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Minimal Representations, Controllability and
Free Energies in a Heat Conductor with Memory
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Abstract: A rigid linear heat conductor with memory effects is considered.
Some results about state-space representation, minimality and controllability
of heat conductors with memory kernel of exponential type are presented.
In such a context, the asymptotic behavior and the existence of a bounded
absorbing set for solutions of the energy equation are studied by means of a
suitable class of quadratic free energies.

Keywords: Heat conduction; free energy; absorbing set.

Mathematics Subject Classification (2000): 80A20, 74D05, 35K05.

1 Introduction

In this paper we consider a rigid linear heat conductor with memory effects — within
the framework proposed by Gurtin and Pipkin [10] — when the memory kernel is finite
sum of exponentials, namely

where n is a positive integer, a;,b; € R, a; >0, i =1,2,...,n.

On the basis of Coleman’s results concerning materials with memory [3], a non-linear
model for a rigid heat conductor was developed by Gurtin and Pipkin in [10]. Moreover,
they considered the linearization of their theory appropriate to infinitesimal temperature
gradients, which for isotropic materials yields a constitutive equation for the heat flux
q expressed in terms of the history of the temperature gradient g; this linear theory
is important because the obtained constitutive equation for q is a generalization of the

*Corresponding author: caucci@dm.unibo.it
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112 A.M. CAUCCI

so-called Cattaneo—Maxwell equation [2], which follows from it as a special case. Subse-
quently, many authors considered this linearized equation to study problems connected
with heat propagation. Among all the results so obtained, we remember, in particular,
those derived in [6], where an approximate theory of thermodynamics is developed for
Gurtin and Pipkin’s model and maximal free energy and maximal free enthalpy func-
tions are explicitly constructed and used to prove stability and domain of dependence
results. We recall that in [6], following [11], the thermodynamic states and processes are
connected with the integrated history of the temperature gradient and the temperature
gradient, respectively.

In this work, the linear theory introduced in [10] is taken into account in Section 2.

In Section 3, following the lines of [4] and [5], where analogous problems are studied for
viscoelastic solids of exponential type, we prove that the minimal representation of the
state space is a finite dimensional vector space and each minimal state element represents
an equivalence class of integrated histories; the full controllability of the minimal state
space is also verified.

In the following Section 4, an explicit representation of a class of quadratic free energies
is taken into consideration with respect to some minimal, finite-dimensional state space.
Finally, the last part of the paper is devoted to study, by means of uniform energy
estimate, the asymptotic behavior of solutions of the evolutive (semilinear) equation,
obtained by substituting the constitutive equations for the internal energy e and for the
heat flux g into the energy equation for rigid heat conductors.

2 Preliminary Notions and Setting of the Problem

Within the linear theory of thermodynamics developed in [10], the internal energy e is
assumed of the form

e(x,t) = agb(x,t), (2.1)

where aq is here assumed to be constant, = € R? denotes the position within the
conductor!, ¢ € Rt denotes the time variable? and § = (© — ©y) is the temperature
difference with respect to a fixed reference absolute temperature ©q > 0, uniform in R3.
The heat flur q € R? is assumed to satisfy the constitutive equation

q(z,t) = —/K(T)VG(:B, t—7)dr, (2.2)
0
where K(7) is the heat flux relazation function, given by
t
K(t) = Ko +/K(s) ds; (2.3)
0

'More precisely, it should be require that & € B C Rg, where 3 denotes the bounded closed set in
R3 which represents the configuration domain of the conductor, here not specified since of no interest
in the present study.

2Throughout the whole paper, Rt = [0, OO) and R+ = (0, OO)
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K represents the initial (positive) value of the flux relaxation function, thus termed
initial heat flux relaxation coefficient. It is further required that

K e LY(R")NL*(RY) and K € L*RY), (2.4)

which implies
Ky = tlim K(t)=0.

The latter can be physically interpreted recalling that there is no heat flux when, at
infinity, the thermal equilibrium is reached.

In the sequel, we will focus our attention on a material element of the conductor; thus
we will omit to show explicit dependence on the position « in the conductor and all the
quantities introduced will be represented by functions of the time variable alone.

When the integral kernel satisfies both the requirements (2.3) and (2.4), (2.2) is equiv-
alent to the following

alt) = / K(t)g'(r) dr, (2.5)
0

where g = V0 denotes the temperature-gradient and

represents the integrated history of the temperature-gradient.
To specify those thermodynamical phenomena to study, the following vectorial space
can be introduced

r:{gt; Rt — R%: ’/K(s—i—ﬂgt(s)ds < o0, wzo}. (2.6)
0

Following the theory proposed by Noll, Coleman and Owen in the seventies, we intro-
duce some basic definitions.
The thermodynamic state of the conductor is chosen to be

o(t) = (6(t),g"), Vt>0,

where 6(t) > 0 and g’ belongs to I'. Such a definition implies that, the thermodynamic
state function is known as soon as the temperature and the integrated history of the
temperature-gradient are given. The (metric) space, X, of all admissible states (state
space) is the set comprising all those states o which correspond to a finite heat flux; ¥

may be written as
L=R™xT

where T is given by (2.6).
We define thermal process of duration T > 0 as a map

P: [0,T) — R x R®,
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piecewise continuous on the time interval [0, T) and such that

P(T) = (éP(T)v gP(T))a VT € [OaT)

Let II be the set of all admissible thermal processes P, that is the set of piecewise
continuous functions P: [0,7) — Rx R3, T > 0, which satisfies the following properties:

(1) if P €I, then its restriction Py, ;,) to the interval [t1,t2) C [0,T") belongs to II;
(2) if Py, P, €11, then the composition Pj * P, defined as

Pl(t) 1f t 6 [O,Tl),

(Pl*P2)(t):{P2(t—T1) it te[l, Ty +T),

belongs to II.
To any given rigid heat conductor are associated two maps:

(i) p: ¥ xII — X called evolution (or state-transition) function, which transforms
the state o1 under the process P into o3 = p(o1, P). The map p obeys the semi-
group property. If (cq, P) € ¥ xII, where oy = 0(0) = (0,(0),3?) (6,(0) denotes
the temperature and g° the integrated history of the temperature-gradient at
time ¢t =0) and P = (9p,gp), then, through the map p, it is possible to define
the state function

a(t) = (0(t),g") = p (00, Poyy), t€[0,T)

in the following manner

t
/QP(QdQ 0<s<t,

gr(Q)dC+g°(s—t), s>t

o

The particular nature of the state space ¥ and the properties of the state-
transition function p provide all the thermal properties of the system and enable
it to model physical phenomena. We say that a state of € ¥ is attainable from
a state o' € ¥ if there exists a process P € II such that

p(c®, P) = o/,
The state space X is
* attainable from a state o if, for every final state & € X, there exists a

process P € II such that

p(oo, P) = 0;
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* controllable in a state oq if o( is attainable from any state of X;
* completely controllable, if, for any pair o1, oo € X, there exists at least a
process P € II such that

p(Ul,P) = 09.

(ii) Q called response function which maps the pair (o(t), P(t)) into the pair
(e(t),q(t)) at time ¢, namely

(e(t),q(t)) = Q(o(t), P(t), te€[0,T).

The notion of equivalence between material states is introduced to associate together
all those different thermal histories which correspond to the same heat flux.

Definition 2.1 Two states 01,02 € X are said to be equivalent (o1 ~ o3) if

Q(o1,P) = Q(02,P), VPell
For rigid heat conductors described by constitutive equations (2.1), (2.2), the thermo-

dynamic states
Ul(t) = (el(t)v yi)a UZ(t) = (92(t)7 gg)

are equivalent in the sense of Definition 2.1 if and only if 6;(t) = 62(t), V¢ > 0 and
/Ks—i—Tgl /Ks—i—Tg2 s)ds, V1 >0. (2.7)
0 0

An equivalent way to rephrase relationship (2.7) can be found in [1].

Remark 2.1 Definition 2.1 introduces an equivalence relation between states; the quo-

tient space
Sh=3/.

is the minimal representation of the state space.

3 Minimal Representation and Controllability: The Exponential Case

For linear heat conductors with relaxation function of exponential type (n > 1), the
explicit form of the relaxation function K (s) is given by

Ko=) ki, Ko = lim K(s)=0,

¢ 5—00
i=1

where a; and k;, ¢ = 1,...,n, are assumed to be strictly positive; moreover, it is reason-
able to assume a; # aj, Vi # j, and a; < aj, i < j. Then

8) = Zbie_ais, b; = —a;k; <0, (31)
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and, substituting (3.1) into (2.5), the heat flux g(t) becomes

ibz/oo —aisgt(s) ds. (3.2)

Recalling (2.7), two different integrated histories of the temperature-gradient, g’ , g4, are

equivalent if
o0

b [eneglts) ~ghls)ds =0, =0
i=1 F
which in turn implies
/ Taas( —g5(s))ds =0, i=1,...,n.
0

This means that two thermodynamic states

Ul(t) = (el(t)v yi)a UZ(t) = (92(t)7 gg)

are equivalent if and only if 6;(t) = 62(¢), V¢ > 0 and

gl,ai :g2,am 1= 17"'7”7 (33)
where
g, (t) = /e_‘”sgt(s) ds, i=1,...,n, (3.4)
0

are called internal variables. If this is the case, the minimal representation of the state
space, p = X/~, is a finite dimensional vector space and we can choose

O'R:[ov 9a15 Yazy -+, gan]eRgnJrl'
Moreover, if P = (9p, gp) € II, the evolution function p is described through the
following system of ordinary differential equations

0(t) = 0p (1),

) 1 ) (3.5)
gu:(1) = — gp(t) = igas (D), i=1...n, t>0,

%

with the initial condition

0o = U(O) = (6‘*(0)7 gal*(0)7 gaz*(0)7 s 7gan*(0))7 (3'6)
where
gai*(o) = /efaisgg(s) dS, 1=1,...,n.
0

Now, our aim is to verify the complete controllability of system (3.5)—(3.6). System
(3.5)—(3.6) is linear of dimension (n + 1); the control is the function P.

Let M(n, m) be the space of all real matrices n x m; we recall the following Theorem
(see for instance [12]).
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Theorem 3.1 A linear system
& = Ax + Bu,
x(0) = xg
with A € M(n,n), B € M(n,m), w € R™, x,xyg € R", m < n, is completely

controllable if and only if
rank [A|B] =n

(“Kalman rank condition”) where [A|B] denotes the matriz
[B, AB, A?B, ..., A" 'B]e M(n,nm)

which consists of consecutively written columns of matrices B, AB, A’B, ..., A" 'B.

