

∥

∥

∥

∂αi−1

∂θ̂

∥

∥

∥

∥

2

‖τi‖
2 +

( i−1
∑

k=2

z2
k

∥

∥

∥

∥

∂αk−1

∂θ̂

∥

∥

∥

∥

2)

(τi + τi−1)
TΓ

∂αi−1

∂y
ω (66)

− zi

∥

∥

∥

∥

∂αi−1

∂q̂

∥

∥

∥

∥

2

ι2i −

( i−1
∑

k=2

z2
k

∥

∥

∥

∥

∂αk−1

∂q̂

∥

∥

∥

∥

2)

(ιi + ιi−1)
Th2

∥

∥

∥

∥

∂αi−1

∂y

∥

∥

∥

∥

2

zi

− zih
2q̂

∥

∥

∥

∥

∂αi−1

∂y

∥

∥

∥

∥

2

,

τi = τi−1 − Γ
∂αi−1

∂y
ωzi, (67)

ιi = ιi−1 + h2

∥

∥

∥

∥

∂αi−1

∂y

∥

∥

∥

∥

2

z2
i , (68)

where

βi , kivm,1+
∂αi−1

∂y
β+

∂αi−1

∂Π
Π̇+

∂αi−1

∂yr
ẏr +

m+1
∑

j=1

∂αi−1

∂λj
(−kjλ1 +λj+1)+

∂αi−1

∂χ
χ̇. (69)

Also note that

‖τi‖
2 = τT

i τi = τT
i τi − τT

i−1τi−1 + τT
i−1τi−1 = (τi + τi−1)

T(τi − τi−1) + τT
i−1τi−1

= −(τi + τi−1)
TΓ

∂αi−1

∂y
ωzi + τT

i−1τi−1,

ι2i = (ιi + ιi−1)
Th2

∥

∥

∥

∥

∂αi−1

∂y

∥

∥

∥

∥

2

z2
i + ι2i−1.

(70)

Then the actual adaptive controller is obtained and given by

u(t) = αρ − vm,ρ+1, (71)

˙̂
θ = Proj (τρ), (72)

˙̂q = Proj (ιρ), (73)

where Proj (·) is a smooth projection operation to ensure the estimates belong to com-
pact sets for all time. Such an operation can be found in [7].

Remark 4 Note that the designed tuning functions are different from existing schemes
in [7] as the projection operations are used in the parameter estimators.
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By using the properties that −θ̃TΓ−1 Proj (τ) ≤ −θ̃TΓ−1τ and Proj (τ)T Proj (τ) ≤
τTτ the final Lyapunov function Vρ satisfies

V̇ρ ≤ −

ρ
∑

k=1

ckz
2
k + (bmN(χ)e−ft + 1)χ̇+Mρ −

ρ
∑

i=1

1

4li
‖ǫa‖

2

+ θ̃TΓ−1(τρ − Proj (τρ)) +

( ρ
∑

k=2

z2
k

∥

∥

∥

∥

∂αk−1

∂θ̂

∥

∥

∥

∥

2)

(Proj (τρ)
T Proj (τρ) − ‖τρ‖

2)

+ q̃(ιρ − Proj (ιρ)) +

( ρ
∑

k=2

z2
k

(

∂αk−1

∂q̂

)2)

(Proj (ιρ)
2 − ι2ρ)

≤ −

ρ
∑

k=1

ckz
2
k + bmN(χ)e−ftχ̇+ χ̇+Mρ −

ρ
∑

i=1

1

4li
‖ǫa‖

2,

(74)

where

Mρ =

ρ
∑

i=1

1

8li
‖d(t)‖4 + ρ‖d(t)‖2 + θ̃TΓ−1θ̇ +

ρ− 1

2
+
ρ

4
q +N (75)

Integrating both sides of (74) over the interval [0, t] gives

t
∫

0

V̇ρe
fτdτ ≤ −

t
∫

0

ρ
∑

k=1

ckz
2
ke

fτdτ +

t
∫

0

bmN(χ)χ̇ dτ +

t
∫

0

χ̇efτdτ

+

t
∫

0

Mρe
fτdτ −

t
∫

0

ρ
∑

i=1

1

4li
‖ǫa‖

2efτdτ.

(76)

Note that Vǫ ≤ ‖P‖‖ǫa‖
2. Then

Vρ =

ρ
∑

k=1

1

2
z2

k +
1

2
θ̃TΓ−1θ̃ +

1

2
q̃2 +

ρ
∑

i=1

1

4li
Vǫ

≤

ρ
∑

k=1

1

2
z2

k +
1

2
θ̃TΓ−1θ̃ +

1

2
q̃2 +

ρ
∑

i=1

1

4li
‖P‖‖ǫa‖

2.

