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Preface

Many theoretical results and methodologies developed for systems sciences and optimiza-
tion are now found very useful in dealing with nonlinear dynamics and system theory as
well as their high technology applications. These areas of research are interdisciplinary in
nature with great potentials for high technology applications. In view of this the Guest
Editors had made a call for high quality papers to be submitted to this special issue,
where system science and optimization approaches are to be used in dealing with topics
in nonlinear dynamics and system theory as well as their high technology applications.
This is therefore the theme of this Special Issue:

System Science and Optimization Approaches to Nonlinear Dynamics and

Systems Theory with High Technology Applications (2)

With this aim in mind, the goal of the special issue is to provide an international
forum for scientists, researchers, and practitioners from both academia and industry
to present their latest research findings and state-of-the-art solution methods in areas
related to the theme of the Special Issue.

Scientists from many countries and regions — Australia, China, Greece, Hong Kong,
Japan, India, Saudi Arabia, USA and Vietnam — accepted the invitation of the Guest
Editors to submit papers for the Special Issue of the Journal. They all went through
a rigorous refereeing process with at least two independent referees for each submitted
paper. The number of the submitted papers exceed substantially the size of one issue, and
we decided to publish two special issues. Topics included in these papers are modelling,
design analysis, simulation, optimization, performance evaluation, intelligent information
and technology, nonlinear stochastic systems, and optimal control. Applications involved
include communication networks, engineering and management systems, computer and
information technology, and knowledge management.

The completion of this volume would not have been possible without the assistance
of many of our colleagues. We wish to express our sincere appreciation to all those
who helped. We are deeply grateful to our referees who provided prompt and extensive
reviews for all submissions. Their constructive comments contributed to the quality
of the volume. In particular, we wish to thank Editor-in-Chief, Professor Anatolii A.
Martynyuk for his kind cooperation and support. Our special thank also go to Mrs. Lisa
Holling for her help during the editing process of this Special Issue. Last but not least,
we wish to thank those authors who responded to our call for papers by submitting their
papers to be considered for possible publication in this Special Issue.

Wuyi Yue1 and Kok Lay Teo2 – Guest Editors

1Department of Information Science and Systems Engineering, Konan University, 8-9-1 Okamoto,
Higashinada-ku, Kobe 658-8501, Japan. E-mail: yue@konan-u.ac.jp

2Department of Mathematics and Statistics, Curtin University of Technology, GPO Box U1987, Perth,
Western Australia 6845, Australia. E-mail: K.L.Teo@curtin.edu.au

c© 2007 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua v
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Prior-free Inference for Objective Bayesian Analysis

and Model Selection

Koki Kyo ∗

School of Agriculture,

Obihiro University of Agriculture and Veterinary Medicine,

Inada-cho, Obihiro, Hokkaido 080-8555, Japan

Received: April 18, 2005; Revised: December 25, 2005

Abstract: A new approach to Bayesian inference, named the prior-free in-

ference, is introduced for developing objective Bayesian analysis based on
information-theoretic approach. This new approach is essentially a Bayesian
method but it does not depend on a prior distribution for unknown parameters.
Thus, this approach not only has the advantages of the Bayesian approach but
also can avoid the difficulty, the traditional Bayesian approach encounters due
to a lack of prior information. Several examples are illustrated to show the
procedure and the performance of the prior-free inference. A new information
criterion, named prior-free information criterion (PFIC), is introduced as an
extension of the procedure of the prior-free inference. Then, minimum PFIC
method for model selection is developed based on the use of PFIC. Simulation
results show that the minimum PFIC method performs very well.

Keywords: Non-informative priors; prior-free inference; objective Bayesian analy-

sis; model selection; information criterion.

Mathematics Subject Classification (2000): 62B10, 62F15.

1 Introduction

A necessary condition of the traditional Bayesian analysis is the use of a prior distribution.
As pointed out by Akaike [3], however, in practical applications of Bayesian analysis
the available prior information is not usually sufficient to completely specify the prior
distribution. For that reason, various procedures of objective Bayesian inference using
non-informative or ignorance priors have been developed.

The pioneers in the accomplishment of Bayesian analysis such as Bayes and Laplace
developed Bayesian procedure using uniform prior distribution for objectivity [4, 25].

∗ Corresponding author: x.q.jiang@m2.dion.ne.jp

c© 2007 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 1



2 KOKI KYO

However, sometimes such procedure encounters difficulties because of a lack of invari-
ance under transformation of unknown parameters [15]. Fisher did not accept Bayesian
procedure mainly due to the use of uniform prior distribution, he attempted to make
statistical inference by proposing the concept of inverse probability and his fiducial ap-
proach [12, 13, 14]. Essentially, Fisher’s fiducial approach is somewhat in the category of
Bayesian, but it is not necessary to suppose a prior distribution. Unfortunately, Fisher’s
fiducial approach ultimately cannot be achieved as a systematized methodology for sta-
tistical inference.

Criticisms of the use of uniform prior distribution caused Jeffreys to develop his
ignorance prior distribution [16]. The definition of Jeffreys prior is based on the concept
of invariance of the distribution by a transformation of unknown parameters. Lindley
applied Shannon entropy to introduce an information-theoretic analysis of the structure
of Bayesian modeling [28]. Zellner and Bernardo developed objective Bayesian procedures
using the maximal data information prior distribution and the reference prior distribution
respectively [33, 34, 7]. These work prompted the work by Akaike on the problem of
specifying a prior distribution over a finite number of data distributions [3].

The main concern with objective Bayesian procedures is that they often utilize im-
proper prior distributions, and so do not automatically have desirable Bayesian proper-
ties, such as coherency [31]. Also, the use of improper priors may lead to some difficulties
of utilizing information-theoretic approach to identification of priors. Thus recent studies
of objective Bayesian procedures are mostly about to ensure that such problems do not
arise [6, 8].

In this paper, we attempt to contribute to objective Bayesian theory by developing a
new approach which is called prior-free inference. The remainder of the paper is organized
as follows. In Section 2 we explain the procedural and mathematical background and
motivation of the present study. In Section 3 we show the procedure of the prior-free
inference and related theoretic results. In Section 4 we illustrate the procedure and the
performance of the prior-free inference by several examples. In Section 5 we develop a
methodology for model selection based on the prior-free inference. Finally, concluding
remarks are given in Section 6.

2 Settings and motivation

2.1 Settings

In the present paper, we attempt to introduce a new approach to Bayesian infer-
ence for a vector, θ = (θ1, θ2, . . . , θk)t, of k continuous parameters. Let X(1 : n) =
{X1, X2, . . . , Xn} be a sample of size n with each Xi being univariate continuous ran-
dom variable, where n > k. Generally, suppose we have a statistical model of X(1 : n)
given θ that is defined by a joint probability density fX(1:n)(x(1 : n)|θ). Based on
fX(1:n)(x(1 : n)|θ) we can obtain a model density of Xi in the conditional density form,
fXi

(xi|x(1 : i−1), θ), given the observations x(1 : i−1) = {x1, x2, . . . , xi−1} ofX(1 : i−1)
for i = 1, 2, . . . , n. Thus, by defining fX1(x1|x(1 : 0), θ) = fX1(x1|θ), the model density
fX(1:n)(x(1 : n)|θ) can be expressed by

fX(1:n)(x(1 : n)|θ) = fX1(x1|θ)fX2(x2|x(1 : 1), θ) · · · fXn
(xn|x(1 : n− 1), θ). (1)

For the sake of further discussion, we introduce the definition of “support”. The
concept of support can be found in [26] and [32]. For a density function u(x) of X , its
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support is defined by the set S(u) = {x;u(x) > 0}. Further, for a conditional density
function v(x|y) of X given y, its support is defined by the set S(v|y) = {x : v(x|y) > 0}.

In Bayesian approach, the parameter vector θ can be regarded as a vector of given
values of k random variables, say Θ = (Θ1,Θ2, . . . ,Θk)t. It is required to set up an
initial probability distribution, called the prior distribution, for Θ. Let π(θ) be a prior
density, and denote by fΘ(θ|x(1 : k)) the corresponding posterior density or post data
density for Θ given x(1 : k). We have the following relation between the prior density
and the post data density:

fΘ(θ|x(1 : k))h(x(1 : k)) = π(θ)fX(1:k)(x(1 : k)|θ), (2)

where h(x(1 : k)) denotes the marginal density of X(1 : k).
Let S(π) and S(h) be the supports of π(θ) and h(x(1 : x)), respectively. Denote

by S(fΘ|x(1 : k)) the support of fΘ(θ|x(1 : k)) for x(1 : k) ∈ S(h), and denote by
S(fX(1:k)|θ) that of fX(1:k)(x(1 : k)|θ) for θ ∈ S(π). For a likelihood oriented inference,
it is unnecessary to consider a value of θ ∈ S(π) that leads to fX(1:k)(x(1 : k)|θ) = 0. So,
from equation (2) we can bring the equality S(π) = S(fΘ|x(1 : k)) for x(1 : k) ∈ S(h).
Similarly, we can also assume that S(h) = S(fX(1:k)|θ) for θ ∈ S(π). Suppose that both
of the prior density π(θ) and the post data density fΘ(θ|x(1 : k)) are proper. Then, we
can obtain the marginal density of X(1 : k) as

h(x(1 : k)) =

∫

S(π)

fX(1:k)(x(1 : k)|θ)π(θ)dθ, (3)

which is also a proper density. From equation (2), we obtain the post data density by

fΘ(θ|x(1 : k)) =
fX(1:k)(x(1 : k)|θ)π(θ)

h(x(1 : k))
, (4)

which is called Bayes’ theorem (see [9]).
Bayes’ theorem allows us to continuously update information about Θ as more ob-

servations are obtained. Now, let fX(k+1:n)(x(k+ 1 : n)|x(1 : k), θ) be the model density
for X(k + 1 : n) = {Xk+1, Xk+2, . . ., Xn} given x(1 : k) and θ. Then, we can obtain the
post data density for Θ given x(1 : n) as

fΘ(θ|x(1 : n)) =
fX(k+1:n)(x(k + 1 : n)|x(1 : k), θ)fΘ(θ|x(1 : k))

g(x(k + 1 : n)|x(1 : k))
, (5)

where g(x(k + 1 : n)|x(1 : k)) =
∫
S(π)

fX(k+1:n)(x(k + 1 : n)|x(1 : k), θ)fΘ(θ|x(1 : k))dθ.

The expression (5) is precisely of the same form as equation (4) except that fΘ(θ|x(1 :
k)) plays the role of the prior density for the succeeding observations x(k + 1 : n).
Obviously, this process can be repeated times. Thus, Bayes’ theorem describes the
process of updating the distribution of Θ as learning from data. As pointed out by Zellner
[35], information processing based on Bayes’ theorem does not cause loss of information.
In this paper, we call fΘ(θ|x(1 : k)) and fΘ(θ|x(1 : n)) the initial and the final post data
density, respectively.

Bayesian approach gives a basis for inference not only on unknown parameters but
also on any unobserved random variable that follows a probability distribution depending
on the parameters. In the concrete, for unobserved random variables, say Y , that follow
the model density fY (y|x(1 : n), θ), the predictive density fY (y|x(1 : n)) of Y is given by

fY (y|x(1 : n)) =

∫

S(π)

fY (y|x(1 : n), θ)fΘ(θ|x(1 : n))dθ. (6)
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From the above observations, we can see that the cruxes of the traditional Bayesian
analysis are the model density for observed data and the prior density for the parameters.
The model density and the prior density are as two inputs for Bayesian information pro-
cessing [35], but it may be true that the model density should precedes the prior density,
because without model density there can be no parameters hence it is not necessary to
consider a prior density. In scientific research, setting up hypotheses is the main subject
for researchers, the model (or a set of contending models) for observed data may be con-
structed along with the hypotheses. However, it may be more difficult to have knowledge
about the parameters in the constructed model before analyzing the observed data.

2.2 Motivation

It can be seen from the discussion in Subsection 2.1 that a feature of the traditional
Bayesian approach is the prior-dependency. It leads to a difficulty in applications of
Bayesian inference when the prior information is unavailable. This difficulty may be
fatal for most situations of scientific research and it is also the main cause of criticism to
Bayesian statistics. As pointed out by [11], “The Bayesian methodology, while enjoying
good properties (e.g., admissibility and consistency), is peculiar, in that it requires the
user to postulate a prior distribution that is basically as complex as the quantities being
inferred, if not more so”. There are a number of studies on evaluating priors by using
model and observed data, e.g., Zellner [33, 34, 36], Bernardo [7], Akaike [2], Jaynes [15],
Chuaqui [10], Berger and Bernardo [6], Berger [5], Li and Vitanyi [27]. Such approaches
have provided solutions to mitigate the difficulty of the traditional Bayesian analysis.

In order to overcome the difficulty of the traditional Bayesian analysis caused by a lack
of prior information, a new approach to objective Bayesian analysis will be introduced
in the present paper. The main feature of this approach is that it is free of dependence
on a prior distribution. Thus, we call Bayesian inference based on this approach prior-

free inference. Contrastively, we call Bayesian inference beginning with construction of
priors the traditional Bayesian approach. An outline of the prior-free inference is shown
in [17] by the name of self-concluding inference, and it was further developed in [18].
Main results on information-theoretic approach to the prior-free inference were given in
[19], and an application of the prior-free approach to estimation and identification of
regression models was given in [20]. The key idea of the prior-free inference is as follows.
The presupposition of the prior-free inference is that we have a model density for the
observed data. As the first stage of the procedure, we derive an initial post data density
fΘ(θ|x(1 : k)) of Θ given x(1 : k), from the given model density for X(1 : k) directly.
Then, in the second stage we apply fΘ(θ|x(1 : k)) as the prior density for the observations
of the remaining sample X(k+ 1 : n) to obtain the final post data density fΘ(θ|x(1 : n))
by using Bayes’ theorem.

The similarity between the prior-free inference approach and the reference priors
approach is that both of these two approaches are developed based on an information-
theoretic viewpoint. As will be mentioned in Section 3, however, for an improper prior
density the Lindley’s criterion functional, which lays the foundations of the reference
priors approach, cannot be well-defined. Unfortunately, in objective Bayesian analysis the
prior is obtained frequently in an improper form. This difficulty is avoided by introducing
a new criterion functional which is utilized as the foundations of the prior-free inference
approach.

Now, the model selection is always an important problem in statistical analysis. When
several contending models are constructed, it is required to evaluate each model and select
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one as the best among them. In the present paper, a methodology for model selection is
also developed as a natural extension of the prior-free inference.

3 Prior-free inference

3.1 Definition of inferential functions

First of all, we define a set of probability integral transformations as

ϕi(x(1 : i), θ) =

∫
xi

−∞

fXi
(t|x(1 : i− 1), θ)dt (7)

for i = 1, 2, . . . , k. Obviously, the quantity ϕi(x(1 : i), θ) defined by equation (7) is a
function of x(1 : k) and θ.

In the case that x(1 : k) are given, the quantity ϕi(x(1 : i), θ) defined by equation (7)
becomes a function of θ only, so we express it as follows:

zi = zi(θ) = ϕi(x(1 : i), θ)|x(1:i) (i = 1, 2, . . . , k). (8)

Further, when θ is replaced with Θ, a new vector of random variables, say

Z = (Z1, Z2, . . . , Zk)t = (z1(Θ), z2(Θ), . . . , zk(Θ))t, (9)

is defined. The functions defined by equation (9) together with equations (7) and (8)
are important for the procedure of the prior-free inference, we call them the inferential

functions.
Let fZ(z|x(1 : k) be a post data density for Z given x(1 : k), and let S(fZ |x(1 : k))

denote its support. The inferential functions can be regarded as a set of transformations
from S(π) to S(fZ |x(1 : k)) with

J = (
∂zi

∂θj

) (10)

being the Jacobian matrix. When both x(1 : i) and θ are given zi is the cumulative
probability, hence we can see that S(fZ |x(1 : k)) ⊆ [0, 1]× [0, 1] × · · · × [0, 1].

For given x(1 : k) we call inferential functions informative if they satisfy the following
conditions:

(C1) The partial differential, ∂zi

∂θj
, is a continuous function of θ at all points of S(π) for

i, j = 1, 2, . . . , k.

(C2) The Jacobian matrix defined by equation (10) is a nonsingular matrix at all points
of S(π).

When inferential functions are informative, they play the role of one-to-one transfor-
mations between S(π) and S(fZ |x(1 : k)). Thus, they have a property shown by the
following lemma (see Appendix A for proof):

Lemma 3.1 If the inferential functions are informative, then the quantity defined by

λ =

∫

S(π)

| det(J)|dθ (11)

satisfies the inequality 0 < λ ≤ 1, where det(J) denotes the determinant of the Jacobian

matrix defined by equation (10), and | det(J)| denotes its absolute value.
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We can classify the informative inferential functions into two types. For the quantity λ
defined by equation (11), the informative inferential functions are called fully informative

if λ = 1, and they are called partially informative if 0 < λ < 1. It can be verified that if the
inferential functions are fully informative, then S(fZ |x(1 : k)) = [0, 1]× [0, 1]×· · ·× [0, 1];
and if they are partially informative, then S(fZ |x(1 : k)) ⊂ [0, 1]× [0, 1] × · · · × [0, 1]. If
the inferential functions are informative under x(1 : k), then the initial post data density
fΘ(θ|x(1 : k)) for Θ can be defined in terms of the post data density fZ(z|x(1 : k)) for
Z by

fΘ(θ|x(1 : k)) = fZ(z|x(1 : k)) | det(J)|. (12)

Thus, we can determine fΘ(θ|x(1 : k)) through fZ(z|x(1 : k)).

3.2 Determination of initial post data density

In this subsection, we show how to determine the post data density fZ(z|x(1 : k)) for
Z, or equivalently the initial post data density fΘ(θ|x(1 : k)) for Θ, by utilizing an
information-theoretic approach.

For random variable Y , which is possibly multivariate, let u(y) and v(y) be two density
functions, the Kullback-Leibler information of u(y) with respect to v(y) is defined by

IK(u; v) =

∫
ln{

u(y)

v(y)
}u(y)dy. (13)

It is well-known that IK(u; v) ≥ 0, and IK(u; v) = 0 if and only if v(y) = u(y) almost
everywhere. IK(u; v) is as a functional of u(y) and v(y) that measures the “distance”
between u(y) and v(y) by regarding v(y) as the reference distribution. If the reference
distribution v(y) is improper and u(y) is proper, then the probability measures defined
on u(y) and v(y) cannot be absolutely continuous with respect to one another, hence
IK(u; v) cannot be finite (see [24]). Thus, IK(u; v) must be infinite as long as v(y) is
improper.

Lindley applied the Kullback-Leibler information to Bayesian inference in order to in-
troduce his criterion functional [28]. By the notation, an expression of Lindley’s criterion
functional is given by

FL(π|fX(1:k)) =

∫

S(hX(1:k))

IC

K
(fΘ;π|x(1 : k))hX(1:k)(x(1 : k))dx(1 : k), (14)

which measures the missing information about Θ for a given model density. In equation
(14),

IC

K(fΘ;π|x(1 : k)) =

∫

S(π)

ln{
fΘ(θ|x(1 : k))

π(θ)
}fΘ(θ|x(1 : k))dθ (15)

is the Kullback-Leibler information between fΘ(θ|x(1 : k)) and π(θ) given x(1 : k) ∈

S(h). Bernardo [7] developed his reference priors approach that derives a prior density
as a solution to maximizing FL(π|fX(1:k)). In [7], such solution is regarded as a prior
that describes vague initial knowledge about θ.

Obviously, by definition we have

FL(π|fX(1:k)) = IK(s; t), (16)
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where

s(x(1 : k), θ) = fΘ(θ|x(1 : k))h(x(1 : k)), (17)

t(x(1 : k), θ) = π(θ)h(x(1 : k)). (18)

As shown in equations (17) and (18), s(x(1 : k), θ) denotes the joint density for X(1 : k)
and Θ under the assumption that X(1 : k) and Θ are correlated, and t(x(1 : k), θ) is that
for X(1 : k) and Θ under the assumption that X(1 : k) and Θ are independent of each
other. So, Lindley’s criterion functional measures the distance between s(x(1 : k), θ) and
t(x(1 : k), θ) by regarding t(x(1 : k), θ) as the reference distribution. In the traditional
Bayesian approach, if the model density is given, then both of the initial post data density
and the marginal density for X(1 : k) are as functionals of the prior density, hence both
of s(x(1 : k), θ) and t(x(1 : k), θ) are functionals of the prior density π(θ). Therefore, the
Lindley’s criterion functional FL(π|fX(1:k)) is as a functional of the prior density.

A result given in [19] shows that it may be difficult to specify a prior as a solution to
maximizing the Lindley’s criterion functional. This fact prompts us to introduce another
criterion functional for specifying an initial post data density. The newly-introduced
criterion functional is defined by

F (fΘ, π|fX(1:k)) =

∫

S(hX(1:k))

IC

K(π; fΘ|x(1 : k))hX(1:k)(x(1 : k))dx(1 : k), (19)

where

IC

K(π; fΘ|x(1 : k)) =

∫

S(π)

ln{
π(θ)

fΘ(θ|x(1 : k))
}π(θ)dθ (20)

defines the Kullback-Leibler information between π(θ) and fΘ(θ|x(1 : k)) given x(1 :
k) ∈ S(h). It is obvious that

F (fΘ, π|fX(1:k)) = IK(t; s) (21)

under the definitions in equations (17) and (18). The criterion functional F (fΘ, π|fX(1:k))
measures the distance between s(x(1 : k), θ) and t(x(1 : k), θ) by regarding s(x(1 :
k), θ) as the reference distribution. In the prior-free inference, we consider the criterion
functional F (fΘ, π|fX(1:k)) as a functional not only for the prior density but also for the
initial post data density because we attempt to determine the initial post data density
directly by maximizing F (fΘ, π|fX(1:k)) for a given model density and any fixed prior
density.

Perhaps, the intention to specify a prior by maximizing the Lindley’s criterion func-
tional is to make inference by using the traditional Bayesian approach with the most
vague prior. Contrastively, the intention to obtain an initial post data density by max-
imizing the newly-introduced criterion functional is that we attempt to make post data
inference by using the information contained in x(1 : k) to the maximum for a given
model density and any fixed prior density that is regarded as a non-informative prior.
Obviously, the greater the value of F (fΘ, π|fX(1:k)) the larger the information about Θ
contained in x(1 : k). Therefore, in order to obtain an initial post data density that
has maximal information contained in x(1 : k), we derive the initial post data density
directly by maximizing F (fΘ, π|fX(1:k)). As a theoretical finding, we have the following
theorem (see Appendix B for proof):
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Theorem 3.1 Under equation (4), if the inferential functions are informative, then

the criterion functional F (fΘ, π|fX(1:k)) may have the following two maximizers:

f
(1)

Θ
(θ|x(1 : k)) =

1

ψ
, (22)

f
(2)

Θ
(θ|x(1 : k)) =

1

λ
| det(J)|, (23)

for a given model density of X(1 : k) and any fixed prior density that is proper, where

ψ =
∫
S(π)

dθ is a constant, and λ is calculated by using equation (11).

Note that the both of these two maximizers of the criterion functional F (fΘ, π|fX(1:k))
are free of dependence on the prior density.

Now, we have to choose one from the above alternative solutions to maximizing the
criterion functional F (fΘ, π|fX(1:k)). We employ here the concept of information. For
given x(1 : k) the information of the initial post data density fΘ(θ|x(1 : k)) is defined by

I(fΘ|x(1 : k)) =

∫

S(π)

ln{fΘ(θ|x(1 : k))}fΘ(θ|x(1 : k))dθ. (24)

I(fΘ|x(1 : k)) defined by equation (24) can be regarded as the negative conditional
entropy of Θ with respect to fΘ(θ|x(1 : k)). The greater value of I(fΘ|x(1 : k)) means
that we have larger value of information to predict the value of Θ based on x(1 : k). It
is desirable to find an initial post data density that maximizes the criterion functional
F (fΘ, π|fX(1:k)), and leads to a larger value of I(fΘ|x(1 : k)). The following theorem
gives us a strategy of determining the initial post data density (see Appendix C for
proof):

Theorem 3.2 Under the condition that the initial post data density is proper, we

have

I(f
(2)

Θ
|x(1 : k)) ≥ I(f

(1)

Θ
|x(1 : k)), (25)

where I(f
(1)

Θ
|x(1 : k)) and I(f

(2)

Θ
|x(1 : k)) denote the values of information I(fΘ|x(1 : k))

corresponding to equations (22) and (23), respectively.

Theorem 3.2 together with Theorem 3.1 implies that it is a better strategy to deter-
mine the initial post data density by using equation (23).

3.3 General procedure

Suppose we have observations x(1 : n) for a sample X(1 : n) of size n, and the model
density for X(1 : n) is given by equation (1). Assume that we can ensure that the
inferential functions are informative under x(1 : k) by an appropriate permutation of
the observations x(1 : n). Based on the results obtained in the previous subsection, we
obtain a general procedure for the prior-free inference as follows:

Firstly, we calculate the initial post data density fΘ(θ|x(1 : k)) by using equation (23)
together with equation (11). Then, we utilize fΘ(θ|x(1 : k)) as the prior density for the
remaining observations x(k+1 : n), and obtain the final post data density fΘ(θ|x(1 : n))
by using equation (5). Finally, if it is necessary we compute the predictive density for
an unobserved random quantity Y that has the model density fY (y|x(1 : n), θ) by using
equation (6).
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The reason to carry out the prior-free inference by using the two stage constructions
of the post data density is as follows: In the stage of determining the initial post density,
there may be information loss due to a lack of prior information. The information loss
can be minimized by using the proposed procedure. In the stage of calculating the final
post density, the information contained in the additional observations x(k + 1 : n) can
be fully employed, because the use of Bayes’ theorem. Thus, it is desirable to save the
observations for the second stage as many as possible. It should be emphasized that the
number k of observations used in the first stage is the minimum requirement for ensuring
the inferential functions to be informative.

3.4 Comparison between criterion functionals

It can be seen that the newly-introduced criterion functional, defined by equation (19)
together with equation (20), lays the foundations of the frior-free inference. To show the
necessity for introducing it instead of the Lindley’s criterion functional, we compare the
properties of these two criterion functionals as follows:

Firstly, as is shown in Theorem 3.1 and Theorem 3.2, the newly-introduced criterion
functional is concave with respect to the initial post data density fΘ(θ|x(1 : k)) for
a given model density and any fixed prior density that is proper. It was shown in
[19], however, Lindley’s criterion functional identically equals zero under some regular
conditions. So, it seems to be difficult to specify a prior density by maximizing Lindley’s
criterion functional.

Secondly, the Bernardo’s reference prior approach may lead to improper priors when
at least one end point of the support of the prior density is not finite. In such case,
a difficulty will arise because the Lindley’s criterion functional cannot be well-defined.
But this difficulty does not arise in the proposed approach because the maximizer of the
newly-introduced criterion functional is free of independence on a prior, so the newly-
introduced criterion functional can be defined well on any fixed prior density as long as
it is proper.

Finally, as mentioned in Subsection 3.2 both of s(x(1 : k), θ) and t(x(1 : k), θ),
defined by equations (17) and (18) respectively, are functionals of the prior density π(θ),
so from equation (16) we can see that the Lindley’s criterion functional is a more intricate
functional of the prior. Thus, its maximization may be complicated. On the other hand,
for a given model density and any fixed prior, t(x(1 : k), θ) does not depend on the initial
post data density. Thus, from equation (21) it is can be seen that the newly-introduced
criterion functional is defined as a functional of the initial post data density with a simple
structure, so that it can be easy to be manipulated.

3.5 Special procedure for separable models

Let U(1 : n) = {U1, U2, . . . , Un} be a sample for a random variable U . Suppose U(1 : n)
follows model density fU(1:n)(u(1 : n)|θ) with θ being a k-dimensional vector of param-
eters. We consider partition of the sample, U(1 : n) = {U(1 : m), U(m + 1 : n)},
and partition of the parameter vector, θ = {θ(1), θ(2)}, with the dimension of θ(1) being
ℓ (< k) for ℓ ≤ m < n and k − ℓ < n − m. If the model density for U(1 : n) can be
expressed by the form

fU(1:n)(u(1 : n)|θ) = fU(1:m)(u(1 : m)|θ(1), θ(2))fU(m+1:n)(u(m+ 1 : n)|θ(2)), (26)
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then we say that the model density fU(1:n)(u(1 : n)|θ) is separable. The feature of

the model in equation (26) is that the model density fU(m+1:n)(u(m + 1 : n)|θ(2)) for

U(m+ 1 : n), depends only on θ(2).
We can obtain the post data density fΘ(2)(θ(2)|u(m+ 1 : n)) for Θ(2), given u(m+ 1 :

n), and obtain the post data density fΘ(1)(θ(1)|u(1 : m), θ(2)) for Θ(1), given u(1 : m) and
θ(2) by using the procedure of the prior-free inference separately. Then, the post data
density for Θ can be obtained successively by

fΘ(θ|u(1 : n)) = f
Θ(1)(θ(1)|u(1 : m), θ(2))f

Θ(2)(θ(2)|u(m+ 1 : n)).

