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Abstract: Approximating the nearest positive semidefinite Hankel matrix in
the Frobenius norm to an arbitrary data covariance matrix is useful in many
areas of engineering, including signal processing and control theory. In this
paper, interior point primal-dual path-following method will be used to solve
our problem after reformulating it into different forms, first as a semidefinite
programming problem, then into the form of a mixed semidefintie and second-
order cone optimization problem. Numerical results, comparing the perfor-
mance of these methods with the modified alternating projection method will
be reported.
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1 Introduction

In some application areas, such as digital signal processing and control theory, it is
required to compute the closest, in some sense, positive semidefinite Hankel matrix,
with no restriction on its rank, to a given data covariance matrix, computed from a
data sequence. This problem was studied by Macinnes [19]. Similar problems involving
structured covariance estimation were discussed in [16, 13, 24]. Related problems occur
in many engineering and statistics applications [10].
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The problem was formulated as a nonlinear minimization problem with positive
semidefinite Hankel matrix as constraints in [2] and then was solved by l2 Sequential
Quadratic Programming (l2 SQP) method. Another approach to deal with this problem
was to solve it as a smooth unconstrained minimization problem [1, 3]. Other methods
to solve this problem or similar problems can be found in [19, 13, 16].

Our work is mainly casting the problem: first as a semidefinite programming prob-
lem and second as a mixed semidefinite and second-order cone optimization problem.
A semidefinite programming (SDP) problem is to minimize a linear objective function
subject to constraints over the cone of positive semidefinite matrices. It is a relatively
new field of mathematical programming, and most of the papers on SDP were written in
1990s, although its roots can be traced back to a few decades earlier (see Bellman and
Fan [8]). SDP problems are of great interest due to many reasons, e.g., SDP contains im-
portant classes of problems as special cases, such as linear and quadratic programming.
Applications of SDP exist in combinatorial optimization, approximation theory, system
and control theory, and mechanical and electrical engineering. SDP problems can be
solved very efficiently in polynomial time by interior point algorithms [29, 32, 11, 6, 21].

The constraints in a mixed semidefinite and second-order cone optimization problem
are constraints over the positive semidefinite and the second-order cones. Although the
second-order cone constraints can be seen as positive semidefinite constraints, recent
research has shown that it is more effecient to deal with mixed problems rather than the
semidefinite programming problem. Nesterov et al. [21] can be considered as the first
paper to deal with mixed semidefinite and second-order cone optimization problems.
However, the area was really brought to life by Alizadeh et al. [5] with the introduction
of SDPPack, a software package for solving optimization problems from this class. The
practical importance of second-order programming was demonstrated by Lobo et al. [18]
and many subsequent papers. In [22] Sturm presented implementational issues of interior
point methods for mixed SDP and SOCP problems in a unified framework. One class of
these interior point methods is the primal-dual path-following methods. These methods
are considered the most successful interior point algorithms for linear programming.
Their extension from linear to semidefinite and then mixed problems has followed the
same trends. One of the successful implementation of primal-dual path-following methods
is in the software SDPT3 by Toh et al. [28, 25].

Similar problems, such as the problem of minimizing the spectral norm of a matrix
was first formulated as a semidefinite programming problem in [29, 26]. Then, these
problems and some others were formulated as a mixed semidefinite and second-order
cone optimization problems [18, 4, 23]. None of these formulations exploits the special
structure of our problem. For the purpose of exploiting the Hankel structure of the
variable in this problem we will introduce an isometry operator, hvec, taking n × n
Hankel matrices into 2n− 1 vectors. We will see later that using this operator gives our
formulations an advantage over the others.

Before we go any further, we should introduce some notations. Throughout this
paper, we will denote the set of all n× n real symmetric matrices by Sn, the cone of the
n × n real symmetric positive semidefinite matrices by S+

n and the second-order cone of
dimension k by Qk, and is defined as

Qk = {x ∈ Rk : ‖x2:k‖2 ≤ x1},

(also called Lorentz cone, ice cream cone or quadratic cone), where ‖.‖2 stands for
the Euclidean distance norm defined as ‖x‖2 =

√

∑n
i=1

x2
i , ∀x ∈ Rn and x2:k =
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[x2, x2, . . . , xk]T . The set of all n × n real Hankel matrices will be denoted by Hn.
An n × n real Hankel matrix H(h) has the following structure:

H(h) =











h1 h2 · · · hn

h2 h3 · · · hn+1

...
...