(77)

This yields

0 ≤ Vρ(t) ≤ Vρ(0) + e−ft

t
∫

0

bmN(χ)χ̇ dτ +

t
∫

0

χ̇e−f(t−τ) dτ

+

t
∫

0

f

2
(θ̃TΓ−1θ̃) + q̃2)e−f(t−τ) dτ +

t
∫

0

Mρe
−f(t−τ) dτ

(78)
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where f = min
{ 1

‖P‖2
, 2c1, 2c2, . . . , 2cρ,

}

> 0. Due to the utilization of projection

operations for θ̂ and q̂, the boundedness of θ̃ and q̃ can be guaranteed. Together with

the boundedness of d(t), q and θ̇, the boundedness of Mρ and

t
∫

0

f

2
(θ̃TΓ−1θ̃ + q̃2)e−f(t−τ)dτ +

t
∫

0

Mρe
−f(t−τ)dτ

can be guaranteed. Thus by comparing with (4), f0 is selected as the upper bound of

Vρ(0) +

t
∫

0

f

2
(θ̃TΓ−1θ̃ + q̃2)e−f(t−τ)dτ +

t
∫

0

Mρe
−f(t−τ)dτ, g1 = bm

and f1 = f . Using Lemma 1, we can conclude that Vρ(t) and χ(t), hence zi, (i =
1, . . . , ρ) are bounded. Finally, the stability of the whole system can be established as
in [7].

To conclude this section, the results established are presented in the following theorem.

Theorem 1 Consider the uncertain time-varying nonlinear system (1) satisfying
Assumptions 1 – 4. With the application of the controller (71) and the parameter updating
laws (72) and (73), the resulting closed loop system is BIBO stable.

4 A Simulation Example

In this section, the proposed design method is illustrated on the following simple linear
system

ẋ1(t) = x2(t) + θ1(t)y(t),

ẋ2(t) = b(t)u(t) + d(t),

y(t) = x1(t),

(79)

where θ1(t) = 1 + sin(t), b(t) = 1 + exp(−t), d(t) = cos(t) are unknown timevarying
parameters in the controller design. The objective is to control the system output y(t)
to follow a desired trajectory yr(t) = sin(t) + sin(2t). The filters are implemented as

ξ̇ = A0ξ + ky, (80)

λ̇ = A0λ+ e2u, (81)

Ξ̇ = A0Ξ + Ψ, Ψ = [y 0]T, (82)

A0 =

[

−k1 1
−k2 0

]

. (83)

The control law α1 in (43), u(t) in (71), and the parameter update law θ̂ in (72) are used
with θ = [b θ1]

T. The design parameters are chosen as c1 = c2 = 5, Γ = I2, l1 = l2 = 2,

k1 = 6, k2 = 8. The initials y(0) = 0.1, θ̂(0) = [0.2 0.5]T and others are set to zero.
The simulation results presented in the Figure 4.1 show the system output y(t) and the
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Figure 4.1. Output y(−−) and trajectory yr(−).

Figure 4.2. Control signal u(t).

desired trajectory signal yr(t). Figure 4.2 shows the control signal u(t). Clearly, these
simulation results verify that our proposed scheme is effective.

5 Conclusion

In this paper, a scheme is proposed to design an adaptive output-feedback controller for
uncertain time-varying nonlinear systems with unknown sign of high-frequency gains in
the presence of disturbances. No growth conditions on system nonlinearities are imposed.
In the design, certain well defined functions are used to cancel the effects of disturbances.
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To deal with the time variation problem, an estimator is used to estimate the bound of
the variation rates. Furthermore, the overparametrization problem is also solved by
using the concept of tuning functions. It is shown that the controller obtained by the
proposed design scheme can make the whole adaptive control system stable. Simulations
performed on a simple system also verify the effectiveness of the proposed scheme.
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Abstract: This paper studies the stability of a class of nonautonomous neutral
delay difference equation. The case of several variable delays is mainly consid-
ered, and the sufficient conditions of uniform stability and uniform asymptoti-
cal stability are obtained. Some results with a constant delay in the literature
are extended and improved.
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1 Introduction

Consider the nonautonomous neutral variable delay difference equation

∆(x(n) − cx(n − k)) + f(n, x(n − l1(n)), . . . x(n − lm(n)) = 0, n ∈ N, (1)

where c ∈ (−1, 1); k ∈ N ; {li(n)} is a positive integer sequence and satisfies li(n) ≤ l,
i = 1, . . . , m, n ∈ N ; l is a given positive integer, f(n, x1, . . . xm) : N × Rm → R, and
f(n, 0, . . . 0) satisfies f(n, x1, . . . xm) ≡ 0, n ∈ N .
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In recent years there are lots of researches on stability of special-formed zero solution
to the equation (1) (see [1 – 9]). In 1999, Z. Zhou and J.S. Yu studied the equation

∆(x(n) − cx(n − k)) + h(n, x(n − l)) = 0

where c ∈ (−1, 1); k ∈ N ; l ∈ N ; f(n, x) : N×R → R and f(n, 0) satisfies f(n, 0) ≡ 0,
n ∈ N , and obtained a sufficient condition of the stability and asymptotical stability for
zero solution to this equation [7]. It will be more practical for the fact that if the function
f(n, x) is replaced by function f(n, x1, . . . xm) and the constant delay is replaced by the
variable delay. Based on the above-mentioned consideration, we studied the stability of
equation (1) and discovered that the concerned conclusion can be extended to the more
general equation (1) and obtained a sufficient condition of the stability and asymptotical
stability of equation (1).

For simplicity, the basic conceptions and symbols which occur in the paper will be
introduced as follows: “∆” stands for the forward difference operator, say, ∆y(n) =
y(n + 1) − y(n); Z is the integer number set; R is the real number set. Suppose that
a ∈ Z, let N(a) = {a, a + 1, . . . }, N = N(0). For any given a, b ∈ Z and a ≤ b, let
N(a, b) = {a, a + 1, . . . , b}.