Further, when the sample U(1 : n) for U is obtained from another sample, say X(1 : n),
for random variable X through a one-to-one transformation

U(1 : n) = ψ(X(1 : n)), (27)

the model density of U(1 : n) can be derived from that of X(1 : n) by

fU(1:n)(u(1 : n)|θ) = fX(1:n)(x(1 : n)|θ)|(
∂ui

∂xj

)|−1, (28)

where ( ∂ui

∂xj
) denotes the Jacobian matrix of the transformation (27). If the model density

fU(1:n)(u(1 : n)|θ) in equation (28) can be expressed by the separable form expressed by
equation (26), then we say the model density for X(1 : n) separable.

Sometimes, we can simplify the process of obtaining inferential results through a
separated form for a separable model. For illustration we show the following example:

Example 3.1 Consider X(1 : n) as a sample that each Xi is independently dis-
tributed with the same normal density

fXi
(xi|θ) =

1
√

2πσ2
exp{−

(xi − µ)2

2σ2
}, −∞ < xi <∞ (i = 1, 2, . . . , n),

where θ = (µ, σ)t denotes the parameter vector with µ and σ being the mean and the
standard deviation. We obtain the values u(1 : n) for U(1 : n) by using the transformation

(u1, u2, . . . , un)t = H(x1, x2, . . . , xn)t, (29)

where H denotes the Helmert matrix defined by

H =




1√
n

1√
n

· · · · · · · · ·
1√
n

1√
1×2

−
1√
1×2

0 · · · · · · 0
1√
2×3

1√
2×3

−
2√
2×3

0 · · · 0
...

...
...

...
. . .

...
...

...
...

... 0
1

√

(n−1)n

1
√

(n−1)n
· · · · · ·

1
√

(n−1)n
−

n−1
√

(n−1)n




.

It can be verified that from the model density of X(1 : n), the first part U(1 : 1) = U1 of
the sample U(1 : n) follows the model density

fU(1:1)(u1|µ, σ) =
1

√

2πσ2
exp{−

(u1 −

√

nµ)2

2σ2
}, −∞ < u1 <∞, (30)
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and for i = 2, 3, . . . , n, each Ui follows the model density

fUi
(ui|σ) =

1
√

2πσ2
exp{−

u2

i

2σ2
}, −∞ < ui <∞

independently. That is, U(2 : n) depends only on σ, its model density is given by

fU(2:n)(u(2 : n)|σ) =
1

(
√

2πσ2)n−1
exp{−

∑n

i=2
u2

i

2σ2
}. (31)

So, we can see that U(1 : 1) and U(2 : n) are independent of each other, hence the model
density for U(1 : n) can be expressed by the separated form

fU(1:n)(u(1 : n)|θ) = fU(1:1)(U(1 : 1)|µ, σ)fU(2:n)(u(2 : n)|σ).

Since the transformation defined by equation (29) is an orthogonal transformation, we
have

fU(1:n)(u(1 : n)|θ) = fX(1:n)(x(1 : n)|θ).

Therefore, the model density for X(1 : n) is separable.

4 Illustrations

Several examples are given in the present section in order to illustrate the procedure and
performance of the prior-free inference.

4.1 Examples for single parameter case

In this subsection, we show three examples for the case that the model density is defined
on a single parameter. In this case, we put k = 1, thus θ = θ1, z = z1 and so forth.

Example 4.1 Let X(1 : n) be a sample that each Xi is independently distributed
with the same normal density

fXi
(xi|θ) =

1
√

2π
exp{−

(xi − θ)2

2
}, −∞ < xi <∞ (i = 1, 2, . . . , n),

where θ ∈ (−∞,∞) is the mean as an unknown parameter. Given x1, the inferential
function is defined by

z = ϕ(x1, θ)|x1 =

∫
x1

−∞

1
√

2π
exp{−

(t− θ)2

2
}dt. (32)

For a given value of θ ∈ (−∞,∞), v = t− θ → −∞ as t→ −∞. Thus, we have

z =

∫ x1−θ

−∞

1
√

2π
exp{−

v2

2
}dv.

Hence,

∂z

∂θ
= −

1
√

2π
exp{−

(θ − x1)
2

2
},

λ =

∫ ∞

−∞

|

∂z

∂θ
|dθ =

∫ ∞

−∞

1
√

2π
exp{−

(θ − x1)
2

2
}dθ = 1.
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It shows that the inferential function defined by equation (32) is fully informative. There-
fore, from equations (23) and (11) we obtain the initial post data density for Θ as

fΘ(θ|x1) =
1

√

2π
exp{−

(θ − x1)
2

2
}, −∞ < θ <∞.

Moreover, from equation (5) the final post data density for Θ is given by

fΘ(θ|x(1 : n)) =

√
n

2π
exp{−

n (θ − x̄)2

2
},

where x̄ = 1

n

∑n

i=1
xi is the sample mean.

Incidentally, for an unobserved random variable Y which follows the normal density

fY (y|θ) =
1

√

2π
exp{−

(y − θ)2

2
}, −∞ < y <∞,

we obtain the predictive density as

fY (y|x(1 : n)) =

∫ ∞

−∞

fY (y|θ)fΘ(θ|x(1 : n))dθ

=

√
n

2π(n+ 1)
exp{−

n(y − x̄)2

2(n+ 1)
}, −∞ < y <∞.

It shows that Y ∼ N(x̄,
√

n+1

n
) for given x(1 : n).

Example 4.2 Let X(1 : n) be a sample, and suppose each Xi is independently
distributed with the same normal density

fXi
(xi|θ) =

1
√

2πθ2
exp{−

x2

i

2θ2
}, −∞ < xi <∞ (i = 1, 2, . . . , n),

where θ denotes the standard deviation as an unknown parameter. Assume that x1 6= 0,
we define the inferential function as

z = ϕ(x1, θ)|x1 =

∫ x1

−∞

1
√

2πθ2
exp{−

t2

2θ2
}dt. (33)

For a given value of θ ∈ (0,∞), t

θ
→ −∞ as t→ −∞. So, we have

∂z

∂θ
= −

|x1|

√

2πθ2
exp{−

x2

1

2θ2
}.

Hence,

λ =

∫ ∞

0

|

∂z

∂θ
|dθ =

∫ ∞

0

|x1|

√

2πθ2
exp{−

x2

1

2θ2
}dθ =

1

2
.

It shows that the inferential function defined by equation (33) is partially informative.
From equations (23) and (11) we obtain the initial post data density of Θ as

fΘ(θ|x1) =

√
2

π

|x1|

θ2
exp{−

x2

1

2θ2
}, 0 < θ <∞.
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Further, from equation (5) the final post data density for Θ is obtained as

fΘ(θ|x(1 : n)) =
(
∑n

i=1
x2

i
)n/2

2(n−2)/2Γ(n/2)

1

θn+1
exp{−

∑n

i=1
x2

i

2θ2
}.

For an unobserved random variable Y which follows the normal density

fY (y|θ) =
1

√

2πθ2
exp{−

y2

2θ2
}, −∞ < y <∞,

we obtain the predictive density as

fY (y|x(1 : n)) =

∫ ∞

−∞

fY (y|θ)fΘ(θ|x(1 : n))dθ

=
4
√

π

Γ((n+ 1)/2)

Γ(n/2)

( ∑n

i=1
x2

i∑
n

i=1
x2

i
+ y2

)n/2

, −∞ < y <∞.

Example 4.3 Assume that X(1 : n) is a sample which each Xi is independently
distributed with the same uniform density

fXi
(xi|θ) =

1

θ
, 0 ≤ xi < θ (i = 1, 2, . . . , n),

where θ ∈ (0,∞) denotes the upper limit which is regarded as an unknown parameter.
Given x1, the inferential function is defined by

z = ϕ(x1, θ)|x1 =

∫ x1

0

fX(t|θ)dt =

∫ x1

0

1

θ
dt =

x1

θ
, θ ∈ (x1,∞). (34)

Then, we have
∂z

∂θ
= −

x1

θ2
,

hence,

λ =

∫ ∞

x1

|

∂z

∂θ
|dθ =

∫ ∞

x1

x1

θ2
dθ = 1.

Thus, the inferential function defined by equation (34) is fully informative. Further, from
equations (23) and (11) we obtain the initial post data density as

fΘ(θ|x1) =
x1

θ2
, θ ∈ (x1,∞).

Moreover, from equation (5) the final post data density of Θ is given by

fΘ(θ|x(1, n)) =
nxn

max

θn+1
, θ ∈ [xmax,∞),

where xmax = max{x1, x2, . . . , xn}.
For an unobserved random variable Y which follows the uniform density

fY (y|θ) =
1

θ
, 0 ≤ y < θ,
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we obtain the predictive density as follows:

fY (y|x(1 : n)) =

∫ ∞

xmax

fY (y|θ)fΘ(θ|x(1 : n))dθ =

∫ ∞

xmax

nxn
max

θn+2
dθ

=
n

(n+ 1)xmax

, 0 ≤ y <
n+ 1

n
xmax.

It can be seen that the above results in Examples 4.1 and 4.2 agree with the results
obtained by using Jeffreys priors. Example 4.3 is very simple and the result can be
easily obtained by using the proposed approach. However, it may be difficult when some
traditional Bayesian approaches are applied because the model density is not defined by
an explicit function of the parameter.

4.2 Example for multivariate parameter case

In the following example, we continue Example 3.1 and show how to utilize the procedure
of prior-free inference to obtain the post data density for the parameter vector θ = (µ, σ)t.

Example 4.4 From the model density of U(1 : 1) expressed by equation (30), we
obtain the post data density for µ, given u1 and σ, as

fµ(µ|u1, σ) =

√
n

2πσ2
exp{−

(
√

nµ− u1)
2

2σ2
}, −∞ < µ <∞.

The results in Example 4.1 imply that given u1 and σ, µ ∼ N( u1√
n
, σ

2

n
). Moreover, from

the model density of U(2 : n) expressed by equation (31), we obtain the post data density
for σ, given u(2 : n), as

fσ(σ|u(2 : n)) =
(
∑

n

i=2
u2

i
)(n−1)/2

2(n−3)/2Γ((n− 1)/2)

1

σn
exp{−

∑
n

i=2
u2

i

2σ2
},

by applying the results in Example 4.3. Thus, the post data density of θ = (µ, σ)t is
given by

fΘ(θ|u(1 : n)) = fµ(µ|u(1 : 1), σ)fσ(σ|u(2 : n))

=
n1/2(

∑
n

i=2
u2

i
)(n−1)/2

2(n−2)/2π1/2Γ((n− 1)/2)

1

σn+1
exp{−

∑
n

i=2
u2

i
+ (

√

nµ− u1)
2

2σ2
}.

Since U(1 : n) is obtained from X(1 : n) by equation (29) which is an one-to-one trans-
formation, the post data density given x(1 : n) is the same as that given u(1 : n), i.e.,
fΘ(θ|x(1 : n)) = fΘ(θ|u(1 : n)). Finally, for an unobserved random variable Y which
follows the normal density

fY (y|θ) =
1

√

2πσ2
exp{−

(y − µ)2

2σ2
}, −∞ < y <∞,

we obtain the predictive density of Y based on x(1 : n) as

fY (y|x(1 : n)) = c

(
(n+ 1)

∑n

i=2
u2

i

(n+ 1)
∑

n

i=2
u2

i
+ (

√

ny − u1)2

)n/2

,

where c = ( n

(n+1)π
∑

n
i=2 u2

i

)1/2 Γ(n/2)

Γ((n−1)/2)
.
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It can be verified that the results in Example 4.4 agree with the results obtained by
using Jeffreys priors. It should be noted that our procedure is well systematized and the
procedure using Jeffreys priors is somewhat ad hoc.

5 Methodology for model selection

When a number of contending models are constructed, we have to select one as the best
among them. Recently, many information criteria are introduced for statistical model
selection (for example, see [23]). A well-known and widely applied information criterion
is Akaike information criterion, AIC (see [1, 21, 29]). The definition of AIC is really
simple but it can be applied only to the case that each contending model density is
defined by a specific function. For a case that the likelihood can not be defined, Konishi
and Kitagawa developed generalized information criterion, GIC [22]. In this section,
we introduce a new information criterion by extending the procedure of the prior-free
inference.

5.1 Prior-free information criterion

Consider here X(1 : n) as a random simple that each Xi follows the same model density

fX(xi|θ) with θ being a k-dimensional parameter vector. Let X̃ be a set of m values in

X(1 : n) for k ≤ m < n. The model density for X̃ can be defined based on the model
density fX , then the post data density fΘ(θ|x̃), that is regarded as a functional of fX

for given x̃, can be obtained by using the procedure of the prior-free inference. For an
unobserved random quantity, Y , which follows the model density fX(y|θ), the predictive
density is given by

p(y|x̃) =

∫
fX(y|θ)fΘ(θ|x̃)dθ.

We attempt to evaluate the model density fX through evaluating the predictive density
p(y|x̃) because p(y|x̃) can also be regarded as a functional of fX .

Let gX(y) and g
X̃

(x̃) denote the true densities of Y and X̃ , respectively. For given
x̃, the Kullback-Leibler information between gX(y) and p(y|x̃) is as

IC

K
(gX ; p|x̃) =

∫
ln{

gX(y)

p(y|x̃)
}gX(y)dy.

Then, the expectation of IC

K
(gX ; p|x̃) with respect to g

X̃
(x̃) is given by

E{IC

K(gX ; p|x̃)} =

∫
IC

K(gX ; p|x̃)g
X̃

(x̃)dx̃ = c+ EIP,

where c =
∫

ln{gX(y)}gX(y)dy is a quantity that does not depend on p(y|x̃), and EIP
is the expected information for prediction defined by

EIP = −

∫
ln{p(y|x̃)}gX(y)g

X̃
(x̃)dydx̃. (35)

It is advisable to obtain a predictive density leading to a smaller value of E{IC

K
(gX ; p|x̃)},

or equivalently a smaller value of EIP .
In order to estimate the value of EIP in equation (35), we draw a random sample

(called the re-sample) of size m from X(1 : n) without replacement in once re-sampling
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and repeat such re-sampling N times. Let X̃(i) = {X
(i)

1
, X

(i)

2
, . . . , X

(i)

m } be the i-th

re-sample, and let {X
(i)

m+1
, X

(i)

m+2
, . . . , X

(i)

n } be the elements of X(1 : n) except X̃(i).
From the law of large numbers, an estimate for twice EIP , which is called prior-free
information criterion (PFIC), is obtained as

PFIC = −

2

N(n−m)

N∑

i=1

n∑

j=m+1

ln{p(x
(i)

j
|x̃(i))}, (36)

where x̃(i) and x
(i)

j
denote the observations for X̃(i) and X

(i)

j
, respectively. Obviously,

PFIC defined by equation (36) is as a functional of the model density fX . Thus, we
can use PFIC as a criterion for evaluating the model density for X(1 : n). It can be seen
that a model is better than the others if it leads to a smaller value of PFIC. Such rule of
model selection is called minimum PFIC method.

Note that we only give here a formula of PFIC for a random sample. The formula of
PFIC may depend on a sample scheme, but the basic consideration may be eternal.

5.2 Selection of regression models

Consider a linear regression model as

x
(i)

j
=

L∑

ℓ=1

w
(i)

jℓ
βℓ + e

(i)

j
(j = 1, 2, . . . ,m), (37)

for the observations x̃(i) = {x
(i)

1
, x

(i)

2
, . . . , x

(i)

m } of the i-th re-sample X̃(i) with m ≥

L + 1. Here, w
(i)

jℓ
is a given regressor, βℓ is an unknown regression coefficient, e

(i)

j
is an

error term. As the usual case, we assume that the error terms are uncorrelated normal
random variables distributed with zero mean and unknown variance σ2. Redefining by

x̃(i) = (x
(i)

1
, x

(i)

2
, . . . , x

(i)

m )t a vector of the observations for ith re-sample, the regression
model (37) can be expressed as

x̃(i) = W (i)β + ε(i), (38)

where W (i) is an m × L matrix with rank L, β = (β1, β2, · · · , βL)t is a vector of the

regression coefficients, ε(i) = (e
(i)

1
, e

(i)

2
, . . . , e

(i)

m )t is an random vector distributed with
N(0, σ2Im).

In order to simplify the procedure, we find an orthogonal matrix H(i) =

((H
(i)

1
)t|(H

(i)

2
)t)t to reduce the regression model (38) into a separated form:

H
(i)

1
x̃(i) = R(i)β +H

(i)

1
ε(i),

H
(i)

2
x̃(i) = H

(i)

2
ε(i),

where R(i) is an L×L right-trigonometric matrix. Thus, from the properties of orthogonal

matrix, we have H(i)ε(i) ∼ N(0, σ2Im), and we can see also that H
(i)

1
ε(i) ∼ N(0, σ2IL)

and H
(i)

2
ε(i) ∼ N(0, σ2Im−L) are independent of each other.

By using the procedure of the prior-free inference, we obtain the post data density
for β given x̃(i) and σ as follows:

fβ(β|σ, x̃(i)) = (
1

√

2πσ2
)L
| det(R(i))| exp{−

ai(β)

2σ2
},
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and the post data density for σ given x̃(i) is

fσ(σ|x̃(i)) =
(bi)

(m−L)/2

2(m−L−2)/2Γ((m− L)/2)σm−L+1
exp{−

bi
2σ2

}.

Moreover, for j = m+1,m+2, . . . , n, the predictive distribution density of X
(i)

j
is given

by

p(x
(i)

j
|x̃(i)) = (

dij

πbi
)1/2

Γ((m− L+ 1)/2)

Γ((m− L)/2)

×(1 +
dij(x

(i)

j
− cij)

2

bi
)−(m−L+1)/2 (39)

In the above equations, ai(β), bi, cij , and dij are defined, respectively, as the follows:

ai(β) = (R(i)β −H
(i)

1
x̃(i))t(R(i)β −H

(i)

1
x̃(i)),

bi = (H
(i)

2
x̃(i))tH

(i)

2
x̃(i),

cij = (w
(i)

j
)t(R(i))−1H

(i)

1
x̃(i),

dij = (1 + (w
(i)

j
)t((R(i))t(R(i)))−1w

(i)

j
)−1,

where w
(i)

j
= (w

(i)

j1
, . . . , w

(i)

jL
)t is the vector of the regressors corresponding to x̃(i). Thus,

PFIC for the model can be obtained by using equations (36) and (39).

5.3 Simulation study

In order to examine the performance of the minimum PFIC method, we carried out a
simulation study. The data used here are generated by using the polynomial of degree
three:

xt = −10 + 0.2t− 0.09t2 + 0.002t3 + rt, (t = 1, 2, . . . , n), (40)

which can be regarded as the true distribution, where rt is generated by using the stan-
dard normal random numbers. We fit the polynomial regression model

xt =

L∑

ℓ=0

tℓβℓ + et, (t = 1, 2, . . . , n)

to the data generated by equation (40), where L denotes the degree of the model, and et

is a random error term. The probability distribution for the error terms in this model is
the same as that in the model (37).

Here, we compare our minimum PFIC method with other methods such as the min-
imum AIC method (see [21] and [29]) and the minimum BIC method (see [30]). The
values of PFIC, AIC and BIC are calculated respectively for L = 0, 1, . . . , 5. Then, we
can estimate the model degrees of by using the minimum PFIC, AIC and BIC methods.
Such experiment was repeated 1000 times with the size of re-sample being m = 6 and
the times of re-sampling for each experiment being N = 1000.

Table 5.1 and Table 5.2 show the frequencies of the model degrees determined by
using each method for n = 30 and n = 60, respectively. As shown in the tables, the
model degrees determined by using the minimum PFIC method agree with the true
model degree perfectly but the others are not. The result shows that the performance of
minimum PFIC method is obviously better than that of the others, and it can be seen
that the minimum PFIC method works well even for a small sample.
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Table 5.1: Frequencies of estimated model degree (n = 30).

model
order 0 1 2 3 4 5

PFIC 0 0 0 1000 0 0
AIC 0 0 0 725 166 109
BIC 0 0 0 880 86 34

Table 5.2: Frequencies of estimated model degree (n = 60).

model
order 0 1 2 3 4 5

PFIC 0 0 0 1000 0 0
AIC 0 0 0 752 142 106
BIC 0 0 0 934 46 20

6 Concluding remarks

A new procedure of statistical inference, named by the prior-free inference, was intro-
duced for developing objective Bayesian analysis based on an information-theoretic ap-
proach. The feature of this new approach is that it is essentially a Bayesian method but
it may be free of dependence on a prior distribution for unknown parameters. Thus,
this approach does not only have the advantages of the Bayesian approach but also can
avoid the difficulty of the traditional Bayesian approach encounters due to a lack of prior
information. A methodology, named by the minimum PFIC method, for model selection
was also developed by utilizing a newly-introduced information criterion, PFIC, based
on the extension of the procedure for prior-free inference. The result of simulation study
shown that the performance of minimum PFIC method is very good.

An important problem is the relation between our prior-free inference and Fisher’s
fiducial approach. It can be verified that for models with a single parameter that has
a sufficient statistic, these two approaches can lead to the same result, otherwise our
prior-free inference is better than Fisher’s fiducial approach. Further, it is well-known
that Fisher’s fiducial approach maybe difficult for multivariate parameter cases.

Nowadays many objective Bayesian approaches use Jeffreys priors. Sometimes, the
procedure of the prior-free inference and that using Jeffreys priors may lead to a same
result. However, it can be seen that the procedure of prior-free inference is well sys-
tematized and the procedure using Jeffreys is somewhat ad hoc. Moreover, a number of
objections can be made to the Bayesian procedure using Jeffreys priors, the most im-
portant of which is that it depends on the values of the observed data. Such objection
is reasonable, perhaps, because the prior distribution should only represent the informa-
tion prior to the observed data, it can not be influenced by the data. Sometimes, the
Bayesian procedure using Jeffreys priors will violate the likelihood principle, and it is
difficult to apply the procedure to multivariate parameter cases. Also, there are diffi-
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culties in Bernardo’s reference priors approach using the Lindley’s criterion functional.
Such difficulties can be overcome by the use of the procedure of prior-free inference.
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Appendix A: proof of Lemma 3.1

Under the conditions C1 and C2, we have λ =
∫
S(fZ |x(1:k))

dz from equations (10) and (11).

Thus, the proof is completed from the fact that S(fZ |x(1 : k)) ⊆ [0, 1] × [0, 1] × · · · × [0, 1].

Appendix B: proof of Theorem 3.1

From equation (20), we have

IC
K(π; fΘ|x(1 : k)) =

∫

S(π)

ln{
π(θ)

fΘ(θ|x(1 : k))
}

π(θ)

fΘ(θ|x(1 : k))
fΘ(θ|x(1 : k))dθ.

By applying equation (4), the above equation can be rewritten as

IC
K(π; fΘ|x(1 : k)) =

∫

S(π)

ln{φ(x(1 : k), θ)}φ(x(1 : k), θ)fΘ(θ|x(1 : k))dθ, (41)

where

φ(x(1 : k), θ) =
h(x(1 : k))

fX(1:k)(x(1 : k)|θ)
.
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For a given model density fX(1:k)(x(1 : k)|θ), if π(θ) is fixed in a proper density, then the marginal
density h(x(1 : k)) is fixed by equation (3). Hence, the function φ(x(1 : k), θ) in equation (41)
cannot be changed through fΘ(θ|x(1 : k)). Thus, we have to maximize IC

K(π; fΘ|x(1 : k)) with
respect to fΘ(θ|x(1 : k)). It is well-known that a solution to maximizing IC

K(π; fΘ|x(1 : k)) can
be obtained when we put

f
(1)
Θ (θ|x(1 : k)) = c1 (42)

with c1 = 1/ψ being a constant. Thus, the solution given by equation (22) is obtained.
On the other hand, by applying equation (12) to equation (41), we have

IC
K(π; fΘ|x(1 : k)) =

∫

S(π)

ln{φ(x(1 : k), θ)}φ(x(1 : k), θ)fZ(z|x(1 : k))|det(J)|dθ

=

∫

S(fZ |x(1:k))

ln{φ(x(1 : k), θ)}φ(x(1 : k), θ)fZ(z|x(1 : k))dz.

It is obvious that IC
K(π; fΘ|x(1 : k)) can also be maximized when we put fZ(z|x(1 : k)) = c2 or

equivalently
f

(2)
Θ (θ|x(1 : k)) = c2 |det(J)| (43)

from equation (12) with c2 = 1/λ being a constant. Then, the solution given by equation (23)
is obtained from equation (43). Moreover, from equation (19), we can see that F (fΘ, π|fX(1:k))
is maximized as long as IC

K(π; fΘ|x(1 : k)) is maximized. Thus, Theorem 3.1 is proved.

Appendix C: proof of Theorem 3.2

If the value of ψ =
∫
S(π)

dθ is finite, then the value of I(fΘ|x(1 : k)) is given by

I(f
(1)
Θ |x(1 : k)) = ln{c1}, (44)

for the solution given by equation (42). On the other hand, the value of I(fΘ|x(1 : k)) is as

I(f
(2)
Θ |x(1 : k)) = c2

∫

S(π)

ln{c2|det(J)|}| det(J)|dθ

= c2

∫

S(fZ |x(1:k))

ln{c2| det(J)|}dz (45)

for the solution given by equation (23). It is obvious that

I(f
(2)
Θ |x(1 : k)) − I(f

(1)
Θ |x(1 : k)) = c2

∫

S(π)

ln{
c2|det(J)|

c1
}| det(J)|dθ > 0.

from equations (44) and (45).

Further, if the value of ψ =
∫
S(π)

dθ is infinite, then I(f
(1)
Θ |x(1 : k)) = −∞ as c1 → 0 under

the assumption that fΘ(θ|x(1 : k)) is proper. On the other hand, from the conditions C1 and

C2, equations (11) and (45), we can see that I(f
(2)
Θ |x(1 : k)) must be finite. Thus, we have

I(f
(2)
Θ |x(1 : k)) − I(f

(1)
Θ |x(1 : k)) = ∞. So, Theorem 3.2 is proved.
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Abstract: A new interpretation is proposed to solve the inverse heat conduc-
tion problem using hybrid genetic algorithm. In order to identify parameters of
non-linear heat transfer efficiently and in a robust manner, the hybrid genetic
algorithm, which combines genetic algorithm with simulated annealing and the
elitist strategy, is presented for the identification of the material thermal pa-
rameters. The procedure is based on the minimization of an objective function
which accounts for experimental data and the calculated response of the math-
ematical model. The performances of the proposed optimization algorithm
were investigated with simulating data, and the effectiveness was consequently
confirmed.
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1 Introduction

The accurate knowledge of the heat transfer coefficients is of importance in many engi-
neering applications, including the cooling of continuously cast slabs and of electronic
chips. In order to determine the heat transfer coefficients of materials, some identi-
fication methods have been developed for solving the problem [1]. For example, the
sensitivity coefficient method was developed to solve multidimensional inverse heat con-
duction problems. The sensitivity coefficients are used directly to estimate the responses
of the system considered under unit loading conditions. The finite-element discretization
procedure is applied to evaluate the total response under all loading conditions. The
conjugate gradient method is a powerful minimization technique, which can be applied

c© 2007 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 23
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to parameter and function estimations, as well as to linear and nonlinear inverse prob-
lems [2]. The conjugate gradient method with a suitable stopping criterion belongs to
the class of iterative regularization techniques, where the number of iterations of the
estimation procedure is determined so that stable solutions are obtained for the inverse
problem [3]. The method consists in choosing a suitable direction of descent and a search
step size along this direction at each of iteration for the minimization of the objective
function.

The direct heat problem is concerned with the determination of the temperature field
when the heat transfer coefficient, as well as the physical properties, initial condition and
other quantities appearing in the boundary condition are known. Direct heat transfer
problems can be mathematically classified as well-posed. The solution of a well-posed
problem is required to satisfy the conditions of existence, uniqueness, and stability with
respect to the input data. The inverse heat transfer problem is usually ill-posed. An
ill-posed problem is characterized by the non-uniqueness and instability of solution. The
regularization technique has been employed to overcome the ill-posedness of inverse heat
transfer problems. Several such techniques have been introduced in the literature [4].
Most of the literature, however, uses a gradient-based optimization method and the
solution often vibrates or diverges, depending upon the initial search point, since the
model and the measurement errors can make the objective function complex [5]. There
are numerous nonlinear optimization algorithms that could be employed in this prob-
lem. However, many nonlinear optimization techniques suffer from at least one of the
tow shortcomings: either they are overly computationally intensive, or they tend to get
trapped in local optima. One of the approaches used to overcome this problem is to use a
robust optimization method and computational intelligences have been most successfully
used to find the parameter set in a stable manner [6]. Genetic algorithm is effective non-
linear optimization techniques. It is based on the general approach apparent in nature
by which species of organisms adapt, change, and improve. It is different from tradi-
tional optimization techniques in several ways. The genetic algorithm has been widely
used in the identification, short-term load forecasting, the design optimization, dynamic
channel assignment, the parameter identification of inelastic constitutive models [7, 8, 9,
10].The main purpose of the paper is to present a procedure for determining the thermal
parameters in a robust manner.