By Theorem 3.1, the controllability of system (3.5) —(3.6) depends on the rank of the
square (n + 1) matrix

1 0 0 0 0 0
1
0 — -1 a1 —a12 (_1)71—1 a1"_2
ai
1
[AIBl=10 = -1 a -a® ... (—1)ntayn—2
az
0o — -1 n = n2 1 n—1 nn72
I o a a (-1) a |

Since .
det ([AIB]) = [Jar [] (a5 —a),
=1 1<j<i<n

where a; # 0 for any I =1,...,n and a; # a; for any i # j, the matrix [A|B] is non
singular; therefore the state space X is completely controllable.
Finally, introduced the following differential operators

n dh n—1 dh
V:Z’U}Lﬁ, T:Zlhw, (37)
h=0 h=0
we prove the equivalence between (3.2) and the implicit constitutive equation (see [9])

Vg=Tg. (3.8)

Theorem 3.2 Let V and T, as in (3.7), be differential operators of order n and
(n — 1) respectively, with constant coefficients. For the sake of simplicity, we assume
vg = 1; moreover, for physical reasons, we assume v, # 0. Implicit constitutive equation

(3.8) and integral constitutive equation (3.2) are equivalent, namely every solution of
(3.8) is also solution of (3.2), and vice versa.

Proof We put
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where, for all i =1,...,n, g,, is given by (3.4). From (3.2), we have
a(t) =2(0,g") = >_biga.(t) (3.9)
i=1

and, deriving n times with respect to ¢, we obtain

am am i am
—q(t)= —7Z2(0,g) = > b, — ga, (1), =1,....n, 3.10
o 4(t) = 22 1(0,9°) ; gpm a: (1), m n (3.10)
with
D lt) = (10 ga () + S (crym-itiamei2 L gy (3.11)
dtm gal - ga1 JZO a’l dt.] g b Z - bR '7n, .

due to (3.5),. Because of relation (3.11), system (3.10) can be finally rewritten as

n m—1
dm d?
m+1 k m—+1 . kz m _]+2 m J—1 i t
T a(t) = (-1 Z alga, (t +Z -5 9(0), (512
i=1 =1 j:O
m=1,...,n.
The matrix M, given by the coefficients of gq,(t), i =1,...,n, is equal to
k1 (—Cbl)2 ka (—a2)2 kn, (—an)2
kl —ai 3 kg —as9 3 kn —Qnp 3
M = (Fa) (=a2) (~an) = [diag (k1. ko, ... k) A]T,
kl (_al)nJrl k2 (_az)nJrl kn (—CL )n+1
where
(—a1)?  (—a1)? (—ap)"*t
(—az2)?  (—az)? (—ag)™ !
A =
(_an)2 (_an)3 (_an)n+1
Since
det (A) = H a;® H (a1 — a;),
j=1 1<l<i<n
we have

det (M) = [[ kja;® [[ (@ —as);
j=1

1<i<i<n

then, being k;, a; >0 forall j =1,...,n and a; < a; for all [ < ¢, the matrix M has
non-zero determinant. Hence, eliminating the n terms g,,(¢) from equations (3.12) and
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substituting into (3.9), we obtain equation (3.8). On the other hand, the substitution of
(3.9) into (3.8) leads (3.12).

4 Asymptotic Behavior for Rigid Linear Heat Conductors with Memory via
Free Energies

This section is devoted to scrutinize the asymptotic behavior in time of rigid linear heat
conductors with memory, when the memory kernel is finite sum of exponentials, by means
of energy type inequality coming from free energy functionals.

Definition 4.1 A function ¢: ¥ — R is called a free energy if the following condi-
tions are satisfied:
(i) for any ¢ > 0, the function ¢ is differentiable and satisfies the inequality

U(t) < —g(t) - q(t);

(ii) the function ¢ is minimal only at zero integrated histories of the temperature
gradient, namely for every (0(t),g') € &

P(0(t),g") > v(0(t),01 (1)),

where 07(s) = 0, for any s > 0, is the zero integrated history of the temperature
gradient.

Since the systems involved are linear, it is natural to assume that the free energy is a
quadratic function of the minimal representation of the state, which is of finite dimension.
We consider the following family of free energies that can be written as functions of

O/—\]—% = [ga17 gagu ey gan ], namely

Y0 =5 O Cyiaiga, (1) g0, (1) (11)

4,j=1

Now, we are looking for suitable algebraic conditions on the symmetric matrix C' =
[Ci;] € M(n,n), such that () is a free energy, according to Definition 4.1. The following
Theorem holds.

Theorem 4.1 Let C = [Cy4], T =[I';j] € M(n,n). If

N Cy=> Ciy=ky, j=1,....m (4.2)
i=1 j=1
FU::(gﬂ”ajELg£ﬁ7 ij=1...,m (4.3)

C is symmetric and positive semi-definite, I' is positive semi-definite,

then (4.1) is a free energy in the sense of Definition 4.1.

Proof By virtue of (3.5),, condition (i) is equivalent to require that

90 =0 3" Cuay e, )- S Chyaa; o (1) g, (1) < () (;k B, (1)):

ij=1 ij=1
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this inequality is satisfied if and only if

Z Cija;j 8ay( Z a;k;jga, (t

1,7=1

Zcuaz 80, (1) - 8a, (£) > 0.

From (4.4),, we find
kj:ZCij:ZCij, j:l,...,n

Moreover, observing that
a; + a;

2
is the symmetric part of the matrix I';; = Cijai’a;, it follows that inequality (4.4), is
satisfied if and only if the symmetric matrix I' is positive semi-definite.

With regard to condition (ii), it is easily seen that this holds if and only if the matrix
C is positive semi-definite.

Fij = Cijaiaj

Remark 4.1 Tt is worth noting that in the sequel the matrices C' and I will be assumed
positive definite.

Let Q C R? be a bounded domain with Lipschitz boundary 9Q. The energy equation
for a linear rigid heat conductor is

poet:—v-q+p07" in QXR+, (45)

where -4 = d-/dt, pg is the constant mass density, the internal energy e and the heat flux
q are given by (2.1) and (2.2) respectively.

We take for simplicity ppag = 1 and we denote the source por by f; substituting
equations (2.1) and (2.2) into (4.5) and assuming the memory kernel as finite sum of

exponentials
n
—a; S
= E kie *7
i=1

the corresponding initial boundary value problem becomes

—Zki/e*‘“SAH(w,t—s)ds+f(9(m,t)):0 in QxR
=1
0(x,0) = Op(x) in Q,
O(x,t) =0 in 9Q x RT.

We introduce the vector

where

() = /ef‘“SH(t —$8)ds, i=1,...,n. (4.7)
0
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As a consequence, by differentiation with respect to t, we get

ni.(t) =0(t) —a;mi(t), i=1,...,n.

In view of (4.7), the energy equation in (4.6) transforms into the following system

0= ki An; — £(0) in QxR
i=1 (4.8)
Nig=0—am;, i=1,....n, in QxR
Initial-boundary conditions are then given by
0(z,0) = Oo(z), x €,
ni(x,0) =nio(x), i=1,...,n, z€Q,
N (4.9)
O(x,t) =0 (x,t) € X R™,
ni(x,t) =0, i=1,...,n, (v,t)€dNxRT.

With usual notation, we introduce the spaces L?(Q) and H}(Q), acting on 2. Here-
after, (-,-) denotes the L?-inner product and || - || denotes the L?norm. If C = [C;;] €
M(n,n) is positive definite, we put

H=L*Q) x W,

where

W = {n = (2, om) € [HY()]™ 2 > (Vs Ciy V) < +OO}-
i,j=1
The corresponding inner product is given by

<Zl, Z2>H = <’U1,’U2> + Z <Vwi, Cijij>,
ij=1
where z; = (v;,w;) € H, i = 1,2.

Definition 4.2 Let 7' > 0 and f € L' ([0,T]; L*(Q2)). We say that a function
z(t) = (6(t),n(t)) € C (]0,T); H) is a solution of system (4.8)—(4.9) in the time interval
[0,T], with initial data zy = 2z(0) = (0o, m0) € H, if the following identities are satisfied

008) + " (Ve V0) + (£(8).6) = 0,

=1
> (i CigAdyy) = > (0, Ciy Ay + > {aims, Cij Adjy) =0
i,j=1 i,j=1 i,j=1

for all § € H} (), 77 € ([H*()]" NW) and a.e. t € [0,T).



122 A.M. CAUCCI

We denote by S(t)zo the solution of (4.8)—(4.9) with initial data zy. Because the
system is autonomous, S(t) is a strongly continuous semigroup of the continuous operator
on H, related to the system (4.8)—(4.9). The total energy associated to (4.8)—(4.9) at
time ¢ is

E(1) = [||9<t>|2 s <Vm<t>,cz—jwj<t>>]

ij=1

_%l/|0(t)|2d:c+/‘O%Vn(t)‘zdm].
Q Q

Then, we obtain the following result.

Theorem 4.2 Let us suppose that z = (6,n) is a solution of system (4.8)—(4.9) in
the sense of Definition 4.2. Let f € C1(R) satisfying the following hypotheses

(h1) liminf £ > o;

ly|—o0

(h2) there exists a positive constant 3 such that |f'(y)| < 8, Vy € R.
If the matrices C = [Cyj], T = [[';;] € M(n,n), defined by (4.2), (4.3) respectively,
are positive definite, then there exist positive constants A, A, € such that the relation

E(t) < Ae®'E(0) + A (4.11)
holds for every t > 0. In particular, if f =0 then A =0.
To prove Theorem 4.2 we make use of some preparatory lemmas.

Lemma 4.1 If f € CY(R) satisfies hypotheses (h1) and (h2), then
(1) for v >0 there exists a positive constant C, such that, Vy € H}(R)

/ yf(y)de > —~ / f? de — C; (4.12)
Q

Q

1
2
(4.10)

(2) Yye R
[f ()] < Blyl + £(0)]. (4.13)

Proof Inequality (4.12) follows directly from hypothesis (h1) (cf. [7]); (4.13) is an
easy consequence of hypothesis (h2).

Lemma 4.2 Let f € CY(R) satisfying hypothesis (h1); let assume C, T € M(n,n)
as in Theorem 4.2. If z = (0,m) is a solution of system (4.8)—(4.9) in the sense of
Definition 4.2, then the energy norm (4.10) verifies

1 2
%5@) < 7/ 9(0)2 da + €, — o / o3| de. (4.14)
Q Q

where 7y, Cy, o are positive constants.

Proof If z = (6,m) is a solution of system (4.8)—(4.9), then, recalling (4.2), we have

n

L) = ~(£,000) — > (Vlt), 0y V(1)

i,j=1
Now, by means of inequality (4.12), we find

U 00) < /|9(t)|2dw+Cv, 4,C >0 (4.15)
Q
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and, thanks to our hypotheses on the matrices C' = [C;;] and I' = [I';;], there exist
positive constants aq, o such that

)

= > (Vmi(t), aiCiy V(1) = = Y " "
i,j=1 i,j=1 ‘ J
(4.16)

n

<-ar||[Va@)|* < —amax > (Vmi(t), Ci V(1))

3,J=1

(Tl p, Tl

From (4.15) and (4.16), putting oy = @y a7, estimate (4.14) follows.