Definition 1.1 Sequence {x(n)} is said to be the solution of equation (1) if for a
certain n0 ∈ N , the sequence is defined on the N(n0 − r), where r = max {l, k} and
satisfies equation (1). Obviously, equation (1) has zero solution permanently.

Definition 1.2 If for any ε > 0 and n0 ∈ N , there exists a δ(ε, n0) > 0, such that
when |x(n0 + j)| < δ, j ∈ N(−r, 0), the solution of equation (1) satisfies |x(n)| < ε,
n ∈ N(n0), then the zero solution of equation (1) is said to be stable. If δ can be chosen
independent of n0, then the zero solution of equation (1) is said to be uniformly stable.

Definition 1.3 The zero solution of equation (1) is said to be attractive, if for any
n0 ∈ N , there exists a δ(ε, n0) > 0, such that when ‖x(n0 + j)| < δ, j ∈ N(−r, 0),
the solution of equation (1) satisfies lim

n→+∞
x(n) = 0, then the zero solution of equation

(1) is said to be attractive. If δ can be chosen independent of n0, the zero solution of
equation (1) is said to be uniformly attractive.

Definition 1.4 The zero solution of equation (1) is said to be uniformly asymptoti-
cally stable, if its zero solution is uniformly stable and uniformly attractive.

Let

n − α(n)=min{n − li(n) : x(n − li(n))=max{x(n − l1(n)), . . . , x(n − lm(n))}}, (2)

n − β(n)=min{n − li(n) : x(n − li(n))=min{x(n − l1(n)), . . . , x(n − lm(n))}}, (3)

S is a real number sequence, for any x = {x(1), . . . , x(n), . . . } ∈ S, let ‖x‖ = sup{|x(i)|},
for a given H > 0, denote

SH = {x ∈ S : ‖x‖ < H}. (4)

If m > n, we assume that Cm
n = 0.
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2 Main Results and Proofs

Theorem 2.1 Suppose that there exists a nonnegative real number sequence {p(n)},
such that

(1) for positive constant H and any x ∈ SH , when n ∈ N , we have

p(n)x(n − β(n)) ≤ f(n, x(n − l1(n)), . . . x(n − lm(n))) ≤ p(n)x(n − α(n)); (5)

(2) the following inequalities are satisfied

2|c|(2 − |c|) +

n
∑

i=n−α(n)

p(i) <
3

2
+

(1 − 2|c|)2

2(l + 1)
, n ∈ N, (6)

2|c|(2 − |c|) +
n

∑

i=n−β(n)

p(i) <
3

2
+

(1 − 2|c|)2

2(l + 1)
, n ∈ N. (7)

Then the zero solution of equation (1) is uniformly stable.

Theorem 2.2 Suppose that there exists a nonnegative real number sequence {p(n)},
such that

(1) for positive constant H and any x ∈ SH , when n ∈ N , we have

p(n)x(n − β(n)) ≤ f(n, x(n − l1(n)), . . . , x(n − lm(n))) ≤ p(n)x(n − α(n)); (8)

(2)

+∞
∑

n=1

p(n) = +∞; (9)

(3) 2|c|(2 − |c|) +

n
∑

i=n−α(n)

p(i) <
3

2
+

(1 − 2|c|)2

2(l + 1)
, n ∈ N, (10)

2|c|(2 − |c|) +

n
∑

i=n−β(n)

p(i) <
3

2
+

(1 − 2|c|)2

2(l + 1)
, n ∈ N. (11)

Then the zero solution of equation (1) is uniformly asymptotically stable.

Proof of Theorem 2.1 For any 0 < ε < H, n0 ∈ N , there is a δ > 0, when the
solution {x(n)} to the equation satisfies |x(n0 + i)| < δ, i = −r,−r + 1, . . . , 0, we get

|x(n)| < ε, n ∈ N(n0). (12)

We select

δ =
(1 − |c|)

(1 + |c|)(2|c| + 3)3r
ε.

In the following, we will prove that when n ∈ N(n0 + 1, n0 + 3r), (12) holds. In fact,
from(1), we can see that

|x(n0 + 1)| = |cx(n0 + 1 − k) − cx(n0 − k) + x(n0)

− f(n0, x(n0 − l1(n0)), . . . , x(n0 − lm(n0)))|

< (1 + 2|c| + p(n0))δ ≤ (2|c| + 3)δ < ε < H.