2 Direct Problems for Heat Transfer

The partial differential equation governing the steady-state temperature distribution in
a two-dimensional region described by the Cartesian coordinates, x andy, takes the form

∂

∂x
(kx

∂T

∂x
) +

∂

∂y
(ky

∂T

∂y
) = 0, (1)

where T is the temperature, and kx and ky are the thermal conductivities in the x and
y directions, respectively. The physical parameters, kx and ky, can be treated to be
temperature dependent. The following three kinds of boundary conditions occur in the
direct heat transfer problems, prescribed temperature (Dirichlet type), prescribed heat
flux (Neumann type), and prescribed heat transfer coefficient (mixed or Robin type).

T (x, y) = T0, (x, y) ∈ Ω1,
kx(∂T/∂x)nx + ky(∂T/∂y)ny = q0, (x, y) ∈ Ω2,
kx(∂T/∂x)nx + ky(∂T/∂y)ny = h(Ta − T ), (x, y) ∈ Ω3,

(2)
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where T0 represents the value on the surface or boundary Ω1, q0 is a heat flux vector
on subsurfaceΩ2, h is the convective heat transfer coefficient on subsurface Ω3, nx and
ny are the direction cosines of the outward drawn normal to the boundary, Ta is the
surrounding temperature.

3 Inverse Problem for Heat Transfer and solution Approach with Hybrid

Genetic Algorithm

3.1 Definition of inverse problem for parameter identification

For the inverse problem, the heat transfer coefficient is regarded as unknown. The
parameter identification problem can be formulated to find the model parameters by
adjusting identified parameter vector m until the measured data match the corresponding
data computed from the parameter set in a least-squares fashion. The objective function
is defined as follows [3]

J(m) = [hm − hc(m)]T w[hm − hc(m)], (3)

where hm is the measured temperature vector; hc is the computing temperature vector,
which is related to the identified parameter vector m , w is weighting matrix in order to
take into account the different observed equipments for the temperature measurements.
This objective function clearly depends on the measured data and the parameters of
model. The objective function can become complex, such as non-convex, or even multi-
modal if errors contained in the model equation or /and errors in the measurement data
are large.

Figure 3.1: Objective functions of the different measurement errors.

When taking account of measurement errors, the objective function will have many
local minima for the inverse heat conduction problem, as shown in Figure 3.1. When
random measurement error is 2˚C, the objective function has 35 local minima. When
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random measurement error is 5˚C, the objective function has 38 local minima. In such a
case, the solution may vibrate or diverge when conventional gradient-based optimization
methods are used, which gives rise to the necessary for a robust optimization method
such that a stable convergence is always achieved. The solution of the inverse problem
consists in obtaining a minimum of an objective function which is defined taking into
account the mathematical structure of the material model and asset of experimental data.
This generally results in a non-linear programming constrained problem of the form [2]:

min{J(m, hm) , m ∈ R
P
, hm ∈ RM ; gj < 0}, (4)

where m belongs to the space of admissible parameters RP , hm belongs to the space
RM , gj are inequality constraints, which define the feasible domain

D = {m ∈ RP , gj < 0}. (5)

The constraints can represent physical links between the primary physical variables and
the model parameters, information concerning the values of parameters and conditions to
guarantee that all mathematical functions involved can be defined and calculated. In the
optimization process, the difference between the experimental result and the theoretical
prediction is measured by a norm value J here referred to as the Euclidean norm. The
Euclidean norms of the tests form an objective function J(m) which then gives a scalar
measure of the error between the experimental observations and the model predictions.
From mathematical point of view, the optimization problem involves the minimization
of the objective function [4]:

J(m) → min . (6)

The bound constraints:
ml < m < mu, (7)

where ml and mu are, respectively, the lower and upper bounds of m. Traditional
mathematical optimization methods that have been used include dynamic programming,
conjugate-gradient, random search, and simplex optimization.

3.2 Continuous Evolutionary Algorithm and Its Improvements

Genetic algorithm (GA) is a search method based on Darwin’s theory of evolution and
survival of the fittest [11]. Based on the concept of genetics, GA simulates the evolu-
tionary process numerically. Genetic algorithms strongly differ in conception from other
search methods, including traditional optimization methods and other stochastic search
methods. The basic difference is that while other methods always process single points
in the search space, genetic algorithms maintain a population of potential solutions. Ge-
netic algorithms constitute a class of search methods especially suited for solving complex
optimization problems. Search algorithms in general consist of systematically walking
through the search space of possible solutions until an acceptable solution is found. Ge-
netic algorithms transpose the notions of natural evolution to the world of computers,
and imitate natural evolution. They were initially introduced by John Holland for ex-
plaining the adaptive processes of natural systems and for creating new artificial systems
that work on similar bases [12]. In Nature new organisms adapted to their environment
develop through evolution. Genetic algorithms evolve solutions to the given problem in
a similar way. The main contents of genetic algorithm include the evaluation of fitting
function, selection operation, crossover operation, mutation and elitist strategy.
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The probability of survival of any individual is determined by its fitness: through
evolution the fitter individuals overtake the less fit ones. In order to evolve good solutions,
the fitness assigned to a solution must directly reflect its ‘goodness’, i.e. the fitness
function must indicate how well a solution fulfills the requirements of the given problem.
The evaluation of the fitness can be conducted with a linear scaling, where the fitness of
each individual is calculated as the worst individual of the population subtracted from
its objective function value. Fitness assignment can be performed in several different
ways: We define a fitness function and incorporate it in the genetic algorithm. When
evaluating any individual, this fitness function is computed for the individual.

fj = max{Jj/j = 1, 2, , , S} − Jj , (8)

where fj is the fitting function of j-th individual; S is the population size; Jj is the
objective function of j-th individual. Selection, also called reproduction, is simply the
copying of quality solution in proportion to their effectiveness. Here, since the goal is to
minimize the objective function, several copies of candidate solutions with small objective
functions are made; solutions with large objective functions tend not to be replicated.
The intrinsic principle of the genetic algorithm is Darwin’s natural selection principle.
Selection is the impetus of the genetic algorithm, by which, the superior individual are
selected into the next generation while the inferior ones are washout. A part of the new
population can be created by simply copying without change selected individuals from
the present population.

One of the most commonly used is the roulette wheel selection, where individuals are
extracted in probability following a Monte Carlo procedure. The extraction probability
of each individual is proportional to its fitness as a ratio to the average fitness of all the
individuals. In the selection process, the reproduction probabilities of individuals are
given by their relative fitness:

proj = fj/
s∑

j=1

fj , (9)

where proj is the reproduction probability of the j-th individual.
Recombination, also called crossover, is a process by which information contained in

two candidate solutions is combined. In the recombination, each individual is first paired
with an individual at random. New individuals are generally created as offspring of two
parents (as such, crossover being a binary operator). One or more so-called crossover
points are selected (usually at random) within the chromosome of each parent, at the
same place in each. The parts delimited by the crossover points are then interchanged
between the parents. The individuals resulting in this way are the offspring. Beyond one
point and multiple point crossover there exist more sophisticated crossover types. Let a
pair of present individuals be given by [mt

α,mt

β
]. a new pair [mt+1

α ,mt+1

β
] is then created

in terms of a phenomenological recombination formula[8]:

mt+1

α = (1 − µ) mt

α + µ · mt

β , (10)

mt+1

β
= (1 − µ) mt

β + µ · mt

α, (11)

where µ is a random number changing from 0 to 1.
A new individual is created by making modifications to one selected individual. The

modifications can consist of changing one or more values in the representation or in
adding/deleting parts of the representation. In genetic algorithms mutation is a source
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of variability, and is applied in addition to crossover and reproduction. Mutation is a
process by which vectors resulting from selection and recombination are perturbed. The
mutation is conducted with only a small probability by definition. An individual, after
this mutation mt+1

i
, is described as

mt+1

i
= rand {ml, mu} , (12)

where rand{.} represents the random selection from the reasonable solution domains. At
different stages of evolution, one may use different mutation operators. At the beginning
mutation operators resulting in bigger jumps in the search space might be preferred.
Later on, when the solution is close by, a mutation operator leading to slighter shifts in
the search space could be favored. However, the above mutation operation is a random
one with no clear aim.

Simulated annealing is another important algorithm which is powerful in optimization
and high-order problems [13]. It uses random processes to help guide the form of its search
for minimal energy states. In an annealing process a melt, initially at high temperature
and disordered, is slowly cooled so that the system at any time is approximately in
thermodynamic equilibrium. As cooling proceeds, the system becomes more ordered and
approaches a ”frozen” ground state at T=0. The paper provides a mutation method
based on the simulating annealing algorithm, which makes the average fitness of the
population tend to be optimized. Firstly, we define a neighborhood structure, then
select a new solution in the neighborhood structure of the intermediate solution, that is
to say, getting a new solution by cause a disturb on the old one [14]

mnew = mold + ∆m, (13)

where mnew and mold represents a new solution and an old solution, respectively; ∆mis
a random disturb. Then, reject or accept the new solution according the Metropolis rule,
the probability of accepting the new generated solution is expressed as the follows [15]:

pnew =

{
1 Jold ≥ Jnew

exp[−∆J/Tk] Jold < Jnew

}
, (14)

where Jnew and Jold are the objective functions of the new solution and the old solution;
pnew is the probability of accepting the new generated solution; ∆J is the increasement
of the objective function, ∆J = Jnew − Jold, Tk is the annealing temperature, which
tends to be drooped during the evolutional process. The probability of rejecting the new
solution is:

Pold = 1 − pnew, (15)

where pold is the probability of rejecting the new solution. One feature that is currently
missing in this selection procedure is that it does not guarantee the best individual al-
ways survives into the next generation, particularly when many individuals have fitness
close to that of the best individual. The elitist strategy, where the best individual is al-
ways survived into the next generation on behalf of the worst individual, can compensate
for some disadvantages of missing the best individual in selection operation or mutation
operation. With the elitist strategy, the best individual always moves in a descent direc-
tion, thereby a stable convergence is obtained. The gradient search algorithm adopted in
genetic algorithm is the most popular quasi-Newton method with the BFGS algorithm.
The individual after the recombination is formulated as follows [8]

mnew =

{
−A−1

∇f (mold) if f (mnew) > f (mold)
mold otherwise

}
, (16)
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where A is a well-known positive-define matrix used on behalf Hessian matrix. The main
steps for parameter identification using genetic algorithm are shown in follows:

Step 1: Choose the size of population, the crossover probability, mutation probability,
and stopping criterion.

Step 2: Determine the identified parameter domains according to prior information
Step 3: Randomly generate an initial population of candidate solutions.
Step 4: Define a fitness function to measure the performance of an individual in the

problem domain.
Step 5: Compute model responses with given model parameters by using Newton

iteration method.
Step 6: Calculate the fitness of each individual based on observed dada and model

responses computed by Newton iteration method.
Step 7: Execute recombination operation by using continuous floating codes.
Step 8: Create new individuals by mutation operation based on simulated annealing.
Step 9: Execute select operation according to the roulette wheel selection.
Step 10: Perform elitist strategy in order to keep current best individual from missing

and accelerate convergence speed of inverse problem.
Step 11: Replace the initial(parent) population with the new (offspring) population.
Step 12: Execute stopping criterion. If stopping criterion can not be reached, then,

go to Step 5; otherwise, the inversion computation stops and best solution is recorded as
the solution of the inverse problem.

4 Numerical Examples for Identification of Model Parameters in Heat

Transfer

In order to demonstrate the accuracy of the proposed algorithm with nonlinear problem,
a heat transfer problem with nonlinear material properties is considered in this example.
An annular cylinder is subjected to a constant prescribed heat flux, q0, on the outer
surface, and a temperature T0, prescribed on the inner surface, and shown in Figure 4.1.

Figure 4.1: An annular cylinder and sensor locations.

The governing equation of heat transfer can be expressed as

1

r

d

dr

[
k (T ) r

dT

dr

]
= 0, (17)
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Figure 4.2: Change of thermal conductivity versus temperatures.

where k(T ) is a quadratic function of temperature; r is radial coordinate. And k can be
expressed as follows

k (T ) = k0 + k1T + k2T
2, (18)

where k0, k1, and k2 are unknown material thermal parameters. The thermal conduc-
tivity is depended on the temperatures as shown in Figure 4.2. The change of thermal
conductivity versus temperatures is shown in Figure 4.2.

The analytical solution of Equation (17) can be expressed as follows:

k0 (T − T0) + k1 (T − T0) + k2 (T − T0)
2

= q0R0 ln (r/Ri) , (19)

where Ri is the inner radius, Ri =1.0 m; Ro is the outer radius of the annular cylinder,
Ro =2.0 m; q0 is a constant prescribed heat flux, qo=10 W/m2. The above algebraic
equation can be solved numerically by using Newton iteration algorithm. Suppose the
material thermal parameters are known, the simulated measured temperature values are
shown in Figure 4.3.

Contrasting with the direct analysis, the inverse heat transfer analysis is ill-
conditioned; the latter predicts the surface temperature or heat flux across the surface
using temperature measured at certain discrete points inside the domain considered.
Figure 4.4 is the objective function value versus number of iterations for the optimal
individual. Figure 4.4 shows that the hybrid genetic algorithm can make searching more
accurate and faster near global minima on the error surface.

Table 4.1 shows the comparison of the identified thermal conductivity by using differ-
ent inverse methods without measurement errors. Identified values (A) and (B) shown
in Table 4.1 represent for the identified thermal conductivity by using hybrid genetic
algorithm and classical genetic algorithm, respectively. The hybrid genetic algorithm
has higher identification precision than classical genetic algorithm.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(1) (2007) 23–34 31

Figure 4.3: Simulated measurement temperatures in sensor.

Figure 4.4: Objective function value versus number of iterations for the optimal individual.

Parameters k0/W·(m˚C)−1 k1/10−3

∗Wm·(m ˚C)−2

k2/10−6

∗Wm2
·(m˚C)−3

Theoretical values
Identified values(A)
Identified values(B)

0.100
0.101
0.112

0.198
0.199
0.203

0.303
0.302
0.305

Table 4.1: Comparison of the identified thermal conductivity by using different inverse methods
without measurement errors.
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Often a small measurement error can dramatically change the boundary values pre-
dicted. The temperature measurement errors can come from many sources and can be
caused by calibration errors, presence of the sensor, conduction and convection losses
of the sensor, or signal analysis. Also, these can be further determined by errors from
measurements of time, sensor location, or dimension of the domain considered. Sev-
eral studies simulated measurement noise numerically by superimposing a random noise
with zero mean and a specified variance on measured data. The proportional error, in
which the uncertainty for each measured data is proportional to its own value, is used to
study the influence of measurement noise on the identified thermal conductivity. These
measurements were generated from the solution of the direct problem. The measure-
ments containing random errors were obtained by adding an error term to the errorless
measurements resulting from the solution of the direct problem; that is:

Tm = Texa + ξσ, (20)

where Texa are the errorless measurements; ξ is a random variable with normal distri-
bution, zero mean, and unitary standard deviation; σ is the standard deviation of the
measurement errors, which is supposed constant; and Tm are the measurements con-
taining random errors. Three different levels of measurement errors are considered here.
Table 4.2 shows the influences of measurement noises on the identified thermal conduc-
tivity.

Parameters k0/W·(m˚C)−1 k1/10−3

∗Wm·(m ˚C)−2

k2/10−6

∗Wm2
·(m˚C)−3

Theoretical values
Identified values(C)
Identified values(D)
Identified values(E)

0.100
0.103
0.107
0.984

0.198
0.202
0.195
0.210

0.303
0.310
0.322
0.298

Table 4.2: Influences of measurement noises on the identified thermal conductivity.

Identified values (C), (D) and (E) shown in Table 4.2 represent for the identified
thermal conductivity when the measurement error of temperature is 1.0˚C, 2.0˚C and
5.0˚C, respectively. The proposed scheme accurately identifies the thermal conductivity
of nonlinear heat conduction problem for a large random error. As the random error
becomes larger, detailed information on the thermal parameters is lost slightly, and the
identification precision decreases.

5 Conclusion

The proposed identification scheme is based on the minimization of the least-squared
errors between measured and calculated temperatures at observation points. The evo-
lutionary algorithm is employed to overcome numerical difficulties caused by the ill-
posedness of inverse problems. The validity and effectiveness of the proposed method
are demonstrated by the examples. In order to demonstrate the stability of proposed
method to measurement errors, the Monte-Carlo simulation is performed of various am-
plitudes of random errors in the example. And numerical computational results show
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the insensitivity of the proposed algorithm to measurement errors. Simulated temper-
ature measurements of several sensors located inside the material were utilized for the
estimation of the spatial variations of the heat transfer coefficient. Different cases are
examined here, involving different numbers of sensors, levels of measurement error. It
is shown that the proposed method converges very fast in a robust manner, and is not
only simple and flexible, but also versatile and accurate. With considering measurement
errors for 5%, the inversion method can identify the thermal conductivity within 1%, as
compared with theoretical values.

Acknowledgements

This research is funded by the National Natural Science Foundation of China (No.
10472025).

References

[1] Tseng, A. A. Direct sensitivity coefficient method for solving two-dimensional inverse heat
conduction problems by finite-element scheme. Numerical Heat Transfer 27(2) (1995) 291–
307.

[2] Marcelo, J. Comparison of different versions of the conjugate gradient method of function
estimation. Numerical Heat Transfer 36(2) (1999) 229–249.

[3] Lee, H. S. A new spatial regularization scheme for the identification of the geometric shape
of an inclusion in a finite body. Int. J. for Numerical Methods in Engineering 46(7) (1999)
973–992.

[4] Tervola, P. A method to determine the thermal conductivity from measured temperature
profiles. Int. J. Heat Mass Transfer 32(8) (1989) 1425–1431.

[5] Lin, J Y. Numerical estimation of thermal conductivity from boundary temperature mea-
surements. Numerical Heat Transfer 32(2) (1997) 187–203.

[6] Garcia, S. Use of genetic algorithms in thermal property estimation: simultaneous estima-
tion of thermal properties. Numerical Heat Transfer 33(2) (1998) 149–168.

[7] Yue, W. Y., Miyazaki, K., and Deng, X. T. Optimal channel assignment in wireless com-
munication networks with distance and frequency interferences. Computer Communications

27(16) (2004) 1661–1669.

[8] Furukawa, T. An automated system for simulation and parameter identification of inelastic
constitute models. Comput. Methods Appl. Mech. Eng. 191(6) (2002) 2235–2260.

[9] Coats, L. Evolutionary algorithms approach to the solution of mixed integer non-linear
programming problems. Computers and Chemical Engineering 25(2-3) (2001) 257–266.

[10] Sahab, M. G. A hybrid genetic algorithm for reinforced concrete flat slab buildings. Com-

puters and Structures 83(8-9) (2005) 551–559.

[11] Kustrin, K. Basic Concepts of artificial neural network (ANN) modeling and its application
in pharmaceutical research. J. of Pharmaceutical and Biomedical Analysis 22(5) (2000)
717–727.

[12] Abbass, H. A. An evolutionary artificial neural networks approach for breast cancer diag-
nosis. Artificial Intelligence in Medicine 25(3) (2002) 265–281.

[13] Alkhanmis, T. M. Simulated annealing for discrete optimization with estimation. European

Journal of Operational Research 116(3) (1999) 530–544.

[14] Jeong, I. K. Adaptive simulated annealing genetic algorithm for system identification. En-

gineering Applications of Artificial Intelligence 9(5) (1996) 523–532.



34 SHOUJU LI AND YINGXI LIU

[15] Chen, T. Y. Efficiency improvement of simulated annealing in optimal structural designs.
Advances in Engineering Software 33(7–10) (2002) 675–680.



Nonlinear Dynamics and Systems Theory, 7 (1) (2007) 35–49

Continuous-Time Optimal Portfolio Selection

Using Mean-CaR Models

Zhong-Fei Li 1∗, Kai W. Ng 2 and Xiao-Tie Deng 3

1 Department of Risk Management and Insurance, Lingnan (University) College,

Sun Yat-Sen University, Guangzhou 510275, People’s Republic of China
2 Department of Statistics and Actuarial Science, The University of Hong Kong,

Pokfulam Road, Hong Kong
3 Department of Computer Science, City University of Hong Kong,

Kowloon, Hong Kong

Received: July 18, 2005; Revised: October 22, 2006

Abstract: This paper studies continuous-time optimal portfolio selection un-
der the setting of Black-Scholes financial markets and constant re-balanced
portfolio (CRP) investment strategies. Three mean-CaR models are formu-
lated, which minimize the risk measured by capital-at-risk (CaR) under the
constraint that the expected terminal wealth is not lower than a pre-assigned
level. These models are converted into bi-level optimization problems by virtue
of a decomposition of the feasible solution set and, as a result, explicit optimal
strategies and efficient frontiers are obtained in closed-form. A comparison of
the three mean-CaR models and a numerical example illustrating the results
are presented. Some economic implications of the results are also examined.

Keywords: Continuous-time portfolio selection; Capital-at-Risk (CaR); Black-

Scholes financial markets; constant-rebalanced portfolios (CRP); mean-CaR models.

Mathematics Subject Classification (2000): 91B28, 91B62, 90B50, 90C90,
49M37.

∗ Corresponding author: lnslzf@zsu.edu.cn

c© 2007 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 35



36 ZHONG-FEI LI, KAI W. NG AND XIAO-TIE DENG

1 Introduction

The pioneering work of Markowitz [13] introduced the mean-variance framework for
portfolio selection and risk management. The mean-variance approach has become the
foundation of modern finance theory and inspired a substantial number of extensions
and applications in literature. From a theoretical point of view, there are two challenges.
The first is the extension of the classical single-period mean-variance analysis to a multi-
period or continuous-time mean-variance analysis. There is a considerable volume of
literature on dynamic asset allocation. The main focus, however, is on maximizing some
time-additive utility of terminal wealth and/or consumption (see, e.g., Merton [15, 16],
Samuelson [18] and Smith [20]). At the same time, enormous difficulties in solving
dynamic mean-variance problems were reported (see, e.g., Chen, Jen and Zionts [4]).
Consequently, Markowitz’s mean-variance formulation has not been fully exploited in
dynamic cases for quite a long time since the dynamic mean-variance problems were set
in a very general approach, by Schweizer [19] among others. Up to recently, the dynamic
mean-variance problems have been solved analytically by Li and Ng [12] and Zhou and
Li [21], respectively, in a discrete-time and a continuous-time frameworks.

The second challenge lies on appropriate measures of risk. The classical risk measure
is the variance, as used in the mean-variance approach. However, the variance as a
measure of risk has the drawback that it penalizes equally both upside and downside
movement in the portfolio value. Realizing this, Markowitz [14] proposed semivariance
as an alternative that measures risk as deviations below the mean only. Unfortunately
he did not resolve the difficulties of the mean-semivariance framework caused by the
non-differentiability in the setup. Consequently, other alternatives have been suggested,
such as downside risk (see, e.g., Fishburn [5] and Harlow [9]), coherence risk (see, e.g.,
Artzner et al. [1]), the limited expected loss (see, e.g., Basak and Shapiro [2]), and
so on. Among them, value-at-risk (VaR) (see, e.g., Jorior [11]) is the most prominent
risk measure and has become an industry benchmark, which has been accepted by the
regulators and banks in more than 100 countries around the world for controlling market
risk.

Recently, Emmer, Klüppelberg and Korn [6, 7] developed the classic mean-variance
method along the two clues mentioned above. In continuous-time financial markets
with a Black-Scholes setting, they proposed a VaR-based related risk concepts known as
capital-at-risk (CaR), which includes mainly three kinds of measures. Under constant re-
balanced portfolio (CRP) investment strategies, they formulated two mean-CaR portfolio
optimization models using the first two kinds of CaR as a replacement of the variance
in a continuous-time mean-variance portfolio selection model, and derived analytically
the optimal solutions for their models and the mean-variance model. Their solutions,
however, involve a parameter that is a solution of a nonlinear algebra equation. In this
sense, their solutions are not close-form. A possible reason for this is that they maximize
the expected terminal wealth under the constraint that the CaR or the variance of the
terminal wealth is not higher than a prescribed level.

In this paper, we reformulate the continuous-time mean-CaR portfolio selection mod-
els so as to minimize the risk measured by CaR under the constraint that the expected
terminal wealth is not lower than a pre-assigned level. We aim at explicit expressions for
optimal solutions and efficient frontiers in closed-form. We solve the mean-CaR model
associated with the third kind of CaR and compare the three mean-CaR models. In ad-
dition to closed-form solutions, our approach has the advantage of easily comparing the
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optimal strategies to different mean-CaR models and the convenience of solving different
mean-CaR models as they have the same set of feasible portfolios and hence can use the
same decomposition of the feasible set. It is believed that the approach can be applied
to some other continuous-time portfolio selection problems.

2 The financial market and CaR

Consider a standard Black-Scholes type financial market in which n + 1 assets (or secu-
rities) are traded continuously in the horizon [0, T ] and indexed by i = 0, 1, . . . , n. One
of the assets, say i = 0, is the riskless bond whose price process P0(t) evolves according
to the following (deterministic) ordinary differential equation

dP0(t) = P0(t)rdt for t ∈ [0, T ],

where r is the rate of interest and is assumed to be constant. The other n assets are risky
stocks whose price processes P1(t), . . . , Pn(t) follow the following stochastic differential
equations

dPi(t) = Pi(t)



bidt +

n∑

j=1

σijdBj(t)



 for t ∈ [0, T ], i = 1, . . . , n,

where b = (b1, . . . , bn)′ is the vector of stock-appreciation rate, σ = (σij)n×n is the matrix
of stock-volatilities and B(t) = (B1(t), . . . , Bn(t))′ is a standard n-dimensional Brownian
motion. Here b and σ are assumed to be constant in time. As usual, we further assume
that σ is invertible and that bi ≥ r for each i.

Let πi(t) be the fraction of the wealth Wπ(t) invested in asset i at time t. Let
π(t) = (π1(t), . . . , πn(t))′ ∈ R

n. Then π0(t) = 1 − π(t)′1, where 1 = (1, . . . , 1)′ is the
vector whose components are all units. The portfolio process π(t) is called a portfolio
strategy.

Throughout the paper, we assume that transaction costs and consumption are not
considered and that portfolio strategy π(t) is self-financing. Thus

dW π(t) =Wπ(t) {((1 − π(t)′1)r + π(t)′b)dt + π(t)′σdB(t)}

with Wπ(0) = w > 0 being the initial wealth of an investor.
In what follows, we restrict ourselves to constant-rebalanced portfolio (CRP) strate-

gies. A CRP strategy is an investment strategy which keeps a fixed fraction of the wealth
in each of the underlying stocks from time to time. Therefore, a CRP strategy employs
the same investment vector π(t) = π = (π1, . . . , πn)′ at each t in the planning horizon
[0, T ]. Such an investment strategy does not imply that there is no trading, since at each
time instant t the investment proportions are rebalanced back to the vector π. See an
example in Helmbold et al. [10] for the power of CRP investment strategies.

Standard Itô integral and the fact that E[esBj(t)] = ets
2
/2, where E is the expectation

operator, yield the following explicit formulae for the wealth process Wπ(t) for all t ∈

[0, T ] (see, e.g., [6]).

Wπ(t) = w exp((π′(b − r1) + r − ‖π′σ‖2/2)t + π′σB(t)), (2.1)

E[Wπ(t)] = w exp((π′(b − r1) + r)t), (2.2)

V ar[Wπ(t)] = w2 exp(2(π′(b − r1) + r)t)(exp(‖π′σ‖2t) − 1), (2.3)
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where ‖ · ‖ denotes the Euclidean norm in R
n and V ar is the variance operator.

Associated with a real number α ∈ (0, 1), initial wealth w, time horizon T and
portfolio π, we denote by ρ0(α, π, w, T ) the α-quantile of the terminal wealth Wπ(T ),
that is, it is implicitly defined by

P (Wπ(T ) ≤ ρ0(α, π, w, T )) = α, (2.4)

where P (·) is the probability. Using the notation ρ0, the expected shortfall or more
precisely the conditional tail expectation of Wπ(T ) is defined as

ρ1(α, π, w, T ) = E[Wπ(T )|Wπ(T ) ≤ ρ0(α, π, w, T )]. (2.5)

Furthermore, the conditional tail semi-standard derivation of Wπ(T ) is defined as

ρ2(α, π, w, T ) =
√

E[(Wπ(T ))2|Wπ(T ) ≤ ρ0(α, π, w, T )]. (2.6)

Using the risk measures ρk(α, π, w, T ), k = 0, 1, 2, Emmer, Klüppelberg and Korn [7]
defined the Capital-at-Risk with respect to ρk(α, π, w, T ) as its difference to the terminal
wealth of the pure bond strategy.