. . .
...

hn hn+1 · · · h2n−1











, h ∈ R2n−1.

It is clear that Hn ⊂ Sn. The Frobenius norm is defined on Sn as follows:

‖U‖F =
√

U • U = ‖vecT (U)vec(U)‖2, ∀ U ∈ Sn. (1.1)

Here U •U = trace(U ·U) =
∑n

i,j U2
i,j , vec(U) stands for the vectorization operator found

by stacking the columns of U together and vecT is the transpose of vec. The symbols
� and ≥Q will be used to denote the partial orders induced by S+

n and Qk on Sn and
Rk, respectively. That is,

U � V ⇔ U − V ∈ S+
n , ∀ U, V ∈ Sn

and

u ≥Q v ⇔ u − v ∈ Qk, ∀ u, v ∈ Rk.

The statement x ≥ 0 for a vector x ∈ Rn means that each component of x is nonnegative.
We use I and 0 for the identity and zero matrices.

Our problem in mathematical notation can, now, be formulated as follows: Given a
data matrix F ∈ Rn×n, find the nearest positive semidefinite Hankel matrix H(h) to F
such that ‖F − H(h)‖F is minimal. Thus, we have the following optimization problem:

minimize ‖F − H(h)‖F

subject to H(h) ∈ Hn, H(h) � 0. (1.2)

We describe briefly the alternating projection method. Although the rate of conver-
gence is slow, the method converges to the optimal solution globally, and provides us with
accurate solutions against which we can compare the results obtained by this method
with those of the interior point methods. Henc, we devote Section 2 to the projection
method. A brief description of semidefinite and second-order cone optimization prob-
lems along with reformulations of problem (1.2) in the form of the respective class will
be given in Sections 3 and 4, respectively. Numerical results, showing the performance
of the projection method against the primal-dual path-following method acting on our
formulations, will be reported in Section 5. Section 6 contains the paper’s conclusions.

2 The Projection Method

The method of successive cyclic projections onto closed subspaces Ci’s was first proposed
by von Neumann [30] and independently by Wiener [31]. As a special case of their
algorithm, we show that if C1 and C2 are subspaces and D is a given point, then the
nearest point to D in C1 ∩ C2 can be obtained by the following algorithm:
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Alternating Projection Algorithm.
Let X1 = D.
For k = 1, 2, 3, . . .
Xk+1 = P1(P2(Xk)).
Xk converges to the nearest point to D in C1∩C2, where P1 and P2 are the orthogonal

projections on C1 and C2, respectively. Dykstra [12] and Boyle and Dykstra [9] modified
von Neumann’s algorithm to handle the situation when C1 and C2 are replaced by convex
sets. Other proofs and connections to duality along with applications were given in Han
[17]. These modifications were applied in [15] to find the nearest Euclidean distance
matrix to a given data matrix. The modified Neumann’s algorithm when applied to (1.2)
yields the following algorithm, called the Modified Alternating Projection Algorithm:
Given a data matrix F , we have:

Let F1 = F .
For j = 1, 2, 3, . . .
Fj+1 = Fj + [PS(PH(Fj)) − PH(Fj)].
Then {PH(Fj)} and PS(PH(Fj)) converge in Frobenius norm to the solution. Here,

PH(F ) is the orthogonal projection onto the subspace of Hankel matrices Hn. It is
simply setting each antidiagonal to be the average of the corresponding antidiagonal of
F . PS(F ) is the projection of F onto the convex cone of positive semidefinite symmetric
matrices. One finds PS(F ) by finding a spectral decomposition of F and setting the
negative eigenvalues to zero.