302 H.L. XING, X.Z. ZHONG, Y. SHI, J.C. LIANG AND D.H. WANG

Generally, when i ∈ N(1, 3r), we have

|x(n0 + i)| < (2|c| + 3)iδ < ε < H. (13)

In the following, we will prove that when n ∈ N(n0 + 3r + 1), (12) holds. In fact,
otherwise, there must be a n1 ∈ N(n0 + 3r + 1) such that |x(n1)| ≥ ε and when
n ∈ N(n0, n1 − 1), such that

|x(n)| < ε. (14)

Suppose x(n1) > 0, we then have x(n1) ≥ ε. Let

y(n) = x(n) − cx(n − k), n ∈ N(n0), (15)

then
y(n1) = x(n1) − cx(n1 − k) ≥ (1 − |c|)ε. (16)

Because

y(n0 + 3r) ≤ |x(n0 + 3r)| + |c||x(n0 + 3r − k)| < (1 + |c|)(2|c| + 3)3rδ = (1 − |c|)ε

then there is a n∗ ∈ N(n0 + 3r + 1, n1), such that

y(n∗ − 1) < (1 − |c|)ε,

y(n∗) ≥ (1 − |c|)ε,
(17)

and when n ∈ N(n∗ + 1, n1), we have y(n) ≥ (1 − |c|)ε, thus we get

∆y(n∗ − 1) > 0. (18)

From (6) we can see that |c| <
1

2
, such that

x(n∗) = y(n∗) + cx(n∗ − k) ≥ y(n∗) − |c|ε ≥ (1 − 2|c|)ε. (19)

From (5) and (18) we can see that

p(n∗ − 1)x(n∗ − 1 − β(n∗ − 1))

≤ f(n∗ − 1, x(n∗ − 1 − l1(n
∗ − 1)), . . . , x(n∗ − 1 − lm(n∗ − 1))) = −∆y(n∗ − 1) < 0,

then we have
x(n∗ − 1 − β(n∗ − 1)) < 0. (20)

Therefore from (19) and (20) we can see that there exists n2 ∈ N(n∗ − β(n∗ − 1), n∗)
and ξ ∈ (0, 1), such that x(n2 − 1) < 0. And when n ∈ N(n2, n

∗), we have

x(n) > 0, (21)

x(n2 − 1) + ξ(x(n2 − x(n2 − 1)) = 0, (22)

then from (22) and (15), we get

−[y(n2 − 1) + ξ(y(n2 − y(n2 − 1))] = −[(1 − ξ)x(n2 − k − 1) + ξx(n2 − k)]c ≤ |c|ε (23)
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and

[y(n2 − 1) + ξ(y(n2 − y(n2 − 1)] = [(1 − ξ)x(n2 − k − 1) + ξx(n2 − k)]c ≤ |c|ε

that is
y(n2 − 1) ≤ |c|ε − ξ(y(n2 − y(n2 − 1)). (24)

In the following we will prove that when n ∈ N(n0 + r, n∗ − 1), we have

−x(n) ≤

(

2|c| +

n2−1
∑

i=n

p(i) + ξp(n2 − 1)

)

ε. (25)

In fact, from (21) we can see that when n ∈ N(n2, n∗−1), obviously the above inequality
holds.

In the following we will prove that when n ∈ N(n0 + r, n2 − 1), inequality (25) holds.
From (5) we can see that when n ∈ N(n0 + r), we have

∆y(n) ≤ −p(n)x(n − β(n)), (26)

thus when n ∈ N(n0 + r, n2 − 1), we get

∆y(n) ≤ p(n)ε. (27)

Then when n ∈ N(n0 + r, n2 − 1), we have

−[y(n) − y(n2 − 1) − ξ(y(n2) − y(n2 − 1))]

=

n2−2
∑

i=n

∆y(i) + ξ∆y(n2 − 1) ≤

( n2−2
∑

i=n

p(i) + ξp(n2 − 1)

)

ξ.

From (14) and (15), when n ∈ N(n0 + r, n2 − 1), we have

−x(n) = −(y(n) + cx(n − k)) = −[y(n) − y(n2 − 1) − ξ(y(n2)

− y(n2 − 1))] − [y(n2 − 1) + ξ(y(n2) − y(n2 − 1))] − cx(n − k)

≤

[ n2−2
∑

i=n

p(i) + ξp(n2 − 1)

]

ε + 2|c|ε.

Therefore, inequality (25) holds.
Suppose

β =
2

3
+

(1 − 2|c|)2

2(l + 1)
− 2|c(2 − |c|)|. (28)

Then from (7), we have
n

∑

i=n−β(n)

p(i) < β, n ∈ N. (29)

Let

d =

n∗

−1
∑

i=n2

p(i) + (1 − ξ)p(n2 − 1). (30)
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There are two situations needed to be contemplated.

Case 1 d ≤ 1 − 2|c|.
From (24), (25) and (26), we can see that

y(n∗) = y(n2 − 1) +

n∗

−1
∑

n=n2−1

∆y(n) ≤ |c|ε − ξ(y(n2) − y(n2 − 1)) +

n∗

−1
∑

n=n2−1

∆y(n)

= |c|ε + (1 − ξ)∆y(n2 − 1) +

n∗

−1
∑

n=n2

∆y(n) ≤ |c|ε − (1 − ξ)p(n2 − 1)

× x(n2 − 1 − β(n2 − 1)) −
n∗

−1
∑

n=n2

p(n)x(n − β(n))

≤ |c|ε + (1 − ξ)p(n2 − 1)

[ n2−2
∑

i=n2−1−β(n2−1)

p(i) + ξp(n2 − 1) + 2|c|

]

ε

+
n∗

−1
∑

n=n2

p(n)

[ n2−2
∑

i=n−β(n)

p(i) + ξp(n2 − 1) + 2|c|

]

.ε

From (29) we get

y(n∗) < |c|ε + (1 − ξ)p(n2 − 1)[β − (1 − ξ)p(n2 − 1) + 2|c|]ε

+
n∗

−1
∑

n=n2

p(n)

[ n
∑

i=n−β(n)

p(i)
n

∑

i=n2

p(i) − (1 − ξ)p(n2 − 1) + 2|c|

]

ε

< |c|ε + (1 − ξ)p(n2 − 1)[β − (1 − ξ)p(n2 − 1)

+ 2|c|]ε +
n∗

−1
∑

n=n2

p(n)

[

β −
n

∑

i=n2

p(i) − (1 − ξ)p(n2 − 1) + 2|c|

]

ε.