Definition 2.1 (Capital-at-Risk) The Capital-at-Risk (CaR) of a CRP invest-

ment strategy π with respect to ρk (k = 0, 1, 2) with initial wealth w and time horizon

T is the difference between the terminal wealth of the pure bond strategy and the risk

measure ρk, i.e.,

CaRk(π) := w exp(rT ) − ρk(α, π, w, T ). (2.7)

Let zα be the α-quantile of the standard normal distribution and Φ the distribution
function of a standard normal random variable.

Since π′σB(T )/(‖π′σ‖
√

T ) is a standard normal random variable, by using (2.1) and
(2.4)–(2.7), we can express explicitly the risk measures ρk, k = 0, 1, 2 as (see [7])

ρ0(α, π, w, T ) = w exp
((

π′(b − r1) + r − ‖π′σ‖2/2
)
T + zα‖π

′σ‖
√

T
)

, (2.8)

ρ1(α, π, w, T ) = w exp ((π′(b − r1) + r)T )
Φ(zα − ‖π′σ‖

√

T )

α
, (2.9)

ρ2(α, π, w, T ) = w exp
(
(π′(b − r1) + r + ‖π′σ‖2/2)T

)
√

Φ(zα − 2‖π′σ‖
√

T )

α
. (2.10)

Consequently, closed-form expressions of CaRk(π) for k = 0, 1, 2 can be given.
To avoid discussions of some subcases, throughout this paper we make the following

assumption.

Assumption 2.1 The parameter α satisfies α < 0.5 and hence zα < 0.

Denote by ϕ the density function of a standard normal random variable.

Lemma 2.1 Let x > 0. Then
(

1

x
−

1

x3

)
ϕ(x) < Φ(−x) <

ϕ(x)

x
.

Proof See Gänssler and Stute [8]. �
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3 Mean-CaR portfolio selection

Emmer, Klüppelberg and Korn [6] solved the portfolio optimization problem that maxi-
mizes the expected terminal wealth under a given level of CaR0, i.e.,

max
π∈Rn

E[Wπ(T )] subject to CaR0(π) ≤ C. (3.1)

Emmer, Klüppelberg and Korn [7] solved the portfolio optimization problem that maxi-
mizes the expected terminal wealth under a given level of CaR1, i.e.,

max
π∈Rn

E[Wπ(T )] subject to CaR1(π) ≤ C. (3.2)

The two models are analogues of the Markowitz’s mean-variance model that maximizes
the expected terminal wealth under a given level of the variance of the terminal wealth. In
this paper, we solve the portfolio optimization problem associated with CaR2. However,
our model is to minimize CaR2 of the terminal wealth under a given level of the expected
terminal wealth. This is an analogue of the Markowitz’s mean-variance model that
minimizes the variance of the terminal wealth under a given level of the expected terminal
wealth. As an application of our method, we also solve the portfolio optimization models
that minimizes respectively CaR0 and CaR1 under a given level of the expected terminal
wealth. We refer the three portfolio optimization models as mean-CaR models.

3.1 Mean-CaR2 portfolio selection

Consider the following mean-CaR model associated with CaR2:

min
π∈Rn

CaR2(π) subject to E[Wπ(T )] ≥ C, (3.3)

where C > 0 is a predetermined level of the expected terminal wealth E[Wπ(T )]. Since
the pure bond policy (i.e., the one that invests all of the wealth in the bond for the entire
investment period) yields a deterministic terminal wealth of w exp(rT ), throughout this
paper we assume that the expected wealth level C satisfies the following lower bound
condition:

C ≥ w exp(rT ). (3.4)

Obviously, this is a reasonable assumption, for the solution of problem (3.3) under C <
w exp(rT ) is foolish for rational investors.

In the following we derive analytically the best CRP investment strategy; i.e., the op-
timal solution to problem (3.3). As a by-product, we also obtain a closed-form expression
for the efficient frontier of the mean-CaR model.

Let θ := ‖σ−1(b − r1)‖ and denote a+ = max{a, 0} for a real number a.

Theorem 3.1 Assume that b 6= r1. Assume furthermore that C satisfies

C ≥ w exp(rT + (θ
√

T + zα)+θ
√

T ). (3.5)

Then the unique optimal policy of the mean-CaR model (3.3) is

π∗ = (ε∗/θ) (σσ′)−1(b − r1), (3.6)

where

ε∗ = (ln(C/w) − rT ) /(θT ). (3.7)
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The corresponding expected terminal wealth is E[Wπ
∗

(T )] = C and Capital-at-Risk is

CaR2(π
∗) = w exp(rT ) − C

√
exp

(
ε∗2T

)
Φ(zα − 2ε∗

√

T )/α. (3.8)

Proof With the help of expressions (2.2) and (2.10) and the definition of CaR2,
problem (3.3) cab be equivalently written as





max w exp

(
(π′(b − r1) + r + ‖π′σ‖2/2)T

)√
Φ(zα − 2‖π′σ‖

√

T )/α

s.t. w exp ((π′(b − r1) + r)T ) ≥ C.
(3.9)

The feasible set of the problem is

Π = {π : (b − r1)′πT ≥ ln(C/w) − rT } .

Given ε > 0, the intersection of Π and the ellipsoid ‖π′σ‖ = ε is

Π(ε) = {π : ‖π′σ‖ = ε, (b − r1)′πT ≥ ln(C/w) − rT } .

The hyperplane (b − r1)′πT = ln C

w
− rT is tangent to the ellipsoid ‖π′σ‖ = ε if and

only if εθT = ln(C/w) − rT , that is ε = ε∗ := (ln(C/w) − rT ) /(θT ) > 0. Consequently
Π(ε) = ∅ if ε < ε∗ and hence Π =

⋃
ε≥ε∗

Π(ε). Thus problem (3.9) is equivalent to the

following bilevel optimization problem

max
ε≥ε∗

max
π∈Π(ε)

w exp
(
(π′(b − r1) + r + ε2/2)T

)√
Φ(zα − 2ε

√

T )/α. (3.10)

For each fixed ε ≥ ε∗, we solve the inner-level optimization problem

max
π∈Π(ε)

w exp
(
(π′(b − r1) + r + ε2/2)T

)√
Φ(zα − 2ε

√

T )/α

or equivalently

max
π∈Π(ε)

(b − r1)′π. (3.11)

The unique optimal solution is the tangent point

π∗
ε

= (ε/θ)(σσ′)−1(b − r1)

of the hyperplane that parallels (b − r1)′πT = ln C

w
− rT to the ellipsoid ‖π′σ‖ = ε,

with maximum (b− r1)′π∗
ε = εθ. Therefore, we obtain the solution of problem (3.10) by

solving the problem

max
ε≥ε∗

w exp
(
(εθ + r + ε2/2)T

)√
Φ(zα − 2ε

√

T )/α. (3.12)

Consider the functions h on [0, +∞) defined by

h(ε) = 2εθT + ε2T + ln
(
Φ(zα − 2ε

√

T )
)

.
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Noting 1 − Φ(x) = Φ(−x) and ϕ(−x) = ϕ(x), setting x = 2ε
√

T − zα in the second
inequality in Lemma 2.1 yields ϕ(zα − 2ε

√

T ) > Φ(zα − 2ε
√

T )(2ε
√

T − zα). Thus

h′(ε) = 2θT + 2εT +
(−2

√

T )ϕ(zα − 2ε
√

T )

Φ(zα − 2ε
√

T )
< 2

√

T
[
θ
√

T + ε
√

T − (2ε
√

T − zα)
]

= 2
√

T (θ
√

T + zα − ε
√

T ).

If θ
√

T +zα ≤ 0, then obviously h′(ε) < 0 for ε ≥ 0. If θ
√

T +zα > 0, then condition (3.5)
implies that ε∗ ≥ (θ

√

T + zα)/
√

T and hence h′(ε) < 0 for ε ≥ ε∗. Thus, function h
is strictly decreasing when ε ≥ ε∗. Consequently, problem (3.12)’s objective function,
equal to exp ((h(ε) + 2rT − ln α)/2), is strictly decreasing when ε ≥ ε∗. Therefore, the
optimal solution of problem (3.12) is the unique ε∗. This completes the proof. �

As an immediate consequence, the analytic result in Theorem 3.1 provides an explicit
relation between the optimal Capital-at-Risk and the expected terminal wealth. Letting
ξ := E[Wπ

∗

(T )], we have

CaR2(ξ) = werT
− ξ

√√√√√√
1

α
exp




(
ln ξ

w
− rT

)2

θ2T


Φ


zα −

2
(
ln ξ

w
− rT

)

θ
√

T


 (3.13)

for ξ ≥ w exp(rT + (θ
√

T + zα)+θ
√

T ). The above relationship is known as the efficient

frontier of the mean-CaR model associated with CaR2 in mean-CaR space.

3.2 Mean-CaR1 portfolio selection

Consider the following mean-CaR model associated with CaR1:

min
π∈Rn

CaR1(π) subject to E[Wπ(T )] ≥ C, (3.14)

where C, as in model (3.3), is again the predetermined level of the expected terminal
wealth E[Wπ(T )] and satisfies condition (3.4).

Using a quite similar derivation as that in the proof of Theorem 3.1, we can also
obtain a closed-form solution for problem (3.14), which is summarized by the following
theorem stated without proof.

Theorem 3.2 Assume that b 6= r1. Assume furthermore that C satisfies (3.5). Then

the unique optimal policy of the mean-CaR model (3.14) is

π∗ = (ε∗/θ) (σσ′)−1(b − r1), (3.15)

where

ε∗ = (ln(C/w) − rT ) /(θT ). (3.16)

The corresponding expected terminal wealth is E[Wπ
∗

(T )] = C and Capital-at-Risk is

CaR1(π
∗) = w exp(rT ) − CΦ(zα − ε∗

√

T )/α. (3.17)
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Consequently, the efficient frontier of the mean-CaR model associated with CaR1 in
mean-CaR space is given by

CaR1(ξ) = werT
−

ξ

α
Φ

(
zα −

ln ξ

w
− rT

θ
√

T

)
(3.18)

for ξ := E[Wπ
∗

(T )] ≥ w exp(rT + (θ
√

T + zα)+θ
√

T ).
It should be pointed out that although Emmer, Klüppelberg and Korn [7] also ob-

tained a solution to (3.2) that has the same representation as (3.15), the parameter
ε∗ however was not obtained explicitly as in (3.16). In fact, in their formulation ε∗ is
estimated as a value between two expressions representing two real numbers.

3.3 Mean-CaR0 portfolio selection

Consider the following mean-CaR model associated with CaR0:

min
π∈Rn

CaR0(π) subject to E[Wπ(T )] ≥ C, (3.19)

where C, as in problem (3.3), is again the predetermined level of the expected terminal
wealth E[Wπ(T )] and satisfies condition (3.4).

The solution to the above optimization problem (3.19) is summarized in the following
theorem. We omit the proof since it is very similar to the proof of Theorem 3.1.

Theorem 3.3 Assume that b 6= r1. Then the unique optimal policy of mean-CaR

model (3.19) is

π∗ = (ε∗/θ) (σσ′)−1(b − r1), (3.20)

where

ε∗ = max
{
(ln(C/w) − rT ) /(θT ), θ + zα/

√

T
}

. (3.21)

The corresponding expected terminal wealth is

E[Wπ
∗

(T )] = w exp (ε∗θT + rT ) = max
{

C, w exp
(
rT + θT

(
θ + zα/

√

T
))}

(3.22)

and the Capital-at-Risk is

CaR0(π
∗) = w exp(rT )

[
1 − exp

(
ε∗θT − ε∗2T/2 + zαε∗

√

T
)]

. (3.23)

Based on this result, the efficient frontier of the mean-CaR model associated with
CaR0 in mean-CaR space is given by

CaR0(ξ) = w exp(rT ) − ξ exp

(
ln(ξ/w) − rT

θT

(
zα

√

T −

ln(ξ/w) − rT

2θ

))
(3.24)

for ξ := E[Wπ
∗

(T )] ≥ w exp

(
rT +

(
θ + zα/

√

T
)+

θT

)
.

We noted that the part of the efficient frontier corresponding to those C satisfying

w exp(rT ) ≤ C ≤ w exp

(
rT +

(
θ + zα/

√

T
)+

θT

)

degenerates to a single point where ξ = w exp

(
rT +

(
θ + zα/

√

T
)+

θT

)
in mean-CaR

space. Hence the whole efficient frontier starts from this point.
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4 A comparison of the mean-CaR models

Based on the results in the previous section, in this section we compare the optimal
behaviors of our mean-CaR0, mean-CaR1, and mean-CaR2 models.

(1) For any given expected terminal wealth level C ≥ C0 := w exp

(
rT+

θ
√

T
(
θ
√

T + zα

)+
)

, the three mean-CaR models have the same optimal strategy which

does not depend on the confidence level α and the same expected terminal wealth which
is equal to the lowest permissible wealth C. When the given expected terminal wealth
level C is lower than C0, the optimal policy of the mean-CaR0 model does not dependent
on the expected terminal wealth level C but depends on the the confidence level α.

(2) For each mean-CaR model, the optimal fraction of wealth invested in risky assets
π∗ is increasing with the expected terminal wealth level C, indicating that a higher
expected terminal wealth level requires more investment in risky assets. (In the low level
region C ≤ C0, the optimal stock weights of the mean-CaR0 model are invariant with
the expected terminal wealth level.)

(3) For the mean-CaR2 and the mean-CaR1 models, the optimal fraction of wealth
invested in risky assets π∗ is decreasing with the investment horizon T , exhibiting the
reverse time-diversification effect: an investor allocates less to stocks when confronted
with a longer investment horizon. For the mean-CaR0 model, however, the optimal
fraction of wealth invested in stocks first decreases with T in the region T ≤ T0 :=(

−zαθ+

√

(zαθ)2+4(r+θ2) ln(C/w)

2(r+θ2)

)2

, exhibiting the reverse time-diversification effect in the

region of short investment horizons T ≤ T0, and then increases with T in the region
T ≥ T0, exhibiting the time-diversification effect in the region of long investment horizons
T ≥ T0.

(4) For each mean-CaR model, CaR of the optimal strategy is decreasing with confi-
dence level α; that is, smaller risk measured by CaR is exposed at the expense of higher
confidence level.

(5) For each mean-CaR model, roughly the CaR of the optimal strategy is first increas-
ing and then decreasing with time horizon T , implying that more (less) risk measured by
CaR is exposed as the horizon extends in the small (large) region of short (long) horizons.
This will be illustrated in the example of the next section.

(6) As to be expected, in mean-CaR spaces, the three mean-CaR efficient frontiers
are all strictly increasing and concave, where the concavity of the mean-CaR0 efficient
frontier is true at least in the region

ξ ≥ w exp
(
rT +

(
θ
√

T + zα

)
θ
√

T +
(√

1/4 + 1/(θ2T ) − 1/2
)

θ2T
)

.

(7) The mean-CaR1 efficient frontier is higher than the mean-CaR2 efficient frontier,
which, in turn, is higher than the mean-CaR0 efficient frontier; that is, for each ξ =

E[Wπ
∗

(T )] ≥ w exp

(
rT +

(
θ
√

T + zα

)+

θ
√

T

)
, CaR1(ξ) ≥ CaR2(ξ) ≥ CaR0(ξ). In

other words, for the same expected terminal wealth level, the optimal strategy of the
mean-CaR1 model has larger CaR than the one of the mean-CaR2 model, which in
turn has larger CaR than the one of the mean-CaR0 model. In fact, it holds that
CaR1(π) ≥ CaR2(π) ≥ CaR0(π) for general strategies π; see Corollary 2.4 of Emmer,
Klüppelberg and Korn [7].
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(8) Each of the three mean-CaR efficient frontiers depends only on the stocks via the
norm ‖σ−1(b − r1)‖ and has no explicit dependence on the number of different stocks.
Therefore, Theorems 3.1, 3.2 and 3.3 can be interpreted as a kind of mutual fund theorems

since there is no difference between investment in our multi-stock market and a market
consisting of the bond and just one stock with appropriate market coefficients b and σ,
as observed by Emmer, Klüppelberg and Korn [6] for their mean-CaR model.

5 An example

In this section, a numerical example is presented to demonstrate the results stated in the
previous section.

Example 5.1 Consider a market that consists of the bond and just one stock (i.e.,
n = 1). Assume that the rate of interest of the bond is r = 0.05, the stock-appreciation
rate is b = 0.1, and the stock-volatility is σ = 0.2, implying θ = 0.25. And assume that
the initial wealth of an investor is w = 1000.

Figures 5.1 and 5.2 show the dependence of the optimal fraction of wealth invested in
the stock on the time horizon T , the expected terminal wealth level C and the confidence
levels α. Figure 5.1 exhibits the reverse time-diversification effect, the increasingness with
the expected terminal wealth level, and the invariance with the confidence level of the
optimal stock fraction to the mean-CaR2 and the mean-CaR1 models. In Figure 5.2, the
optimal stock fraction of the mean-CaR0 model displays the reverse time-diversification
effect in a large time horizon region (e.g., 0 < T ≤ 16.48 for α = 0.20), the time-
diversification effect in a small time horizon region (e.g., 16.48 ≤ T ≤ 20 for α = 0.20),
the increasingness with the expected terminal wealth level, and the increasingness with
the confidence level.

4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

π*

T

C=2718.28
C=3172.50
C=3702.61

Figure 5.1: The optimal stock fraction of the mean-CaR2 and the mean-CaR1 models with
any confidence level α < 0.13 as a function of the time horizon T (0 < T ≤ 20) for different
expected terminal wealth levels C.

The CaR of the optimal strategy as a function of the time horizon T is illustrated
graphically in Figure 5.3 for mean-CaR2, Figure 5.4 for mean-CaR1, and Figure 5.5 for
mean-CaR0 models, which indicates that more (less) CaR risk is exposed as the horizon
extends in a small (large) region of short (long) horizons for each of the mean-CaR models.
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(a) with a confidence level α = 0.20 for different
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Figure 5.2: The optimal stock fraction of the mean-CaR0 model as a function of the time
horizon T (0 < T ≤ 20).

Figures 5.5(a) and 5.5(b) also display some difference of CaR0 of the optimal strategy to
the mean-CaR0 model with the same expected terminal wealth levels between different
confidence levels. Figure 5.6 plots the CaR of the three mean-CaR models in the same
plane to compare them, showing that the optimal CaR1 is larger than the optimal CaR2

which is larger than the optimal CaR0 for the same time horizon.
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Figure 5.3: CaR2 of the optimal strategy to
the mean-CaR2 model with a confidence level
α = 0.05 as a function of the time horizon T
(0 < T ≤ 20) for different expected terminal
wealth levels C.
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Figure 5.4: CaR1 of the optimal strategy to
the mean-CaR1 model with a confidence level
α = 0.05 as a function of the time horizon T
(0 < T ≤ 20) for different expected terminal
wealth levels C.

The mean-CaR2, the mean-CaR1 and the mean-CaR0 efficient frontiers are depicted
respectively in Figure 5.7, Figure 5.8 and Figure 5.9 with the mean on the horizontal axis
and the CaR on the vertical axis for confidence levels α = 0.01 (dashed line), α = 0.05
(solid line) and α = 0.1 (dotted line). Clearly, all the efficient frontiers are increasing
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(a) with a confidence level α = 0.05
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(b) with a confidence level α = 0.20

Figure 5.5: CaR0 of the optimal strategy to the mean-CaR0 model as a function of the time
horizon T (0 < T ≤ 20) for different expected terminal wealth levels C.
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(a) with a confidence level α = 0.05 and a expected
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Figure 5.6: CaR of the optimal strategies to the mean-CaRk (k = 0, 1, 2) models as a function
of the time horizon T (0 < T ≤ 20).
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and concave; and the higher is the confidence level α, the lower is the efficient frontier
for each of the three mean-CaR models, implying that CaR of the optimal strategy for
each mean-CaR model decreases as the confidence level increases. Furthermore, in order
to demonstrates the difference of the three efficient frontiers, the efficient frontiers of
mean-CaR2 (dashed line), mean-CaR1 (solid line) and mean-CaR0 (dotted line) models
are plotted in the same plane, see Figure 5.10. Obviously, the efficient frontiers of the
mean-CaR1, the mean-CaR2 and the mean-CaR0 models fall in turn, again implying
that the risk measured by CaR1 is the largest and the one by CaR0 is the smallest,
among the three.
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Figure 5.7: Mean-CaR2 efficient frontiers
for different confidence levels.
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Figure 5.8: Mean-CaR1 efficient frontiers
for different confidence levels.
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Figure 5.9: Mean-CaR0 efficient frontiers
for different confidence levels.
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Figure 5.10: The mean-CaRk efficient fron-
tiers with k = 0, 1, 2 for α = 0.10.

6 Conclusions

This paper investigates three continuous-time mean-CaR portfolio selection models under
the setting of Black-Scholes financial markets and CRP investment strategies. After
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converting the portfolio optimization problems we obtain closed-form explicit expressions
of optimal strategies and efficient frontiers by virtue of a decomposition of the feasible
solution set. This approach facilitates computation and the comparison of results and
can be easily used in practice. It unifies the framework of dealing with different mean-
CaR portfolio selection models. In an analogous way, it can be shown that the approach
can be applied to a mean-variance model, a mean-VaR model, and some expected utility
models with a shortfall constraint to obtain closed-form solutions. We also believe that
the approach can be applied to some other continuous-time portfolio selection problems.

Note that the derived optimal strategies of the three mean-CaR models are nonneg-
ative under the assumption that each stock-appreciation rate is not smaller than the
riskless interest rate. In this case, our results are valid for continuous-time mean-CaR
portfolio selection problems where short-selling of risky assets is not allowed. (However,
short-selling the riskless asset is still allowed.)

CRP strategies have a variety of optimality properties associated with them for or-
dinary portfolio problems (see, e.g., Merton [15, 16]) showed that this form of strategies
are optimal to portfolio selection problems of maximizing expected utility with constant
relative risk-aversion.) and are widely used in asset allocation practice (see, e.g., Perold
and Sharpe [17] and Black and Perold [3]). However, since such strategies may not be
feedback strategies under general models, the optimal CRP strategy for our models or
for the models in Emmer, Klüppelberg and Korn [6, 7] may not be globally optimal in
the set of all dynamic strategies. Removing the restriction to strategies with constant
proportions would be both mathematically harder and more interesting.
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Abstract: A new intelligent nonlinear control for power system stabilizers that
improves the transient stability is proposed. To guarantee high performance
with low complexity cost, new concepts on the passivity design under unknown
disturbance inputs, as well as on the adaptive fuzzy logic rule extraction are
introduced. This permits the most possible simple design implementation of
an adaptive-fuzzy logic passivity-based controller which is developed on an
equivalent model of the system obtained by a suitable use of the backstepping
technique. The overall scheme is decentralized providing local output feedback
controllers, supported by a very simple adaptive-fuzzy scheme of only three
rules. A detailed analysis proves that the proposed control scheme ensures
uniform ultimate boundedness of all the error variables in an arbitrarily small
region around the origin. Extensive simulations on a two machine infinite bus
power system on which a permanent serious fault occurs, confirm the theoretical
results and verify an excellent system performance.

Keywords: Adaptive control; fuzzy logic control; passivity; power system control.
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1 Introduction

Advanced intelligent control designs are increasingly used in high technology applications
to solve practical problems in nonlinear systems. Among others, a characteristic example
of a highly nonlinear system is the power system where these techniques are recently
applied. Particularly, power systems are nonlinear, large scale, distributed systems that
include a number of synchronous machines as producers. One of the main goals of the
excitation control of each machine is the enhancement of power system stability especially
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after faults such as short-circuits or significant power disturbances. To this end, power
system stabilizers (PSS) are widely used as supplementary excitation control devices.

Last decade nonlinear control theory has been extensively used to account for the
nonlinearities of the controlled power systems. Early designs are based on the feedback
linearization technique [1]. Alternatively, the sliding-mode control technique has been
applied on power systems providing rather simple control schemes [2, 3]. Nonlinear
control techniques have been crucially enhanced by using robust control designs such as
H∞ control and L2 disturbance attenuation [4, 5, 6, 7]. In recent years new approaches
have been proposed for power stability designs based on advanced nonlinear schemes
such as adaptive control [8, 9, 10], neuro-control [11] and fuzzy logic [12].

Fuzzy logic designs have been employed as promising controllers, since they provide
a convenient method in nonlinear design via the use of qualitative rules characterizing
the power system performance. However, due to different operating conditions a large
rule base is needed to ensure an acceptable performance. In order to obtain a better
performance, as compared to the standard design, an adaptive fuzzy logic stabilizer has
been proposed [13, 14]. Although this on-line adaptation mechanism overcomes many
of the drawbacks, the whole control scheme of each machine cannot be considered as a
simple one; at least 9 rules for the two-input single-output fuzzy system are required
while a 9-order adaptive system is needed [14].

In this paper, a new approach to the design of decentralized adaptive fuzzy excitation
control is proposed that acts in coordination with the automatic voltage regulator. The
design is based on the nonlinear third-order model of each machine [5]. On this model a
suitable backstepping technique is applied that modifies the original n-machine system
into n separate systems that are interconnected through highly nonlinear links. Each
of these systems is a single-input single-output (SISO) minimum phase system with
relative degree one. However, due to the highly nonlinear interconnections, it is shown
that the system can be passive by output feedback anywhere in Rn except for a compact
region Ω containing the origin. To describe this property the concept of Ω− -passivity is
introduced. As a result a simple standard passivity-based output feedback control design
with negative gain [15, 16] can be applied that provides uniform ultimate boundedness
(UUB). The size of Ω depends on the unknown nonlinear interconnections. In order to
avoid high gains and large regions Ω, a very simple SISO adaptive fuzzy logic scheme
is included to approximate these nonlinearities. As shown in the paper, the qualitative
principle that holds for the fuzzy logic rule extraction has a SISO linguistic form with
input, a fixed linear combination of the power angle deviation, the nominal frequency
deviation and the accelerating power. Including additionally an adaptation mechanism
that provides on-line the fuzzy logic output parameters, i.e. the centers of gravity of the
membership functions, a very simple rule base of only three IF-THEN SISO statements
accompanied by a 3-order adaptation scheme is proposed.

Hence, by the proposed scheme, a completely decentralized excitation control is
achieved. Furthermore, exploiting some inherent structure properties of power systems,
a passivity-based control scheme is developed that in turn is combined with advanced
control techniques in a manner that results in an extremely simple form. Extensive sta-
bility analysis proves that the system becomes UUB while the estimated parameter errors
remain bounded. The region around the origin inside which the variables converge can be
arbitrarily small by suitably tuning the passivity control gain and the design parameters.
Finally, the effectiveness of the proposed controller is successfully verified by simulation
tests on a two machine infinite bus power system.
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2 Preliminaries and system formulation

Before proceeding with our approach we give some definitions assuming that the concepts
of relative degree and normal form of a dynamical system are familiar to the reader (see
[15] and the references therein for details).

Definition 2.1 The zero dynamics of a dynamical system with output y, represent

those internal dynamics which are consistent with the constraint that the output is identi-

cally equal to zero. If the zero dynamics of a dynamical system are asymptotically stable,

then this system is called a minimum-phase system.

Definition 2.2 A dynamical system with state vector x ∈ Rn, input u ∈ Rm and

output y ∈ Rm is said to be passive if there exists a positive definite radially unbounded

storage function V (x) and a positive definite function S(x) such that for all u ∈ U where

U is the set of all admissible inputs holds true that

V (x(t)) − V (x(0)) =

∫ t

0

yT (s)u(s)ds −

∫ t

0

S(x(s))ds for all t ≥ 0 and x ∈ Rn.

Obviously from Definition 2.2, the following proposition can be made.

Proposition 2.1 A dynamical system with state vector x ∈ Rn, input u ∈ Rm

and output y ∈ Rm has the passivity property if there exists a positive definite radially

unbounded function V (x) and a positive scalar c > 0 such that

V̇ < −cV + yT u ∀x ∈ Rn.

2.1 Ω−-passivity

At this point, the following definition is introduced.

Definition 2.3 A dynamical system with state vector x ∈ Rn, input u ∈ Rm and

output y ∈ Rm is said to be Ω−-passive (read: Omega minus passive) if there exists a

positive definite radially unbounded storage function V (x) and a positive definite function

S(x) such that for all u ∈ U where U is the set of all admissible inputs, it holds true that

V (x(t)) − V (x(0)) =

∫ t

0

yT (s)u(s)ds −

∫ t

0

S(x(s))ds

whenever x(τ) ∈ Rn
\Ω, ∀ τ ∈ [0, t],

where Ω is a compact set, Ω ⊂ Rn, containing the origin.

Obviously from Definition 2.3, the following proposition (analogous to Proposition
2.1) is given.

Proposition 2.2 A dynamical system with state vector x ∈ Rn, input u ∈ Rm and

output y ∈ Rm has the Ω−-passivity property if there exists a positive definite radially

unbounded function V (x) and a positive scalar c > 0 such that

V̇ < −cV + yT u ∀x ∈ Rn
\Ω,

where Ω is a compact set, Ω ⊂ Rn, containing the origin.
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Figure 2.1: The regions Ω and Ω′ for a Lyapunov function V (x1, x2) = x2
1 + x2

2.