Lemma 4.3 Suppose that z = (0,m) is a solution of system (4.8) - (4.9) in the sense
of Definition 4.2 and assume hypotheses of Theorem 4.2 on f, C and I'. Introduce the
following functional

/C(t)——<|9<t>|,zkim<t>>, V>0

then we have
d 1 9
—K(t) < 5(1/—M1) |6(¢)|*dx + Co
Q

dt
Mias 52 Mooy /’ 1 ’2
1+ — t) d
+[a2+ 5 <+V + 5| [ |e2vn), e,
Q

(4.17)

for some positive constants aso, as, ay, v, My, M, Cy.

Proof The derivative of KC(t) with respect to ¢ entails

%K(t) = —sgn(9)<0t, é kmi> —<|9|, é kin’it> . (4.18)

=1 =15

Substituting (4.8); in the first term at the right-hand side of (4.18) and using Young
inequality, we obtain

n

I = —sgn<9>< PLTVESSY ’“7> <|[D_ ki Vi
j=1 i=1 i=1

< n/( Z Vﬁi5ihki2vﬁh)dw+ <f7 kai>
o Vih=1 i=1
*letwn|” d Y k
flevonl s (1.3 bm).

Q

2 n
i=1

_1
gn’Kﬁ(K;%OK;%) ’

=1
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where K, = [6;nk;°] = diag(k?). From (4.13), applying Young and Poincaré inequalities,
we find

B < (9161 + 1O, Zm>
< [ (o3 |wo¥ @t )|+ [ (1700 i\(kﬁ(m))d

IN IN
| =
=
o
+
| —
N
—_
+
<

N—— N—

IN

|

=

o
N~
7 N

=

+

If( )|? vol(€2),

, k; . k;
where v and Ay, i =1,...,n, are positive constants and Ky = [61-;1 )\—Z} = d1ag<y).
0 0
By means of (4.8)s, the second term in (4.18) can be written as

—<I9|7 Xj;k (0 — a;n;) > = —(i}k) 16]% + <|e|, iz:kiami> .

=1
By virtue of Young and Poincaré inequalities, we have
I < /|9|Z’(kiai)%(ki a;)2n;| dx
5 i=1
312 + - kaz
<oy + 5(;k)( on )
) " kia;
S l611% + kiai is Oih g
< S+ g5 (S (2 <V77 )
i=1 i,h=1
) 1 [ l 11N —E2 L2
< 21612 + — k“’K;Ka4Ka4) ’- }d
< 51017+ 55 (o) c e[’ da,

where 0 is a positive constant and K, = [61-;1 )\? ] = dlag( /\? ) Choosing 6 = > ki,
0

0 i=1
we find

B - (k) lo?
-1 n _1
kl> <Zklal> ‘Ka% (K;%OK;%) ;
1 =1

2
dx.
2
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Finally, collecting the previous inequalities and putting

1/ 1 _1\ 32 1/ 1 _1\ 32
o =n|K (K ACK, ) . as= K3 (13 F ok, ;
Kistoi) P =Yk
044—| a(a a) 5 1—; 2
~ 1
M; = ;ka Co = 5 1F(O) vol(),

we obtain (4.17).
At this point, we can prove Theorem 4.2.

Proof For N >0 we introduce the following functional
L(t)=NE@®)+K(t), Vt=>0;
it is easily seen that, if we choose
N >max {1, Myas},
there exist positive constants
v =min{N —1, N — Mjaz}, 2 =max{N+1, N+ Mjaz}

such that
’715(t) S E(t) S ’725(f), Vit 2 0.

Moreover, collecting inequalities (4.14) and (4.17), we have

d Ml 1% 2 ~
- < (== _Z_
720 <= (55 = 5 = vy ) l6lP + R,
Mo 52 Moy 1 2
_{NO“_O‘Q_ 2 (H? " o, /‘C Vnde,

Q

where A(N,~,Q) = NC, + Co. Taking now

choosing N large enough such that

1 MlOég 2 M2044 Ml
N>N"=— -
= o (012 + 2 + 0435 + 2M1 S

and letting
M,

7:8_]\7’

125

(4.19)
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we have

d My, o M 1 2 < My
—L(t) < ——=10]* — — ‘ ’d AN, —,Q ). 4.2
I B G R C- ) R ED
Q
By means of (4.19), inequality (4.20) yields
d M . -
S L)< —=LEW)+ A< —eL({t)+ A,
dt 4
where
_m
dyp
By virtue of the Gronwall Lemma, we obtain
—et A —et
L(t) < L(0)e +E(1—e ), Vt>o0. (4.21)

Finally, from (4.19) and (4.21), it follows that

1 Y2 —et A
E) < — L)< =E&(0)e " + —
() 4! () 71 () &mn

holds for every ¢ > 0, so that taking

A
A=22 A=
a! €N
our conclusion follows.

Now, we state the main result of this section.

Theorem 4.3 Assume C = [Ci;] € M(n,n) and f € C*(R) as in Theorem 4.2.
The uniform energy estimate (4.11) implies the existence of a bounded absorbing set
B* C H for the semigroup S(t). That is, if B* is any ball of H of radius less than V24,
for any bounded set B C H there exists t(B) > 0 such that

SHBC B*, Yt>t(B).

Proof The existence of an absorbing set for S(¢) follows directly by (4.11) (see for
example [8]).
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Abstract: One of the main simplifying assumptions made in the study of the
attitude motions of a rocket-type variable mass system is that the motion of
the fluid products of combustion relative to the rocket body, as these fluid
particles exit the rocket’s combustion chamber, remains symmetric with re-
spect to the rocket axis, and the fluid particles have no transverse motion
relative to the rocket body. This assumption brings about a tremendous sim-
plification of the equations that govern the attitude motion of a rocket, and
is thus very attractive. Yet, one recognizes that such an assumption becomes
questionable if the rocket body is allowed to spin. This paper examines the
validity of this common assumption. The paper attempts to reconstruct what
is lost when this assumption is made, and quantifies the effects on attitude
dynamics predictions. Results obtained show that this assumption is in fact
reasonable. Although internal fluid whirling motion can cause deviations in
spin rate predictions, the actual effects are not dramatic. There is a noticeable
impact on the frequencies of the transverse angular velocity components, but
the amplitude of the transverse angular velocity vector is largely unaffected.
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1 Introduction

It has now become quite common to derive the equations of motion of general variable
mass systems using the so-called control volume approach [1-4]. This method can capture
the overall rigid-body-type motion of the system as well as the details of internal mass
flow. Simplifying assumptions are introduced after the equations of motion are derived
in order to bring these equations into forms that make further analyses manageable.

Rocket systems constitute one class of variable mass systems that is of interest in
the aerospace field. In studying the effects of mass variation on the behavior of rocket
systems, the system of interest is often assumed to comprise two phases at any given
instant: a solid phase and a fluid phase. The assumptions that are traditionally made in
the study of these systems include one concerning the motion of the fluid phase relative to
the solid phase. Several studies [1,3, 5] assume, explicitly or implicitly, that the motion
of the fluid products of combustion relative to the solid part of the system is such that
each fluid particle has constant velocity that is parallel to the rocket axis. Other studies
[3,6-8] consider that the velocity field of the fluid particles has axial symmetry, and that
no “whirling motion” of the fluid phase relative to the solid phase exists. These two
assumptions have to do with internal fluid flow within a rocket’s combustion chamber.
They stipulate that the internal motion of fluid particles relative to the rocket body is
symmetric with respect to the rocket axis. In addition, the relative velocity vectors for
these particles are assumed not to have a transverse component. In other words, these
particles, in their motion relative to the rocket body, are assumed to be incapable of
helical motion for example. This is quite reasonable for a rocket that is not spinning,
but seems unreasonable for a spinning rocket. It turns out that this assumption can
bring tremendous simplifications to the equations that govern rocket motion [3], and this
makes the assumption quite attractive.

The goal of this work is to check the validity of this assumption; that is, to evaluate
what is lost, if any, by assuming that the velocity vectors of fluid particles within a rocket’s
combustion chamber have no roll component relative to the rocket body. Wang and Eke
[6] took a cursory look at this problem and concluded that the neglect of whirling motion
does not affect transverse angular velocity magnitudes, but does affect the frequencies of
these quantities. This paper builds on Wang and Eke’s work, and presents the results of
a more general investigation of how internal fluid whirling motion affects rocket attitude
dynamics.

2 Equations of Motion

The type of system that is of interest in this study can be represented by the simple
model shown in Figure 2.1. This model considers that the rocket system under study is
made up of two main parts — a solid portion B, whose mass is expected to diminish with
time as propellant is expended, and the fluid products of combustion F. B is taken to
be rigid and symmetric about the z-axis, and is assumed to remain so as parts of it are
depleted by combustion. S* is the instantaneous mass center of the system, and always
lies on the z-axis, and C is an imaginary shell that delimits the system.
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Figure 2.1. Model of a Rocket.

One version of the equation of rotational motion for this type of system has the form [3]

Bal
Inatwxl-w+|— ) w+ [ plp X (wxp)](v-n)dS
()
o o
+E p(p><v)dV+/p(pxv)(v-n)dS—i—/pwx(va)dV:M.
c c c

In this equation, I represents the inertia dyadic of the system, w and « are the inertial
angular velocity and angular acceleration respectively of B, p is the mass density, p is the
position vector from the system’s mass center S* to a generic particle P of the system,
v is the velocity of P relative to the main body B, n is a unit outward normal to the
surface C, and M is the resultant moment about S* of all the external forces on the
system. The left superscript on the time derivative simply indicates that the derivative
is to be taken while the reference frame B is kept fixed.

If we assume that w has the form,

w = wib1 + wobs + w3bg (2)

and that
I=1(bib; + byby) + Jbsbs (3)

where the unit vector basis by, ba, bs is fixed in B and oriented as in Figure 2.1, then,
the first three terms of equation (1) can be written as

I.a= I(d)lbl + wgbg) + J@gbg, (4)
wxI w= (J — I)u}g(Wle — wle) (5)
and
Bal . .
W W = I(wlbl + w2b2) + Ju}3b3. (6)

The fourth term of equation (1) has been evaluated by several authors and shown to
depend on the velocity field of exhaust gas particles as they cross the nozzle exit plane.
For uniform velocity profile with constant exhaust gas velocity u, the rate at which mass
is lost from the system is

m = —mpulRi (7)
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and the fourth term can be expressed as (see for example Wang [6])

2 2

/P[P X (w x p)l(v-mn)dS = —mKZS + %) (wib1 + wab2) + %w3b3 (8)

where the distances z, and R; are as shown in Figure 2.1. None of these first four terms
is affected by the introduction of fluid whirling motion. This is so because the first three
terms do not contain the fluid velocity vector at all, and the fourth term only involves
the axial component of this velocity. We recall that whirling motion comes from the
existence of a transverse component of the fluid relative velocity.

