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Abstract: One of the main simplifying assumptions made in the study of the
attitude motions of a rocket-type variable mass system is that the motion of
the fluid products of combustion relative to the rocket body, as these fluid
particles exit the rocket’s combustion chamber, remains symmetric with re-
spect to the rocket axis, and the fluid particles have no transverse motion
relative to the rocket body. This assumption brings about a tremendous sim-
plification of the equations that govern the attitude motion of a rocket, and
is thus very attractive. Yet, one recognizes that such an assumption becomes
questionable if the rocket body is allowed to spin. This paper examines the
validity of this common assumption. The paper attempts to reconstruct what
is lost when this assumption is made, and quantifies the effects on attitude
dynamics predictions. Results obtained show that this assumption is in fact
reasonable. Although internal fluid whirling motion can cause deviations in
spin rate predictions, the actual effects are not dramatic. There is a noticeable
impact on the frequencies of the transverse angular velocity components, but
the amplitude of the transverse angular velocity vector is largely unaffected.
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1 Introduction

It has now become quite common to derive the equations of motion of general variable
mass systems using the so-called control volume approach [1–4]. This method can capture
the overall rigid-body-type motion of the system as well as the details of internal mass
flow. Simplifying assumptions are introduced after the equations of motion are derived
in order to bring these equations into forms that make further analyses manageable.

Rocket systems constitute one class of variable mass systems that is of interest in
the aerospace field. In studying the effects of mass variation on the behavior of rocket
systems, the system of interest is often assumed to comprise two phases at any given
instant: a solid phase and a fluid phase. The assumptions that are traditionally made in
the study of these systems include one concerning the motion of the fluid phase relative to
the solid phase. Several studies [1, 3, 5] assume, explicitly or implicitly, that the motion
of the fluid products of combustion relative to the solid part of the system is such that
each fluid particle has constant velocity that is parallel to the rocket axis. Other studies
[3, 6–8] consider that the velocity field of the fluid particles has axial symmetry, and that
no “whirling motion” of the fluid phase relative to the solid phase exists. These two
assumptions have to do with internal fluid flow within a rocket’s combustion chamber.
They stipulate that the internal motion of fluid particles relative to the rocket body is
symmetric with respect to the rocket axis. In addition, the relative velocity vectors for
these particles are assumed not to have a transverse component. In other words, these
particles, in their motion relative to the rocket body, are assumed to be incapable of
helical motion for example. This is quite reasonable for a rocket that is not spinning,
but seems unreasonable for a spinning rocket. It turns out that this assumption can
bring tremendous simplifications to the equations that govern rocket motion [3], and this
makes the assumption quite attractive.

The goal of this work is to check the validity of this assumption; that is, to evaluate
what is lost, if any, by assuming that the velocity vectors of fluid particles within a rocket’s
combustion chamber have no roll component relative to the rocket body. Wang and Eke
[6] took a cursory look at this problem and concluded that the neglect of whirling motion
does not affect transverse angular velocity magnitudes, but does affect the frequencies of
these quantities. This paper builds on Wang and Eke’s work, and presents the results of
a more general investigation of how internal fluid whirling motion affects rocket attitude
dynamics.

2 Equations of Motion

The type of system that is of interest in this study can be represented by the simple
model shown in Figure 2.1. This model considers that the rocket system under study is
made up of two main parts — a solid portion B, whose mass is expected to diminish with
time as propellant is expended, and the fluid products of combustion F . B is taken to
be rigid and symmetric about the z-axis, and is assumed to remain so as parts of it are
depleted by combustion. S∗ is the instantaneous mass center of the system, and always
lies on the z-axis, and C is an imaginary shell that delimits the system.
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Figure 2.1. Model of a Rocket.

One version of the equation of rotational motion for this type of system has the form [3]

I · α + ω × I · ω +

(

BdI

dt

)

· ω +

∫

C

ρ[p × (ω × p)](v · n) dS

+
Bd

dt

∫

C

ρ(p × v) dV +

∫

C

ρ(p × v)(v · n) dS +

∫

C

ρω × (p × v) dV = M.