3 Semidefinite Programming Approach

The semidefinite programming (SDP) problem in primal standard form is:

(P ) minimizeX C • X

subject to Ai • X = bi, i = 1, 2, · · · , m, X � 0, (3.1)

where all Ai, C ∈ Sn, b ∈ Rm are given, and X ∈ Sn is the variable. This optimization
problem (3.1) is a convex optimization problem since its objective and constraint are
convex. The dual problem of (3.1) is

(D) maximizey bT y

subject to

m
∑

i=1

yiAi � C, (3.2)

where y ∈ Rm is the variable. Problems (3.1) and (3.2) include many problems as
special cases and have many applications, in particular, (1.2). The following theorem is
useful in writing (1.2) in the form of (3.1).

Theorem 3.1 (Schur Complement) If

M =

[

A B
BT C

]

,

where A ∈ S+
n nonsingular matrix and C ∈ Sn, then the matrix M is positive

(semi)definite if and only if the matrix C − BT A−1B is positive (semi)definite.
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This matrix C − BT A−1B is called the Schur complement of A in M . Letting ‖F −
H(h)‖2

F ≤ t, t is a nonnegative real scalar and noting that:

‖F − H(h)‖2
F = vecT (F − H(h))vec(F − H(h)),

we have:

vecT (F − H(h))vec(F − H(h)) ≤ t

⇔ t − vecT (F − H(h))Ivec(F − H(h)) ≥ 0

⇔
[

I vec(F − H(h))
vecT (F − H(h)) t

]

� 0.

The last equivalence is a direct application of Theorem 3.1. Thus, problem (1.2) can be
rewritten as

(SDV ) minimize t,

subject to





t 0 0
0 H(h) 0
0 0 V



 � 0, (3.3)

where

V =

[

I vec(F − H(h))
vecT (F − H(h)) t

]

,

which is an SDP problem in the dual form (3.2) with dimensions 2n (number of variables)
and n2+n+2 (size of the matrices), SDP problem (3.3) is very large even for a small data
matrix F . For example, a 50 × 50 matrix F will give rise to a problem with dimensions
100 and 2552, hence solving (1.2) using formulation (3.3) is not efficeint. Furthermore,
we do not exploit the structure of H(h) being Hankel. Another way of formulation that
produces an SDP problem with reasonable dimensions and exploits the Hankel structure
of H(h) can be done by means of the following isometry operator.

Definition 3.1 Let hvec : Hn −→ R2n−1 be defined as

hvec(U) = [u1,1

√
2u1,2 · · ·

√
n − 1u1,n−1

√
nu1,n

√
n − 1u2,n · · ·

√
2un−1,n un,n]T

for any U ∈ Hn.

It is clear that hvec is a linear operator from the set of all n×n real Hankel matrices
to R2n−1. The following theorem gives us some characterizations of hvec.

Theorem 3.2 For the operator hvec, defined in Definition 3.1, the following condi-
tions hold: For any U, V ∈ Hn

1. U • U = hvecT (U)hvec(U).
2. ‖U − V ‖2

F = hvecT (U − V )hvec(U − V ).

Proof Part 1 is clear from the definition of the hvec operator. Part 2 is a consequence
of part 1. �

Part 1 implies that hvec is an isometry. We cannot take any advantage of this
theorem unless F is Hankel. Projecting F onto Hn using the orthogonal projection in
Section 2 gets a Hankel matrix, say F̂ . The following proposition shows that the nearest
Hankel positive semidefinite matrix to F̂ is also the nearest to F .
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Proposition 3.1 Let F̂ be the orthogonal projection of F onto Hn and let H(h) be
the nearest Hankel positive semidefinite matrix to F̂ , then H(h) is so for F .

