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Despite the fact that perfectly periodic motions never indeed happen, the class of
periodic solutions of the differential equations of motion appears to be very important
even when dealing with the chaotic dynamics [1]. Typical problem formulations and
practical reasons for considering the periodic solutions can be also found in reference [2].

Let us consider a multiple degrees of freedom dynamical system described by the
differential equations of motion with respect to the coordinate and velocity vectors

ẋ = v,

v̇ = −f(x, v, t),

ṫ = 1,

(1)

where the vector-function f is assumed to have as many derivatives as needed in a
physically reasonable domain of the variables. Then, the dynamics of system (1) can be
locally described by the Lie series [3]

x = exp[(t − t0)G]x0 ≡

[

1 + (t − t0)G +
1

2!
(t − t0)

2G2 + . . .

]

x0, (2)

G = v0 ·
∂

∂x0

− f(x0, v0, t0) ·
∂

∂v0

+
∂

∂t0
(3)
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where G is Lie operator associated with system (1), and {x0, v0, t0} is some initial point
in the system’ phase space.

Series (2) is simply Taylor series whose coefficients are calculated by enforcing equa-
tions (1). Unfortunately, this general idea is still of little use for oscillatory processes
probably due to locality of expansion (2). In other words, even entire expansion (2) does
not explicitly reveal such global characteristics of oscillations as their amplitude and pe-
riod. Moreover, the corresponding truncated series produce increasingly growing errors
as the time t runs away from the selected initial point t0. In order to overcome these
disadvantages, it is suggested to adapt the Lie series solution for the class of periodic
motions as follows.

Theorem 1 Assume that system (1) admits a periodic solution x(t) of the period
T = 4a so that x(t + 4a) = x(t) for any t, and some point {x0, v0, t0} belongs to this
solution. Then such a solution can be expressed in the form

x = exp(aG){cosh [a(τ − 1)G] + e sinh [a(τ − 1)G]}x0, (4)

where τ and e are triangular sine and rectangular cosine, whose periods are normalized
to four and amplitudes are normalized to unity as

τ(ϕ) = (2/π) arcsin sin(πϕ/2) (5)

and,
e(ϕ) = sgn cos(πϕ/2) (6)

respectively, and ϕ = (t − t0)/a is a re-scaled time. If, in addition, the solution is odd
with respect to one half of the period, x(t + 2a) = −x(t), then expression (4) simplifies
to

x = [sinh(aτG) + e cosh(aτG)]x0

≡

[

aτG +
1

3!
(aτG)3 + · · ·

]

x0 + e

[

1 +
1

2!
(aτG)2 + · · ·

]

x0

(7)

Proof of expression (4) is obtained by substituting the identity [4]

ϕ = 1 + [τ(ϕ) − 1]e(ϕ) (−1 < ϕ < 3) (8)

in (2) and taking into account that

e2 = 1 (9)

at almost every time instance1. In order to prove the particular case (7), one should keep
in mind that exp(2aG)x0 = x(t0 + 2a) = −x0, as it follows from (2), and the oddness
condition assumed.

Note that τ and e are indeed quite simple piece-wise linear functions; the above
analytical expressions (5) and (6) just define them in the unit-form which enables one
to avoid conditioning of computation in the original temporal scale, t0 ≤ t < ∞. This
possibility becomes essential when the dynamics includes some evolutionary component.

Physical meaning of relationship (8) is that, during the whole period, the time variable
ϕ is expressed through the coordinate τ and velocity e of a classic particle freely oscillating

1The set of isolated points {ϕ : τ(ϕ) = ±1} appears to have no effect on the results [4].
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between the two absolutely stiff barriers with no energy loss. Due to (9), this relationship
possesses the algebraic structure of “hyperbolic complex numbers” as revealed by (4).

Let us outline possible applications of expressions (4) and (7). For the sake of simplic-
ity, consider the particular case (7). Of course, formal expression (7) does not guarantee
the existence of periodic solutions. In case some periodic solution does exist, one should
be able to find the corresponding vectors x0 and v0 from appropriate conditions. In
autonomous case, the scalar parameter, a, is also unknown and must be determined.

The related conditions are formulated as a requirement of smoothness of expression
(7), which is generally non-smooth or even discontinuous due to the presence of non-
smooth and discontinuous functions τ and e, respectively. The “smoothing” relations
are obtained by eliminating the step-wise discontinuities of the coordinate and velocity
vectors imposing the constraints

cosh(aG)x0 = 0,

cosh(aG)v0 = 0.
(10)

In autonomous case, algebraic equations (10) represent a nonlinear eigenvalue problem,
where a is an eigenvalue, and {x0, v0} is a combined (state) eigenvector.

By narrowing the class of periodic motions to those on which the system passes its
trajectory twice in the configurations space during the same period, one obtains a subclass
of normal mode motions. For more physically meaningful definitions and discussions, see
reference [5]. Let us formulate the corresponding problem based on the periodic Lie series
solutions.

Consider the vibrating system

ẍ + f(x) = 0, x ∈ Rn, (11)

where f(−x) = −f(x), and the initial conditions are x|t=0 = x0 = 0 and ẋ|t=0 = v0.
The normal mode solutions of system (11) are obtained as a particular case of (7) and

(10)

x = sinh(aτG)x0 |x0=0, (12)

cosh(aG)v0|x0=0, (13)

where the initial vector x0 = 0 is substituted into the expressions only after all degrees
of the differential operator

G = v0 ·
∂

∂x0

− f(x0) ·
∂

∂v0

have been applied.
Relationship (12) can be interpreted as a parametric equation of normal mode trajec-

tories of the system with the parameter interval −1 ≤ τ ≤ 1.
Let us illustrate relationships (12) and (13) based on the linear system so that the

result could be compared with the well known conventional solution.

Example 1 Suppose that f(x) = Kx, where K is positively defined symmetric n×n-
matrix with eigen-system {v0, ω

2} so that Kv0 = ω2v0. In this case, by applying the
operator G twice, one obtains that v0 is also an eigenvector of the operator G2, namely,
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G2v0 = −ω2v0. Then, keeping in mind the power series form of expressions (12) and
(13) as those in (7) and sequentially applying the operator G2, gives x = (v0/ω) sin(aωτ)
and cos(aωτ) = 0, respectively. Notably, the last equation shows that there exist an
infinite number of roots {a} related to the same eigenfrequency ω! However, it is easily
to find that all the roots produce the same solution in terms of the original time t.
The minimal quarter of the period is a = π/(2ω), therefore x = (v0/ω) sin(πτ/2),
and τ = (2/π) arcsin sin ωt.

Nonlinear cases and the related problems dealing with truncated expansions of (13)
will be further discussed in a full-length paper.
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