From Definition 2.2 it is deduced that any passive unforced system (u ≡ 0) is asymp-
totically stable. On the other hand, one can easily see from Definition 2.3 that any
unforced system that is Ω−-passive, ensures finite-time convergence of the state vector
inside the region Ω. Particularly, in accordance to Definition 2.3, since S is positive defi-
nite, ∂S

∂x
6= 0 ∀x 6= 0 and therefore a local minimum of S does not exist in Rn

\Ω; hence
the minimum of S in the closure of Rn

\Ω is on ∂Ω where ∂Ω is the boundary surface
of Ω. If we define Sℓ := minx∈∂Ω S(x) 6= 0 then the system trajectories starting from
the region Rn

\Ω will insert inside the region Ω in a finite-time less than T = V0/Sℓ ,

since 0 − V0 = −

∫
t

0
S(x(s))ds ≤ −Sℓ · T with V0 = V (x(0)). Define now the point

x∗ := argmaxx∈∂Ω V (x) and the compact set Ω′ := {x ∈ Rn
|V (x) ≤ V (x∗)}. It is

straightforward that the state trajectories remain in Ω′ for all t ≥ T (obviously it is
Ω ⊂ Ω′, see Figure 2.1).

The stability analysis based on the concept of Ω−-passivity generalizes the results of
[17, 18] on quasi-dissipative systems and constitutes an effective tool in this field.

2.2 System Model

Now, we are ready to proceed with the system model. In the model used, the multima-
chine power system is reduced into a network with generator nodes only. For the design
of the excitation controller the classical third-order single-axis dynamic generator model
is used whereas differential equations that represent dynamics with very short time con-
stants have been neglected. In general, for a n-generator power system, the dynamic
model of the i-th generator is

δ̇i(t) = ωi(t) − ω0, (1)

ω̇i(t) = −

Di

Mi

(ωi(t) − ω0) +
ω0

Mi

(Pmi − Pei(t)), (2)
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Ė′
qi

(t) =
1

T ′
d0i

(Efi(t) − Eqi(t)), (3)

where
Eqi(t) = E′

qi(t) + (xdi − x′
di)Idi(t), (4)

Efi(t) = kciufi(t), (5)

Iqi(t) =

n∑

j =1

E′
qj

(
Bij sin δij(t) + Gij cos δij(t)

)
, (6)

Idi(t) =
n∑

j =1

E′
qj

(
Gij sin δij(t) − Bij cos δij(t)

)
, (7)

Pei(t) = E′
qi

(t)Iqi(t), (8)

Qei(t) = E′
qi(t)Idi(t), (9)

Eqi(t) = xadiIfi(t), (10)

Vtqi(t) = E′
qi

(t) − x′
di

Idi(t), (11)

Vtdi(t) = x′
di

Iqi(t), (12)

Vti(t) =
√

V 2

tqi
(t) + V 2

tdi
(t). (13)

Applying the backstepping technique used in [9, 10], the following state transformation
for the i-th machine is obtained




zi1

zi2

zi3


 =




1 0 0
ci1 1 0

−
Mi

ω0
(1 + ci1ci2) −

Mi

ω0
(ci1 + ci2 −

Di

Mi
) 1






∆δi

∆ωi

∆Pei


 , (14)

where ci1 > 0 and ci2 > 0.
Defining for each machine the excitation control law Efi = kciufi with kci = 1 and

ufi(t) =
T ′

d0i

Iqi

(ki1∆ωi + ki2∆Pmi + vi) (15)

with gains given by

ki1 =
Mi

ω0

[ci1ci2 + 1 −

Di

Mi

(ci1 + ci2 −

Di

Mi

)],

ki2 = ci1 + ci2 −

Di

Mi

, (16)

the dynamics of each machine with respect to the new z variables are given by




żi1

żi2

żi3


 =




−ci1 1 0
−1 −ci2 −

ω0

Mi

0 0 0






zi1

zi2

zi3


+




0
0
1


 vi −




0
0
fi


 , (17)

where

fi(t) :=
1

T ′
d0i

[
E′

qi(t) + (xdi − x′
di)Idi(t)

]
Iqi(t) − E′

qi(t)İqi(t). (18)
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Thus, applying (14), the original system is transformed into (17), i.e. a system
consisting of a linear part of the form żi = Aizi + Bivi and a nonlinear term fi that
affects the state equations wherein the input vi appears. As shown by (18), the nonlinear
term cannot be reconstructed from the local i-th machines variables and therefore it can
be considered as an unknown input function. Additionally, the unknown input fi(t) is
considered to be bounded (this is always the case since the machine voltages and currents
and their rates cannot take infinite values) , i.e.

|fi(t)| ≤ Fi < ∞. (19)

If one considers the variable zi3 as the output of the i-th subsystem, i.e.

yi = Czi =
[

0 0 1
]



zi1

zi2

zi3



 = zi3,

then it is obvious that the system is minimum phase i.e. it holds true that zi1, zi2 → 0 as
t → ∞ for zi3 ≡ 0. Moreover the system has relative degree one since the input appears
directly in the first derivative of the output.

In the case where fi ≡ 0, system (17) becomes a purely linear system and in ac-
cordance to [15] it can be feedback equivalent to a passive system, since it is minimum
phase with relative degree one. However, since in this case relative degree one is equiva-
lent to the nonsingularity of the system high frequency gain CB and furthermore since
CB is positive definite then as it has been shown in [15] and [16] an output feedback
vi = −kiyi + vfi can be determined with large enough gain ki > 0 that ensures passivity
of the closed-loop system with new input vfi in accordance to Definition 2.2. In the case
where fi 6= 0 and since (19) holds true, we will prove in Section 4 that also for this case
an output feedback

vi = −kiyi + vfi (20)

can be determined with large enough gain ki > 0 that ensures Ω−-passivity of the closed-
loop system in accordance to Definition 2.3, where vfi in (20) is an external input.

3 The proposed control scheme

Incorporating the passivity-based controller (20) into the control scheme given by (15),
the excitation input takes a rather simple mathematical form

Efi(t) =
T ′

d0i

Iqi

(Ki1∆δi + Ki2∆ωi + Ki3∆Pmi + vfi), (21)

where the constant gains are now given by

Ki1 =
Mi

ω0

ki(1 + ci1ci2),

Ki2 =
Mi

ω0

[(
ki −

Di

Mi

)(
ci1 + ci2 −

Di

Mi

)
+ ci1ci2 + 1

]
, (22)

Ki3 = ci1 + ci2 + ki −

Di

Mi

,

and the vfi is an external input.
This control scheme requires only local measurements of Pei, ωi, δi and of the current

Iqi that can be calculated from the measurements.
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4 Ω−-passivity property of power systems

For the multimachine power system with the model of each machine described by the
modified system (17), we consider the nonnegative candidate Lyapunov function

V0 =

n∑

i =1

Vi with Vi =
1

2

3∑

j =1

z2

ij
, i = 1, 2, . . . , n. (23)

The time derivative of Vi has the following form

V̇i = −ci1z
2

i1
− ci2z

2

i2
+ zi3

[
vi(t) − fi(t) −

ω0

Mi

zi2

]
. (24)

Then for the control law (21) we have

V̇i = −ci1z
2

i1
− ci2z

2

i2
− kiz

2

i3
−

ω0

Mi

zi2zi3 + zi3(vfi − fi).

Using the inequality

Fi|zi3| ≤ ρfikiz
2

i3
+

F 2

i

4ρfiki

,

we arrive at

V̇i ≤ −ci1z
2

i1
−

[
zi2 zi3

] [ ci2
ω0

2Mi
ω0

2Mi
(1 − ρfi)ki

] [
zi2

zi3

]
+ zi3vfi +

F 2

i

4ρfiki

for arbitrary ρfi : 0 < ρfi < 1.
If the positive constants ci2, ki are selected so that

Pi :=

[
ci2

ω0

2Mi
ω0

2Mi
(1 − ρfi)ki

]
> 0,

i.e. if

ci1 > 0 , ci2ki >
1

1 − ρfi

(
ω0

2Mi

)2

, (25)

we result in

V̇i ≤ −ci1z
2

i1
− λmin(Pi)z

2

i2
− λmin(Pi)z

2

i3
+ zi3vfi +

F 2

i

4ρfiki

.

Defining mfi := min{ci1, λmin(Pi)}, i = 1, · · · , n and mf := min1≤i≤nmfi , it is obvious
that

V̇i ≤ −mfi(z
2

i1 + z2

i2 + z2

i3) + zi3vfi +
F 2

i

4ρfiki

or

V̇i ≤ −2mfiVi + zi3vfi +
F 2

i

4ρfiki

.

Let mf := min1≤i≤nmfi, then for V0 we have that

V̇0 ≤ −2mfV0 +

n∑

i =1

(
zi3vfi +

F 2

i

4ρfiki

)
. (26)
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For every arbitrary parameter ǫ : 0 < ǫ < 2 and for (z11, z12, z13)× · · · × (zn1, zn2, zn3) ∈
R3n which do not belong to the compact set

Ωf :=

{
(z11, z12, z13) × · · · × (zn1, zn2, zn3) :

n∑

i =1

3∑

j =1

z2

ij
≤

n∑

i =1

F 2

i

2(2 − ǫ)mfρfiki

}
(27)

it is immediately deduced that

n∑

i =1

F 2

i

4ρfiki

= (2−ǫ)

n∑

i =1

mf

2

F 2

i

2(2 − ǫ)mfρfiki

≤ (2−ǫ)mf

(
1

2

n∑

i =1

3∑

j =1

z2

ij

)
= (2−ǫ)mfV0.

Hence, (26) becomes

V̇0 ≤ −ǫ mfV0 +

n∑

i =1

zi3vfi.

Thus, in accordance to Proposition 2.2 we have proven that the closed-loop system is

Ω−
f

-passive with constant c = ǫ mf , input and output vectors
[

vf1 vf2 · · · vfn

]T

and
[

z13 z23 · · · zn3

]T
, respectively. Hence, for the unforced system (vfi ≡ 0 , i =

1, 2, · · · , n), the region Ωf that defines the Ω−
f

-passivity property is identical to the UUB

region, i.e. Ω−
f

-passivity guarantees UUB in the region Ωf . As can be easily seen from
(27), as ǫ → 0 the region Ωf decreases to its inferior limit. Also, as the feedback gain ki

takes larger values for a given Fi the region Ωf becomes smaller. However, the unknown
input fi may have large values; this consequently may imply a large region Ωf around the
origin in which the states of the system converge making the output feedback controller
performance inefficient. To reduce Ωf , a high-gain controller is needed.

To avoid high-gain controls one can observe the following. The nonlinear term fi

appears in the 3rd equation of (17) that provides the zi3-dynamics, i.e.

żi3 = −kizi3 + (vfi − fi). (28)

From (28) and (27) one can see that the region Ωf around the origin can be closer to the
origin if vfi can effectively compensate fi. In order to accommodate this requirement
with a simple controller structure, we propose an adaptive fuzzy-logic controller for vfi

as it is explained in the following.

5 Adaptive fuzzy-logic controller

A general fuzzy system includes four basic parts. A fuzzifier and a defuzzifier are the
interface between the fuzzy system and the crisp system. The rule base is a database of
IF THEN statements extracted from qualitative rules characterizing the operation of the
system. For each rule, the inference engine maps the input fuzzy set to an output fuzzy
set according to the relation defined by the rule. All four parts of a fuzzy logic system
(FLS) can be mathematically formulated [19].

By choosing product inference and employing the centre of gravity method for de-
fuzzification, the output of the fuzzy system is written as

y =

∑
M

ℓ=1
θℓ

∏
n

i=1
µF ℓ

i
(xi)

∑
M

ℓ=1

∏
n

i=1
µF ℓ

i
(xi)

, (29)
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where M is the number of rules in the FLS, n is the number of inputs to the FLS, θℓ is
the center of gravity of the membership function corresponding to the ℓ-th rule and µ

F ℓ
i

is the membership function. Defining the fuzzy basis functions (FBF) φℓ(x) as

φℓ(x) =

∏
n

i=1
µF ℓ

i
(xi)

∑
M

ℓ=1

∏
n

i=1
µF ℓ

i
(xi)

, (30)

then equation (29) can be expressed as y =
∑M

ℓ=1
θℓφℓ(x) = θT Φ(x) where

Φ(x) =
[

φ1(x) · · · φℓ(x) · · · φM (x)
]T

is the vector of FBFs and θ =
[

θ1 · · · θℓ · · · θM

]T
is the center of gravity vector.

The choice of control law (21) results in the zi3-dynamics given by (28) where vfi is the
output of a fuzzy logic controller.

Rule base extraction: From (28) one can immediately see that starting from vfi =
fi = 0 then zi3 approaches the origin where it remains. Now, in the case where fi takes
a nonzero positive (negative) value and vfi = 0, then zi3 also takes a nonzero negative
(positive) value, i.e. the value of zi3 follows the value of −fi. Therefore, in order to
compensate the act of the unknown input fi, so that zi3 to approach the origin, a suitable
vfi that follows −zi3 can effectively compensate the action of fi. This constitutes the
basic qualitative principle for the rule base extraction of the fuzzy logic controller. Hence,
a symmetrical fuzzy rule set can be implemented by a SISO fuzzy controller that needs
only zi3 as an input and vfi as an output, i.e. the linguistic rules can be of the simple
form

IF zi3 is F ℓ

i
, THEN vfi is Gℓ

i
,

where F ℓ

i
and Gℓ

i
are suitable fuzzy sets selected in such a way that each of the input

and output fuzzy variables assign linguistic values varying simultaneously from negative
big to positive big values. Each linguistic value is associated with a normalized and
symmetrical membership function.

The controller vfi can then be written in accordance to the FBF expansion as

vfi =

∑M

ℓ=1
θi

ℓ
µF ℓ(zi3)∑

M

ℓ=1
µF ℓ(zi3)

= θT

i
Φi(zi3), (31)

where Φi(zi3) =
[

φi
1
(zi3) · · · φi

ℓ
(zi3) · · · φi

M
(zi3)

]T
is the vector of FBFs and

θi =
[

θi
1

· · · θi

ℓ
· · · θi

M

]T
the center of gravity vector. The membership functions

are generally defined to be Gaussian of the form

µF (xi) = exp

[
−

(
xi − a

σ

)2
]
,

where xi represents zi3 or vfi and a is the center and s is the width of the fuzzy set ”F”.
We note that the first and last membership functions are of the sigmoid form:

µF (xi) = exp

[
1 + exp

[
±

(xi − a

σ

)]]−1

.

In accordance to the previous discussion, vfi is designed to compensate fi. However,
depending on the conditions under which excitation control acts (after faults or large
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or small power disturbances), fi and consequently vfi may take values on a widely
varying unknown range. Hence, in order to improve the performance of the fuzzy logic
controller in such a way that the best possible approximation of fi to be achieved,
an increased number of rules is needed. At this point, we note that a fuzzy system
implementation with the smallest rule base is the concern of any efficient design. To this
end, we effectively reduce the rule base by updating on-line the parameters of the FLS
output. As a consequence, the minimum possible rule base involving only the following
three rules is used:

IF zi3 is N, THEN vfi is P,

IF zi3 is ZE, THEN vfi is ZE,

IF zi3 is P, THEN vfi is N.

However, as it can be easily seen from (31), the FLS output parameters are determined
through the centers of gravity θi of the membership functions, and therefore a suitable
adaptation law is used to update on-line these parameters.
The adaptation law is chosen as

θ̇i = Proj{zi3ΓiΦi(zi3)} = zi3ΓiΦi(zi3) − τizi3

θiθ
T

i
ΓiΦi(zi3)

‖θi‖
2

, (32)

where

τi =

{
0 , if ‖θi‖ < Mθ or (‖θi‖ = Mθ and zi3θ

T
i
ΓiΦi(zi3) < 0)

1 , if (‖θi‖ = Mθ and zi3θ
T

i
ΓiΦi(zi3) ≥ 0)

(33)

and Γi ∈ R3×3 is a symmetric positive definite adaptation gain matrix.
This adaptation mechanism is a projection law which is commonly used in Lyapunov

stability analysis.

6 Stability analysis

From the previous analysis, it is clear that without the FLS operation a particular region
Ωf is determined for a given fi and a reasonable gain ki (i = 1, 2, · · · , n ). Taking into
account the FLS operation, let θ∗

i
be defined so that v∗

fi
= θ∗T

i
Φi(zi3) is the optimal

approximation of Fi [20], inside the compact subset Ωf of R3n (given by (27)) i.e.

θ∗
i

:= argmin
θi

[
sup

(z11,z12,z13)×···×(zn1,zn2,zn3)∈ Ωf

|fi − θT

i
Φi(zi3)|

]
. (34)

Then there exists a 0 ≤ µi < 1 such that

|fi − θ∗T

i
Φi(zi3)| ≤ µiFi. (35)

Let θ̃i := θi − θ∗
i
, then from (31) it is

vfi = θ̃T

i Φi(zi3) + θ∗T

i Φi(zi3).

Choosing a Lyapunov function candidate as

V = V0 +
1

2

n∑

i =1

θ̃T

i Γ−1

i
θ̃i,
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then for the control law (21), (31) we have

V̇ = −

n∑

i=1

ci1z
2

i1 −

n∑

i=1

ci2z
2

i2 −

n∑

i=1

kiz
2

i3 −

n∑

i=1

ω0

Mi

zi2zi3

+
n∑

i=1

zi3[fi − θ∗T

i
Φi(zi3)] −

n∑

i=1

θ̃T

i
[zi3Φi(zi3) − Γ−1

i
θ̇i]

and

V̇ ≤ −

n∑

i=1

ci1z
2

i1
−

n∑

i=1

ci2z
2

i2
−

n∑

i=1

kiz
2

i3
−

n∑

i=1

ω0

Mi

zi2zi3

+

n∑

i=1

µiFi|zi3| −

n∑

i=1

θ̃T

i [zi3Φi(zi3) − Γ−1

i
θ̇i]. (36)

Now, one can see from the above inequality that (32), (33) is a reasonable choice of the
update law since it cancels the last term in the right-hand side of (36) when ‖θi‖ ≤ Mθ.
Moreover, the boundedness of the parameter vectors θi is ensured from the projection
law, in the sense that if θi(0) ∈ Ωθ where Ωθ := {θi : ‖θi‖ ≤ Mθ} then θi(t) ∈ Ωθ, ∀ t ≥ 0
[21]. This means that the parameter errors θ̃i are also bounded i.e.

‖θ̃i(t)‖ ≤ εθ , εθ = Mθ + max
1≤i≤n

‖θ∗
i
‖.

The basis functions are also bounded i.e. there exists a constant φ̄M such that

‖Φi(zi3)‖ ≤ φ̄M .

Due to the boundedness of the parameter errors θ̃i we can proceed with the stability
analysis by using the non-negative function V0 instead of V . In this case its derivative is

V̇0 ≤ −

n∑

i=1

ci1z
2

i1 −

n∑

i=1

ci2z
2

i2 −

n∑

i=1

kiz
2

i3 −

n∑

i=1

ω0

Mi

zi2zi3 +

n∑

i=1

zi3[fi − θT

i Φi(zi3)]

and since it holds true that

zi3[fi − θ T

i
Φi(zi3)] ≤ −θ̃T

i
Φi(zi3)zi3 + µiFi|zi3|,

we equivalently have

V̇0 ≤ −

n∑

i=1

ci1z
2

i1 −

n∑

i=1

ci2z
2

i2 −

n∑

i=1

kiz
2

i3 −

n∑

i=1

ω0

Mi

zi2zi3 +

n∑

i=1

|zi3|

[
‖θ̃i‖|Φi(zi3)‖ + µiFi

]
.

Using the inequality

(εθφ̄M + µiFi)|zi3| ≤ ρfikiz
2

i3
+

(εθφ̄M + µiFi)
2

4ρfiki

,

we arrive at

V̇0 ≤ −2mfV0 +

n∑

i =1

(εθφ̄M + µiFi)
2

4ρfiki

. (37)
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Writing (37) as

V̇0 ≤ −2mf

[
V0 −

n∑

i =1

(εθφ̄M + µiFi)
2

8mfρfiki

]

and using the comparison principle, [22], we sequentially have

V0(t) −

n∑

i =1

(εθφ̄M + µiFi)
2

8mfρfiki

≤

[
V0(0) −

n∑

i =1

(εθφ̄M + µiFi)
2

8mfρfiki

]
e−2mf t,

V0(t) ≤

n∑

i =1

(εθφ̄M + µiFi)
2

8mfρfiki

+ V0(0)e−2mf t. (38)

From (38) one can see that for every 0 < ǫ < 2 there exists a T = T (ǫ) ≥ 0 such that

V0(t) ≤

n∑

i =1

(εθφ̄M + µiFi)
2

4(2 − ǫ)mfρfiki

∀ t ≥ T,

i.e. the state trajectories enter in finite-time in the compact set

Ωfc :=

{
(z11, z12, z13)× · · · × (zn1, zn2, zn3) :

n∑

i =1

3∑

j =1

z2

ij
≤

n∑

i =1

(εθφ̄M + µiFi)
2

2(2 − ǫ)mfρfiki

}
, (39)

wherein they remain thereafter. Thus, we have proven that the closed-loop system is
UUB in the region Ωfc.

As the FLS output approaches the optimal i.e. as εθ → 0 and µi ≪ 1, the region Ωfc

is significantly reduced with respect to the initial region Ωf . We have therefore proven
that as the FLS operates closer to its optimal, the error variables are UUB in a much
smaller region.

7 Case study

A two-generator infinite bus power system is used to demonstrate the efficiency of the
proposed controller. The power system is shown in Figure 7.1.
The system parameters are as follows:

xT1 = 0.129 p.u., xT2 = 0.11 p.u., x12 = 0.55 p.u.,
x13 = 0.53 p.u., x23 = 0.6 p.u., T ′

d01
= 6.9 sec,

xd1 = 1.863 p.u., x′
d1

= 0.257 p.u., D1 = 5.0 p.u.,
M1 = 8.0 sec, M2 = 10.2 sec, D2 = 3.0 p.u.,

xd2 = 2.36 p.u., x′
d2

= 0.319 p.u., T ′
d02

= 7.96 sec,
kc1 = 1.0 p.u., kc2 = 1.0 p.u..

For a more accurate evaluation of the proposed controller, we take into account in
the simulation the physical limits of the excitation voltage which are:

|kc1uf1| ≤ 5.0 p.u. |kc2uf2| ≤ 5.0 p.u.

A symmetrical three phase short circuit fault occurs on one of the two transmission lines
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Figure 7.1: The two machine infinite bus test system.

Figure 7.2: The input membership functions of FLS.

between Generator # 1 and Generator # 2 at t = 20.1 second. The fault is removed by
opening the brakers of the faulted line at t = 20.5 second and the system is restored at
t = 21.5 seconds. If we use λ to represent the fraction of the fault, simulations are made
for λ = 0.6 i.e. for a fault near the middle of the line and towards Generator # 2. The
operating point considered in the simulation is:

δ10 = 40o, Vt10 = 0.93, Pm10 = 0.95;
δ20 = 35o, Vt20 = 0.937, Pm20 = 0.8.

Most common used power system stabilizers are of fixed parameter lead-lag compen-
sation type designed using linear control techniques. However, since power systems are
extremely nonlinear and among the PSS tasks is to damp low frequency oscillations and
to improve dynamic performance in a wide range of operating conditions, linear control
schemes may be inefficient; this is clear especially in cases of large disturbances such as
transmission line faults. Therefore, in order to better evaluate the performance of the
proposed controller the case of a permanent serious fault is examined, since this can be
considered as the worst case for the power system. The parameter lambda of the fault
position is taken close to the center of the transmission line between generators #1 and
#2, in order to create a balanced impact of the abnormal conditions on both the gener-
ators. Obviously, as λ becomes smaller the impact is larger for generator #1 while the
opposite occurs as λ becomes larger.

Using the proposed method, the controllers parameters are selected as follows: As
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shown by the state transformation (14) ci1 and ci2 determine the coupling of the states
of the equivalent system. Hence, suitable positive values that determine a reasonable
coupling must be used. In this case we select c11 = c21 = 3 , c12 = c22 = 5. For
this parameter selection, the following gains k1 = k2 = 100 are selected that satisfy
stability requirement (25) and avoid high-gain performance. Also the adaptation gains
are Γ1 = Γ2 = diag{10, 40, 10}. Figure 7.2 shows the input membership functions used
in FLS.

The response of the system is shown in Figures 7.3 – 7.6. One can clearly see that the
system maintains stability after the fault. Additionally, the excitation control input of
the proposed Passivity-based Adaptive Fuzzy (PAF) controller effectively penalizes the
angle and speed deviations to relatively limited values. As clearly shown in Figures 7.3
and 7.4, a significantly improved dynamic performance of the angle and speed deviations
is achieved by the proposed method compared to the performance obtained by a conven-
tional simple linear PSS controller with form and parameters taken from [23]. Finally,
the adaptation mechanism suitably adjusts the FLS center of gravity parameters.

Figure 7.3: Power angle deviations for machines #1 and #2 (in deg).

Figure 7.4: Speed deviations for machines #1 and #2 (in rad/sec) respectively.
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Figure 7.5: The centres of gravity for the FLS #1 and #2 respectively.

Figure 7.6: Excitation input for machines #1 and #2 respectively.

Comparing the proposed method with other similar advanced nonlinear control meth-
ods applied on power systems [9, 10, 13, 14] we can make the following remarks.

In [9, 10] the proposed adaptive scheme may result in high-gain controllers in order
to obtain the bounds of the unknown nonlinearities included in fi. In the present paper,
we overcome this disadvantage by using a suitable FLS for the approximation of fi

without increasing the complexity. In [13, 14] a self-learning model reference adaptive
fuzzy algorithm is proposed to approximate the system model which is considered to be
totally unknown. Therefore, a more complex algorithm is needed with a lot of fuzzy
rules and a lot of parameters that must be estimated by adaptation techniques. In our
case a simple SISO fuzzy logic controller with only three rules and adaptation loops is
needed. This significantly reduces the on-line computational effort. A disadvantage is
the requirement of an extra state measurement which however contributes to a better
system performance.
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8 Conclusions

An intelligent-based simple nonlinear passive control suitable for power system appli-
cations is proposed. Stability analysis and simulation tests verify the effectiveness in a
variety of operating conditions resulting from large unknown disturbances such as short-
circuit faults.

9 Notation

δi(t) : power angle, in radian;
ωi(t) : rotor speed, in rad/sec;
ω0 : synchronous machine speed, in rad/sec;
Pmi : mechanical input power, in p.u;
Pei(t) : active electrical power, in p.u.;
Di : damping constant, in p.u.;
Mi : inertia coefficient, in seconds;
E′

qi
(t) : transient EMF in the q-axis in p.u.;

Eqi(t) : EMF in the q-axis, in p.u.;
Efi(t) : equivalent EMF in excitation coil, in p.u.;
T ′

d0i
: d-axis transient short circuit time constant, in sec;

Ifi(t) : excitation current, in p.u.;
Iqi(t) : q-axis current, in p.u.;
Idi(t) : d-axis current, in p.u.;
Qei(t) : reactive electrical power, in p.u.;
Vti(t) : generator terminal voltage, in p.u.;
kci : gain of generator excitation amplifier, in p.u.;
ufi(t) : input of the SCR amplifier, in p.u.;
x′

di
: d-axis transient reactance, in p.u.;

xdi : d-axis reactance, in p.u.;
xadi : mutual reactance between the excitation coil

and the stator coil, in p.u.;
Yij = Gij + jBij : the i-th row and j-th column element of nodal

admittance matrix, in p.u.;
∆δi(t) = δi(t) − δi0 : nominal angle deviation, in deg;
∆ωi(t) = ωi(t) − ω0 : nominal speed deviation, in rad/sec;
∆Pei(t) = Pei(t) − Pmi

:= −∆Pmi : where ∆Pmi the accelerating power, in p.u.
Rn

\Ω : Rnexcept a region defined by the compact set
Ω ⊂ Rn containing the origin.
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1 Introduction

As we have presented in [1], traffic engineering in Communication Networks (CNs) is a
process of controlling traffic demand in a network so as to optimize resource utilization
and network performance [2], [3]. There are two forms of traffic engineering: online plan-
ning and offline planning. Online traffic engineering focuses on instantaneous network
states and individual connections. Offline traffic engineering simultaneously examines
each channel’s resource constraints and studies what is needed of each Local Service
Provider (LSP) in order to provide global calculations and solutions for the CNs by a
centralized view. Traffic engineering has greatly improved network utilization and perfor-
mance by using advanced technologies such as Multi-Protocol Label Switching (MPLS)
and Optical Channel Trails (OCT) [4], [5].
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Previously, the offline traffic engineering optimization problem was formulated as a
deterministic Multi-Commodity Flow (MCF) model with the objective to optimize the
network total revenue derived from transmitting traffic demand. In the deterministic
MCF model, the demand of each channel was assumed to be a fixed quantity and the
network revenue was a linearly increasing function of the amount of bandwidth allocated
to the network [6]-[8]. This approach may be improper when dealing with the case that
the input for off-line optimization was assumed to be stochastic demand. In view of
this, recently, Mitra and Wang developed a stochastic traffic engineering framework and
proposed new approaches for risk analysis in communication networks.