Proof If F̂ is positive semidefinite, then we are done. If not, then for any T ∈ Hn,
we have (F − F̂ )T • (F̂ − T ) = 0 since F̂ is the orthogonal projection of F . Thus,
‖F − T ‖2

F = ‖F − F̂‖2
F + ‖F̂ − T ‖2

F . �

As a consequence of this proposition, the following problem is equivalent to (1.2):

minimize ‖F̂ − H(h)‖F

subject to H(h) ∈ Hn, H(h) � 0. (3.4)

3.1 Formulation I (SDH)

From Theorem 3.1, the following are equivalences (for t ≥ 0 ∈ R):

‖F̂ − H(h)‖2
F ≤ t

⇔ hvecT (F̂ − H(h))hvec(F̂ − H(h)) ≤ t by Theorem 3.2

⇔ t − hvecT (F̂ − H(h))Ihvec(F̂ − H(h)) ≤ 0

⇔
[

I hvec(F̂ − H(h))

hvecT (F̂ − H(h)) t

]

� 0 by Theorem 3.1

Hence, we have the following SDP problem:

(SDH) minimize t,

subject to





t 0 0
0 H(h) 0

0 0 V̂



 � 0, (3.5)

where

V̂ =

[

I hvec(F̂ − H(h))

hvecT (F̂ − H(h)) t

]

.

This SDP problem has dimensions 2n and 3n + 1 which is far better than (3.3).

3.2 Formulation II (SDQ)

Another way for formulating (1.2) is through the definition of the Frobenius norm:

‖F − H(h)‖2
F = yT Py + 2qT y + r,

where

y = [h1 h2 · · · h2n−1]
T , P = diag([1 2 · · · n · · · 2 1]),

qk = −∑n
i,j=1

i+j=k+1

F (i, j), k = 1, 2, · · · 2n − 1 and r = ‖F‖2
F .
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Now, we have for a nonnegative real scalar t

‖F − H‖2
F ≤ t

⇔ yT Py + 2qT y + r ≤ t

⇔ (P 1/2y)T (P 1/2y) + 2qT y + r ≤ t

⇔ t − 2qT y − r − (P 1/2y)T I(P 1/2y) ≥ 0

⇔
[

I (P 1/2y)

(P 1/2y)T t − 2qT y − r

]

� 0.

Hence, we have the following SDP problem:

(SDQ) minimize t,

subject to





t 0 0
0 H(h) 0
0 0 Q



 � 0, (3.6)

where

Q =

[

I (P 1/2y)
(P 1/2y)T t − 2qT y − r

]

.

This SDP problem is of dimenstions 2n and 3n+1. Although problem (3.6) has the same
dimentions as problem (3.5), it is less efficient to solve it over the positive semidefinite
cone S+

n , especially when F is large in size. In practice, as we will see in Section 5, it
has been found that the performance of this formulation is poor. The reason for that
is the matrix P being of full rank and hence the system is badly conditioned. A more
efficient interior point method for this formulation can be developed by using Nesterov
and Nemirovsky technique [20] to reformulate it over the second-order cone as described
in Section 4.

The last formulation seems to be straight forward, but it was found that using this
formulation to solve similar problems was not a good idea. The reasons for that will be
discussed in the following section when we talk about second-order cone programming.
This fact about SDQ formulation will be clear in Section 5 when we use it to solve
numerical examples with n > 50. The SDV formulation does not compete favorably with
the other two SDH and SDQ formulations due to the amount of work per one iteration
of interior-point methods that solve SDV fomulation is O(n6), where n in the dimension
of F and O(.) is the order of convergence. The SDV formulation is even slower than the
projection method. Hence, using the SDV formulation to solve (1.2) is time consuming.
This leaves us with SDH formulation from which we expect good performance, since it
does not have the illness of SDQ nor the huge size of SDV.

4 Mixed Semidefinite and Second-Order Cone Approach

The primal mixed semidefinite, second-order and linear problem SQLP is of the form:

(P ′) minimize CS • XS + CT
QXQ + CT

L XL

subject to (AS)i • XS + (AQ)T
i XQ + (AL)T

i XL = bi, i = 1, 2, · · · , m

XS � 0, XQ ≥Q 0, XL ≥ 0, (4.1)
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where XS ∈ Sn, XQ ∈ Rk and XL ∈ RnL are the variables. CS , (AS)i ∈ Sn, ∀i
CQ, (AQ)i ∈ Rk ∀i and CL, (AL)i ∈ RnL ∀i are given data. Each of the three inequalities
has a different meaning: XS � 0 means XS ∈ S+

n , XQ ≥Q 0 means that XQ ∈ Qk and
XL ≥ 0 means that each component of XL is nonnegative. It is possible that one or
more of the three parts of (4.1) is not present. If the second-order part is not present,
then (4.1) reduces to the ordinary SDP (3.1) and if the semidefinite part is not present,
then (4.1) reduces to the so-called convex quadratically constrained linear programming
problem.