(1)

In this equation, I represents the inertia dyadic of the system, ω and α are the inertial
angular velocity and angular acceleration respectively of B, ρ is the mass density, p is the
position vector from the system’s mass center S∗ to a generic particle P of the system,
v is the velocity of P relative to the main body B, n is a unit outward normal to the
surface C, and M is the resultant moment about S∗ of all the external forces on the
system. The left superscript on the time derivative simply indicates that the derivative
is to be taken while the reference frame B is kept fixed.

If we assume that ω has the form,

ω = ω1b1 + ω2b2 + ω3b3 (2)

and that
I = I(b1b1 + b2b2) + Jb3b3 (3)

where the unit vector basis b1, b2, b3 is fixed in B and oriented as in Figure 2.1, then,
the first three terms of equation (1) can be written as

I · α = I(ω̇1b1 + ω̇2b2) + Jω̇3b3, (4)

ω × I · ω = (J − I)ω3(ω2b1 − ω1b2) (5)

and
(

BdI

dt

)

· ω = İ(ω1b1 + ω2b2) + J̇ω3b3. (6)

The fourth term of equation (1) has been evaluated by several authors and shown to
depend on the velocity field of exhaust gas particles as they cross the nozzle exit plane.
For uniform velocity profile with constant exhaust gas velocity u, the rate at which mass
is lost from the system is

ṁ = −πρuR2

1 (7)
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and the fourth term can be expressed as (see for example Wang [6])

∫

C

ρ[p × (ω × p)](v · n) dS = −ṁ
[(

z2

e +
R2

1

4

)

(ω1b1 + ω2b2) +
R2

1

2
ω3b3

]

(8)

where the distances ze and R1 are as shown in Figure 2.1. None of these first four terms
is affected by the introduction of fluid whirling motion. This is so because the first three
terms do not contain the fluid velocity vector at all, and the fourth term only involves
the axial component of this velocity. We recall that whirling motion comes from the
existence of a transverse component of the fluid relative velocity.

The fifth term of equation (1) vanishes if one makes the assumption that fluid flow
within the system’s combustion chamber has reached steady state — a generally reason-
able approximation, which will be assumed to hold here. We are then left with the last
two terms on the left hand side of equation (1):

M6 =

∫

C

ρ(p × v)(v · n) dS (9)

and

M7 =

∫

C

ρω × (p × v) dV. (10)

Each of these contains the vector v, which represents the velocity vector of a generic fluid
particle relative to the rocket’s main body. Spin motion of the rocket body introduces
helical or whirling motion of the fluid particles, and this in turn influences v, and hence
both M6 and M7. We note that if whirling motion is ignored, then (see [3])

M6 = M7 = 0 (11)

and equation (1) is simplified tremendously. This is one reason the “no whirling motion”
assumption has remained very attractive in the study of rocket dynamics. To assess
the impact of fluid whirling motion on rocket dynamics, we will start by determining
expressions for the quantities M6 and M7 when whirling motion is present.

3 The Surface Integral Term

Consider a generic fluid particle within the combustion chamber of a rocket as this fluid
particle crosses the nozzle exit plane. Such a particle is shown as point P in Figure 3.1.
The position vector of P from the system mass center can be written as

p = xex + zeez (12)

and its velocity relative to the rocket body B has the general form

v = vxex + vθeθ + vzez (13)

where ex, eθ, and ez are the unit vectors normally associated with the use of cylindrical
coordinates, and are as shown in Figure 3.1. For the particle P ,

(p × v)p = −zevθex + (zevx − xvz)eθ + xvθez. (14)
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Figure 3.1. A generic fluid particle P at the nozzle exit plane.