The fifth term of equation (1) vanishes if one makes the assumption that fluid flow
within the system’s combustion chamber has reached steady state — a generally reason-
able approximation, which will be assumed to hold here. We are then left with the last
two terms on the left hand side of equation (1):

Ms = [ p(p x v)(v -n)dS (9)
/
and
M; = [ pw x (p x v)dV. (10)
/

Each of these contains the vector v, which represents the velocity vector of a generic fluid
particle relative to the rocket’s main body. Spin motion of the rocket body introduces
helical or whirling motion of the fluid particles, and this in turn influences v, and hence
both Mg and M. We note that if whirling motion is ignored, then (see [3])

Mg = M7 =0 (11)

and equation (1) is simplified tremendously. This is one reason the “no whirling motion”
assumption has remained very attractive in the study of rocket dynamics. To assess
the impact of fluid whirling motion on rocket dynamics, we will start by determining
expressions for the quantities Mg and M7 when whirling motion is present.

3 The Surface Integral Term

Consider a generic fluid particle within the combustion chamber of a rocket as this fluid
particle crosses the nozzle exit plane. Such a particle is shown as point P in Figure 3.1.
The position vector of P from the system mass center can be written as

p = ze, + z.e. (12)
and its velocity relative to the rocket body B has the general form
V = Vg€, + vgey + v e, (13)

where e, eg, and e, are the unit vectors normally associated with the use of cylindrical
coordinates, and are as shown in Figure 3.1. For the particle P,

(P X V)p = —zeUgey + (205 — TV, )eg + TUgE,. (14)
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Section A-A

Figure 3.1. A generic fluid particle P at the nozzle exit plane.

If motion of the fluid particles relative to the rocket body is assumed to be axisymmetric
with respect to the z-axis, then, for each particle such as P, there always exists another
particle P’ on the nozzle exit plane, located at the same radial distance x from the rocket
axis, and 180 degrees away from P, and for which

(P X V)pr = zevper — (2e0p — TV, )€ + TUgE,. (15)

Hence, the combined contributions of P and P’ to Mg in equation (9) has neither a
radial nor a transverse component, so that one need only evaluate the axial component
of the surface integral Mg. In other words,

Mg = (Mg - e,)e, = ez/pp (v xey)(v,)dS =e, /p:z:vgvz ds. (16)
c c
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The axisymmetry assumption stated above also leads to the conclusion that neither
v, nor vg depends on the angle §. However, both can depend on the distance z from the
rocket axis. We can re-write equation (16) as

Ry
Mg = [27Tp/x2v9ud:c] bs. (17)
0

This expression assumes a constant axial velocity u for fluid particles as well as a constant
fluid density over the nozzle exit plane.

To make further progress with equation (17), the manner in which vy varies with x
must be determined. To this end, we will assume that at steady state, the motion of a
typical fluid particle relative to the rocket body, as the particle moves towards the nozzle
exit plane, is such that the path of the particle has the approximate shape of a helix
centered on the rocket axis. We immediately recognize that the transverse component
of the velocity of such a particle is influenced mainly by the spin motion of the rocket
body. This leads us to start the process of determining an expression for vy by making the
additional simplifying assumption that the axial motion of the fluid particles is decoupled
from their transverse motion. This means that the transverse motion of the fluid particles
can be understood by considering only the spin motion of the rocket body. Thus, we
consider in Figure 3.2, that initially, the rocket body B, including the nozzle and the fluid
it contains, is stationary. Next, B is given a spin rate ws as shown. Friction causes the
fluid particle @) in contact with the nozzle wall to acquire an inertial velocity w3 R, in the
transverse direction, while the fluid particle O on the spin axis remains stationary. Those
fluid particles between O and @) acquire speeds that vary between zero and wsR;. For
the range of spin rates normally encountered in rocket dynamics, the speed distribution
between O and @ would be linear, and the relationship between the speed of the fluid
particle P at a distance x from O and the fluid particle at @ would be

Figure 3.2. Fluid velocity distribution.

P/ = z/Ry (18)

so that
vl = (z/R1)v%ey = wszey. (19)

On the other hand, the fictitious particle Pp of B that is coincident with the fluid particle
P at the instant under consideration also has velocity

vPo = warey. (20)
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P would then have zero velocity relative to the rocket body; a fact that seems at odds
with what would be expected if such an experiment were actually performed.

The decoupling of the axial fluid velocities from the transverse velocities has one major
flaw — it implies that one is dealing with linear phenomena. Furthermore, the assumption
that the velocity distribution between points O and Q is linear requires that the flow be
laminar (not turbulent). What is most likely in reality is that the combination of very
high axial fluid velocities found inside rocket combustion chambers, together with the
relatively slow transverse motion of the fluid particles, as well as the changing combustion
chamber geometry will result in overall turbulent and complex flow of the fluid products
of combustion. It is thus most unlikely that spinning of the rocket body will introduce a
linear distribution of transverse fluid velocities between points O and @); in other words,
the relative transverse speeds for the fluid particles are not likely to be zero. The velocity
function vy is likely to be quite complex, with no simple closed form expression.

One way to move this analysis forward is to make reasonable guesses for the function
vg. We adopt this approach and assume that the velocity distribution between points O
and @ of Figure 3.2 is not linear, but parabolic. One then finds that

vP = (w3z?/R1)ey (21)

and hence, the transverse speed of the general fluid particle P relative to the spinning

body B becomes
x
= ——1]. 22
vy wgac(Rl ) (22)

We now substitute equation (22) into (17) to obtain

R,
T 71'puu)3R‘1l ngR%
M = |2 — -1 3dr|by = ————TL b3 = bs. 23
6 lW/P<R1 >W3UCC I] 3 10 3 10 3 (23)
0
Clearly, Mg will have some influence on the spin rate but will not affect the transverse
components of the rocket’s angular velocity.

4 The Volume Integral Term

In this section, we determine an explicit expression for the seventh term of equation (1).
This term is also shown as equation (10) above, and is a volume integral to be taken over
the entire region of the combustion chamber, where fluid flow occurs. We note that this
region’s volume varies with time as propellant burn progresses, a fact that complicates
the evaluation of the integral.

For a general axisymmetric combustion chamber such as the one shown in Figure 4.1,
the vector M7 can be written as

M7=w></(pp><v)dV:w><I‘ (24)

where
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Section A-A

Figure 4.1. General axisymmetric combustion chamber.

We can let p, which represents the position vector from the system mass center to a
generic fluid particle P inside the combustion chamber, be

p = ze, + ze, (26)

while a general expression for the velocity of P remains as given in equation (13). The
axisymmetric nature of both the combustion chamber and the fluid flow therein allows
us to invoke the same arguments presented in the evaluation of Mg, and these lead us
to conclude that I is parallel to e, or bs. Hence, equation (25) becomes

I'=e, /(pp X Vv)-e,dV = bg /pa:2v9 dx df dz. (27)
c c

Equations (2) and (27) are now substituted into (24), and, assuming that the fluid density
is constant at steady state, we obtain (see also Figure 4.1)

M, = <27Tp // z2vg dx: dz> (wab1 — w1by). (28)

Because M7 has no bs component, it cannot have any influence on the spin rate.
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The integral in equation (28) depends on the shape of the combustion chamber, and
this in turn depends on the propellant burn type. We will thus need to stipulate a specific
propellant burn scenario before the corresponding expression for My can be determined.
The idealized propellant burn geometries that are closest to what obtains in real systems
are those that have been described in the literature [7-9] as the end burn, the radial
burn, and the uniform burn. Even for these idealized burn patterns, the true shape of
the combustion chamber during the propellant burn remains quite complex. To simplify
the task of evaluating the volume integral My, we restrict this part of the analysis to a
rocket model often referred to as the variable mass cylinder [7]. This is a very simple
model that considers a rocket to be a solid right circular cylinder, made entirely of
combustible material, and that burns while it flies around in space.

The end burn is the most useful propellant burn geometry for the variable mass
cylinder. To see why this is so, we direct attention to Figure 4.2, which shows a typical
rocket system that consists of the payload and several stages of the propulsion system.
The rocket motor for each stage carries solid or liquid propellant that burns to generate
propulsive force. Typically, solid fuel is burnt from inside out, somewhat similar to what
we have referred to as radial burn. However, the fact that the fuel is generally located
close to one end of the rocket system, means that the effect of this burn on the overall
system geometry and mass/inertia properties, is reasonably well approximated by the end
burn when the overall system is modeled as a cylinder. We will therefore only consider
the end-burn whenever we model a rocket as a burning cylinder.

Fuel Fuel Fuel

/ / /

/ /

p qr r
// Payload
)

4 Vi ]

/ i

/ /-/ /

Rocket Motor / N /
Stoge Stage Stage

Figure 4.2. Typical rocket system.

For the end burning cylinder, the combustion chamber at any given instant has the
shape of a cylinder of radius R, and whose length varies uniformly with the burn, as
shown in Figure 4.3. In this case, My becomes

L R
M, = (27rp // 22vp dz dz) (waby —wiba)
z 0

R

=2mp(L — z) (/xzvg dx) (waby — w1ba).
0
We assume that the expression obtained for vy in the previous section [see equation
(22)] holds here, so that

1
M; = 10 TpR (L — z)ws(waby — wiby). (30)



138 F.O. EKE, T. TRAN AND J. SOOKGAEW

Figure 4.3. The end burning cylinder.

The mass flow rate can be introduced into equation (30), as was done earlier for the
vector Mg. For uniform exit velocity profile, M7 then becomes

mR*(L — z
M7 = # (.«)3(&)2]31 - wle). (31)

5 Scalar Equations of Attitude Motion

Now that the explicit expression for each term of equation (1) has been determined,
including those contributed by fluid whirling motion, we are in a position to write the
complete scalar equations of rotational motion. Using equations (4), (5), (6), (8), (23),
and (31), and assuming the external moment M is zero, equation (1) can be broken into
its scalar components along the by, bo, and bz directions respectively as follows:

) 2
Twi + |:I—m<z§+%):|wl+[(J—I)W3+AW3]LU2=O, (32)
. R2
Twy + |:I—’I7'”L(Z§+T):|UJQ—[(J—I)W3+ALU3]W1—O, (33)
and
. R 1
Jiog + (J—m—1> w3 + —mR3w3 =0 (34)
2 10
where
~m(L —z)R?
A= 10w . (35)

Equations (32) and (33) are only valid for the cylinder model, while equation (34)
holds for a more general representation of a rocket because the term My that forced a
return to the cylinder model contributes nothing to (34). The A term in equations (32)
and (33), and the last term on the left hand side of (34) are contributed by fluid whirling
motion.
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6 Spin Motion

We now assess how the rocket’s spin rate is affected by the inclusion of the extra term
due to fluid whirling motion. The spin rate is obtainable from equation (34) and has the

form
ws(t) =ex ﬁ 36
e [ / . ] (36)
where
90) = Y0 (0) +a(0) + Y1) = J — 3 R + = (31)
with
i) =T, alt) = g MR, () = 1o R}, (39)

We know from equation (36) that the spin rate increases or decreases depending on the
sign of ¥(7): a positive sign indicates a decrease in spin rate, while a negative sign points
to an increase in spin rate. The rate of change of the system’s axial moment of inertia J
and the mass flow rate m are negative quantities. Hence, 1 (7) will tend to augment the
spin rate, while 9(7) does the opposite. ¥3(7), which is contributed by internal fluid
whirling motion, is a negative quantity. This means that fluid whirling motion tends
to increase the spin rate value. In other words, an analysis that ignores fluid whirling
motion will predict spin rate values that are less than those resulting from an analysis
in which whirling motion is accounted for. In the remainder of this section, ws(t) will
continue to represent the spin rate solution when fluid whirling motion is accounted for,
while wsznq(t) will be used for the spin rate solution when whirling motion is neglected
(i.e. when 3(7) is dropped).