The standard dual of (4.1) is:

(D′) maximize bT y

subject to

m
∑

i=1

yi(AS)i � CS

m
∑

i=1

yi(AQ)i ≤Q CQ

m
∑

i=1

yi(AL)i ≤ CL. (4.2)

Here, y ∈ Rm is the variable.
In our setting, we may drop the third part of the constraints in (4.1) and its dual

(4.2), since we do not have explicit linear constraints. One natural claim can be made
here: in (1.2) the objective function can be recast as a dual SQLP in three different
ways.

4.1 Formulation III (SQV)

One way to define ‖F − H(h)‖F is

‖F − H(h)‖F = ‖vec(F − H(h))‖2.

So, if we put ‖F − H(h)‖F ≤ t for t ∈ R+, then by the definition of the second-order
cone, we have

[

t
vec(F − H(h))

]

∈ Q1+n2 .

Hence, we have the following reformulation of (1.2):

(SQV ) minimize t,

subject to

[

t 0
0 H(h)

]

� 0

[

t
vec(F − H(h))

]

≥Q 0. (4.3)

4.2 Formulation IV (SQQ)

The second definition is as introduced in Subsection 3.2, i.e.,

‖F − H(h)‖2
F = yT Py + 2qT y + r.
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Hence, we have the following equivalent problem to (1.2)

minimize yT Py + 2qT y + r

subject to H(h) ∈ Hn, H(h) � 0. (4.4)

But
yT Py + 2qT y + r = ‖P 1/2y + P−1/2q‖2

2 + r − qT P−1q.

Now, we minimize ‖F − H(h)‖2
F by minimizing ‖P 1/2y + P−1/2q‖2. Thus we have

the following problem:

(SQQ) minimize t,

subject to

[

t 0
0 H(h)

]

� 0

[

t

P 1/2y + P−1/2q

]

≥Q 0, (4.5)

where t ∈ R+. Again, this problem is in the form of problem (4.2). Here, the difference
between this form and SQV is in the second-order cone constraint since the SDP part is
the same as SQV. The dimension of the second-order cone in SQV is 1 + n2 and in SQQ
is just 2n, which makes us expect less efficiency in practice when we work with SQV. The
optimal value of SQV is the same as that of problem (1.2), whereas the optimal values
of SQQ (4.5) and (4.4) are equal up to a constant. The optimal value of (4.4) is equal
to (ρ∗)2 + r − qT P−1q, where ρ∗ is the optimal value of (4.5). It may be noticed that
we did not talk about the constraint of H(h) being Hankel. This is because the Hankel
structure of H(h) is embedded in the other constraints.

4.3 Formulation V (SQH)

The last formulation will take advantage of the Hankel structure of H(h) explicitly. The
vectorization operator hvec on Hankel matrices, introduced in Section 3 will be used.
From Theorem 3.2, we have the following:

‖F̂ − H(h)‖F = ‖hvec(F̂ − H(h))‖2,

where F̂ = PH(F ) which leads to:

(SQH) minimize t,

subject to

[

t 0
0 H(h)

]

� 0

[

t

hvec(F̂ − H(h))

]

≥Q 0. (4.6)

The dimension of the second-order cone in this form is 2n, the same as that of SQQ.
The optimal solutions of (4.6) and (1.2) are also identical.