From (30), we have

y(n∗) < |c|ε +

[

(β + 2|c|)d − (1 − ξ)2p2(n2 − 1) −

n∗

−1
∑

n=n2

p(n)

n
∑

i=n2

p(i)

− (1 − ξ)p(n2 − 1)
n∗

−1
∑

n=n2

p(n)

]

ε = |c|ε +

[

(β + 2|c|)d − (1 − ξ)2p2(n2 − 1)

−
1

2

( n∗

−1
∑

n=n2

p(n)

)2

−
1

2

n∗

−1
∑

n=n2

p2(n) − (1 − ξ)p(n2 − 1)

n∗

−1
∑

n=n2

p(n)

]

ε.

Because

n∗

−1
∑

n=n2

p(n)2 + (1 − ξ)2p2(n2 − 1) ≥
1

n∗ − n2 + 1

( n∗

−1
∑

n=n2

p(n) + (1 − ξ)p(n2 − 1)

)2

=
1

n∗ − n2 + 1
d2 ≥

1

l + 1
d2
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we have

y(n∗) <

[

|c| + (β + 2|c|)d −

(

1

2
+

1

2(l + 1)

)

d2

]

ε. (31)

Because the function g(x) = |c| + (2|c| + β)x −
l + 2

2(l + 1)
x2 is monotonously increasing

on the interval [0, 1 − 2|c|], then we have

y(n∗) <

[

|c| + (β + 2|c|)(1 − 2|c|) −

(

1

2
+

1

2(l + 1)

)

(1 − 2|c|)2
]

ε

≤ [1 − |c| − |c|(1 − 2|c|2] ≤ (1 − |c|)ε

which contradicts inequality (17). Therefore, Case 1 is impossible.

Case 2 d > 1 − 2|c|.
In this case there exists a positive integer n3 ∈ N(n2, n

∗), which satisfies

2|c| +

n∗

−1
∑

n=n3

p(n) ≤ 1 and 2|c| +

n∗

−1
∑

n=n3−1

p(n) > 1,

then there is a η ∈ (0, 1], such that

2|c| +
n∗

−1
∑

n=n3

p(n) + (1 − η)p(n3 − 1) = 1. (32)

Because

y(n∗) = y(n2 − 1) +

n3−2
∑

n=n2−1

∆y(n) + η∆y(n3 − 1) + (1 − η)∆y(n3 − 1) +
n∗

−1
∑

n=n3

∆y(n)

and making use of (24), we get

y(n∗) ≤ |c|ε+η∆y(n3−1)+(1−ξ)∆y(n2−1)+

n3−2
∑

n=n2

∆y(n)+(1−η)∆y(n3−1)+

n∗

−1
∑

n=n3

∆y(n).

From (27), we get

η∆y(n3−1)+(1−ξ)∆y(n2−1)+

n3−2
∑

n=n2

∆y(n) <

[

(1−ξ)p(n2−1)+

n3−2
∑

n=n2

p(n)+ηp(n3−1)

]

ε

and from (25) and (26), we have

(1 − η)∆y(n3 − 1) +

n∗

−1
∑

n=n3

∆y(n) ≤ (1 − η)p(n3 − 1)

[

2|c|

+

n2−2
∑

i=n3−1−β(n3−1)

p(i) + ξp(n2 − 1)

]

ε +

n∗

−1
∑

n=n3

p(n)

[

2|c| +

n2−2
∑

i=n−β(n)

p(i) + ξp(n2 − 1)

]

ε.
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We then have

y(n∗) ≤ |c|ε +

[

(1 − ξ)p(n2 − 1) +

n3−2
∑

n=n2

p(n) + ηp(n3 − 1)

]

ε

+ (1 − η)p(n3 − 1)

[

2|c| +

n2−2
∑

i=n3−1−β(n3−1)

p(i) + ξp(n2 − 1)

]

ε

+

n∗

−1
∑

n=n3

p(n)

[

2|c| +

n2−2
∑

i=n−β(n)

p(i) + ξp(n2 − 1)

]

ε.