An important aspect of Mitra and Wang’s model is the formulation of the demand
and revenue under a two-tier market structure: one is the wholesale market, the other is
the retail market. In the wholesale market, the demand is assumed to be deterministic
and there is no risk in revenue. In the retail market, the demand is random and there
exists the risk of revenue shortfall. The objective includes both the maximization of the
mean revenue and the acceptable risk level [8]-[10].

Based on the two-tier market structure for demand and revenue, Mitra and Wang
also analyzed the impacts of demand variability on various aspects of traffic engineering
design in their numerical studies. They observed significant changes in shadow costs, link
utilization, bandwidth provisioning and routing with demand variability, and explained
their causes and implications [8].

In [9], Mitra and Wang developed an optimization model to support bandwidth man-
agement decision-making based on the mean-risk framework. They discussed the selec-
tion of risk indices and proposed the use of standard deviation of total profit. They
investigated the service provider’s risk averseness on various aspects of bandwidth man-
agement. They also discussed profit improvement brought about by the presence of the
wholesale market under various market and network conditions [9].

In [10], Mitra and Wang furthered their studies in [8] and [9] and developed the
efficient frontier of mean revenue and revenue risk. They discussed three different risk
indices including variance, Tail value-at-risk, and standard deviation. They obtained
conditions under which the optimization problem was an instance of convex programming
and therefore efficiently solvable. They also studied the properties of the solution for the
special case of Gaussian distributions of demands. They also analyzed the impact of
demand uncertainty on various aspects of traffic engineering, such as link utilization,
bandwidth provisioning and total revenue [10].

Based on the analysis framework presented in [8]-[10], Wu, Yue and Wang proposed
a stochastic model for macro-level bandwidth management from the viewpoint that em-
phasizing the randomness and risk averseness and their impacts on the network’s per-
formance. First, they treated the whole network as an integrated service provider and
did not consider the routing and capacity sharing within the communication network.
They also removed the wholesale market with deterministic demand and only focused on
the random demand in the retail market, which was also mentioned in [8]. Second, they
emphasized the stochastic properties of the demand and the impact of risk averseness on
the system performance, such as bandwidth capacity and profit function. Finally, they
presented a loss rate constraint to guarantee the network performance.

In their model, the communication network was regarded as a service provider, who
can charge revenue from transmitting demand and pay for the cost for bandwidth al-
location. Since the profit function obtained by transmitting traffic load was a random
variable and thus had the risk of deviation from the desired expected profit. They char-
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acterized the risk by use of the variance of the profit function. In [1], Wu, Yue and
Wang proposed a stochastic model for optimizing bandwidth allocation with a loss rate
constraint. They analyzed the loss rate constraint and risk averseness in the CN opti-
mization model and showed the impact of loss rate constraint and risk averseness on the
network performance. Wu, Yue and Wang also introduced a penalty cost based on the
model presented in [1] to guarantee the network performance. They analyzed penalty
cost and risk averseness in the CN optimization model and showed the impact of penalty
cost and risk averseness on the network performance [11].

In regard to the selection of risk index, Mitra and Wang had proposed several ap-
proaches including variance, standard deviation and Tail value-at-risk [8]-[10]. However,
they also mentioned that they did not use Tail value-at-risk in their analysis because
of the optimization computational difficulties [10]. In [1] and [11], the risk index was
defined as the deviation from the expected profit and measured by variance of the profit
function, which included the upside risk and downside risk.

In this paper, we define the risk to be the downside risk of the profit shortfall and
use an equivalent definition of a risk analysis tool named conditional value-at-risk, which
is similar to Tail value-at-risk. There are two advantages of using this approach: first,
it can avoid the computational difficulties mentioned in [10] and thus obtain an explicit
solution for this problem; second, it can avoid the disadvantage of equally penalizing the
desirable upside and the undesirable downside outcomes that is inherent in the mean-
variance approach.

In this paper, we first describe the basic model proposed in [1] and derive the optimal
bandwidth capacity without risk. Then, we analyze the system performance and derive
the optimal bandwidth capacity by using CVaR approach and show the impact of risk on
the network performance by the analysis. We also compare the characteristics of network
performance by using CVaR approach presented in this paper with the characteristics
of network performance presented in [1], where the mean-variance approach was used.
Finally, numerical results are given to show the impact of risk on network performance.

The rest of this paper is organized as follows. In Section 2, we present the system
model, notations and preliminaries. In Section 3, we present the optimization model
and derive the optimal bandwidth capacity. In Section 4, we analyze the network profit
shortfall risk by using the CVaR approach and also derive the optimal bandwidth capacity
for two typical arrival processes of traffic demand: Poisson arrival process and uniform
distribution arrival process. In Section 5, we give some numerical results to show the
impact of risk averseness on the network performance. Conclusions are given in Section
6.

2 System Model

A Communication Network (CN) is formulated as a collection of nodes and links that
should derive its revenue by delivering traffic load to and from its users. A unit cost
is charged for unit bandwidth capacity allocated to the network. The objective of this
system is to maximize the expected profit of the whole network. To guarantee the optimal
network performance, we present performance analyses for the loss rate constraint and
the risk of profit shortfall where the model presented in this paper is the same as the one
presented in [1].

Similar to the description in [8], let (N, L) denote a CN composed of nodes ni (ni ∈

N, 1 ≤ i ≤ N) and links l (l ∈ L), where N is the total number of nodes and L is the
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total number of links in the network. Let V denote the set of all node pairs, and n ∈ V
denote an arbitrary node pair where n = (ni, nj) and ni, nj ∈ N . Let Cl denote the
maximal bandwidth capacity of link l, R(n) denote an admissible route set for n ∈ V ,
ξs (s ∈ R(n)) denote the amount of capacity provided on route s, Dn (n ∈ V ) denote
the traffic load on an arbitrary node pair n ∈ V , and bn (n ∈ V ) denote the amount of
bandwidth capacity provided to an arbitrary node pair n. Since between two node pairs
ni and nj, there may be more than one route to be routed, then bn =

∑
s∈R(n)

ξs.
In this paper, we consider the CN to be a whole system. We let b denote the amount

of bandwidth capacity provided to the CN, then we have b =
∑

n∈V
bn. If we let D

denote the traffic demand in the CN, then we have D =
∑

n∈V
Dn, which is character-

ized by a random distribution with its probability density function f(x) and cumulative
distribution function F (x). b∧D is the actual traffic load transmitted in the CN, where
“ ∧ ” represents the choice of the smaller value between b and D. Let r denote the unit
revenue by serving the traffic demand, so the total revenue of the CN is r × (b∧D). Let
c denote the unit cost for unit bandwidth capacity allocated in the CN, so the total cost
is c × b.

To avoid unrealistic and trivial cases, we make the following assumptions:

(1) Probability density function of the random traffic load is f(x) ≥ 0.

(2) Cumulative distribution function of the random traffic load is F (x) and F (x) is
strictly increasing in x.

(3) Traffic demand D in the CN is assumed to be positive, i.e., D > 0.

(4) Total bandwidth capacity b provided to the CN is assumed to be positive, i.e., b > 0.

(5) Maximal capacity Cmax that can be allocated to the CN is assumed to be positive,
i.e., Cmax > 0.

(6) System parameters are as follows: unit revenue r and unit cost c satisfy r > c > 0.

3 Optimal Bandwidth Capacity without Risk

In this section, we present the model for the network bandwidth allocation problem and
derive the optimal bandwidth capacity that can be attained without incurring any risk
(see [1]).

Let π(b, D) denote the random profit function by transmitting messages in the net-
work, namely,

π(b, D) = r(b ∧ D) − cb. (1)

Let Π(b, D) denote the mean profit function as follows:

Π(b, D) = E[π(b, D)] = r

∫ b

0

xf(x)dx + rb

∫
+∞

b

f(x)dx − cb. (2)

By using the method of integral by parts, Eq. (2) can be obtained as follows:

E [π(b, D)] = (r − c)b − r

∫
b

0

F (x)dx. (3)
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The objective function of the system is given by

Π∗ = max
b>0

{Π(b, D)}, (4)

subject to

P (b ≥ αD) ≥ β (5)

and

b ≤ Cmax, (6)

where Π∗ is the optimal profit function.
Eq. (5) is the loss rate constraint proposed in [1] adopted from [12]. In the loss rate

constraint, α (0 ≤ α ≤ 1) is the percentage of satisfied users and 1 − α is the loss rate.
As α increases, the loss rate 1 − α deceases. The higher α is, the better the network
performance is. β (0 ≤ β ≤ 1) is the confidence level, which represents the probability of
b ≥ αD. As 1−β decreases, the confidence level β increases. A higher confidence level β
guarantees a higher probability of achieving a better network performance. The loss rate
constraint enables us to control the network performance by properly setting the system
parameters.

With the above assumptions, we can derive the optimal bandwidth capacity that
should be allocated to the CN. First, we analyze the property of the mean profit function
Π(b, D) without any constraints.

The first order derivative of Π(b, D) of Eq. (2) with respect to b is given as follows:

dΠ(b, D)

db
= (r − c) − rF (b). (7)

The second order derivative of Π(b, D) presented in Eq. (2) with respect to b is given
as follows:

d2Π(b, D)

db2
= −rf(b). (8)

From the assumptions in Section 2, we know that f(b) ≥ 0 and r > 0, hence,

d2Π(b, D)

db2
≤ 0. (9)

Therefore, we can say that Π(b, D) is a concave function of b. So, the optimal band-
width capacity that should be allocated to the CN is given by

F−1

(
r − c

r

)
, (10)

where F−1(·) is the inverse function of F (·).
Next, we analyze the loss rate constraint. Note that the loss rate constraint is equiv-

alent to

P (b ≥ αD) = P

(
D ≤

b

α

)
≥ β. (11)
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By the definition of cumulative distribution function F (x), Eq. (11) becomes

P

(
D ≤

b

α

)
=

∫ b
α

0

f(x)dx = F

(
b

α

)
≥ β. (12)

So the loss rate constraint is equivalent to

b ∈

[
αF−1(β), +∞

)
. (13)

Thus, the optimal bandwidth capacity b∗ for the CN bandwidth allocation with loss
rate constraint is given as follows:

b∗ = F−1

(
r − c

r

)
∨ αF−1(β), (14)

where “∨” represents the choice of the larger value between F−1

(
r − c

r

)
and αF−1(β).

Finally, if we consider the maximal capacity constraint, then the optimal bandwidth
capacity for the network is given as follows:

b∗ ∧ Cmax, (15)

where “ ∧ ” represents the choice of the smaller value between b∗ and Cmax.

4 Risk Analysis in Communication Networks

The term risk plays an important role in the literature on economic, financial and tech-
nological issues. There are various attempts to define and to characterize the risk for
descriptive as well as prescriptive purpose. In general, we regard risk as random profit
or loss of a position. It can be positive (gains) as well as negative (losses) [13].

In the presence of demand uncertainty, maximizing only the mean revenue in the
network, which is implied in the earlier deterministic models, may be incomplete for the
random demand case. Mitra and Wang had proposed a broader optimization objectives
in financial area to address the issue of risk averseness. In this paper, we use CVaR as
the risk measurement which is adopted from financial risk management. In the following,
we give a brief introduction on risk management.

The mean-variance analysis, which was first introduced by Markowitz [14], has been
a standard tool in risk management. It involves a systematic tradeoff between the mean
and the variance [15]. Value-at-Risk (VaR), introduced in 1994, has been extensively
used for measuring risk and has become a part of the financial regulations in the world
[16]. It allows a manager to specify a confidence level (a certain level of probability) for
attaining a certain level of the wealth. Recently, Rockafellar and Uryasev presented an
alternative measure of risk with the CVaR approach [17]. It measures the average value of
the profit below the γ-quantile (0.0 < γ < 1.0) level. Some empirical evidence proposed
by [18] showed that the CVaR approach had superior computational characteristics when
it is compared with the VaR approach and the mean-variance approach.

In [8]-[10], Mitra and Wang had proposed several approaches including variance,
standard deviation and Tail value-at-risk. However, they also mentioned that they did
not use Tail value-at-risk in their analysis because of the optimization computationally
difficult [10]. In [1] and [11], the risk index was measured by the variance of the profit
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function. In this paper, we use CVaR as the risk analysis tool, which can transform the
original problem into a two step optimization problem.

By using CVaR approach as the risk index, we have the objective function given as
follows [19]:

max
b>0

Cγ {π(b, D)} , (16)

where

Cγ {π(b, D)} = max
v∈R

{
v +

1

γ
E

[
(π(b, D) − v)−

]}
, (17)

where (·)−1 is the negative part of (·), π(b, D) is the random profit function given by Eq.
(1), v belongs to the real number set R and γ is a risk parameter.

Then, the objective function using the CVaR approach can be obtained as follows:

max
b>0

{
max
v∈R

{
v +

1

γ
E

[
(π(b, D) − v)−

]}}
. (18)

We define a jointly concave function as follows:

g(v, b) =

{
v +

1

γ
E

[
(π(b, D) − v)−

]}
. (19)

By using the definition of expectation, we can get that

g(v, b) = v +
1

γ

{∫
b

0

(rx − cb − v)−dF (x) +

∫ ∞

b

(rb − cb − v)−dF (x)

}
, (20)

where r, c and b are defined in Section 2.
According to the objective function given by Eq. (18), we know that to find the

optimal bandwidth capacity b∗ is equivalent to a two-step optimization. The first step is
to maximize g(v, b) with v ∈ R as follows:

max
v∈R

{g(v, b)} . (21)

The second step is to maximize maxv∈R{g(v, b)} with b > 0 as follows:

max
b>0

{
max
v∈R

{g(v, b)}

}
. (22)

With respect to the first-step optimization, we illustrate four cases to derive the
optimal solution v∗.

(1) For v < −cb:
In this case, (rx − cb − v)− = 0 and (rb − cb − v)− = 0. Both the two terms in large

parenthesis of Eq. (20) vanish. Consequently, g(v, b) = v, thus
∂g(v, b)

∂v
= 1 > 0.

(2) For −cb < v < rb − cb:
In this case, (rb − cb − v)− = 0. The second term in large parenthesis of Eq. (20)

vanishes while the first term in large parenthesis of Eq. (20) remains, consequently,

g(v, b) = v +
1

γ

∫
b

0

(rx − cb − v)dF (x). (23)
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Since rx − cb − v < 0, we have

x <
v + cb

r
. (24)

So, Eq. (23) becomes as follows:

g(v, b) = v +
1

γ

∫ v+cb
r

0

(rx − cb − v)dF (x). (25)

Thus,

∂g(v, b)

∂v
= 1 +

1

γ

∫ v+cb
r

0

(−1)dF (x) +
1

γ
·

1

r
[(rx − cb − v)f(x)] |

x=
v+cb

r

x=0

= 1 −

1

γ
F (

v + cb

r
) +

1

γ
·

1

r
(0 − 0)

= 1 −

1

γ
F (

v + cb

r
). (26)

(3) For rb − cb < v:
In this case, both the two terms in large parenthesis of Eq. (20) remain, consequently,

g(v, b) = v +
1

γ

{∫ b

0

(rx − cb − v)dF (x) +

∫ ∞

b

(rb − cb − v)dF (x)

}
. (27)

Thus,

∂g(v, b)

∂v
= 1 +

1

γ

∫ b

0

(−1)dF (x) +
1

γ

∫ ∞

b

(−1)dF (x)

= 1 −

1

γ
< 0. (28)

(4) Let us consider about what happened when v approaches −cb from the right, and
also when v approaches rb − cb from the left as follows:

Let v = −cb + ∆ for a sufficiently small positive number ∆ (∆ > 0), then

∂g(v, b)

∂v
= 1 −

1

γ
F

(
∆

r

)

= 1 −

1

γ

∫ ∆
r

0

f(x)dx > 0. (29)

In the same way, for v = rb − cb − ∆,

∂g(v, b)

∂v
= 1 −

1

γ
F

(
b −

∆

r

)
. (30)

We cannot say whether Eq. (30) is negative or not for a sufficiently small positive number
∆. But the sufficient condition for Eq. (30) is negative to be given by

b > F−1(γ). (31)
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Note that b is an unknown value in the first-step optimization. Let v∗(b) denote the
optimal solution of the first-step optimization. We illustrate two cases to investigate the
optimal bandwidth capacity b∗.

(1) For b ≥ F−1(γ):
In this case, v∗(b) = rF−1(γ) − cb. Hence,

g(v∗(b), b) = rF−1(γ) − cb −
r

γ

∫
F

−1
(γ)

0

F (x)dx. (32)

Thus,

dg(v∗(b), b)

db
= −c. (33)

From Eq. (33), we know that g(v∗(b), b) is a monotone function of b. So, the optimal
solution in this case is the boundary value b = F−1(γ).

(2) For b ≤ F−1(γ):
In this case, v∗(b) = rb − cb. Hence,

g(v∗(b), b) = rb − cb −
r

γ

∫ b

0

F (x)dx. (34)

Thus,

dg(v∗(b), b)

db
= r −

r

γ
F (b) − c. (35)

So, the optimal solution in this case is

b∗ = F−1

(
γ

r − c

r

)
, (36)

which is also the optimal solution of this problem.
From the analysis above, we can say that:

(1) Compared with the model without risk presented in [1], the result presented in this
paper enlarges the dimension of the problem without risk and provides more insight
for those network managers who has a different risk preference:

(i) When the parameter γ → 1, the result of the model with risk in this paper is
the same as that of the model without risk presented in [1].

(ii) When the parameter γ → 0, it means that there is no bandwidth allocated in
the CN, i.e., the network manager is unwilling to provide any service.

(iii) When the parameter 0 < γ < 1, the optimal bandwidth obtained in this
paper is less than the optimal bandwidth obtained without risk presented
in [1]. It means that the optimal bandwidth capacity that is allocated in a
network with risk is always less than that without risk.

(2) Compared with the mean-variance analysis model presented in [1], the result pre-
sented in this paper reveals advantages of using the CVaR approach over the mean-
variance approach. It avoids the disadvantage of the mean-variance approach,
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which equally penalizes the desirable upside and the undesirable downside out-

comes. It also provides a closed-form solution, F−1

(
γ ·

r − c

r

)
, which has superior

computational characteristics than the mean-variance approach.

In the following, we are going to present two typical arrival processes to express the
random arrival processes of traffic demand in a CN. One is the Poisson arrival process;
the other is the uniform distribution process.

4.1 Poisson arrival process

In this subsection, we consider a fully distributed communication network, where the
traffic demand offered to the whole CN forms a Poisson process with arrival rate λ > 0,
since in most of the system models in CNs, the arrival process of traffic demand is
assumed to form a Poisson process.

The interarrival times are exponentially distributed with rate λ. Let X be a random
variable representing the time between successive demand arrivals in the Poisson process,
then we have the probability distribution function FX(x) and the probability density
function fX(x) of X as follows:

FX(x) =

{
1 − e−λx, x > 0
0, x ≤ 0,

(37)

fX(x) =

{
λe−λx, x > 0
0, x ≤ 0.

(38)

The mean and variance of the exponential distribution are 1/λ and 1/λ2, respectively.
Based on the assumption of the traffic demand, the optimal bandwidth of Eq. (36)

can be obtained as follows:

b∗ = −

Ln

[
1 − γ

r − c

r

]

λ
, (39)

where Ln[·] is the natural logarithm function based on e. The optimal mean profit of
Eq. (2) can be obtained as follows:

Π∗(b, D) =
r

λ

(
1 − e−λb

∗

)
− cb∗, (40)

where b∗ is given by Eq. (39).

4.2 Process with uniform distribution

In this subsection, we consider the same fully distributed communication network, but
the traffic demand offered to the whole CN forms a uniform distribution on some interval
[m, n] (−∞ < m < n < +∞). Without loss of generality, we choose the interval [0, 1] and
the distribution function is denoted as U [0, 1]. (This assumption is sometimes used in
some of the system models of CNs, such as ATM system). The arrival process of traffic
demand is assumed to form a uniform distribution with the probability distribution
function FX(x) and the probability density function fX(x) given as follows:
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FX(x) =





1, x > 1
x, 0 ≤ x ≤ 1
0, x < 0,

, (41)

fX(x) =

{
1, 0 ≤ x ≤ 1
0, otherwise.

. (42)

The mean and variance of the uniform distribution are 1/2 and 1/12, respectively.
Based on the assumption of the traffic demand, the optimal bandwidth of Eq. (36)

can be obtained as follows:

b∗ = γ
r − c

r
. (43)

The optimal mean profit of Eq. (2) can be obtained as follows:

Π∗(b, D) = (r − c)b∗ −
r

2
(b∗)2, (44)

where b∗ is given by Eq. (43).
From Eqs. (39) and (43), we can obtain that the value of optimal bandwidth capacity

with risk increases linearly to reach the value of the optimal bandwidth capacity without
risk as the risk parameter γ increases from 0.0 to 1.0, i.e., the risk parameter has a linear
impact on the bandwidth capacity.

5 Numerical Results

With the same system parameters as in [1] and assumptions of arrival processes of traffic
demand as presented in Section 4, we give some numerical results to show the impact of
loss rate constraint and the impact of risk averseness on the network performance and
compare the characters of network performance obtained in [1] and in this paper.

According to the engineering experience, we choose three different arrival rates fol-
lowing Poisson arrival process to represent the different cases of traffic load in the CN
as: λ = 0.1, 0.5, 0.9 where λ = 0.1 represents the case that the traffic load in the CN is
low, λ = 0.5 represents the case that the traffic load in the CN is normal, and λ = 0.9
represents the case that the traffic load in the CN is heavy.

5.1 Impact of risk averseness on bandwidth capacity

We give some numerical results to show the impact of risk averseness on the network
bandwidth capacity.

Note that the optimal bandwidth capacity without risk, which is presented in [1], is

F−1

(
r − c

r

)
. However, in this paper the optimal bandwidth capacity with risk is given

by Eq. (36). They are different ones.
Figure 5.1 shows the optimal bandwidth b∗ as a function of the risk parameter γ with

two different arrival processes of the Poisson arrival process and the uniform distribution
process.

The ordinate axis b∗ of Figure 5.1 corresponds to the optimal bandwidth capacity
given by Eq. (36). b∗ means the value of optimal bandwidth capacity provisioned in the
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Figure 5.1: Impact of risk on the CN optimal bandwidth.

CN with risk. The smaller the value of b∗ is, the less the amount of bandwidth capacity
will be. So, it clearly reflects the impact of risk averseness on the network performance.

The horizontal axis γ of Figure 5.1 corresponds to the risk parameter γ taking values
from 0.0 to 1.0 by 0.1 each step. γ = 0.0 denotes the special case of most averse to risk.
γ = 1.0 denotes the special case of risk neutrality. When γ increases from 0.0 to 1.0, it
indicates the CN manager’s risk attitude changes from risk-averse to risk-neutral.

From Figure 5.1, we can discuss the impact of risk averseness on the network perfor-
mance. When γ increases from 0.0 to 1.0, the CN manager becomes less risk averse and
he is inclined to bear more risk and sacrifice less profit to hedge risk. So, the value of b∗

becomes larger as the increase of γ. The less risk averse (with larger values of γ) the CN
manager is, the more the optimal bandwidth capacity b∗ is.

Our numerical results include the optimal bandwidth capacity obtained without risk
averseness presented in [1], which is one point in the curves with the value of γ = 1.0 in
the horizontal axis of Figure 5.1.

From the numerical results in Figure 5.1, we can conclude that:

(1) In all curves, the optimal bandwidths with risk are always less than that without
risk and the bandwidth capacity increases as the risk averseness decreases. This is
because the values that the risk parameter γ takes are less than 1.0.

(2) The curves with smaller arrival rates as λ = 0.1, 0.5 have quicker bandwidth capacity
increasing speed than the curve with a larger arrival rate λ = 0.9. This is because
the bandwidth b is a decreasing function of arrival rate λ, which can be easily
obtained by Eq. (39).

(3) With the same risk averseness, all the curves with the assumption of exponential
distribution reveal a larger impact than the curve with the assumption of uniform
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distribution. This is because the inverse function of the probability cumulative
function of the Poisson arrival process is always larger than the inverse function
of the probability cumulative function of the arrival process following the uniform
distribution in the system, it results in a direct impact on the bandwidth capacity.

Compared with the results presented in [1] without risk, the numerical results in our
paper reveal a distinct impact of risk on the network bandwidth capacity.

5.2 Impact of risk averseness on mean profit function

With the same system parameters and assumptions of traffic demand for Figure 5.1, we
give some numerical results to show the impact of risk averseness on the network mean
profit.

Figure 5.2 shows the optimal mean profit Π∗(b, D) as a function of the risk parameter
γ with two different arrival processes of the Poisson arrival process and the uniform
distribution process.
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Figure 5.2: Impact of risk on the CN optimal profit.

The horizontal axis γ of Figure 5.3 has the same meaning as that of Figure 5.1. The
ordinate axis Π∗(b, D) of Figure 5.2 corresponds to the optimal mean profit given by Eq.
(2).

Π∗(b, D) means the value of optimal profit obtained by the CN with risk. The smaller
the value of Π∗(b, D) is, the less the amount of optimal profit obtained by the CN will
be. So, it clearly reflects the impact of risk averseness on the network performance.

From Figure 5.2, we can discuss the impact of risk averseness on the network perfor-
mance. When γ increases, the CN manager becomes less risk averse and he is inclined to
bear more risk and sacrifice less profit to hedge risk. So, the value of Π∗(b, D) becomes
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larger as the increase of γ. The less risk averse the CN manager is, the more the optimal
mean profit Π∗(b, D) is.

Our numerical results include the optimal profit obtained without risk averseness
presented in [1], which is one point in the curves with the value of γ = 1.0 in the ordinate
axis of Figure 5.2.

Similarly, as we concluded in Subsection 5.1, from the numerical results shown in
Figure 5.2, we can conclude that:

(1) In all curves, the profits with risk are always less than the profit without risk and
the profit increases as risk averseness decreases. This is because the values that the
risk parameter γ takes are less than 1.0.

(2) The curves with smaller arrival rates as λ = 0.1, 0.5 have quicker mean profit
increasing speeds than the curve with a larger arrival rate λ = 0.9. This is because
the profit Π∗(b, D) is a decreasing function of arrival rate λ, which can be easily
obtained by Eq. (40).

(3) With the same risk averseness, all the curves with the assumption of exponential
distribution reveal a larger impact than the curve with the assumption of uniform
distribution. This is because the inverse function of the probability cumulative
function of the Poisson arrival process is always larger than the inverse function
of the probability cumulative function of the arrival process following the uniform
distribution in the system, which results in a direct impact on the mean profit.

Compared with the results without risk presented in [1] without risk, the numerical
results in our paper reveal a distinct impact of risk on the network profit function.

6 Conclusions

In this paper, we presented a stochastic model for bandwidth allocation and performance
analysis in Communication Networks (CNs) with risk analysis included. We have derived
the optimal bandwidth allocation capacity with risk averseness. We have analyzed the
risk averseness in CNs by using the conditional value-at-risk approach. We have given
numerical results to compare our model with the previous model presented in [1] and
shown the impact of the risk on the network performance for two arrival processes of
traffic demand. We can conclude that risk averseness has a distinct impact on the
network performance. The implications presented in this paper provided insight for
traffic engineering design and planning.
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Abstract: This paper investigates robust dynamic policies for network revenue
management problems with uncertainty involved. We formulate such a problem
in a setting of semi-definite programming and propose a heuristic procedure
to find robust solutions. We also derive sufficient conditions for finding an
approximation of the value function. Numerical experiments are included to
illustrate the proposed approach.
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1 Introduction

This paper studies the revenue management problem on a given network in which all
involved variables allow uncertainty. The optimal policy of the problem is investigated
which determines what a quantity of resource should be offered at each different rate.
The problem is important since we can find its broad applications, especially in airline
network.

Revenue management is a technique concerned with a number of capacity constrained
service industries such as airline, hotel, media, transposition, car rental, tourism and so
on. Following the airline deregulation in 1970s, revenue management technique has
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obtained a great progress both in theory and methodology. This progress further pushes
the development of service industries.

No matter the difference in the definitions on revenue management, most researchers
agree that the primary goal of revenue management is to maximize the revenues in
the industry. They also agree that price is a major control tool to achieve this goal
among various mechanisms. In the literature of revenue management, Littlewood [16]
first proposed a marginal seat revenue principle and applied it to a single leg problem
with two fare classes. Belobaba [1] developed a stochastic seat inventory control model
to solve the multi-fare-class single leg problem. His model generalized the marginal seat
revenue concept to the expected marginal seat revenue principle. The multi-fare-class
problem was also studied by Brumelle and McGill [4] and Robinson [19].