Table 4.1 shows the dimensions of the semidefinite part (SD part) and the second-
order cone part (SOC part) for each formulation. For the formulations SDH and SDQ,
the second-order cone part is not applicable, so the cell in the table corresponding to
that is left blank.
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Formulation SD part SOC part
SDV 2n × (n2 + n + 2)
SDH 2n × (3n + 1)
SDQ 2n × (3n + 1)
SQV 2n × (n + 1) n2 + 1
SQQ 2n × (n + 1) 2n
SQH 2n × (n + 1) 2n

Table 4.1: Problem dimensions

In practise, we expect that the mixed formulations are more effecient than the SDP-
only formulations, especially the SQQ and SQH which have second-order cone constraint
of least dimension. The interior point methods for SOCP have better worst-case com-
plexity than an SDP method. However, SDH has a less SDP dimension with no illness
such as that SDQ has, which makes SDH a better choice among other SDP. This is due to
the economical vectorization operator hvec. Practical experiments show a competitive
behaviour of SDH to SQQ and SQH (see Section 5).

5 Numerical Results

We will now present some numerical results comparing the performance of the methods
described in Sections 2, 3 and 4. The first is the projection method and the second is
the interior-point primal-dual path-following method employing the NT-direction. The
latter was used to solve five different formulations of the problem.

A Matlab code was written to implement the modified alternating projection method.
The iteration is stopped when ‖PS(PH(Fj)) − PH(Fj)‖F ≤ 10−8.

Size
Time (sec.)

Pro. SDH SDQ SQH SQQ SQV

10
2 2 1 1 1 1
9 1 1 1 1 1

30
11 5 4 3 4 2
14 5 4 2 2 2

50
117 10 12 5 7 5
30 11 11 4 3 5

100
61 53 64 28 20 28

1003 48 42 22 25 21

200
16239 389 284 324 322 284
4883 355 420 255 268 230

400 36556 4970 3913 3775 4098 2505

Table 5.1: Performance comparison (time) among the projection method and the path-
following method with the formulations SDH, SDQ, SQH, SQQ and SQV.

For the other methods, the software SDPT3 ver. 3.0 [27, 25] was used because of
its numerical stability [14] and its ability to exploit sparsity very efficiently. The default
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Size
Iterations

Pro. SDH SDQ SQH SQQ SQV

10
1253 16 18 14 14 11
6629 18 17 14 14 11

30
1215 34 32 35 47 24
1443 33 33 29 29 20

50
4849 32 41 25 36 24
1295 32 42 22 18 26

100
504 34 45 27 19 26

8310 33 28 23 26 20

200
22672 31 22 33 31 25
6592 28 32 23 27 22

400 7870 28 25 26 26 18

Table 5.2: Performance comparison (number of iterations) among the projection method and
the path-following method with the formulations SDH, SDQ, SQH, SQQ and SQV.

starting iterates in SDPT3 were used throughout with the NT-direction. The choice of
the NT-direction came after some preliminary numerical results. The other direction is
HKM-direction which we found less accurate, although, faster than the NT-direction.
However, the difference between the two in speed is not of significant importance.

The problem was converted into the five formulations described in Sections 3 and 4.
A Matlab code was written for each formulation. This code formulates the problem and
passes it through to SDPT3 for a first time. A second run is done with the optimal iterate
from the first run being the initial point. This process is repeated until no progress is
detected. This is done when the relative gap:

|P − D|
max{1, (|P | + |D|)/2}

of the current run is the same as the preceding one. (Here, P and D denote the optimal
and the dual objective values, respectively).

Our numerical experiments were carried out on eleven randomly generated square
matrices with different sizes, namely: 10, 30, 50, 100 and 200, two for each size and one
of size 400. Each matrix is dense and its entries vary between −100 and 100 exclusively.

All numerical experiments in this section were executed in Matlab 6.1 on a 1.7GHz
Pentium IV PC with 256 MB memory running MS-Windows 2000 Professional.

Table 5.1 compares the CPU time. We notice that the consumed time gets larger
more rapidly in the projection method with the size of the data matrix F . An obvious
remark is that the projection method is the slowest; it is at least seven times slower than
the slowest of the five formulations of the path-following method. However, the difference
in time between the five formulations is not big enough to have a significant importance.

Another clear advantage is in terms of number of iterations as shown in Table 5.2.
Although the amount of work in each iteration is different for each method, it is still fair
to consider it to be a comparison factor.