From (29) and (32), we get

y(n∗) ≤ |c|ε +

[

(1 − ξ)p(n2 − 1) +

n3−2
∑

n=n2

p(n) + ηp(n3 − 1)

]

ε

+ (1 − 2|c|)[2|c| − (1 − ξ)p(n2 − 1)]ε + (1 − η)p(n3 − 1)

[

n3−1
∑

i=n3−1−
β(n3−1)

p(i) −

n3−1
∑

i=n2

p(i)

]

ε

+

n∗

−1
∑

n=n3

p(n)

[ n
∑

i=n−β(n)

p(i) −

n
∑

i=n3

p(i) −

n3−1
∑

i=n2

p(i)

]

ε

< |c|ε + 2|c|(1 − 2|c|)ε + 2|c|(1 − ξ)p(n2 − 1)ε + 2|c|

n3−1
∑

i=n2

p(i)ε

− ε(1 − η)p(n3 − 1) + ε(1 − η)βp(n3 − 1) +

n∗

−1
∑

n=n3

p(n)

[

β −

n
∑

i=n3

p(i)

]

ε

= |c|ε + 2|c|(1 − 2|c|)ε − 2|c|ξp(n2 − 1)ε + 2|c|

[ n∗

−1
∑

i=n2−1

p(i) −

n∗

−1
∑

i=n3

p(i)

]

ε

− ε(1 − η)p(n3 − 1) + (1 − 2|c|)βε −
1

2

[ n∗

−1
∑

i=n3

p(i)

]2

ε −
1

2

n∗

−1
∑

i=n3

p2(i)ε.

Because

−2|c|

n∗

−1
∑

i=n3

p(i) − (1 − η)p(n3 − 1) −
1

2

[ n∗

−1
∑

i=n3

p(i)

]2

−
1

2

n∗

−1
∑

i=n3

p2(i)

= −2|c|(1 − 2|c| − (1 − η)p(n3 − 1)) − (1 − η)p(n3 − 1)

−
1

2
[1 − 2|c| − (1 − η)p(n3 − 1)]2 −

1

2

n∗

−1
∑

i=n3

p2(i)

= −2|c|(1 − 2|c|) −
1

2
(1 − 2|c|)2 −

1

2

[ n∗

−1
∑

i=n3

p2(i) + (1 − η)2p2(n3 − 1)

]
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and

n∗

−1
∑

i=n3

p2(i) + (1 − η)2p2(n3 − 1) ≥
1

n∗ − n3

[ n∗

−1
∑

i=n3

p(i) + (1 − η)p(n3 − 1)

]2

≥
1

l + 1

[ n∗

−1
∑

i=n3

p(i) + (1 − η)p(n3 − 1)

]2

we get

y(n∗) < ε[|c| + 2|c|(1 − 2|c|) + 2|c|β + (1 − 2|c|)β − 2|c|(1 − 2|c|)

−
1

2
(1 − 2|c|)2 −

1

2

(1 − 2|c|)2

(l + 1)
] = (1 − |c|)ε.

This inequality contradicts (17). Therefore Case 2 is also impossible.
Based on the above two cases, we see that (12) holds. Hence the zero solution of

equation (1) is uniformly stable.

Proof of Theorem 2.2 From Theorem 2.1, we see that the zero solution of equation
(1) is uniformly stable, thus we only need to prove that the zero solution of equation (1)
is uniformly attractive.

Select

δ =
(1 − |c|)

(1 + |c|)(2|c| + 3)3r
H.

In the following, we prove that for any n0 ∈ N , if the solution {x(n)} of the equation
satisfies |x(n0 + i)| < δ, i = −r,−r + 1, . . . , 0, we have

lim
n→+∞

x(n) = 0. (33)

The following proof is similar to that of Theorem 2.1, so we have

x(n)| < H, n ∈ N(n0). (34)

Let
y(n) = x(n) − cx(n − k), n ∈ N(n0), (35)

then
|y(n)| < (1 + |c|)H, n ∈ N(n0). (36)

There are two situations that needed to be contemplated.

Case 1 {y(n)} is eventually monotonous.
Let

A = lim
n→+∞

inf x(n), B = lim
n→+∞

supx(n). (37)

We will prove that A = B = 0 and A ≤ 0.
In fact, if A > 0, then for any 0 < ε < A, there is n1 ∈ N(n0 + l), such that

x(n1 − l) > A − ε > 0.
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Hence, when n ∈ N(n1 − l), we have

x(n) > A − ε. (38)

Therefore from (35), we get

y(n1) − y(n1 + 1) = f(n1, x(n1 − l1(n)), . . . , x(n1 − lm(n)))

≥ p(n1)x(n1 − β(n1)) > p(n1)(A − ε).

In general, for m = 0, 1, . . . , we have

y(n1 + m) − y(n1 + m + 1) > p(n1 + m)(A − ε).

Then we have

y(n1) − y(n1 + m + 1) >
m

∑

i=0

p(n1 + i)(A − ε).

From (36) and {y(n)} being eventually monotonous, we can see that the limit value of
{y(n)} exists. Therefore from (9), we know that the above inequality doesn’t hold and
hence A ≤ 0.

In the following we will prove A = 0. Suppose

lim
n→+∞

y(n) = y∗.

We will prove that
y∗ = 0. (39)

In fact, if (39) doesn’t hold, we assume that y∗ > 0, from the definition of A. We can
see that there is a positive integer sequence {nj}, such that

lim
j→+∞

nj = +∞, lim
n→+∞

x(nj) = A,

then when j → +∞, we have

cx(nj − k) = x(nj) − y(nj) → A − y∗, (40)

and since

lim
n→+∞

f(n1, x(n1 − l1(n), . . . , x(n1 − lm(n))) = lim
n→+∞

(−∆y(n)) = 0 (41)

from(40), we see that there must exist c 6= 0.
If c = 0, we must have

lim
j→+∞

cx(nj − k) = 0 = A − y∗

that is A = y∗, which obviously doesn’t hold.
Hence

lim
j→+∞

cx(nj − k) =
A − y∗

c
. (42)
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From the definitions of A and B, we see that

A = lim
n→+∞

inf x(n) ≤ lim
j→+∞

x(nj − k) =
A − y∗

c
≤ lim

n→+∞
supx(n) = B. (43)

If c > 0, from A < (A − y∗)/c we have (1 − c)A > y∗, then we see that the inequality
doesn’t hold.