There have been various studies of pricing policies in the continuous-time revenue
management framework. In a two-fare model that allows a single price change, Feng
and Gallego [12] proposed an optimal threshold control policy in 1995. Later, Feng
and Xiao [13] generalized their result by considering risk analysis. Using the dynamic
programming approach, Liang [15] showed that a threshold control policy is optimal for
a continuous-time dynamic yield management model. In 1999, Subramanian et al. [21]
incorporated the overbooking control on a single-leg flight into a Markov decision process.
In the same year, Chatwin [10] discussed a continuous-time airline-overbooking model
with time-dependent fares and refunds. To capture the time dependency of demand,
most of airline revenue management models need an assumption of nonhomogeneous
demand intensities.

A natural extension of single-leg problem is the network revenue management. A
major concept in the study of network revenue management, bid price control, was
proposed by Simpson [20] in 1989 and further studied by Williamson [25] and Talluri
and Van Ryzin [24].

Up to now, the models that we list above are all based on the certain environment.
However, in real applications, circumstances are variable and the data we obtain is uncer-
tain because of various complications. Developing a model to deal with the revenue man-
agement under uncertainty is an interesting problem. In 2000, Bertsimas and Popescu
[3] proposed a dynamic programming model with demand uncertainty only. But the gen-
eral procedure for the network revenue management under uncertainty is still an open
problem.

We know that optimization technique is the base of research in revenue management.
With the recent advances in conic and robust optimization theory [5, 6], we can see its
various applications in industries such as mechanical structure design [7], VLSI circuit
design [11], systems and control [8] and signal processing [17].

In the paper, we incorporate the robust optimization technique into network revenue
management and establish a robust dynamic model to deal with uncertainty produced by
demand uncertainty, data perturbation and variable errors. We transform the problem
into a robust semi-definite programming and provide a heuristic procedure to obtain the
optimal solution of the problem. Furthermore, we discuss the Hamilton-Jacobi-Bellman
equation under uncertainty, which establishes a sufficient condition for an optimal solu-
tion existing.

This paper is organized as follows. In the next section, we will introduce the back-
ground of our problem and establish a robust dynamic model for the problem. In Section
3, we propose a method to determine the optimal policy and provide a heuristic algorithm.
In section 4, we establish a sufficient optimal condition under uncertainty. In Section 5,
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we report some numerical results. Finally, in Section 6, we give our conclusion.

2 Dynamic Model under Uncertainty

2.1 Problem under Uncertainty

We are given an airline network which is composed of m legs providing n origin-
destination itineraries. Let aij be the number of units on leg i used by itinerary j,
which induces a m × n matrix A = (aij). The j-th column of A, denoted by Aj , is a
multiple of the incidence vector for itinerary j. Here, we do not restrict that A is a 0-1
matrix, which means that group demand is permitted. aij = 0 implies that leg i is not
a part of itinerary j.

The inventory state of the network is described by a vector x = (x1, x2, . . . , xm)T of
leg capacities. We have 0 ≤ x ≤ X , where X = (X1, X2, . . . , Xm)T is the capacity limit
vector of the system. If itinerary j is sold, the state of the network changes to x−Aj . To
simplify our analysis, we do not consider such problems involving cancellations, no-shows
or overbooking. In our problem, time is discrete. We assume a finite booking horizon
of length T , with time line being partitioned sufficiently fine such that almost surely at
most one request appears at each period.

Time is counted backward: time T is the beginning of the booking horizon and
time 0 is the end of booking horizon. We assume that ticketing operation will stop
when t = 0. At time 0 ≤ t ≤ T , all booking events are denoted as a random vector
d(t) = (d1(t), ..., dn(t)). dj(t) > 0 for 1 ≤ j ≤ n indicates that a requirement for
itinerary j occurs at time t while dj(t) = 0 means no requirement for itinerary j at time
t. The tickets for each itinerary j = 1, 2, ..., n can be sold at h fares pr

j
, r = 1, ..., h.

pr

j
= 0 implies that the fare pr

j
is unavailable for itinerary j and pj = 0 the itinerary j

is unavailable. Suppose that demands for different fares are independent of one another.
Let Dr

j
(t), 1 ≤ r ≤ h and 1 ≤ j ≤ n, be the demand flow for the r-th fare on the

j-th itinerary, which is a nonhomogeneous Poisson process about time 0 ≤ t ≤ T . The
intensity of Dr

j
(t) is λr

j
(t), a deterministic function of time t.

We know that in the dynamic world, any unexpected sudden affair would bring a
corresponding perturbation to circumstance. For example, weather condition such as fog
or storm often cause airlines to adjust their flight schedule. Some flights may be cancelled
and some additional flights may be added. Hence, any model, if it would like to simulate
the reality, must consider the uncertainty within its parameters.

Let us denote by ∆A the perturbation to itinerary network and ∆x the perturbation
to the state of inventory. Then, the itinerary-leg matrix under uncertainty should be
A + ∆A. The capacity vector under uncertainty should be x + ∆x. Here, ∆x also can
be observed as overbooking.

Airlines often offer a variety of fares in each fare class of itinerary and also pay
varying commissions on these fares. In other industries such as advertising, broadcasting
and hotel, the fare negotiation also cause the uncertainty in fares. Thus, we suppose
that revenue from selling a ticket on itinerary j ∈ {1, ..., n} at class r ∈ {1, ..., h} is
pr

j
+ ∆pr

j
, where ∆pr

j
is the perturbation to fare pr

j
. In vector, pr = (pr

1
, · · · , pr

n)T and

∆pr = (∆pr
1
, · · · , ∆pr

n)T .
In general, demand is concerned with the price. The uncertainty in fares would cause

the requirement for itineraries at these fares is uncertain. Another reason for requirement
uncertainty is the data error produced in our approaches for requirement forecast. Hence,
we suppose that demand flow for class r ∈ {1, ..., h} on itinerary j ∈ {1, ..., n} at time t
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is a nonhomogeneous Poisson process with intensity λr
j
(t) + ∆λr

j
(t), where ∆λr

j
(t) is the

perturbation to λr

j
(t).

Suppose there is an upper bound ǫ > 0 such that for any r, ‖(∆x, ∆A, ∆pr)‖ ≤ ǫ
holds for all perturbations, where ‖·‖ is the norm under Euclidian. Given the time-to-go,
k, we call S(k, x, A, p, ǫ), or simply S(k, x, ǫ), the current state of system.

Our problem is that: Under the current state S(k, x, ǫ), should we accept or refuse
the current request?

2.2 Dynamic Model

To answer the question proposed in the end of the last subsection, we establish a dynamic
programming model in the subsection. Then, we solve the model to decide whether the
current request is accepted or not.

Let uk = {ur,j

k
} denote the decision at time k, where

ur,j

k
=

{
1, if pr

j
is accepted at time k;

0, otherwise.

In general, the decision uk, accepting or refusing, is the function of time k, the capacity
vector x and perturbation bound ǫ. Thus, uk = uk(x, ǫ). From our assumption, there is
at most one request at each sufficiently small period, i.e.,

∑
r,j

ur,j

k
≤ 1. The feasible set

for uk at current state is defined as:

Uk(x, ǫ) = {uk :
∑

r,j

ur,j

k
≤ 1, ur,j

k
∈ {0, 1}, (A + ∆A)uk ≤ (x + ∆x),

for all ‖(∆A, ∆x)‖ ≤ ǫ}, (1)

where (A + ∆A)uk :=
∑

r,j
(Aj + ∆Aj)ur,j

k
and ǫ > 0 is a given scalar.

Let Jk(x + ∆x) denote the maximum expected revenue at current system state
S(k, x, ǫ). Then Jk(x + ∆x) should satisfy the Bellman equation [2]:

Jk(x + ∆x) = max
uk∈Uk(x,ǫ)

E[(p + ∆p)uk + Jk−1((x + ∆x) − (A + ∆A)uk)], (2)

where (p + ∆p)uk :=
∑

r,j
(pr

j
+ ∆pr

j
)ur,j

k
, with the boundary conditions:

J0(x + ∆x) = 0, ∀x, ∆x. (3)

We call Jk(x + ∆x) satisfying (2) and (3) the value function under a given state
S(k, x, ǫ). Define the minimum acceptable fare (MAF) [12] for itinerary j under state
S(k, x, ǫ) as follows:

Gj(x + ∆x, k) = Jk−1(x + ∆x) − Jk−1(x + ∆x − (Aj + ∆Aj)).

In view of [23], the request for class r on itinerary j at current state S(k, x, ǫ) is
accepted if and only if

(pr

j
+ ∆pr

j
) − Gj(x + ∆x, k) ≥ 0 and (Aj + ∆Aj) ≤ (x + ∆x). (4)

The intuition of formulation (4) is clear: Under uncertainty, we only accept a fare ex-
ceeding the MAF while we have sufficient remaining capacity.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(1) (2007) 85–96 89

3 Computation of MAF

In the section, we develop a robust linear programming model to obtain the approxima-
tion of value function under uncertainty.

Over the remaining period from k to 0, the expected accumulation demand for
itinerary j at fare class r can be calculated as Dr

j
(k)+∆Dr

j
(k) :=

∑
k

t=1
(λr

j
(t)+∆λr

j
(t)).

Similar as [25, 3], we consider following deterministic integer programming:

Jk(x + ∆x) = max
yr

min
‖∆pr‖

h∑

r=1

(pr + ∆pr)T yr (5)

s.t. (A + ∆A)(

h∑

r=1

yr) ≤ (x + ∆x),

0 ≤ yr
≤ (Dr(k) + ∆Dr(k)), ∀r,

yr integer vector, ∀r

for all ‖(∆x, ∆A, ∆pr, ∆Dr(k))‖ ≤ ǫ, ∀r,

where yr = (yr
1
, ..., yr

n)T . This is a robust linear integer optimization problem. In for-
mulation (5), variable yr

j
denotes the amount of accepted demands for itinerary j at fare

class r over the remaining horizon. The first inequality in the constrain means that the
total amount of accepted demands can not exceed the current capacity. The second in-
equality means that the amount of accepted demands for various itineraries at fare class
r over the remaining horizon should be less then or equal to the expected accumulation
demand for various itineraries at fare class r. We want to maximize the revenue under
bounded perturbations.

Let zr = yr
−∆zr, where ∆zr := ∆Dr(k). Then, problem (5) can be transformed as

a robust linear programming problem in following form:

Lk(x + ∆x) = max
ǫ0≤zr≤Dr(k)

min
‖∆zr‖≤ǫ0

h∑

r=1

(pr + ∆pr)T (zr + ∆zr) (6)

s.t. (A + ∆A)[

h∑

r=1

(zr + ∆zr)] ≤ (x + ∆x),

for all ‖(∆x, ∆A, ∆pr)‖ ≤ ǫ, ∀r,

where ǫ > 0 and ǫ0 > 0 are perturbation bounds given by the problem we consider.
In formulation (6), the integral requirement on variables is relaxed and the pertur-

bation on expected accumulation demand is transformed as that on variables. Thus,
problem (6) is a relaxation of problem (5). We assume that both ǫ > 0 and ǫ0 > 0 are
small. The reason we make such an assumption is based on following analysis. First,
‖∆pr

‖ denotes the price perturbation. This perturbation is small in general. Second,
‖∆A‖ and ‖∆x‖ denote variations of flight and capacity caused by some emergent affairs.
Although these variations may be great in case of copping with the unexpected emer-
gency, the unexpected accident affair happens at a low probability. It is unimaginable
that we always treat routine affairs by the standard for emergency. From the view of
long run, the average infection to flight and capacity should be small. Third, we hope
to find an optimal solution with small perturbation to itself. Hence, (6) provides us a
possible approximation of the allocation of inventory.
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Problem (6) is a max-min problem with perturbations to all parameters and vari-
ables. To simplify the problem, we transform it to a semi-definite programming just
with perturbation to variable via S-lemma in [26, 18].

We call a solution ǫ0 ≤ zr
≤ Dr(k), r = 1, ...h is robust feasible for problem (6) if

(Ai + ∆Ai)[

h∑

r=1

(zr + ∆zr)] ≤ (xi + ∆xi), i = 1, ..., m

hold for all ‖(∆pr, ∆A, ∆x, )‖ ≤ ǫ, ‖∆zr
‖ ≤ ǫ0, r = 1, ..., h, where Ai is the i−th row of

A. In view of [6], ǫ0 ≤ zr
≤ Dr(k), r = 1, ..., h is robust feasible if and only if for each i,

−Ai

∑

r

zr + xi − ǫ

√
‖

∑

r

zr +
∑

r

∆zr
‖
2 + 1 ≥ 0 (7)

holds for all ‖∆zr
‖ ≤ ǫ0. The formulation of (7) can be reformulated as:


 I

√

ǫ

( ∑
r
zr +

∑
r
∆zr

1

)

√

ǫ
(

(
∑

r
zr +

∑
r
∆zr)T 1

)
−Ai(

∑
r
zr +

∑
r
∆zr) + xi


 � 0 (8)

holds for each i and all ‖∆zr
‖ ≤ ǫ0, where A � 0 implies that A is a positive semi-definite

matrix.

Now consider the objective function of problem (6). By introducing an additional

variable v ≥ 0 to be maximized, we obtain a new constraint:
∑

h

r=1
(pr + ∆pr)T (zr +

∆zr) − v ≥ 0 for all ‖∆pr
‖ ≤ ǫ, ‖∆zr

‖ ≤ ǫ0, r = 1, ..., h. Since both (zr + ∆zr) ≥ 0 and
(pr + ∆pr) ≥ 0, this constraint is equivalent to (pr + ∆pr)T (zr + ∆zr) − vr ≥ 0 for all
‖∆pr

‖ ≤ ǫ, ‖∆zr
‖ ≤ ǫ0, r = 1, ..., h. Furthermore, each constraint is equivalent to

(
I

√

ǫ(zr + ∆zr)
√

ǫ(zr + ∆zr)T (pr)T (zr + ∆zr) − vr

)
� 0, for all ‖∆zr

‖ ≤ ǫ0. (9)

In view of S-Lemma in [26, 18], we can obtain the conclusion: (8) holds if and only if
there exists a µi ≥ 0 for each i such that




I
√

ǫ

( ∑
r
zr

1

)
√

ǫ

(
I
0

)

√

ǫ

(
(
∑

r
zr)

1

)T

−Ai(
∑

r
zr) + xi −

1

2
Ai

√

ǫ

(
I
0

)T

−
1

2
AT

i
0




− µi




0 0 0
0 ǫ0 0
0 0 −I


 � 0. (10)

Similarly, (9) holds if and only if there exists a µr ≥ 0 for each r such that




I

√

ǫ
∑

r
zr

√

ǫI
√

ǫ(
∑

r
zr)T (pr)T zr

− vr −
1

2
pr

√

ǫI −
1

2
(pr)T 0



 − µr




0 0 0
0 ǫ0 0
0 0 −I



 � 0. (11)

Combining (7)–(11), we can obtain following theorem.
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Theorem 3.1 The robust linear programming (6) is equivalent to the following prob-

lem:

maximize

h∑

r=1

vr, (12)

subject to (10), (11) and ǫ0 ≤ zr
≤ Dr(k), ∀r.

Problem (12) is a typical semi-definite programming. There are many effective meth-
ods [22, 14] to solve this problem.

Now we present a robust heuristic algorithm for network revenue management under
uncertainty based on the robust optimization technique.

Robust Heuristic Algorithm (RHA):

At any current state S(k, x, ǫ), where ǫ is the perturbation bound for all parameters.
1. For a request for itinerary j at class r, computer MAF via solving (12).
2. Sell to itinerary j if and only if its fare pr

j
exceeds its MAF, i.e., pr

j
≥ Gj(x, k).

3. Back to step 1 for next request.

4 Hamilton-Jacobi Equation

In this section, we further explore the property of value function and prove that Hamilton-
Jacobi equation [9] still holds under uncertainty.

From (2) and (4), the value function can be expressed an inductive formulation as
follows:

Jk(x + ∆x) = max
uk∈Uk(x,ǫ)

E[(p + ∆p)uk + Jk−1((x + ∆x) − (A + ∆A)uk)]

= Jk−1(x + ∆x) + max
uk∈Uk(x,ǫ)

E[(p + ∆p)uk − Gj(x + ∆x, k)uk]+

= Jk−1(x + ∆x) +
∑

r,j

(λr

j
(k) + ∆λr

j
(k))[(pr

j
+ ∆pr

j
) − Gj(x + ∆x, k)]+,

where [·]+ := max{0, ·}. Let ∆Jk(x + ∆) = Jk−1(x + ∆x) − Jk(x + ∆x). We obtain the
difference equation as follows:

0 = ∆Jk(x + ∆x) +
∑

r,j

(λr

j(k) + ∆λr

j(k))[(pr

j + ∆pr

j) − Gj(x + ∆x, k)]+.

We call f(x) is an ǫ-approximation of F (x) on X if there exists ǫ > 0 and a constant
α such that ‖f(x) − F (x)‖ ≤ αǫ for all x ∈ X . In view of Hamilton-Jacobi equation
[9], if take ∆Jk(x + ∆x) as an ǫ-approximation of derivation, then we have following
approximately sufficient optimality condition.

Theorem 4.1 Suppose λr

j
(t) is continuous about 0 ≤ t ≤ T . Partition [0, T ] into

K sufficiently small intervals and arbitrarily take a point k from each small interval

Tk, k = 1, ..., K. If for any given η > 0, there exist continuous function Jt(x) such that

∆Jk(x + ∆x) is an ǫ-approximation of
∂Jt(x)

∂t
and satisfies

|

∑

r,j

(λr

j
(k) + ∆λr

j
(k))[(pr

j
+ ∆pr

j
) − Gj(x + ∆x, k)]+ + ∆Jk(x + ∆x)| ≤ η (13)
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and

J0(x + ∆x) = 0

for all ‖(∆x, ∆A, ∆p, ∆λ)‖ ≤ ǫ, where ǫ > 0 is a given parameter. Then, Jk(x + ∆x) is

an ǫ-approximately value function.

Proof Since Jt(x) is continuous and Tk is sufficiently small, we only need to prove
that Jt(x) satisfies Hamilton-Jacobi equation [9].

From |∆Jk(x + ∆x) − ∂

∂t
Jt(x)| ≤ ǫ, the continuity of λr

j
(t) and Jt(x) and (13), we

have

|

∑

r,j

λr

j
(t)[(pr

j
− Jt−1(x) + Jt−1(x − Aj)]+ +

∂

∂t
Jt(x)| ≤ ρ1η + ρ2ǫ,

where ρ1, ρ2 are constants. Taking ǫ = η will finish the proof. �

Theorem 4.1 has an important meaning: The value function under uncertainty de-
termined by (13) is the ǫ-approximation of value function in certainty.

5 Numerical Experiments

In the section, we will exhibit some numerical examples on the optimal booking control
by the following example.

Example 5.1 Consider the airline network whose leg-itinerary matrix is given as

follows:

A =




1 0 1 0
0 1 1 0
0 0 0 1


 .

The current state we consider is S = (x, T, ǫ), where the capacity vector x =
(600, 500, 280)T and T = 200. There are h = 2 fare classes for itinerary i = 1, 2, 3, 4 in

the problem. The fares and their demand rates are tabulated in Table 5.1.

We take µ1 = 0.75, µ2 = 0.8 in (12) and calculate by Robust Heuristic Algorithm the
value function for each j at various ǫ. The results are presented in Figure 5.1 – Figure
5.4 as follows. The figures display the monotone evolution of the MAFs of disparate
itineraries. The curves in the figures do not intersect with each other, which numerically
depicts the corresponding monotone behaviors. This example shows the algorithm RHA
is effective for a kind of robust revenue management problems.

Itinerary 1 2 3 4
p1

i
400 300 560 320

p2

i
350 260 400 280

λ1

i
50 + 25t 60 + 10t 30 + 15t 25 + 12t

λ2

i
40 + 5t 60 + 10t 50 + 10t 20 + 11t

Table 5.1: The data for Example 5.1.
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Figure 5.1: Picture of MAF for itinerary 1 changes with t for various ǫ.
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Figure 5.2: Picture of MAF for itinerary 2 changes with t for various ǫ.
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Figure 5.3: Picture of MAF for itinerary 3 changes with t for various ǫ.
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Figure 5.4: Picture of MAF for itinerary 4 changes with t for various ǫ.
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6 Conclusion

This paper studies the network revenue management under uncertainty. A robust dy-
namic model for the problem is established and a heuristic is provided to find the robust
solutions. Some numerical results are given to show that the algorithm is efficient. From
the figures, we can observe that MAF is monotone of time for small ǫ. We estimate that
MAF is also monotone of remaining capacity x for small ǫ.
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Abstract: In this study, an online learning algorithm for feedforward neural
networks (FNN) based on the optimized learning rate and adaptive forgetting
factor is proposed for online financial time series prediction. The new learning
algorithm is developed for online predictions in terms of the gradient descent
technique, and can speed up the FNN learning process substantially relative
to the standard FNN algorithm, with simultaneous preservation of stability of
the learning process. In order to verify the effectiveness and efficiency of the
proposed online learning algorithm, two typical financial time series are chosen
as testing targets for illustration purposes.
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1 Introduction

The financial market is a complex, evolutionary, and nonlinear dynamical system [1].
Financial time series are inherently noisy, non-stationary, and deterministically chaotic
[2]. This means that the distribution of financial time series changes over time. Not
only a single data series is non-stationary in the sense of the mean and variance of the
series, but the relationship of the data series to other related data series may also be
continuously changing. Modeling such dynamical and non-stationary time series is a
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challenging task. Over the past few years, neural networks have been successfully used
to model financial time series ranging from options prices [3], corporate bond ratings
[4] and stock index trading [5] to currency exchange [6]. Neural networks are univer-
sal function approximators that can map any nonlinear function without any a priori

assumption about the data [7]. Unlike traditional statistical models, neural networks
are data-driven, non-parametric weak models, and they let “the data speak for them-
selves”. So neural networks are less susceptible to the model mis-specification problem
than most parametric models are, and they are more powerful in describing the dynamics
of financial time series than traditional statistical models are [6, 8].

Among these neural network models, the multilayer feedforward neural network
(FNN) is widely used for financial time series prediction due to its approximations to
nonlinear functions and its self-learning capability [7]. However, the FNN has several
limitations. For example, the convergence speed of the FNN algorithm is often slow be-
cause the learning rate is fixed [12], thus increasing the network learning time. Therefore,
some faster training FNN algorithms, such as adaptive learning algorithms [9-10], real-
time learning algorithms [11-12] and other fast learning algorithms [13-15], have been
developed in an attempt to reduce these shortcomings. But two main limitations still
remain so far.

Firstly, most FNN models do not use the optimized instantaneous learning rates
except the work of [11]. In studies in which these are introduced, the learning rate is
set to a fixed value. It is, however, critical to determine a proper fixed learning rate for
the FNN applications. If the learning rate is large, learning may occur quickly, but it
may also become unstable and may even not learn at all [11]. To ensure stable learning,
the learning rate must be sufficiently small, but a small learning rate may lead to a
long learning time and a slow convergence speed. Also, it is unclear just how small the
learning rate should be. In addition, the best fixed learning rate is problem-independent,
and it varies with different neural network structure for different applications.

Secondly, in the existing literature, almost all fast algorithms are batch learning al-
gorithms. Although neural network batch learning is highly effective, the computation
involved in each learning step is very big, especially when large sample data sets are
presented. Furthermore, the neural networks must re-learn from the beginning as new
data become available. Therefore, this may overly affect the overall computational effi-
ciency of batch learning. In this sense, batch learning is unsuitable for real-time or online
prediction when neural networks are used as a predictor.

For the first problem, an optimized instantaneous learning rate is derived from the
gradient descent rule based on optimization techniques. For the second problem, an
online learning algorithm should be created to overcome the drawbacks of batch learning
algorithm. Actually, there is a difference between online learning algorithm and batch
learning algorithm in the neural networks models. In the online learning algorithm, the
weight vectors are updated recursively after the presentation of each input vector. While
in the batch learning algorithm, the weight vectors of neural networks are updated only
at the end of each epoch, which will be further illustrated later. Usually, in the neural
networks, a single pass over the input data set is called as an epoch. Furthermore,
the weight sequence should be chosen to given a higher weight to more recent data in
the time series prediction. So an adaptive forgetting factor is also introduced into the
proposed online learning algorithm. In order to verify the effectiveness and efficiency of
the proposed online learning algorithm, two typical financial time series, S&P 500 and
the exchange rate of euros against US dollars (EUR/USD), are chosen for testing.
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The rest of this work is organized as follows. In Section 2, the proposed online learning
algorithm with adaptive forgetting factor is first presented in terms of the gradient descent
algorithm and optimization techniques. For further illustration, an empirical analysis is
then given in Section 3. Finally, some concluding remarks are drawn in Section 4.

2 The Proposed Online Learning Algorithm

In this study, we use a matrix-vector notation of the neural network description in order
to be able to express the later by simple formula. Consider a three-layer FNN, which has
p nodes in the input layer, q nodes in the hidden layer and k nodes in the output layer.
Mathematically, the basic structure of the FNN model is described by

Y (t + 1) =




y1(t + 1)
y2(t + 1)
· · ·

yk(t + 1)


 =




f2[
∑q

i=1
f1(
∑p

j=1
wij(t)xj(t) + wi0(t))v1i(t) + v10(t)]

f2[
∑q

i=1
f1(
∑p

j=1
wij(t)xj(t) + wi0(t))v2i(t) + v20(t)]

· · ·

f2[
∑

q

i=1
f1(
∑

p

j=1
wij(t)xj(t) + wi0(t))vki(t) + vk0(t)]




=




f2[
∑q

i=0
f1(
∑p

j=0
wij(t)xj(t))v1i(t)]

f2[
∑q

i=0
f1(
∑p

j=0
wij(t)xj(t))v2i(t)]

· · ·

f2[
∑

q

i=0
f1(
∑

p

j=0
wij(t)xj(t))vki(t)]


 =




f2[V
T
1

F1(W (t)X(t))]
f2[V

T
2

F1(W (t)X(t))]
· · ·

f2[V
T

k
F1(W (t)X(t))]




= F2[V
T (t)F1(W (t)X(t))],

(1)
where xj(t), j = 1, 2, . . . , p, are the inputs of the FNN; yj(t+1), j = 1, 2, . . . , k, are the
output of the FNN; wij(t), i = 1, 2, . . . , q, j = 1, 2, . . . , p, are the weights from the input
layer to the hidden layer; wi0(t), i = 1, 2, . . . , q, are the biases of the hidden nodes; vij(t),
i= 1, . . . , q, j = 1, . . . , k, are the weights from the hidden layer to the output layer;
vi0(t), i = 1, . . . , k, are the bias of the output node; t is a time factor; f1 is the activation
function of the nodes for the hidden layer and f2 is the activation function of the nodes
for the output layer. Generally, the activation function for nonlinear nodes is assumed
to be a symmetric hyperbolic tangent function, i.e. f1(x) = tanh(u−1

0
x), and its first-

and second-order derivatives are f ′
1
(x) = u−1

0
[1− f2

1
(x)], f ′′

1
(x) = −2u−1

0
f1(x)[1− f2

1
(x)],

respectively, where u0 is the shape factor of the activation function. Specially, some
notations in Equation (1) are defined as follows:

X = (x0, x1, · · · , xp)
T
∈ R(p+1)×1, Y = (y1, y2, · · · , yk)T

∈ Rk×1,

W =




w10 w11 · · · w1p

w20 w21 · · · w2p

· · · · · · · · · · · ·

wq0 wq1 · · · wqp


 = (W0, W1, · · · , Wp) ∈ Rq×(p+1),

V =




v10 v20 · · · vk0

v11 v21 · · · vk1

· · · · · · · · · · · ·

v1q v2q · · · vkq


 = (V1, V2, · · · , Vk) ∈ R(q+1)×k,
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F1(W (t)X(t))

=
(

F1(
∑

p

j=1
w0j(t)xj(t)) F1(

∑
p

j=1
w1j(t)xj(t)) · · · F1(

∑
p

j=1
wqj(t)xj(t))

)T
.

F1(W (t)X(t)) ∈ R(q+1)×1.

For simplification, let neti(t) =
∑

p

j=0
wij(t)xj(t), i = 0, 1, . . . , q, then

F1(W (t)X(t)) =
(

F1(net0(t)) F1(net1(t)) · · · F1(netq(t))
)T

∈ R(q+1)×1.

Usually, through estimating the model parameter vectors (W , V ) via FNN learning,
we can realize the corresponding tasks such as function approximation, system identifi-
cation or prediction. In fact, the model parameter vectors (W , V ) can be obtained by
iteratively minimizing a cost function E(X : W , V ). In general, E(X :W , V ) is a sum of
the error squares cost function with k output nodes and N training pairs, i.e.,

E(X : W, V ) =
1

2

∑N

j=1

∑p

i=1

e2

i (j) =
1

2

∑N

j=1

eT (j)e(j)

=
1

2

∑N

j=1

[yj − ŷj(X : W, V )]T [yj − ŷj(X : W, V )], (2)

where e(j) = [e1(j), e2(j), · · · , ek(j)]T ∈ Rk×1, yj is the jth actual value and ŷj(X :
W, V ) is the jth estimated value, j = 1, . . . , N .