If motion of the fluid particles relative to the rocket body is assumed to be axisymmetric
with respect to the z-axis, then, for each particle such as P , there always exists another
particle P ′ on the nozzle exit plane, located at the same radial distance x from the rocket
axis, and 180 degrees away from P , and for which

(p× v)P ′ = zevθex − (zevx − xvz)eθ + xvθez. (15)

Hence, the combined contributions of P and P ′ to M6 in equation (9) has neither a
radial nor a transverse component, so that one need only evaluate the axial component
of the surface integral M6. In other words,

M6 = (M6 · ez)ez = ez

∫

C

ρp · (v × ez)(vz) dS = ez

∫

C

ρxvθvz dS. (16)
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The axisymmetry assumption stated above also leads to the conclusion that neither
vz nor vθ depends on the angle θ. However, both can depend on the distance x from the
rocket axis. We can re-write equation (16) as

M6 =

[

2πρ

R1
∫

0

x2vθu dx

]

b3. (17)

This expression assumes a constant axial velocity u for fluid particles as well as a constant
fluid density over the nozzle exit plane.

To make further progress with equation (17), the manner in which vθ varies with x
must be determined. To this end, we will assume that at steady state, the motion of a
typical fluid particle relative to the rocket body, as the particle moves towards the nozzle
exit plane, is such that the path of the particle has the approximate shape of a helix
centered on the rocket axis. We immediately recognize that the transverse component
of the velocity of such a particle is influenced mainly by the spin motion of the rocket
body. This leads us to start the process of determining an expression for vθ by making the
additional simplifying assumption that the axial motion of the fluid particles is decoupled
from their transverse motion. This means that the transverse motion of the fluid particles
can be understood by considering only the spin motion of the rocket body. Thus, we
consider in Figure 3.2, that initially, the rocket body B, including the nozzle and the fluid
it contains, is stationary. Next, B is given a spin rate ω3 as shown. Friction causes the
fluid particle Q in contact with the nozzle wall to acquire an inertial velocity ω3R1 in the
transverse direction, while the fluid particle O on the spin axis remains stationary. Those
fluid particles between O and Q acquire speeds that vary between zero and ω3R1. For
the range of spin rates normally encountered in rocket dynamics, the speed distribution
between O and Q would be linear, and the relationship between the speed of the fluid
particle P at a distance x from O and the fluid particle at Q would be

Figure 3.2. Fluid velocity distribution.

vP/vQ = x/R1 (18)

so that
vP = (x/R1)v

Qeθ = ω3xeθ. (19)

On the other hand, the fictitious particle PO of B that is coincident with the fluid particle
P at the instant under consideration also has velocity

vPO = ω3xeθ. (20)
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P would then have zero velocity relative to the rocket body; a fact that seems at odds
with what would be expected if such an experiment were actually performed.

The decoupling of the axial fluid velocities from the transverse velocities has one major
flaw — it implies that one is dealing with linear phenomena. Furthermore, the assumption
that the velocity distribution between points O and Q is linear requires that the flow be
laminar (not turbulent). What is most likely in reality is that the combination of very
high axial fluid velocities found inside rocket combustion chambers, together with the
relatively slow transverse motion of the fluid particles, as well as the changing combustion
chamber geometry will result in overall turbulent and complex flow of the fluid products
of combustion. It is thus most unlikely that spinning of the rocket body will introduce a
linear distribution of transverse fluid velocities between points O and Q; in other words,
the relative transverse speeds for the fluid particles are not likely to be zero. The velocity
function vθ is likely to be quite complex, with no simple closed form expression.

One way to move this analysis forward is to make reasonable guesses for the function
vθ. We adopt this approach and assume that the velocity distribution between points O
and Q of Figure 3.2 is not linear, but parabolic. One then finds that

vP = (ω3x
2/R1)eθ (21)

and hence, the transverse speed of the general fluid particle P relative to the spinning
body B becomes

vθ = ω3x

(

x

R1

− 1

)

. (22)

We now substitute equation (22) into (17) to obtain

M6 =

[

2π

R1
∫

0

ρ

(

x

R1

− 1

)

ω3ux
3dx

]

b3 = −πρuω3R
4

1

10
b3 =

ṁω3R
2

1

10
b3. (23)

Clearly, M6 will have some influence on the spin rate but will not affect the transverse
components of the rocket’s angular velocity.

4 The Volume Integral Term

In this section, we determine an explicit expression for the seventh term of equation (1).
This term is also shown as equation (10) above, and is a volume integral to be taken over
the entire region of the combustion chamber, where fluid flow occurs. We note that this
region’s volume varies with time as propellant burn progresses, a fact that complicates
the evaluation of the integral.