Table 5.3 shows how close, in Frobenius norm, the optimal solution of each method,
H(h)∗, to the data matrix F . The projection and the path-following methods with the
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Size
Norm

Pro. SDH SDQ SQH SQQ SQV

10
96.6226 96.6226 96.6226 96.6226 96.6226 96.6226
94.8320 94.8320 94.8320 94.8320 94.8320 94.8320

30
307.9339 307.9339 307.9406 307.9339 307.9339 307.9339
327.6784 327.6784 327.6784 327.6784 327.6784 327.6784

50
494.3805 494.3805 494.5038 494.3805 494.3805 494.3805
497.4383 497.4383 497.6330 497.4383 497.4383 497.4383

100
991.8832 991.8832 994.8612 991.8832 991.8832 991.8833
997.4993 997.4993 998.8048 997.4993 997.4993 997.4994

200
1986.9397 1986.9398 1990.0924 1986.9402 1986.9402 1986.9414
1994.8409 1994.8410 1998.6048 1994.8410 1994.8410 1994.8418

400 3998.4967 3998.5047 4001.9242 3998.5007 3998.5007 3998.6166

Table 5.3: Performance comparison (norm ‖H(h)∗ −F‖F ) among the projection method and
the path-following method with the formulations SDH, SDQ, SQH, SQQ and SQV.

Size
Error

SDH SDQ SQH SQQ SQV

10
6.3 × 10−9 3.4 × 10−9 6.1 × 10−9 6.1 × 10−9 1.3 × 10−5

6.4 × 10−9 3.2 × 10−8 3.6 × 10−8 3.6 × 10−8 1.2 × 10−5

30
7.5 × 10−10 6.7 × 10−3 2.6 × 10−8 3.0 × 10−8 9.7 × 10−8

1.6 ×10−9 9.0 × 10−9 2.0 × 10−9 2.0 × 10−9 1.2 × 10−8

50
1.9 × 10−9 1.2 × 10−1 8.9 × 10−9 9.0 × 10−9 2.1 × 10−5

3.7 × 10−9 0.2 7.8 × 10−9 8.0 × 10−9 2.1 × 10−5

100
5.1 × 10−10 3.0 1.8 × 10−8 1.8 × 10−8 1.0 × 10−4

9.2 × 10−10 1.3 5.8 × 10−8 5.8 × 10−8 1.5 × 10−4

200
6.6 × 10−5 3.2 4.4 × 10−4 4.2 × 10−4 1.6 × 10−3

1.1 × 10−4 3.8 9.1 × 10−5 9.1 × 10−5 9.3 × 10−4

400 8.0 × 10−3 3.4 4.0 × 10−3 4.0 × 10−3 1.2 × 10−1

Table 5.4: Performance comparison (error).

formulation SDH, SQH and SQQ gave the same result to some extent. The formulation
SDQ couldn’t cope with the others as the problem size gets larger. The poor performance
of this formulation is due to the matrix P being of full rank. The formulation SQV is
less accurate than SDH, SQH and SQQ which is reasonable especially if we notice that
the dimension of the second-order cone in this formualtion is 1 + n2 (see Table 4.1).

Table 5.4 gives a measure of how close the optimal solutions of SDH, SDQ, SQH,
SQQ and SQV are from that of the projection method which is the most accurate. The
error is computed simply by evaluating the difference between the norm ‖H(h)∗−F‖F of
the projection and the norm obtained by the different formulations of the path-following
method.
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6 Conclusions

The projection method, despite its accuracy, is very slow. On the other hands, the path-
following method with SDH and SQQ formulations is very fast, sometimes more than
40 times faster than the projection method (see Table 5.1 when n = 200), and gives
results of acceptable accuracy. The SQH, SQQ and SQV formulations did not gain any
considerable advantage out of solving our problem as a mixed semidefinite and second-
order cone problem. This can be seen clearly by noticing the good performance of the
formulation SDH, which solves the problem as a semidefinite program. However, it is well
known that positive definite Hankel matrices are extremely ill-conditioned; the optimal
condition number for these matrices grows exponentially with the size of the matrix
[7]. Therefore, computing the spectral decomposition (projection method) or solving the
underlying linear systems (SDP/SOCP methods) might be numerically impractical.
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