However, the learning algorithm based on Equation (2) is batch learning of neural
networks. As earlier mentioned, the computation of the batch learning algorithm is very
large if big sample data sets are given. Also, the neural networks must re-learn when new
data are available. To overcome the shortcomings, the neural network learning should
be iterative or recursive, allowing the network parameters to be updated at each sample
interval as new data become available. This idea will be activated to create a new online
learning algorithm. In addition, a weighting sequence should be chosen to give a higher
weight for more recent data in order to perform online prediction. To arrive at this goal,
an adaptive forgetting factor is introduced to this problem. In this study, an exponential
forgetting mechanism in the cost function, like a recursive algorithm with the forgetting
factor, is used, and then Equation (2) can be rewritten as

E(t) =
1

2

∑t

j=1

λt−j
∑k

i=1

e2

i (j) =
1

2

∑t

j=1

λt−jeT (j)e(j)

=
1

2

∑t

j=1

λt−j [y(j) − ŷi(j)]
T [y(j) − ŷi(j)], (3)

where λ is the forgetting factor, 0 < λ 6 1, e(j) = [e1(j), e2(j), · · · , ek(j)]T ∈ Rk×1, j =
1, . . . , t; t is a time factor, representing the number of training pairs here.

By applying the steepest descent method to the error cost function E(t) (i.e., Equation
(3)), we can obtain the gradient of E(t) with respect to parameters W and V , respectively.

∇W E(t) =
∂E(t)

∂W (t)
=
∑t

j=1

λt−j
∑k

i=1

ei(j)
∂ei(j)

∂W (j)
= −

∑t

j=1

λt−j
∑k

i=1

ei(j)
∂ŷi(j)

∂W (j)
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= −

∑t

j=1

λt−jF̄ ′
1
(j)V̄ (j)F ′

2
(j)e(j)xT (j) = λ∇W E(t − 1) − F̄ ′

1
(t)V̄ (t)F ′

2
(t)e(t)xT (t),

(4)

∇V E(t) =
∂E(t)

∂V (t)
=
∑t

j=1

λt−j
∑k

i=1

ei(j)
∂ei(j)

∂V (j)
= −

∑t

j=1

λt−j
∑k

i=1

ei(j)
∂ŷi(j)

∂V (j)

= −

∑t

j=1

λt−jF1(j)e
T (j)F ′

2
(j) = λ∇V E(t − 1) − F1(t)e

T (t)F ′
2
(t). (5)

So, the updated formulae of weights are given by, respectively

∆W (t) = −η∇W E(t) = −η
(
λ∇W E(t − 1) − F̄ ′

1
(t)V̄ (t)F ′

2
(t)e(t)xT (t)

)
, (6)

∆V (t) = −η∇V E(t) = −η
(
λ∇V E(t − 1) − F1(t)e

T (t)F ′
2
(t)
)
, (7)

where η is the learning rate; λ is the forgetting factor; ∆ is the incremental operator; ∇
is the gradient operator; ∆W and ∆V are the weight adjustment increments;

F̄ ′
1(j)

= diag[f ′
1(1)

f ′
1(2)

· · · f ′
1(q)

] ∈ Rq×q;

F ′
2

= diag[f ′
2(1)

f ′
2(2)

· · · f ′
2(k)

] ∈ Rk×k;

f ′
1(i)

= f ′
1
(neti) =

∂f1(neti)

∂neti
, i = 1, 2, · · · , q;

f ′
2(i)

= f ′
2
[vT

i
F1(WX)] =

∂f2[v
T

i
F1(WX)]

∂[vT
i
F1(WX)]

, i = 1, 2, · · ·k;

V̄ =




v11 v21 · · · vk1

v12 v22 · · · vk2

· · · · · · · · · · · ·

v1q v2q · · · vkq


 = [v̄1 v̄2 · · · v̄k] ∈ Rq×p;

v̄i = [vi1 · · · viq]
T
∈ Rq×1, i = 1, 2, · · · , q.

To derive the optimal learning rate, consider the following error increment equation:

∆e(t + 1) = e(t + 1) − e(t) = y(t + 1) − ŷ(t + 1) − y(t) + ŷ(t). (8)

Let ∆y(t + 1) = y(t + 1)− y(t) be the change of the actual series and let ∆ŷ(t + 1) =
ŷ(t + 1) − ŷ(t) be the change of the neural network output. Here we assume that the
absolute value of the change of the actual series is much smaller than the absolute value of
the change of the neural network output, i.e., |∆y(t + 1)| << |∆ŷ(t + 1)|. This implies
that the value y(t) can approximate y(t+1) locally during the training process, that
is to say, the change of the actual series can be ignored comparing with the change
of neural network output during the learning process. This assumption is realistic for
many processes of actual series due to energy constraints in practical systems, while no
constraints are imposed to the output of the neural networks [11]. Also, if this condition
is not satisfied, then the neural network prediction system will not be able to adapt
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sufficiently fast to change in the actual series and the prediction of the actual series
will be impossible. With the above assumption, the increment in Equation (8) can be
approximated as

∆e(t + 1) = e(t + 1) − e(t) = ∆y(t + 1) − ∆ŷ(t + 1) ≈ −∆ŷ(t + 1). (9)

Usually, in the recursive algorithm, the change of output of neural networks with
adaptive forgetting factors can be represented as

∆ŷ(t + 1) = −ηλζ(t − 1) + ηξ(t)e(t), (10)

where ζ(t − 1) = F ′
2
[∇T

V
E(t − 1)F1 + V̄ T F̄ ′

1
∇W E(t − 1)X ], ξ(t) = F ′

2
[(FT

1
F1)Ik2 +

V̄ T F ′
1
F ′

1
V̄ XT X ]F ′

2
with

F ′
2

=




F ′
2(1)

0 · · · 0

0 F ′
2(2)

· · · 0

· · · · · · · · · · · ·

0 0 · · · F ′
2(N)


 ,

FT
1

F1 =




FT

1(1)
F1(1) FT

1(1)
F1(2) · · · FT

1(1)
F1(N)

FT

1(2)
F1(1) FT

1(2)
F1(2) · · · FT

1(2)
F1(N)

· · · · · · · · · · · ·

FT

1(N)
F1(1) FT

1(N)
F1(2) · · · FT

1(N)
F1(N)


 ,

XT X =




xT
1
x1 xT

1
x2 · · · xT

1
xN

xT
2
x1 xT

2
x2 · · · xT

2
xN

· · · · · · · · · · · ·

xT

N
x1 xT

N
x2 · · · xT

N
xN


 ,

F ′
1
F ′

1
=




F̄ ′
1(1)

F̄ ′
1(1)

F̄ ′
1(1)

F̄ ′
1(2)

· · · F̄ ′
1(1)

F̄ ′
1(N)

F̄ ′
1(2)

F̄ ′
1(1)

F̄ ′
1(2)

F̄ ′
1(2)

· · · F̄ ′
1(2)

F̄ ′
1(N)

· · · · · · · · · · · ·

F̄ ′
1(N)

F̄ ′
1(1)

F̄ ′
1(N)

F̄ ′
1(2)

· · · F̄ ′
1(N)

F̄ ′
1(N)


 .

In order to prove Equation (10), a lemma must be introduced firstly.

Lemma 2.1 The total time derivative of the FNN single output V T F1(WX)is given

by

d[V T F1(WX)]

dt
= F1(WX)

dV

dt
+ V̄ T F̄ ′

1(WX)
dW

dt
X

=
dV T

dt
F1(WX) + V̄ T F̄ ′

1(WX)
dW

dt
X,

where V T F1(WX) is the single output of FNN; dW

dt
and dV

dt
are the derivatives with
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respect to timet; W , V are the weight vectors; X is the input vector; and

F1(WX) = [f1(net0), f1(net1), · · · , f1(netq)]
T ; X = [x0, x1, · · · , xp]

T ;

F̄ ′
1(WX) =




f ′(net1) · · · 0
· · · · · · · · ·

0 · · · f ′(netq)


 ;

dW

dt
=




dw00

dt

dw01

dt
· · ·

dw0p

dt
dw10

dt

dw11

dt
· · ·

dw1p

dt
· · · · · · · · · · · ·

dwq0

dt

dwq1

dt
· · ·

dwqp

dt




;

V̄ = [v1, v2, · · · , vq]
T ;

dV

dt
=

[
dv0

dt

dv1

dt
· · ·

dvq

dt

]T

.

Proof Derivation of d[V
T

F1(WX)]

dt
is as follows:

d[V
T

F1(WX)]

dt
=

d[
∑q

i=0 vif1(
∑p

j=0 wijxj)]
dt

=
q∑

i=0

∂[
∑ q

i=0 vif1(
∑p

j=0 wijxj)]
∂vi

dvi

dt
+

q∑
i=0

p∑
j=0

∂[
∑ q

i=0 vif1(
∑p

j=0 wijxj)]
∂wij

dwij

dt

=
q∑

i=0

f1

(
p∑

j=0

wijxj

)
dvi

dt
+

q∑
i=0

p∑
j=0

vif
′
1

(
p∑

j=0

wijxj

)
xj

dwij

dt

= f1(net0)
dv0

dt
+ f1(net1)

dv1

dt
+ · · · + f1(netq)

dvq

dt

+ v0f
′
1
(net0)[x0

dw00

dt
+ x1

dw01

dt
+ · · · + xp

dw0p

dt
]

+ v1f
′
1
(net1)[x0

dw10

dt
+ x1

dw11

dt
+ · · · + xp

dw1p

dt
] + · · ·

+ vqf
′
1
(netq)[x0

dwq0

dt
+ x1

dwq1

dt
+ · · · + xp

dwqp

dt
]

= [f1(net0) f1(net1) · · · f1(netq)]
[

dv0

dt

dv1

dt
· · ·

dvq

dt

]T

+[v1 v2 · · · vq]




f ′ (net1) · · · 0
· · · · · · · · ·

0 · · · f ′ (netq)



(

due to f(net0) ≡ 1,
f ′(net0) = 0

)

×




dw00

dt

dw01

dt
· · ·

dw0p

dt
dw10

dt

dw11

dt
· · ·

dw1p

dt

· · · · · · · · · · · ·

dwq0

dt

dwq1

dt
· · ·

dwqp

dt







x0

x1

· · ·

xp




= FT
1

(WX)dV

dt
+ V̄ T F̄ ′

1(WX)dW

dt
X = dV

T

dt
F1(WX)+ V̄ T F̄ ′

1(WX)dW

dt
X.

�

In the following, we start to prove Equation (10). The above Lemma together with
Equations (6) and (7) gives
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∆ŷ(t+1) ≈
(

dŷ(t+1)

dt

)
∆t=




dŷ1(t+1)

dt
dŷ2(t+1)

dt

· · ·

dŷk(t+1)

dt


∆t=




f ′
2(1)

·

(
FT

1

dv1

dt
+ vT

1
F̄ ′

1

dW

dt
X
)

f ′
2(2)

·

(
FT

1

dv2

dt
+ vT

2
F̄ ′

1

dW

dt
X
)

· · ·

f ′
2(k)

·

(
FT

1

dvk

dt
+ vT

k
F̄ ′

1

dW

dt
X
)


∆t

≈




f ′
2(1)

·

(
FT

1

∆v1

∆t
+ vT

1
F̄ ′

1

∆W

∆t
X
)

f ′
2(2)

·

(
FT

1

∆v2

∆t
+ vT

2
F̄ ′

1

∆W

∆t
X
)

· · ·

f ′
2(k)

·

(
FT

1

∆vk

∆t
+ vT

k
F̄ ′

1

∆W

∆t
X
)


∆t =




f ′
2(1)

· (FT
1

∆v1 + vT
1

F̄ ′
1∆WX)

f ′
2(2)

· (FT
1

∆v2 + vT
2

F̄ ′
1∆WX)

· · ·

f ′
2(k)

· (FT
1

∆vk + vT

k
F̄ ′

1∆WX)




=




f ′
2(1)

· (FT
1

[−η∇V1E(t)] + v̄T
1

F̄ ′
1[−η∇W E(t)]X)

f ′
2(2)

· (FT
1

[−η∇V2E(t)] + v̄T
2

F̄ ′
1[−η∇W E(t)]X)

· · ·

f ′
2(k)

· (FT
1

[−η∇Vk
E(t)] + v̄T

k
F̄ ′

1[−η∇W E(t)]X)




= −η




f ′
2(1)

· (FT
1
∇V1E(t) + v̄T

1
F̄ ′

1∇W E(t)X)

f ′
2(2)

· (FT
1
∇V2E(t) + v̄T

2
F̄ ′

1∇W E(t)X)

· · ·

f ′
2(k)

· (FT
1
∇Vk

E(t) + v̄T

k
F̄ ′

1∇W E(t)X)




= −η




f ′
2(1)

0 · · · 0

0 f ′
2(2)

· · · 0

· · · · · · · · · · · ·

0 0 · · · f ′
2(k)




×




FT
1

[λ∇EV1 (t − 1) − e1f
′
2(1)

F1] + v̄T
1
F̄ ′

1∇W E(t)X

FT
1

[λ∇EV2 (t − 1) − e2f
′
2(2)

F1] + v̄T
2
F̄ ′

1∇W E(t)X

· · ·

FT
1

[λ∇EVk
(t − 1) − ekf ′

2(k)
F1] + v̄T

k
F̄ ′

1∇W E(t)X




= −ηF ′
2

[
λ∇T

V
E(t − 1)F1 − F ′

2
eF ′

1
F1 + V̄ T F̄ ′(λ∇EW (t − 1) − F ′

1
V F ′

2
eXT )X

]

= −ηλF ′
2

[
∇

T

V
E(t − 1)F1 + V̄ T F̄ ′

∇EW (t − 1)X
]
+ ηF ′

2
(F ′

2
eF ′

1
F1

−V̄ T F̄ ′F ′
1
V F ′

2
eXT X)

= −ηλF ′
2

[
∇

T

V
E(t − 1)F1 + V̄ T F̄ ′

∇EW (t − 1)X
]
+ ηF ′

2
(F ′

1
F1Ik2

−V̄ T F̄ ′F ′
1
V XT X)F ′

2
e

= −ηλζ(t − 1) + ηξ(t)e(t).

�

Substituting (10) into (9), we obtain

e(t + 1) ≈ e(t) + ηλζ(t − 1) − ηξ(t)e(t). (11)

The objective here is to derive an optimal learning rate η. That is, at iteration t, an
optimal value of the learning rate, η∗(t), which minimizes E(t+1), is obtained. Define
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the cost function:
E(t + 1) = 0.5eT (t + 1)e(t + 1). (12)

Using Equation (11), Equation (12) may be written as

E(t + 1) = 0.5 [e(t) + ηλζ(t − 1) − ηξ(t)e(t)]
T

[e(t) + ηλζ(t − 1) − ηξ(t)e(t)] . (13)

In Equation (13), the first and second order conditions are as

dE(t+1)

dη

∣∣∣
η=η∗(t)

= −0.5 [ξ(t)e(t) − λζ(t − 1)]T [e(t) − η∗(t)ξ(t)e(t) + η∗(t)λζ(t − 1)]

− 0.5[e(t) − η∗(t)ξ(t)e(t) + η∗(t)λζ(t − 1)]T [ξ(t)e(t) − λζ(t − 1)] = 0,

d2E(t + 1)

dη2

∣∣∣∣
η=η∗(t)

= [ξ(t)e(t) − λζ(t − 1)]T [ξ(t)e(t) − λζ(t − 1)] > 0.

Since ξ(t) and ζ(t−1) is positively defined, the second condition is met, the optimum
learning rate can be obtained from the first order condition, as illustrated in Equation
(14). Interestedly, the optimized learning rate that we obtained is distinctly different
from the result produced by the work [11]

η∗(t) =
[ξ(t)e(t) − λζ(t − 1)]T e(t)

[ξ(t)e(t) − λζ(t − 1)]T [ξ(t)e(t) − λζ(t − 1)]
. (14)

Finally, the increments of the neural network parameters, found using the optimal
learning rate, are obtained by replacing the η∗ given by Equation (14) to Equations (6)
and (7), which yield

∆W (t) = −

(
[ξ(t)e(t) − λζ(t − 1)]T e(t)

[ξ(t)e(t) − λζ(t − 1)]T [ξ(t)e(t) − λζ(t − 1)]

)

×

(
λ∇W E(t − 1) − F̄ ′

1
(t)V̄ (t)F ′

2
(t)e(t)xT (t)

)
, (15)

∆V (t) = −

(
[ξ(t)e(t) − λζ(t − 1)]T e(t)

[ξ(t)e(t) − λζ(t − 1)]T [ξ(t)e(t) − λζ(t − 1)]

)

×

(
λ∇V E(t − 1) − F1(t)e

T (t)F ′
2
(t)
)
. (16)

It is worth noting that the forgetting factor λ is adaptive. During the neural network
learning process, if the prediction error e(t) grows, this may mean that the neural network
parameters have changed. This implies that the network model is incorrect and needs
adjustment. So we should reduce the forgetting factor and allow the neural network
model to adapt. An adaptive forgetting factor which allows this is

λ(t) = s(t − 1)/s(t), (17)

where s(t) is a weighted average of the past values of eT e and is calculated by

s(t) = [(τ − 1)/τ ]s(t − 1) + (eT e
/
τ), (18)

τ is the time constant of the forgetting factor determining how fast λ(t) changes.
Using the updated weight formula with optimal learning rates and adaptive forgetting

factors, a new online recursive learning algorithm is generated. For convenience, the
proposed online learning algorithm is summarized as follows, as shown in Figure 2.1.

To verify the effectiveness of the proposed online learning algorithm, two typical
financial time series: S&P 500, a famous stock index, and one foreign exchange rate, euros
against US dollars (EUR/USD), are used as testing targets. The simulation experiments
are presented in the following section.
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Figure 2.1: Outline of the proposed online learning algorithm.

3 Experimental Analysis

In this section, there are two main motivations: (1) to evaluate the performance of the
proposed online learning algorithm, and (2) to compare the efficiency of the proposed
online learning algorithm with other similar algorithms. To perform the two motivations,
two real-world data experiments are carried out. In this section, we first describe the
research data and experiment design and then report the experimental results.

3.1 Research data and experiment design

In the experiments, one stock index, S&P 500, and one foreign exchange rate, euros
against US dollars (EUR/USD), are used for testing purpose. The historical data are
daily and are obtained from Wharton Research Data Service (WRDS), provided by
Wharton School of the University of Pennsylvania. The entire data set covers the period
from January 1, 2000 to December 31, 2004 with a total of 1256 observations. The data
sets are divided into two periods: the first period covers January 1, 2000 to December
31, 2003 with 1004 observations, while the second period is from January 1, 2004 to
December 31, 2004 with 252 observations. The first period, which is assigned to in-
sample estimation, is used for network learning, i.e., training set. The second period,
which is reserved for out-of-sample evaluation, is used for validation, i.e., testing set. For
space limitation, the original data are not listed in this paper, and detailed data can be
obtained from the WRDS.

For comparison, four related algorithms, standard FNN algorithm [7, 16], batch learn-
ing algorithm, Levenberg-Marquart (LM) based learning algorithm [15-16], and extended
Kalman filter (EKF) based learning algorithm [12, 17], are employed in this study. For
standard FNN learning algorithm, the learning rate is fixed at 0.3, more details about
standard FNN learning algorithm can be referred to [7]. In the batch learning algorithm,
the weights are updated only at the end of each epoch. Similar to the online learning
algorithm, the batch learning algorithm can also be summarized as follows, as illustrated
in Figure 3.1.

The Levenberg-Marquart (LM) based algorithm [15-16] is a kind of quick convergence
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algorithm which has the little computation time for per iteration. Basically, the link
weights of the neural network are updated based on the Jacobian matrix, J , collecting
the partial derivatives of the neural network error e with respect to the weights. In other
words, the update increment ∆W collecting the corrections of the weights in matrix W
is computed by

∆W = −[JT J + µI]−1JT e, (19)

J =




∂e

∂w11

∂e

∂w12

· · ·

∂e

∂w1n

∂e

∂w21

∂e

∂w22
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Figure 3.1: Outline of the batch learning algorithm.

It is worth noting that the LM-based algorithm is rather flexible. If µ is sufficiently
large, the above weight update algorithm is similar to the gradient descent algorithm.
If µ is equal to zero, the above algorithm will be a Gaussian-Newton algorithm. In
this sense, the LM-based algorithm has the characteristics of both the gradient descent
algorithm and the Gaussian-Newton algorithm.

The extended Kalman filter (EKF) based algorithm [12, 17] is a novel weight ad-
justment algorithm for FNN. In this algorithm, the Kalman filter is used to update the
weight vector of FNN. The generic principle of EKF-based algorithm is that the EKF can
modify the weight parameters to maximize the posterior probability of current instance
with respect to its predicted probability distribution of weight parameters. Recent work
proposed by Ruck [17] has revealed that the FNN algorithm is actually a degenerated
form of the EKF. Due to its excellent convergence properties, a lot of successful appli-
cations have been reported. Basically, the EKF-based weight adjustment formulae are
illustrated as follows.

W (t) = W (t − 1) + K(t)[y(t) − ŷ(t)], (21)

K(t) = P (t − 1)HT (t)[H(t)P (t − 1)HT (t) + R(t)]−1, (22)
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P (t) = P (t − 1) − K(t)H(t)P (t − 1), (23)

where W (t) is the connect weight of FNN, K(t) is called the Kalman gain, y(t) is the
actual value, ŷ(t) is the predicted value produced by neural networks, P (t) is the error
covariance matrix, defined by P (t) = E{[y(t) − ŷ(t)]T [y(t) − ŷ(t)]} and H(t) is the

gradient, defined by H(t) = ∂ŷ(t)

∂W
. Usually, the system actual outputy(t) = ŷ(t) + ε(t),

ε(t) is assumed to be white noise vector with covariance R(t) regarded as a modeling
error. For more details, please refer to [12, 17].

In all the neural network predictors, five input nodes are determined by auto-
regression testing. The appropriate number of hidden nodes is set to 12 in terms of
trial and error. The training epochs are set to 3000 due to trial and error and the
problem complexity.

To examine the forecasting performance, the root mean square error (RMSE ) and
directional change statistics (Dstat) [16] of financial time series are employed as the
performance measurement of the testing set. In addition, training time and training mean
square error (TMSE) are used as the efficiency measurement of different algorithms.

3.2 Experiment Results

When the data are prepared, we begin to perform experiments according to the previous
experiment design. First of all, the prediction results with five algorithms are reported.
Figures 3.2 and 3.3 give graphical representations of the forecasting results for two typical
financial time series using different FNN learning algorithms. Table 3.1 shows a detailed
prediction performance of the different algorithms in terms of both the level measure-
ment (RMSE ) and direction measurement (Dstat). From the figures and table, we can
generally find that the prediction results of the proposed online learning algorithm are
very promising for two typical financial time series under study either where the mea-
surement of forecasting performance is the goodness-of-fit such as RMSE or where the
forecasting performance criterion is the Dstat.

Figure 3.2: The forecasting results with different learning algorithm for S&P 500.

In detail, Figure 3.2 reveals that the comparison for the S&P 500 of the proposed
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online learning algorithm versus the other four learning algorithm. Similarly, it can be
seen from Figure 3.3 that the forecasting performance for ERU/USD has significantly
improved using the proposed online learning algorithm. The graphical results indicate
that the proposed online learning algorithm performs than the other algorithms presented
here.

Subsequently, the concrete prediction performance comparison of various algorithms
for two different financial time series via RMSE and Dstat are given in Table 3.1.

For the S&P 500, the proposed online learning algorithm outperforms the other four
learning algorithms in terms of both RMSE and Dstat. Focusing on the RMSE indica-
tor, the proposed online learning algorithm performs the best, followed by batch learning,
EKF-based learning, LM-based learning and Standard FNN learning algorithm. Com-
paring with standard FNN learning algorithm, the RMSE of the proposed online learning
algorithm is much smaller. From the viewpoint of Dstat, the performance of the proposed
online learning algorithm is the best of the all. Relative to the standard FNN learning
algorithm, the performance improvement arrives at 26.82% (80.31%-53.41%) While the
performance of the proposed online learning algorithm is slightly improved relative to
batch learning algorithm, EKF-based learning algorithm and LM-based algorithm.

Figure 3.3: The forecasting results with different learning algorithm for EUR/USD.

Algorithms
S&P 500 EUR/USD
RMSE Dstat(%) RMSE Dstat(%)

Online learning 1.2859 80.31 0.0799 79.87
Batch learning 2.1467 71.42 0.0943 69.75
EKF-based learning 2.1538 70.35 0.1051 72.29
LM-based learning 4.3531 71.69 0.1544 69.34
Standard FNN 7.8553 53.49 0.3362 55.64

Table 3.1: Performance comparison of four neural network learning algorithms.
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Algorithms
S&P 500 EUR/USD
Time (seconds) TMSE Time

(seconds)

TMSE

Online learning 197 3.41 192 1.17×10−3

Batch learning 186 7.96 177 5.04×10−3

EKF-based learning 173 8.42 154 4.85×10−3

LM-based learning 535 8.77 573 3.56×10−3

Standard FNN 249 12.55 269 6.09×10−3

Table 3.2: The comparisons of the computational efficiency and training performance.

For the exchange rate of EUR/USD, the performance of the proposed online algo-
rithm is the best, similar to the results of the S&P 500. Likewise, the proposed online
algorithm has gained much improvement relative to the standard FNN learning algo-
rithm. Interestedly, the RMSE of the batch learning algorithm is slightly better than
that of the EKF-based learning algorithm, but the directional performance (i.e., Dstat)
of the batch learning is somewhat worse than that of the EKF-based learning algorithm.
The possible reasons are needed to be further addressed later.

In summary, we can conclude that (1) the proposed online learning algorithm with
adaptive forgetting factors performs consistently better than other comparable learning
algorithm for both the stock index and foreign exchange rate; (2) the evaluation value of
the two criteria of the proposed online learning is much better than that of the standard
FNN learning algorithm, indicating that the proposed online learning algorithm can
effectively reflect error changes and significantly improve network learning performance.
One possible reason for this is that the optimal learning rate and adaptive forgetting
factors are used in the online learning algorithm.

In addition, the computation speed of the proposed online algorithm is very fast dur-
ing the experiments when using a personal computer (PC) and the training performance
is also well in predicting time series, indicating that the proposed learning algorithm is
an efficient online algorithm. For comparison purpose, Table 3.2 reports the comparison
of the computation time and training performance between the proposed online learning
algorithm and the other four learning algorithm presented here.

From Table 3.2, we can find the following conclusions. First of all, for both S&P 500
and EUR/USD series, the computational time of the EKF-based learning algorithm is
the smallest and the LM-based learning algorithm is the largest. The results reported
here are basically consistent with the work of Iiguni et al. [12]. The main reason is
that the number of iterations of LM-based learning algorithm is much larger than that
of EKF-based learning algorithm, although the computation time per iteration of the
EKF-based learning algorithm is larger than that of the LM-based learning algorithm
[12]. Secondly, the computation time of the batch learning algorithm is smaller than that
of the online learning algorithm due to the batch processing of the data. However, rela-
tive to the standard FNN learning and LM-based learning algorithms, the computation
time of the online learning algorithm is much smaller. The main reason may be that the
proposed online learning algorithm adopts optimal learning rate, resulting in the increase
of convergence speed. Thirdly, although the computation time of the proposed online
learning algorithm is not the best, the training performance (refer to TMSE presented
by Table 3.2) and the generalized performance (refer to RMSE and Dstat reported by
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Table 3.1) is the best among the entire learning algorithms presented in this study. The
possible reason is that the adaptive forgetting factor helps improve the performance of
this proposed algorithm. Finally, since the difference of the computation time between
the proposed online learning algorithm and EKF-based and batch learning algorithm is
marginal, and the difference of the performance between the proposed online learning
algorithm and EKF-based and batch learning is significant, in this sense, the computa-
tional efficiency of the proposed online learning algorithm is satisfactory when forecasting
financial time series. In general, the experimental results reveal that the proposed online
learning algorithm provide a feasible solutions to financial time series online prediction.

4 Conclusions

In this study, an online learning algorithm with optimized learning rates and adaptive
forgetting factors is first proposed. This exploratory research examines the potential of
using the proposed online learning algorithm to predict two main financial time series –
S&P 500 and the exchange rate for euros against US dollars. Our empirical results suggest
that the online learning algorithm may provide much better forecasts than the other four
learning algorithms. Furthermore, the learning efficiency is also satisfactory relative to
the learning performance. This implies that the proposed online learning algorithm with
adaptive forgetting factors is very suitable for online prediction of financial time series.
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