For the specific case of a variable mass cylinder in end burn (see Figure 4.3),

:jj((é))—expl—/ J /—dt t?dt]

(39)
B & . om@) 1, m@)] 1 m(t)
_exp[—ln(—o)—l—lnm—glnm]—eXp(—gln (0))
Observe that
W3nw (t) = w3 (O) (40)

Hence, if whirling motion is not accounted for, the spin rate for a spinning rocket is
predicted to remain constant at its initial value. This is in fact quite close to what
is observed in real flight. On the other hand, if whirling motion is accounted for, the
predicted spin rate is somewhat higher. The percentage deviation of ws(t) from wgp., (t)

e (=) (B

W3nw m(t)

An equivalent z/L for a real rocket is very small, hence D is very small. We conclude
then that accounting for whirling motion does not change the predicted spin rate by
much.



140 F.O. EKE, T. TRAN AND J. SOOKGAEW
7 Transverse Motion

We continue the investigation of the effects of internal whirling motion of fluid products
of combustion on the attitude behavior of variable mass systems of the rocket type by
examining the lateral or transverse attitude motion of such systems. The interest here is
in the evolution with time, of the transverse angular velocity components w; and ws as
the rocket’s propellant burns. The variables wy and we are governed by equations (32)
and (33), which we combine and re-write in the form

wc_—%{[j—m<z§+%2>} —j[(J—I)—i—A]wg}wc (42)

where
We = w1 + jwa (43)

with

ji=v-1 (44)

and ws is now a known function of time.
Equation (42) is integrated, leading to

we(t) = we(0)A(t) exp[jO(?)] (45)
where .
o(t) = / Wu}g dt (46)
and ,
A(t) = exp [—/I_m(2%+ B/ 0], (47)

Equation (45) indicates that both components of the transverse angular velocity vector
oscillate with varying amplitude and varying frequency. The function A(t) controls the
amplitude of these oscillations while © determines the frequency. We recall that in
the differential equations governing wy and ws (see equations (32) and (33)), the terms
containing A are the only terms contributed by fluid whirling motion. A(t) contains no
such terms, but © does. Hence, we can state that internal fluid whirling motion has no
effect on the amplitude of the transverse angular velocity vector. However, the frequency
predicted for the transverse angular velocity components when the no-whirling-motion
assumption is made will generally differ from that obtained when whirling motion is
accounted for.

From equation (46), we can write

where
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and

O (t) _/éwgdt_/m(L;zf)Rng,dt. (50)

If fluid whirling motion is ignored, ©2(¢t) = 0. Otherwise, it is a negative quantity
that increases in absolute value with time. On the other hand, the sign of ©1(¢) depends
on whether the overall rocket system is oblate or prolate in shape. For an oblate system,
J/I > 1, and ©4(t) is positive and increases with time. For a prolate system — the most
likely case — J/I <1, and ©1(t) is negative and increases in absolute value with time.
In summary, if fluid whirling motion is ignored, only ©;(¢) determines the frequency.
This means that the frequency of the transverse angular velocity will increase with time
both for prolate and oblate systems. On the other hand, if whirling motion is accounted
for in the modeling of the system under study, then the frequency will increase with time
for prolate systems, and will be higher at all times than that predicted for no-whirling-
motion. This is due to the fact that ©2(¢) is then non-zero, and also the fact that the
quantity ws(t) appearing in equation (50) is always greater for whirling motion than for
no-whirling motion.

For oblate systems, ©1(t) will be positive and growing, while ©(t) is negative and
decreasing (growing in absolute value). So, the frequency could grow or decrease with
time. What is clear though, is that the frequency in this case will always be less than
the frequency for prolate systems. Finally, we observe that the frequency predicted when
whirling motion is accounted for could, in this case, be less than that predicted when
whirling motion is neglected.

8 Conclusion

This study evaluates the impact that helical motion of fluid products of combustion
within the combustion chamber of a rocket can have on the attitude dynamics of rocket
systems. Analysis performed using a variable mass cylinder as a model for rocket systems
shows that spin rate predictions made with the no-whirling-motion assumption will be less
than those which would have been predicted if whirling motion were properly accounted
for. However, the deviation from the “correct” spin rate will be quite small.

The amplitude of a rocket’s transverse angular velocity is unaffected by fluid whirling
motion. The only impact that fluid whirling motion has on a rocket’s transverse rota-
tional motion shows up in the frequencies of the transverse angular velocity components
of the rocket body. The degree to which these frequencies are affected also depends on
the ratio of the system’s spin inertia to its transverse inertia; in other words, on whether
the system is prolate or oblate. If whirling motion is accounted for in the modeling of
a prolate rocket system, the frequency of the transverse angular velocity components
will be found to increase with time, and will be higher at all times than the frequency
predicted with a no-whirling-motion assumption. For oblate systems, a model that takes
whirling motion into account will show that the frequency of rocket transverse motion
can increase or decrease with time, but will always be less than the frequency for a prolate
system. Ignoring whirling motion can result in a higher or lower frequency.
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Abstract: In this paper, we investigate the problem of robust dynamic para-
meter-dependent output feedback (RDP-DOF) stabilization under H, perfor-
mance index for a class of linear time invariant parameter-dependent (LTIPD)
systems with multi-time delays in the state vector and in the presence of norm-
bounded non-linear uncertainties. Using Hamiltonian—Jacobi-Isaac (HJI) me-
thod and the idea of polynomial parameter-dependent quadratic (PPDQ)
Lyapunov—Krasovskii functions, a new sufficient condition is derived to en-
sure robust asymptotic stability and robust disturbance attenuation of the
closed-loop system. Finally, an example is included that demonstrates the
application of the results.
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1 Introduction

The stability analysis and control design of linear time invariant parameter-dependent
(LTIPD) systems where the state-space matrices depend affinely on parameter vector,
whose values are not known a priori, but can be measured online for control process, have
received considerable attention recently (see for instance [1,2,3,5,6,18,23,25, 26,28, 31]
and the references therein). In many industrial applications, like flight control and pro-
cess control, the operating point can indeed be determined from measurement, making
the LTIPD approach viable, see for example [21, 24]. Establishing stability via the use of
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classical quadratic Lyapunov function is conservative for the LTIPD systems. To investi-
gate the stability of LTIPD systems one needs to resort the use of parameter-dependent
Lyapunov functions to achieve necessary and sufficient conditions of system stability,
see [7,10,11,14,16,30]. However, Bliman in [10] proposed robust stability analysis for
LTIPD systems with polytopic uncertain parameters. He also developed some condi-
tions for robust stability in terms of solvability of some linear matrix inequalities (LMIs)
without conservatism. Moreover, the existence of a polynomial parameter-dependent
quadratic (PPDQ) Lyapunov function for parameter-dependent systems, which are ro-
bustly stable, is stated in [11]. Recently, sufficient conditions for robust stability of the
linear state-space models affected by polytopic uncertainty have been provided in [12] us-
ing homogeneous polynomial parameter-dependent quadratic Lyapunov functions, which
are formulated in terms of LMI feasibility tests.

On the other hand, time delays are often present in engineering systems, which have
been generally regarded as a main source on instability and poor performance. Therefore,
the stabilization of LTIPD state-delayed systems is a field of intense research. Generally,
a way to ensure stability robustness with respect to the uncertainty in the delays is
to employ stability criteria valid for any nonnegative value of the delays that is delay-
independent results. This assumption that no information on the value of the delay is
known is often coarse in practice. Recently, a systematic way for the use of PPDQ
Lyapunov functions in the state feedback control of the LTIPD systems with time-delay
in the state vector was proposed in [19]. It was also shown that the PPDQ Lyapunov-
Krasovskii functions make some sufficient conditions under the form of linear matrix
inequalities (LMIs).

In this paper, we extend the robust parameter-dependent state-feedback stabilization
problem of the LTIPD state-delayed systems in [9,19] to robust dynamic parameter-
dependent output feedback (RDP-DOF) control synthesis problem for the LTIPD systems
with multi-time delays in the state vector and in the presence of norm-bounded non-linear
uncertainties based on the Hamiltonian—Jacoby—Isaac (HJI) method. It is provided a sys-
tematic framework for the use of the PPDQ Lyapunov functions in the issue of RDP-DOF
stabilization with preserving H., performance criteria. Delay-independent stabilization
problem of the system is stated in terms of some LMIs. It would be shown that the
use of HJI method makes a sufficient condition to have a parameter-dependent bilinear
matrix inequality (BMI) optimization problem; thereafter, parameter-independent BMI
optimization problem is derived utilizing the PPD(Q Lyapunov functions. Therefore, a
complete synthesis technique is developed and solving a parameter-independent LMI and
a set of linear algebraic equations can construct the RDP-DOF matrices. The simula-
tion results show that the obtained RDP-DOF control can achieve the delay-independent
stability and disturbance attenuation of the closed-loop system, simultaneously.

The notations used throughout the paper are fairly standard. The matrices I,,, 0,
and 0,,x, are the identity matrix, the n x n and n X p zero matrices, respectively. The
symbol ® denotes Kronecker product, the power of Kronecker products being used with
the natural meaning M°® = 1, MP® = M@-D® @ M. Let Ji, J, € RF**+D and
be defined by Jy = [Ir, Ox1], Jk = [Oxx1, Jx] and u® = [1,u, ..., u*=1]7T, respectively,
which have essential roles for polynomial manipulations [10]. Finally given a signal x(¢),

lz(t)||2 denotes the Lo norm of x(t); i.e., [|z(t)||3 = [ z(t)Tz(t) dt.
0
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2 Problem Description

In this paper, we consider a class of LTTPD systems with multi-time delays in the state
vector and in the presence of norm-bounded nonlinear uncertainties in which the state-
space matrices depend affinely on the constant vector p = [p1,p2,...,pm]T € ( C R™
(with ¢ being a compact set) as follows:

@(t) = +§}V’ hi) + Byu(t) + Ex(p)w(t) + A(z(t)),

x(t) w(t)a [_haO]a (1)
z(t) = Clzv(t),
y(t) = Caa(t) + Ezu(?)

where the constant parameter h; is time-delay, h = max{h;} for ¢ = 1,2,...,r, and ¢(t)
K3

is the continuous vector valued initial function, also x(t) € R", u(t) € R' , w(t) € R?,
z(t) € R* and y(t) € RP are the state vector, the control input, the disturbance vector,
the controlled output and the output vector, respectively. Moreover, the parameter-

dependent matrices A(p), AS) (p) and Ei(p) are expressed as A(p) = Ao + > pi Ai,
i=1

=1

AS) (p) = Aég + Zl ijg-g and Fi(p) = Eo1 + > piFi1, respectively, and the vector
J:

function A(z(t)) is non-linear term of uncertainty set. Furthermore, it is known that
the vector p is contained in a priori given set whereas the actual curve of the vector p is
unknown but can be measured online for control process.