For a general axisymmetric combustion chamber such as the one shown in Figure 4.1,
the vector M7 can be written as

M7 = ω ×
∫

C

(ρp × v) dV = ω × Γ (24)

where

Γ =

∫

C

(ρp× v) dV. (25)
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Figure 4.1. General axisymmetric combustion chamber.

We can let p, which represents the position vector from the system mass center to a
generic fluid particle P inside the combustion chamber, be

p = xex + zez (26)

while a general expression for the velocity of P remains as given in equation (13). The
axisymmetric nature of both the combustion chamber and the fluid flow therein allows
us to invoke the same arguments presented in the evaluation of M6, and these lead us
to conclude that Γ is parallel to ez or b3. Hence, equation (25) becomes

Γ = ez

∫

C

(ρp × v) · ez dV = b3

∫

C

ρx2vθ dx dθ dz. (27)

Equations (2) and (27) are now substituted into (24), and, assuming that the fluid density
is constant at steady state, we obtain (see also Figure 4.1)

M7 =

(

2πρ

z2
∫

z1

∫

x

x2vθ dx dz

)

(ω2b1 − ω1b2). (28)

Because M7 has no b3 component, it cannot have any influence on the spin rate.
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The integral in equation (28) depends on the shape of the combustion chamber, and
this in turn depends on the propellant burn type. We will thus need to stipulate a specific
propellant burn scenario before the corresponding expression for M7 can be determined.
The idealized propellant burn geometries that are closest to what obtains in real systems
are those that have been described in the literature [7–9] as the end burn, the radial
burn, and the uniform burn. Even for these idealized burn patterns, the true shape of
the combustion chamber during the propellant burn remains quite complex. To simplify
the task of evaluating the volume integral M7, we restrict this part of the analysis to a
rocket model often referred to as the variable mass cylinder [7]. This is a very simple
model that considers a rocket to be a solid right circular cylinder, made entirely of
combustible material, and that burns while it flies around in space.

The end burn is the most useful propellant burn geometry for the variable mass
cylinder. To see why this is so, we direct attention to Figure 4.2, which shows a typical
rocket system that consists of the payload and several stages of the propulsion system.
The rocket motor for each stage carries solid or liquid propellant that burns to generate
propulsive force. Typically, solid fuel is burnt from inside out, somewhat similar to what
we have referred to as radial burn. However, the fact that the fuel is generally located
close to one end of the rocket system, means that the effect of this burn on the overall
system geometry and mass/inertia properties, is reasonably well approximated by the end
burn when the overall system is modeled as a cylinder. We will therefore only consider
the end-burn whenever we model a rocket as a burning cylinder.

Figure 4.2. Typical rocket system.

For the end burning cylinder, the combustion chamber at any given instant has the
shape of a cylinder of radius R, and whose length varies uniformly with the burn, as
shown in Figure 4.3. In this case, M7 becomes

M7 =

(

2πρ

L
∫

z

R
∫

0

x2vθ dx dz

)

(ω2b1 − ω1b2)

= 2πρ(L− z)

( R
∫

0

x2vθ dx

)

(ω2b1 − ω1b2).

(29)

We assume that the expression obtained for vθ in the previous section [see equation
(22)] holds here, so that

M7 = − 1

10
πρR4(L − x)ω3(ω2b1 − ω1b2). (30)
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Figure 4.3. The end burning cylinder.

The mass flow rate can be introduced into equation (30), as was done earlier for the
vector M6. For uniform exit velocity profile, M7 then becomes

M7 =
ṁR2(L− z)

10u
ω3(ω2b1 − ω1b2). (31)

5 Scalar Equations of Attitude Motion

Now that the explicit expression for each term of equation (1) has been determined,
including those contributed by fluid whirling motion, we are in a position to write the
complete scalar equations of rotational motion. Using equations (4), (5), (6), (8), (23),
and (31), and assuming the external moment M is zero, equation (1) can be broken into
its scalar components along the b1, b2, and b3 directions respectively as follows:

Iω̇1 +

[

İ − ṁ

(

z2

e +
R2

4

)]