If c < 0, from x(n) = y(n) + cx(n − k), n ∈ N(n0), we get

lim
n→+∞

supx(n) = lim
n→+∞

sup(y(n) + cx(n − k)),

then B = y∗ + cB.
From (43), we can see that cA ≥ cB, then we have B ≤ y∗+cA. Since B ≥ (A−y∗)/c,

we have (1 + c)y∗ ≤ (1 − c2)A which can not hold. Therefore (39) must hold. Hence,
A = y∗ + cA = cA, that is (1 − c)A = 0 or A = 0.

In the following we will prove B = 0.
In fact, according to the definition of B, we can see that there is a positive integer

sequence {lj}, such that

lim
j→+∞

lj = +∞ and lim
j→+∞

x(lj) = B.

If c = 0, obviously, we get B = 0. If c < 0, while j → +∞, we get

y(lj) − y(lj − k) = x(lj) − (1 + c)x(lj − k) + cx(lj − 2k) → 0,

then for j → +∞, we have

(1 + c)x(lj − k) − cx(lj − k) → B.

Since the line (1 + c)x − cy = B, c > 0 and the region 0 ≤ x, y ≤ B only have one
crossover point (B, B), so

lim
j→+∞

x(lj − k) = lim
j→+∞

x(lj − 2k) = B.

Therefore
lim

j→+∞
y(lj − k) = (1 − c)B = 0,

that is B = 0.
If c > 0, we can similarly prove that B = 0.
In conclusion, if {y(n)} is eventually monotonous, then

lim
n→+∞

inf x(n) = lim
n→+∞

supx(n) = 0,

that is
lim

n→+∞
x(n) = 0.

Case 2 {y(n)} is not eventually monotonous. Let

M = lim
n→+∞

sup |x(n)|, N = lim
n→+∞

sup |y(n)|.
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If (33) doesn’t hold, we must have M > 0. Then for any ε > 0, and ε satisfies ε <
1 − 2|c|

1 + |c|
M , ε < I, there must exist a n2 ∈ N(n0 + r), such that when n ∈ N(n2 − r),

we have
|x(n)| < M + ε. (44)

Therefore, when n ∈ N(n2), we get

y(n) ≥ |x(n)| − |c|(M + ε1) (45)

and we have I ≥ M − |c|(M + ε1). Because of the arbitrariness of ε, we have

I ≥ (1 − |c|)M. (46)

Since {y(n)} is not eventually monotonous, for the above ε, there must exist a n∗ ∈
N(n2 + 2r + 1), which satisfies

y(n∗) > I − ε, (47)

such that
y(n∗) > y(n∗ + 1), y(n∗) ≥ y(n∗ − 1). (48)

Therefore, we have

x(n∗) = y(n∗) − cx(n∗ − k) ≥ I − ε − |c|(M + ε) ≥ (1 − |c|)M − ε − |c|(M + ε) > 0

and
x(n∗ − 1 − β(n∗ − 1)) ≤ 0. (49)

Thus there must be a n3 ∈ N(n∗ − β(n∗ − 1), n∗) and a ξ ∈ [0, 1), such that

x(n3 − 1) ≤ 0, x(n) > 0, where n ∈ N(n3, n
∗), (50)

x(n3 − 1) + ξ(x(n3) − x(n3 − 1)) = 0. (51)

Then from (35) and (44), we have

−[y(n3 − 1) + (y(n3) − y(n3 − 1))] = c[(1 − ξ)x(n3 − 1 − k) + ξx(n3 − 1)] < |c|(M + ε),

y(n3 − 1) + ξ(y(n3) − y(n3 − 1)) = −c[(1 − ξ)x(n3 − 1 − k) + ξx(n3 − 1)] < |c|(M + ε).

(52)
That is

y(n3 − 1) < |c|(M + ε) − ξ∆y(n3 − 1). (53)

Now we will prove that, when n ∈ N(n2, n
∗), we have

−x(n) ≤

[

2|c| +

n3−2
∑

i=n

p(i) + ξp(n3 − 1)

]

(M + ε). (54)

In fact, when n ∈ N(n3, n
∗), from (50) we can see that the above equality holds. In the

following, we will prove that, when n ∈ N(n2, n3 − 1), (54) holds. From (1) and (6), we
see that, when n ∈ N(n2), we have

∆y(n) < −p(n)x(n − β(n)). (55)
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Thus, from (44) we see that, when n ∈ N(n2), we have

∆y(n) < p(n)(M + ε). (56)

Therefore, for any n ∈ N(n2, n3 − 1), we have

−[y(n) − y(n3 − 1) − ξ(y(n3) − y(n3 − 1))] =

n3−2
∑

i=n

∆y(i) + ξ∆y(n3 − 1)

< −

n3−2
∑

i=n

p(i)x(i − β(i)) − ξp(n3 − 1)x(n3 − 1 − β(n3 − 1))

≤

[ n3−2
∑

i=n

p(i) + ξp(n3 − 1)

]

(M + ε).