Assumption 1 There exists a known real constant matrix H € R™*™ for the non-
linear uncertainty vector A(-) € Q(-) such that ||A(z(t))|l2 < ||Hz(t)||2 for any x(t) €
R™. Denote the corresponding uncertainty set by Q(z(t)) = {A(z(2)): |A(z())|l2 <
[ Ha(t)]2}-

The robust dynamic parameter-dependent output feedback (RDP-DOF) control prob-
lem that we address in this paper is of the form

ie(t) = Ak (p)zc(t) + Br (p)y(t), @
u(t) = Ck (p)zc(t),
where z.(t) € R™ and the parameter-dependent matrices of A (p), Bi(p) and Ck(p)
are defined as Ag(p) = Aok + i pildix € R"*™  Bg(p) = Box + i piBix € R"*P

=1
and Ck(p) = Cox + E piCixk € R respectively. In the sequel, the RDP-DOF
control state-space matrlces will be determined.

Applying the RDP-DOF control (2) into the system (1), we obtain the following
augmented closed-loop system

X(t) = A,X(t) + Z ADX(t—hi) + Byw(t) + A(SX (1)),
=1

X(t)=2o(t), tel[-h,0], (3)
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where X (t) = [2T(t), x

s

(t)]Tu S = [Inu On)(nc]u 61 = [Clu Ozch]7 62 = [027 Op)(nc]u

A()

_ _ - () _ -~ A~
A() = [On Xl] , Ay =4, + D1, A = [OAdp Oanc] , Ep=E,+ST,E

d
P Ne XN Onc

AP - [ Alp) Onxnc] . R = {OBl OanC:| . = [002 Oanc:| 7

Oncxn Onc ne Xl Inc NeXn I'n,c
O1x Ck(ﬂ)} & {El(P)] o [ E> }
r P , E, = , E= ,
P |:Bk( ) Ak(p) P OﬂcXS Onc><s
Inin, for n=1I,
S=1 [0(m-tyx(isn
{ (n=bx(t+ C)} for n>1I.
IlJrnC

The main objective of the paper is to seek the state-space matrices of the RDP-DOF
control (2) that asymptotically stabilizes the closed-loop system (3) with multi-time
delays and norm-bounded nonlinear uncertainties as well as guarantees a prescribed H

performance, i.e.,
2113 < 7 [lw(®)3 (4)
for all nonzero w(t) € L2(0,00) under zero initial conditions and a positive scalar ~.

Definition 1 We call a polynomial parameter-dependent quadratic (PPDQ) Lya-
punov function any quadratic function xT(¢)S(p)z(t) such that

Sp) = @ @ ol e L) Sl @ 0ol @ I,)

for every x(t) € R™ and a certain Sy € R*"™. The integer k — 1 is called the degree of
the PPDQ function S(p).

3 Delay-Independent Stability Analysis

In this section, assuming that the structure of the RDP-DOF control (2) is known and
we will investigate the conditions under which the closed-loop system (3) is asymptot-
ically stable for all admissible vectors p € ¢ and any nonlinear function A(-) € ()
independent of time delay parameters h; for i =1,2,... 7.

The approach employed here is to investigate the delay-independent stability analysis
of the closed-loop system (3) in the presence of the disturbance (exogenous input) and
norm-bounded nonlinear uncertainties based on the standard HJI method. In the litera-
ture, extensions of the Lyapunov method to the Lyapunov—Krasovskii method have been
proposed for time-delayed systems [8,20]. Hence, we define a class of PPDQ Lyapunov—
Krasovskii functions of the degree k — 1 for this purpose in the following form

V(X(t) = Xt)TP,X(t) Z/ (0)"QYX (o) do (5)
t hi
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where the positive definite matrices P, = P(p) € R"*" and QS) = QW(p) € Rrtne
for i=1,2,...,r are expressed as

k k
Po=We 0oL ) Pl - @l @ L), (6)
QY =l @ @M@ L )TQY (P @ @ p} @ L, (7)

with P, ,(j) € RF"(ntne) for 4 =1,2,...,r. Therefore, the following HJI function is
considered as

T, a0 = OO vy 0) - 420t i )

where derivative of V(X (t)) is evaluated along the trajectory of the closed-loop system
(3). It is well known that a sufficient condition for achieving robust disturbance attenu-
ation is that the inequality J[w(t), A(-)] < 0 for every w € L%, p € ¢ and A()) € Q")
results in a function V(X (t)), which is strictly radially unbounded (see, for example,
[27,29]). Therefore, we will establish conditions under which

sup sup J[w(t), A(-)] <0, (9)
AEQ welL?

then for every T', taking the definite integral from 0 to 7' of both sides of (8) gives
T T
/ZT(t) () dt — 2 /wT(t) w(t) dt < V(X(0)) = V(X(T)) < V(X(0)) = 0
0 0

i.e., constraint of disturbance attenuation (4).
From (5)—(8), we find

Jw(t), AO) = XOTATE, + P4, + 3 Q0 + T T X ()

=1
T T T
+X(0)TP, Y ADX(t— hi) + <Z ADX(t- hi)> PX(t)
1=1 1=1

- Z X(t—h)"QWVX (t — hi) + ASX (1) P, X (t) + X ()T P,A(S X (t))
i=1
+w(t) B, P,X () + X(6) P, E w(t) — v2w(t) "w(t).

(10)
It is easy to show that the worst-case disturbance in (10) occurs when

w*(t) =7 °E, B, X (1) (11)
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By substituting (11) into (10), we obtain
sup J(w(t),A) = J(w*, A)
weL?

=X (AEPP +P,A,+~v2P,E,E, P, + > QW+ U?Ul) X(t)

i=1

s T T
+XOTP Y ADX(t— hi) + (ZA&;’X@ - hi)) P,X(t)
=1 i=1

- Z X(t—h)"QVX (¢t — hi) + ASX ()" P X () + X (1) P,A(S X (1))

(12)
Now, by utilizing Lemma 2 and Assumption 1, it is trivial to show that for any positive
scalar € the following matrix inequality holds

ASX()TP,X () + X()TPA(S X () <eX()TPIX(t) +e "A(S X (1) TA(SX (1))
< X)) (P} +e H(HS)T(HS))X (1),

(13)
then from (12)—(13), the following inequality is obtained
sup sup J[w(t), A(-)] = sup J(w*, A) < X ()T M, X (t) (14)
AEQuweL? AeQ
where the vector X () = [X ()T, X(t — h)T, ..., X(t — h,)T]T is an augmented state
and the parameter-dependent matrix M, is defined in the form
- < P
AP, + PyA, + v 2P E B, Py +eP}+ P.AD PAM
Y QY +e N(HS)T(HS)+ T, Ty T pdp
i=1
1 1 (15)
(PyAg)" -Qy" 0
(P AT 0 5

Consequently, if there exist the positive scalar € and the positive definite solutions P,

and Qf,i) for ¢ =1,2,...,r to the parameter-dependent matrix inequality M, < 0, then
we have
J[’LU(t), A()] <0, Vw(t) € L27 pEC A() € Q() (16)
Using Schur Complement Lemma, the parameter-dependent inequality M, < 0 can
be represented as

[ ATP,+ P4, + 3 QY + ]
ptp pLlp T p —= (1 T(r
= P, PE, PAY) ... PAY)
e W(HS)T(HS) +C, Cy
P, —e Uy, O 0 ... 0
(P,E,)T 0 2L, 0 <07
(P, AT 0 o -V ... o0
i (P AT 0 0 0 5

The following result is now concluded for the delay-independent stability analysis of
the uncertain parameter-dependent state-delayed system (1).
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Theorem 1 Let the parameters v > 0, k > 1 (degree of the PPDQ Lyapunov—
Krasovskii functions) and the RDP-DOF control matrices Ak (p), Bx(p) and Ck(p) are

given. If there exist positive parameter € and positive definite matrices P, and QE,Z) for
it =1,2,...,1 to the parameter-dependent matriz inequality (17), then the augmented
closed-loop system (3) is asymptotically stable and preserves the Ho, performance for all
admissible vectors p € ¢ and any A(-) € Q(+), independent of the time delay parameters
hi for i=1,2,...,7.

Remark 1 A general framework for relaxing parameter-dependent matrix inequality
problems into parameter-independent matrix inequalities (conventional form) has been
investigated in [4]. However, application of the PPDQ Lyapunov functions as a new tool
for relaxing parameter dependency of the matrix inequalities will be stated in the next
section.

4 RDP-DOF Control Design

This section is devoted to design of the state-space matrices A (p), Bx(p) and Ck(p)
for the RDP-DOF control (2) by using the result of Theorem 1 in the previous section.

In Theorem 1, the parameter-dependent inequality (17) can be written in the following
from

[ AEPP + ijlp + (FleFQ)TPP"'

Po(RT,F) + 3 QY+ P, PE,+PST,E PAY ... PAY
e~ (HS)T(HS) +C, C,
P, —e iy, 0 0 ... 0 |<o
(P,E, + P,ST,E)T 0 —~2I, 0 ... 0
(1 1
(P, AY)T 0 0 QM ... 0
_ (P AG)" 0 0 0 Q" |
(18)

and it is clear that the above constraint is however not simultaneously convez in the
parameter P, and the controller parameters I',. In the literature, more attention has
been paid to the problems having this nature, which called bilinear matrix inequality
(BMI) problems [22].