ω1 + [(J − I)ω3 + ∆ω3]ω2 = 0, (32)

Iω̇2 +

[

İ − ṁ

(

z2

e +
R2

4

)]

ω2 − [(J − I)ω3 + ∆ω3]ω1 = 0, (33)

and

Jω̇3 +

(

J̇ − ṁ
R2

1

2

)

ω3 +
1

10
ṁR2

1
ω3 = 0 (34)

where

∆ =
ṁ(L − z)R2

10u
. (35)

Equations (32) and (33) are only valid for the cylinder model, while equation (34)
holds for a more general representation of a rocket because the term M7 that forced a
return to the cylinder model contributes nothing to (34). The ∆ term in equations (32)
and (33), and the last term on the left hand side of (34) are contributed by fluid whirling
motion.
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6 Spin Motion

We now assess how the rocket’s spin rate is affected by the inclusion of the extra term
due to fluid whirling motion. The spin rate is obtainable from equation (34) and has the
form

ω3(t)

ω3(0)
= exp

[

−
t
∫

0

ψ(t)

J
dt

]

(36)

where

ψ(t) = ψ1(t) + ψ2(t) + ψ3(t) = J̇ − 1

2
ṁR2

1
+

1

10
ṁR2

1
(37)

with

ψ1(t) = J̇ , ψ2(t) = −1

2
ṁR2

1
, ψ3(t) =

1

10
ṁR2

1
. (38)

We know from equation (36) that the spin rate increases or decreases depending on the
sign of ψ(τ): a positive sign indicates a decrease in spin rate, while a negative sign points

to an increase in spin rate. The rate of change of the system’s axial moment of inertia J̇
and the mass flow rate ṁ are negative quantities. Hence, ψ1(τ) will tend to augment the
spin rate, while ψ2(τ) does the opposite. ψ3(τ), which is contributed by internal fluid
whirling motion, is a negative quantity. This means that fluid whirling motion tends
to increase the spin rate value. In other words, an analysis that ignores fluid whirling
motion will predict spin rate values that are less than those resulting from an analysis
in which whirling motion is accounted for. In the remainder of this section, ω3(t) will
continue to represent the spin rate solution when fluid whirling motion is accounted for,
while ω3nw(t) will be used for the spin rate solution when whirling motion is neglected
(i.e. when ψ3(τ) is dropped).

For the specific case of a variable mass cylinder in end burn (see Figure 4.3),

ω3(t)

ω3(0)
= exp

[

−
t
∫

0

J̇

J
dt+

R2

2

t
∫

0

ṁ

J
dt− R2

10

t
∫

0

ṁ

J
dt

]

= exp

[

− ln
J(t)

J(0)
+ ln

m(t)

m(0)
− 1

5
ln
m(t)

m(0)

]

= exp

(

− 1

5
ln
m(t)

m(0)

)

.

(39)

Observe that
ω3nw(t) = ω3(0). (40)

Hence, if whirling motion is not accounted for, the spin rate for a spinning rocket is
predicted to remain constant at its initial value. This is in fact quite close to what
is observed in real flight. On the other hand, if whirling motion is accounted for, the
predicted spin rate is somewhat higher. The percentage deviation of ω3(t) from ω3nw(t)
is

D =
ω3 − ω3nw

ω3nw
100 = 100

[(

m(0)

m(t)

)1/5

− 1

]

= 100

[(

L

z

)1/5

− 1

]

. (41)

An equivalent z/L for a real rocket is very small, hence D is very small. We conclude
then that accounting for whirling motion does not change the predicted spin rate by
much.
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7 Transverse Motion

We continue the investigation of the effects of internal whirling motion of fluid products
of combustion on the attitude behavior of variable mass systems of the rocket type by
examining the lateral or transverse attitude motion of such systems. The interest here is
in the evolution with time, of the transverse angular velocity components ω1 and ω2 as
the rocket’s propellant burns. The variables ω1 and ω2 are governed by equations (32)
and (33), which we combine and re-write in the form

ω̇c = −1

I

{[

İ − ṁ

(

z2

e +
R2

4

)]