(57)

Then from (35), (44), (52) and (57), we know that if n ∈ N(n2), we have

−x(n) = −(y(n) + cx(n − k)) = −[y(n) − y(n3 − 1) + ξ(y(n3) − y(n3 − 1))]

− y(n3 − 1) − ξ(y(n3) − y(n3 − 1)) − cx(n − k)

≤

[ n3−2
∑

i=n

p(i) + ξp(n3 − 1) + 2|c|

]

(M + ε).

Therefore (54) holds.

Suppose

β =
3

2
+

(1 − 2|c|)2

2(l + 1)
− 2|c|(2 − |c|).

Then from (11), we have
n

∑

i=n−β(n)

p(i) ≤ β, n ∈ N. (58)

Denote

d =

n∗

−1
∑

i=n3

p(i) + (1 − ξ)p(n3 − 1). (59)

In the following, we have two situations to contemplate.

Case 2-a d ≤ 1 − 2|c|.

From (53), we obtain

y(n∗) = y(n3 − 1) +

n∗

−1
∑

i=n3−1

∆y(i) ≤ |c|(M + ε) − ξ∆y(n3 − 1) +

n∗

−1
∑

i=n3−1

∆y(i).
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From (54) and (55), we get

y(n∗) ≤ |c|(M + ε) + (1 − ξ)∆y(n3 − 1) +

n∗

−1
∑

i=n3

∆y(i)

< |c|(M + ε) + (1 − ξ)p(n3 − 1)

[ n3−2
∑

i=n3−1−
β(n3−1)

p(i) + ξp(n3 − 1) + 2|c|

]

(M + ε)

+

n∗

−1
∑

i=n3

p(i)

[ n3−2
∑

j=i−β(i)

p(j) + ξp(n3 − 1) + 2|c|

]

(M + ε).

The following proof is similar to Case 1 of Theorem 2.1, we have

y(n∗) < (1 − |c|)(M + ε).

Case 2-b d > 1 − 2|c|.
Now there exists a positive integer n4 ∈ N(n3, n

∗), such that

2|c| +

n∗

−1
∑

i=n4

p(i) < 1 and 2|c| +

n∗

−1
∑

i=n4−1

p(i) > 1.

Therefore there is a η ∈ (0, 1), such that

2|c| +

n∗

−1
∑

i=n4

p(i) + (1 − η)p(n4 − 1) = 1. (60)

Since

y(n∗) = y(n3 + 1) +

n4−2
∑

n=n4−1

∆y(n) + η∆y(n4 − 1) + (1 − η)∆y(n4 − 1) +

n∗

−1
∑

n=n4

∆y(n),

then from (53), (54) and (56), we obtain

y(n∗) < |c|(M + ε)(1 − ξ)∆y(n3 − 1) +

n4−2
∑

n=n3−2

∆y(n) + η∆y(n4 − 1)

+ (1 + η)∆y(n4 − 1) +

n∗

−1
∑

n=n4

∆y(n)

≤ |c|(M + ε) +

[

(1 − ξ)p(n3 − 1) +

n4−2
∑

n=n3−2

p(n) + ηp(n4 − 1)

]

(M + ε)

+ (1 − η)p(n4 − 1)

[

2|c| +

n3−2
∑

i=n4−1−β(n4−1)

p(i) + ξp(n3 − 1)

]

(M + ε)
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+
n∗

−1
∑

n=n4

p(n)

[

2|c| +

n3−2
∑

i=n−β(n)

p(i) + ξp(n3 − 1)

]

(M + ε)

= |c|(M + ε) +

[

(1 − ξ)p(n3 − 1) +

n4−2
∑

n=n3−2

p(n) + ηp(n4 − 1)

]

(M + ε)

+ (1 − 2|c|)[2|c| − (1 − ξ)p(n3 − 1)](M + ε)

+ (1 − η)p(n4 − 1)

[ n4−1
∑

i=n4−1−β(n4−1)

p(i) −

n4−1
∑

i=n3

p(i)

]

(M + ε)

+
n∗

−1
∑

n=n4

p(n)

[ n
∑

i=n−β(n)

p(i) −
n

∑

i=n4

p(i) −

n4−1
∑

i=n3

p(i)

]

(M + ε).

The following proof is similar to Theorem 2.1. We have

y(n∗) < (1 − |c|)(M + ε).

Based on the two cases a and b, we have

y(n∗) < (1 − |c|)(M + ε).

Hence, from (47), we have

I − ε < y(n∗) < (1 − |c|)(M + ε).

From the arbitrariness of ε, we have

I < (1 − |c|)M,

which contradicts (46). Therefore Case 2 is impossible. Thus when {y(n)} is not even-
tually monotonous, (33) also holds.

Based on these two cases, we can see that (33) must hold. Thus the zero solution of
the equation is uniformly attractive. Therefore the zero solution of equation (1) is said
to be uniformly asymptotically stable.

3 Conclusions

According to the above analysis, in the cases of several variable delay, we have obtained
the sufficient conditions of uniform stability and uniform asymptotical stability. These
results extent and improve the relative theorem in the literature [7]. And the methods
used in this paper can have important significances in the studies of the stabilities of
difference equation with several variable delays.
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