In the sequel, we state application of the PPDQ Lyapunov functions to relax depen-
dency of the BMI (18) into the parameter vector p. At first, for parameter-dependent
matrix R, = AEPP + Pp[lp, the PPDQ Lyapunov function of degree k is expressed in
the form

Ry= (e 0ol e L ) TR e 0T e L) (19)

and by some matrix manipulations, in (19) the parameter-independent matrix Ry €
RUHD™(n4ne) which depends on matrix Py, linearly is obtained as follows

m T
Ry, = ((jgz@ & Ao) + Z(j£m71)® ® j;g ® j1£171)® ® Al)) Pk(j;n@) ® Inin,)
= (20)

+ (j;:@ ® In+nc)TPk ((j]:l@ ® AO) + Z(jlgmfiy@ ® jk ® j]iifl)® ® A»)
=1
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where

1 < A 1. Az Onxnc
0

Ne XN Onc

} for i=0,1,...,m.
Similarly, the PPDQ Lyapunov function of degree k for the parameter-dependent
matrix ¥, = (BT, F2)TP, + P,(FiT,F,) will be as

= (e @) @ L ) TS (Y @ - @ T @ L) (21)

where the parameter-independent matrix ¥ € RE+TD™(4ne) i5 shown as follows

m T
S = ((J,gn® ®FToR) + Y (" e fie i Ve Flrin)) P(J® @ Iyip,)
=1

+ (€ @ Lugn,) " Pr <(j,T® @ FToR) + Y (" e liell Ve FlriFQ))

i=1
(22)
where
< . Oxp  C, ,
I‘pzl"o—i-Zpil"i with Fj:[BJX-: Ajk:| for j=1,2,...,m.

i=1

Lemma 4 Let the degree of the PPDQ Lyapunov function P, be k — 1. The para-
meter-dependent matriz P,'T, satisfies the following representation form

PT, = g 0ol e L, ) TH(pE o0 )M o), (23)

where T, =To+ > piT; and T; € R("+"C)Xq, then the matrix
i=1

Hy, € RUEHD™ (ndne))x((k+1)™q)

which depends on the matrix Py linearly is defined as

Hy = (J"® @ Lyyn,) Py ((j;g@ ®To)+ > (" ool Ve Ti)>. (24)
=1

According to Lemma 4 for the parameter-dependent matrices Ep = EO + > ijj,
j=1
ASZ = A((Jid) + > pjfl%) and §FPE =FEy+ > ijj, we obtain
j=1 =
[k-+1] [k-+1]

PPEP =P e- e e L) "2 @ P ®L),

PAY = (o5 @@ ol @ L )TEY (5 @ - © o @ Lyn,),  (25)

PpST,E = (it @0 pf N @ L) Ex (ol @ 0 o e 1),
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. . = = = .
where the parameter-independent matrices Zg, :EC) and Zj are represented in the forms

S = (J'® @ Lwn ) TPy (<J,z”® ® B+ (" e de )T e Eﬂ) |
j=1
:(l) (Jm® & In-i-n ) Pk ((jlzn® ® A + Z ;e ® jk ® jlijil)® ® AEZ)))’
j=1

S = (J"® @ Ly, P ((J,Q”® @ E)+Y (" hve STV Ej))
=1

(26)
with i
e A0 = E; S & E
A;CI):[ (J)d O}’ Ej:|:0ncj>1<s:| and Eszl"j[ 2 }

for j=1,2,...,m and i =1,2,...,r.
Similarly, the parameter-independent matrices 6?61, (HS)Y(HS) and I, can be

also represented as
—T— —
Cl Cy = (pﬁ] Q- ® p[lk] & In+nc)TOk(p£§] Q@ Q p[lk] & InJrnc)
= (pgcﬂ'l] R ® p[k+1] ® In-i—nc)T(j]zn@ ® In-l—nc)Tak (27)
Im k
x (Ji® @ In+nc><p£ii+” @@ @ L),

k g k
(HS)T(HS) = (Pl @+ @ pl @ Ly ) Hi(pl @ @ pl @ L y.)
= (py,ffl] Q- ®p[lk+1] ® In+nc)T(jm® ® Inn, )T Hy (28)
< (J® @ Ly ) @ @ o @ Lugn,),

and
L=pRe oo L) LMo oo el)

= (P @@ p T L) (I © 1) I (29)
x (e L)k e e )

where the certain matrices Cy,, Hy and I, i are defined, respectively, as

Cp = diag (Cy C1, Ongns -, Opin, ), Hy = diag (HS)T(HS), 0ngnes -+ s Opins),
— —
(k™ —1) elements (k™ —1) elements
and I = diag(I,, 0,...,05, ).
—_———

(k™—1) elements

Therefore using the defined notations as well as the definition

fl?+nc = dlag (In+nc7 On—‘,-ncu o 0"+n°)
S— —

(k™ —1) elements
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and some matrix manipulations, the following parameter-independent BMI form can be
obtained from the parameter-dependent inequality (18),

Ri+ Sk + (J"® @ Ly, )T (51Hk +C+ Y Q,i“) (J7® @ Iym.)
1=1
(J;Z@ ® InJrnc)TPk(J;T@ ® Intn,)
p+E
="
=k
............................... g
(j]:l@ ® InJrnc)TPk(j;zn@ & InJrnc) Ek + ék
_5_1(J12n® ® In+nc)TI_1?+nC(JlT® ® Intn,) 0
0 (I @ L) L @ L)
0 0
0 0
=) =(r) 7
= 2k
0 0
0 0
. <0.
(T2 @ Ly ) QW (SO Ly, ) .. 0
0 (J7C @ Iy )TQV (S @ Ly,

(30)
Remark 2 Using the property of AC ® BD = (A® B)(C ® D), the defined matrices
ék and X can be shown in the following forms

1)

. . ~ E
= = (‘]k ® ®In+nC)TPk(Jk ® g S)(I(k-i-l)m ®Ty) <I(k+1)m ® [0 2 ])

Ne XS
m

3 U @ L ) TP @ Sy 0 STV 0 8) (31)
=1

E
X (I(k+1)m ®Fi) (I(k_l’_l)m X |:0 2 :| )

Ne XS

an

( Jm® ® F1)(Lkr16ym @ To)((gy1ym @ F2)

T

ST T @ IV F) gy © ) Lgaym @ Fg)) Pe(JT®@ Iy,
=1

+

+ (j]zm@ & In.:,_nc)TPk ((j]?@ ® Fl)(I(kJrl)m ® I‘O)(I(k+1)7n X Fz)

i=1
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The constraint (30) is not convex in terms of the parameter P, and the controller
parameters I['g, I'1,..., I';;,. Consequently, it cannot be used directly for synthesis. It
is clear that constraint (30) includes multiplication of control matrices and Lyapunov
function matrix. In the sequel, we will simplify and restate the BMI (30) along with the
robust performance satisfaction to derive tractable solvability conditions.

Define new matrices as

Qo = Pu(J7"® @ F1)(I 11y ® o),

I - (33)
Qi = Pk(t]]gm )@ ® Jp ® J]iz ne & Fl)(I(k+l)m ® Pi)7 i=1,2,...,m,
and . N
HO = Pk(J]/::n® ® S)(I(k+1)m ® FO)u (34)
Hi = Pk(jlgm_l)(@ X jk X j]gi_l)® & §)(I(k+1)m ® F’L)a 1= 17 25 cee, M.
From the above definitions, the following algebraic equations can be concluded
e R To) = Pt | Sk 35
j]fcn®®§ (Ig41ym @ To) = P, I, (35)
and
Jm® @ J 0 STV g Fl] . [Q] .
S i - S (] m @) =P , 1=1,2,....m, (36
Jm® @ j0JiTV® g Tty =P (36)

in the case of the matrix F} or equivalently the matrix By has the full column rank, it
can be concluded from the linear algebra theory that the set of algebraic equations (35)
and (36) has at most one solution g, T'y, ..., T'y,.

According to (33) and (34), the matrices X, and Zj, in the BMI (30) can be represented
in the forms

m T
Y = <<QO + ZQl> (I(k-i-l)m ® F2)> Pk(J;n® R InJrnC)
=1
+ (J® @ Lnga,)" <Qo +° Qi) U(ky1ym @ F2)
i=1

and

(1

. G E
k = (Jk ® ® In+nc)T <H0 + ZHZ) (I(k+1)m ® |:O 2 :| > (38)
=1

Ne XS

Then, from (33)—(37) the solutions of the BMI (30) can be stated as the solutions of an
LMI and a set of algebraic equations. Finally, we summarize our result as follows.

Theorem 2 (Delay-independent stabilization) Let the positive scalar k — 1 as the
degree of the PPDQ Lyapunov-Krasovskii functions is given. Consider the uncertain
parameter-dependent system (1) with the constant time delay parameters h; for i =
1,2,...,r and full column rank of the matrix By. For a given performance bound -y, if
there exist positive parameter € and the positive definite matrices Py, Q,(;) € RF"(ntne)
for i = 1,2,...,r as well as the matrices Q;, II; € RF"(tne)x(k+1)"(p4ne) for 4§ —
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0,1,...,m to the parameter-independent BMI (30), then the sub-optimal RDP-DOF con-
trol law (2) with the following state-space matrices

T, =To+ > pili (39)
=1

may be obtained from the linear algebraic equations (35) and (36) to achieve robust delay-
independent asymptotic stability and disturbance attenuation for all admissible vector

p € and any A() € Q(-).

Theorem 2 gives a solution to the sub-optimal RDP-DOF control problem. Note that
this result can be reformulated as an optimal controller synthesis procedure by solving
the following optimization problem

Min -~
. (40)
subject to (30), (35) and (36).
Remark 3 Tt is observed that the inequality (30) is linear in P, ;Cl), ;f), Cey ,(:),
Qo, N1, ..., Qp, and Iy, Iy, ..., II,, which are calculated independently from the vector

p. It is also seen from the above results that there exists some freedoms contained in
the design of control law, such as the choices of appropriate the positive scalar ¢ and
the degree of PPDQ Lyapunov function. These degrees of freedoms can be exploited to
achieve other desired closed-loop properties.

5 Example

In this section, we illustrate the proposed methodology on a simple system. The state-
space form of the uncertain parameter-dependent state-delayed plant is considered as

() = (=5 —=2p1)x(t) + (24 p1)x(t — h1) +u(t) + (1 + p1)w(t) + A(z(t)),

,T(t) =2, te [—hl, 0],
2(t) = z(t), (41)
y(t) = 2(t) + w(t),

with h; = 10 seconds and ¢? = 0.5 as the constant time delay and noise variance,
respectively. The compact set of the parameter p; is considered as p; € (—1, 1). The
non-linear uncertain term A(z(t)) is assumed to be norm-bounded with the matrix
bound H = 1. Using the definitions (33) and (34), solving the LMI (30) and the set of
algebraic equations (35) and (36) for the performance bound « = 1.5 by the Lmitool
toolbox of the Matlab software [17] gives the following positive definite matrices Py, ,(Cl)
for k=2,

©0.2256  0.0103 —0.0264 0.0009
po_ | 00103 00771 -00846 0.0020
—0.0264 —0.0846  0.2001 0.0096 | ’
L 0.0009  0.0020  0.0096 0.0542
04484 —0.0111  0.2732  0.0022
1y | —0.0111  0.5251  0.0047 —0.0230
@ 0.2732  0.0047  1.2472 —0.0070
L 0.0022 —0.0230 —0.0070  0.6286
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Output

0 10 20 30 40 50
Time (sec)

Figure 5.1. Time behavior of y(t).

By considering the parameter p; = 0.2225, time behavior of the system dynamic (41)
has been depicted in Figure 5.1.

The sub-optimal RDP-DOF control (2) with the following state-space matrices
I — 0 0.0771 and T — 0 0.0020
07 | -0.0264 —0.0846 ' 10.0096 0.0542

ensures the asymptotic stability of the closed-loop system (3) which has been shown in
Figure 5.2.

0 10 20 30 40 50
Time (sec)
Figure 5.2. The sub-optimal RDP-DOF control.

Moreover, the correctness of disturbance attenuation on the controlled output, i.e.
213 — ?lw(®)||3 < 0, has been depicted in Figure 5.3.