− j[(J − I) + ∆]ω3

}

ωc (42)

where
ωc = ω1 + jω2 (43)

with
j =

√
−1 (44)

and ω3 is now a known function of time.
Equation (42) is integrated, leading to

ωc(t) = ωc(0)Λ(t) exp[jΘ(t)] (45)

where

Θ(t) =

t
∫

0

(J − I) + ∆

I
ω3 dt (46)

and

Λ(t) = exp

[

−
t
∫

0

İ − ṁ(z2

e +R2/4)

I
dt

]

. (47)

Equation (45) indicates that both components of the transverse angular velocity vector
oscillate with varying amplitude and varying frequency. The function Λ(t) controls the
amplitude of these oscillations while Θ determines the frequency. We recall that in
the differential equations governing ω1 and ω2 (see equations (32) and (33)), the terms
containing ∆ are the only terms contributed by fluid whirling motion. Λ(t) contains no
such terms, but Θ does. Hence, we can state that internal fluid whirling motion has no
effect on the amplitude of the transverse angular velocity vector. However, the frequency
predicted for the transverse angular velocity components when the no-whirling-motion
assumption is made will generally differ from that obtained when whirling motion is
accounted for.

From equation (46), we can write

Θ(t) = Θ1(t) + Θ2(t) (48)

where

Θ1(t) =

t
∫

0

J − I

I
ω3 dt (49)
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and

Θ2(t) =

t
∫

0

∆

I
ω3 dt =

t
∫

0

ṁ(L− z)R2

10uI
ω3 dt. (50)

If fluid whirling motion is ignored, Θ2(t) = 0. Otherwise, it is a negative quantity
that increases in absolute value with time. On the other hand, the sign of Θ1(t) depends
on whether the overall rocket system is oblate or prolate in shape. For an oblate system,
J/I > 1, and Θ1(t) is positive and increases with time. For a prolate system — the most
likely case — J/I < 1, and Θ1(t) is negative and increases in absolute value with time.
In summary, if fluid whirling motion is ignored, only Θ1(t) determines the frequency.
This means that the frequency of the transverse angular velocity will increase with time
both for prolate and oblate systems. On the other hand, if whirling motion is accounted
for in the modeling of the system under study, then the frequency will increase with time
for prolate systems, and will be higher at all times than that predicted for no-whirling-
motion. This is due to the fact that Θ2(t) is then non-zero, and also the fact that the
quantity ω3(t) appearing in equation (50) is always greater for whirling motion than for
no-whirling motion.

For oblate systems, Θ1(t) will be positive and growing, while Θ2(t) is negative and
decreasing (growing in absolute value). So, the frequency could grow or decrease with
time. What is clear though, is that the frequency in this case will always be less than
the frequency for prolate systems. Finally, we observe that the frequency predicted when
whirling motion is accounted for could, in this case, be less than that predicted when
whirling motion is neglected.

8 Conclusion

This study evaluates the impact that helical motion of fluid products of combustion
within the combustion chamber of a rocket can have on the attitude dynamics of rocket
systems. Analysis performed using a variable mass cylinder as a model for rocket systems
shows that spin rate predictions made with the no-whirling-motion assumption will be less
than those which would have been predicted if whirling motion were properly accounted
for. However, the deviation from the “correct” spin rate will be quite small.

The amplitude of a rocket’s transverse angular velocity is unaffected by fluid whirling
motion. The only impact that fluid whirling motion has on a rocket’s transverse rota-
tional motion shows up in the frequencies of the transverse angular velocity components
of the rocket body. The degree to which these frequencies are affected also depends on
the ratio of the system’s spin inertia to its transverse inertia; in other words, on whether
the system is prolate or oblate. If whirling motion is accounted for in the modeling of
a prolate rocket system, the frequency of the transverse angular velocity components
will be found to increase with time, and will be higher at all times than the frequency
predicted with a no-whirling-motion assumption. For oblate systems, a model that takes
whirling motion into account will show that the frequency of rocket transverse motion
can increase or decrease with time, but will always be less than the frequency for a prolate
system. Ignoring whirling motion can result in a higher or lower frequency.
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