6 Conclusion

In this paper, we have presented a systematic framework for the RDP-DOF stabilization
under H, performance index for a class of LTIPD systems with multi-time delays in the
state vector and in the presence of norm-bounded non-linear uncertainties. Our main
contribution consists in providing a new sufficient condition as QMIs formulations for
the existence of the RDP-DOF control using the PPDQ Lyapunov—Krasovskii functions
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Time (sec)

Figure 5.3. The plot of ||z(t)||§ — ’72||w(t)||%

and HJI method. The applicability of the proposed method was illustrated on a simple
example.
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Appendix

Lemma 1 (Schur Complement Lemma) Given constant matrices Uy, ¥y and Vs,
where ¥y = W] and ¥y = ¥ >0, then ¥y + Wg@;lqlg < 0 if and only if

[xyl o

) Uy Uy
s —\I/J <0 or equivalently, [ ] < 0.

vl o,
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Lemma 2 [28] For any matrizx X and Y with appropriate dimensions and for any
constant n > 0, we have

1
XY 4+YTX <nxXTx + ; YTy.

Lemma 3 (Projection Lemma [13, 15]) Given a symmetric matriv H € R"™" and
two matrices N € R1*" and M € RP*", consider the problem of finding some matrices
X € RP*9 such that

H+N'X"M+M"XN <0

then, the inequality above is solvable for X if and only if

N*THNY <0 and MTYTHMTL <.
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1 Introduction

Two modifications are typically used when differential delay systems are studied by using
the second Liapunov method [9—11]. The first one is the Liapunov—Krasovsky method.
In this case, a segment of the trajectory is identified with a point in Banach space. Also,
the main ideas of the Liapunov functions method are carried over to this case of func-
tionals, and the stability theorems usually contain the necessary and sufficient conditions
[9,11]. The second modification uses the finite-dimensional Liapunov functions. In this
case the derivative of the solution is estimated under the assumption that the solution
remains inside the level surface of the Liapunov function. This assumption is called the
Razumikhin condition [10].
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2 Preliminaries

In this paper we consider differential delay systems with a quadratic nonlinearity of the
following form

i(t) = Ax(t — 1) + XT(t)Ba(t — 1), (1)

where ¢ > 0, 7 is a positive constant, z(t) € R™, A is a constant square matrix.
The matrices XT(¢) and B are rectangular ones of the size n x n? and n? x n, re-
spectively; X1 (t) = {X{(t), XJ(t),...., X T (t)}, BT = {B1,Bs,...,Bn}. We suppose
that square matrices B;, ¢ = 1,n, are constant and symmetric, and all elements of
the square matrices XiT (t), i = 1,n, are zero except the i-th row, which equals to
x(t) = (x1(t), 22(t),. .., xa(t)) [2,7].

Since the right hand side of system (1) does not contain the phase coordinate x at
present time t the approach with the use of quadratic functionals encounters certain
difficulties (see [10] for more details). Therefore, we shall study the stability of the zero
solution z(t) = 0 and derive estimates on the stability region by using finite-dimensional
Liapunov functions subject to the Razumikhin condition. For the Liapunov function we
shall choose the following quadratic form

V(z,t) =2 THa
with the positive definite matrixH solving the Liapunov matrix equation [1, 10]
ATH + HA = —C. (2)

The exponential factor e?t, v > 0, does not guarantee the existence of an infinitesimal
limit of higher order for the function V' (z,t) [8,10,12]. It allows us however to obtain an
estimate on the upper bound of decrease rate of solutions starting in the stability domain
of zero solution.

In the case when matrix A is asymptotically stable the matrix equation (2) has a
unique solution, positive definite matrix H, for every positive definite matrix C. We
shall use the standard vector and matrix norms [6] as follows

" 1/2
A = Do (AT A} 72, |x<t>|={2w$<t>} C el = max {la(e+ 9)]).
i=1 -

Here and in the sequel Apin(+) and Apnax() stand for the smallest and the largest eigen-
values respectively for the symmetric positive definite matrices.

Let 0V be a level surface of the Liapunov function V' and V) be the corresponding
domain in the space R"™ x R, that is

VY = {(a,t): V(z,t)=a}, VI ={(a,t): V(z,t)<a}.
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3 Main Results
3.1 Linear case

Consider the following linear system with delay
&(t) = Ax(t — 7). (3)
Lemma 1 Suppose solution z(t) of system (8) satisfies (x(t),t) € VI, for t > —7.

Then
l2(t)] < /o Amin(H)e 27, > 7. (4)

Proof The Liapunov functions of quadratic type X (z,7T) = e"*2T Hx are known to

satisfy the following two-sided inequality [3]
e Ain (H) |2(t)[* < V(2(t), ) < € Amax(H)|2(2) . (5)
Therefore, the assumptions of Lemma imply
Amin (H)|z(t)]? < o

From the latter inequality the estimate (4) follows.

Lemma 2 Suppose there exist constants o > 0, v > 0 such that the solution x(t)
of system (3) satisfies (x(t),t) € VI, forall T—27 <t <T and (z(T),T) € OV].
Then

1

#(T) — (T — 7)] <2 '%’ A7) (27— 1)[a(T)],

(6)
QP(H) = )\max(H)/)\min (H))\min (H)
Proof Solutions of system (3) can be represented in the following integral form
t
z(t) =z(t —7)+ / Az(s —7)ds.
t—r
When ¢t =T the latter implies
T
|x(T) —z(T — 7)| < / |Allz(s — 7)| ds.
T—1
From the assumptions of Lemma 2 and inequality (5) the following holds
" Nin (H) (s — 7)> < V(a(s — 1), s — 1) < V((T),T)
< M Apax(H)|z(T))? forall T—7<s<T.
Therefore
(s = 7)| < 2T (H) [2(T)], - @(H) = Masae(H) [ Amin(H). - (7)

By using the last inequality in the integral representation we derive the required estimate

T
o)~ (T =) < [ AT o) ds
T—1

=2 %' e\ o(H) [e277 — 1]|(T)].
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Lemma 3 Every solution x(t) of system (3) satisfies the inequality
lz(t)] < (1+ [A|7)[[=(0)]|- (8)

on the time interval 0 <t <.

Proof ~ Write system (3) in the integral form

Then

|lz(t)] < |2(0)] + / [Allz(s — )| ds < [x(0)] + [Al[|(0) -7 < (1 + |A]7)[|2(0) ]|
0

By using the above Lemmas the following Theorem on asymptotic stability of the
system with pure delay (3) is derived.

Theorem 1 Assume that matriz A is asymptotically stable. Then the system with
pure delay (3) is also asymptotically stable for all T < 79, where

Amin (O)

" A HAN )

Moreover, the solutions of the system satisfy the following exponential estimate on their
rate of decrease

(9)

1
0] < (14 LDl Vol exp { ot ¢ 7 (10)
where 0 <y < ~*, v* is the positive solution of the equation

T Oonin(©) 7 Ao (H)) = 4R [HAAJeF7 (277 1), (1)

Proof Let z(t) be any solution of system (3). Then, as it follows from Lemma 3, it
satisfies the following inequality

()] < (1 + |Al7)[|2(0)]],

for all 0 <t < 7. Also on the same time interval z(t) satisfies (z(t),t) € V), where
v >0 is a constant to be determined later, and o > Apax (H)(1 + |A|7)?|z(0)]2.

We claim that also (z(t),t) € V7 for all ¢ > 7. Suppose not. Then there exists a
time moment T > 7, such that (x(T"),T) € 0Vy. Evaluate now the total derivative of
the Liapunov function V' along the solutions of system (3):

%V(m(t)) ="yt () Ha(t)+ e {27 () (ATH + HA)z(t) + 22 () HA[z(t — 7) — 2(t)]}.
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If matrix A is asymptotically stable then, as it follows from the matrix Liapunov equa-
tion (2), for any positive define matrix C' and matrix H solving the equation the total
derivative of V satisfies

d

ZV(@(®) < Y Amax(H) = Amin(C)}2()* + 2T [HA[[(t)]|(t) - 2(t - 7).

As it follows from the assumptions of Theorem 1 and inequality (7) the last inequality
at time ¢t =T reads

V) < A€~ hmantlh) ~ 1414 G e

If in addition the inequality

Anin (€) — YA (H) — A H A A/ () b7 1 = (12)
Y

holds, then the total derivative of the Liapunov function will be negative. This means
that the velocity vector of the motion x(t) is directed inside the domain at the moment
t=1T, and (z(t),t) € VY for all ¢ > 0. It follows from inequalities (4) and (8) that the
following holds

2(t)] < (1+ A1) 2(0) |- o (B exp{ } 1>

that is, inequality (10) is true. Let us find the conditions for inequality (12) to be true.
If ¥ — +0 then inequality (11) has the form

mln( _2|HA||H|\/ 7'>0

and if 7 < 79, then
Amin(C()

T0 = .
2|HA[|Al\/¢(H)
That is, the maximum allowed delay 79 has the form given by (9). Let 7 < 79. Then

there is a threshold for the rate of exponential decrease of the solutions, which value is
determined by the solution of equation (11).

Remark 1 In general it is not possible to represent the solution of equation (11) in an
explicit analytic form. The value v* can be replaced by a smaller value ¥*, where

h('YO) - /\min(c)
)\min (C) ’ o= )\max (H) ’

h10) = A1 HAJ|A|/(H) €207 (207 — 1),

Proof The left-hand side of system (11) is the parabola

0<’~}/*:”yo—

9(7) = Y[Amin(C) = YAmax(H))]
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opening downward and having the following two zeros Yo = Amin(C)/Amax(H), 11 = 0.
The right-hand side of equality (11) is a parabola in the variable e%”, where v > 0

h(v) = 4| HA||Ale?" (e%W - 1),
also opening downward. Since ¢(0) = h(0) =0 and

9'(0) = Amin(C) > 2| HA||A|\/@(H) T = 1(0),

then a v* exists (0 < v* < v = Amin(C)/Amax(H)), such that g(v*) = h(y*). The
“parabola” h(v) is replaced by the line segment h(y) passing through the origin and
the point (y0,n(70)) and having the form h(y) = h(y0)sL. Point 4 is defined as the
intersection of the parabola g(y) and the line h(v). That is, as the positive solution of
the equation
Y
Y[Amin(C) = YAmax(H)] = h(70) %-
The latter gives the required value of 7*.

Remark 2 Condition (9) is rather approximate but readily calculated one. For exam-
ple, for the scalar equation

&(t) = —azx(t —7), a>0

the stability condition is 7 < 7/2a (see [12]). By using the Liapunov function V(z,t) =
e'z? from inequality (9) we obtain the following stability condition 7 < 1/a.

3.2 Nonlinear case

Consider next systems of the form (1) with pure delay in the linear part.

Lemma 4 Assume there exist constants o > 0 and v > 0 such that the solution
x(t) of system (1) satisfies (x(T),T) € OV for t =T, and (x(t),t) € VJ for T—27 <
t <T. Then the following inequality holds

o) = (