
Nonlinear Dynamics and Systems Theory, 7 (2) (2007) 169–186

Estimations of Solutions Convergence of Hybrid

Systems Consisting of Linear Equations with Delay

D. Khusainov 1∗, R. Langerak 2 and O. Kuzmych 1∗

1 Department of Complex System Modelling, Faculty of Cybernetics,

Taras Shevchenko National University,

Volodymyrska Str., 64, 01033, Kyiv, Ukraine
2 Department of Computer Science, University of Twente,

P.O.Box 217, 7500 AE Enschede, The Netherlands.

Received: February 16, 2006; Revised: February 26, 2007

Abstract: The logic-dynamical hybrid system given by a set of subsystems
which are linear differential-difference equations with constant coefficients and
constant delay is investigated in the paper. The estimations of disturbances
of such system are obtained. We consider the cases of stable and unstable
subsystems. Besides the estimations of solutions of hybrid system given by a
set of scalar subsystems are obtained.

Keywords: Hybrid system; differential-difference equation; Lyapunov-Krasovsky

functional; stable system

Mathematics Subject Classification (2000): 34K20, 34K06, 34O20

1 Introduction

Nowadays the disturbances in hybrid systems dynamic is an actual research problem [2,9].
Since in different branches such as medicine, ecology, construction of control systems,
the state at a given moment in time essentially depends on the previous history, more
adequate instrument for researching the dynamic of separate subsystems is formed by
equations with delay [4-6].

Let the logic-dynamical system be given by a set of subsystems which are linear
differential-difference equations with constant coefficients and constant delay

ẋ(t) = Aix(t) + Bix(t − τ), i = 1, n, x(t) ∈ Rn, t ≥ 0. (1)
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Each of these subsystems describes the dynamics on a fixed finite time interval ti−1 ≤
t < ti, i = 1, N, t0 = 0. Subsystems can be stable or unstable. We suppose, the
initial disturbance is in δ-vicinity of the origin. It is required to estimate the size of the
deviation of solutions x(t) of the logic-dynamical system (1) from the origin at the final
moment t = tN . We consider finite time intervals, and at switching times coordinates
have no discontinuity, i.e.

lim
s→+0

x(ti − s) = lim
s→+0

x(ti + s), i = 1, N − 1, (2)

and on separate time intervals the subsystems are systems of linear differential-difference
equations such that, by virtue of a continuity, all solutions which start from δ-vicinity
do not leave ε(δ)-vicinity. On the contrary, for any ε > 0 there exists δ(ε) > 0, such that
|x(tN )| < ε, if ‖x(0)‖τ < δ(ε). In the paper the mentioned values are calculated. Special
attention is given to the case of unstable subsystems. Here and further the following
vector and matrix norms are used

|A| =
{

λmax(A
T A

}1/2
,

|x(t)| =

{

n
∑

i=1

x2
i (t)

}1/2

,

‖x(t)‖τ = max
−τ≤s≤0

{|x(s + t)|} ,

‖x(t)‖τ,β =

{ 0
∫

−τ

eβs |x(t + s)|
2
ds

}1/2

,

λmax(·), λmin(·) are the largest and smallest eigenvalues of the corresponding symmetric,
positive definite matrices.

For the derivation of estimations the method of Lyapunov-Krasovsky functionals [7–9]
is used.

Research of such type of logic-dynamic systems has been carried out earlier. In [10]
the logic-dynamical system consisting of linear differential equations subsystems was
examined. The method of quadratic Lyapunov functions was used. The Lyapunov’s
functions were built as non-autonomous quadratic forms V (x, t) = xT H(t)x, H(t) =

e−tAT

e−tA by using a first integral. This kind of Lyapunov function allows to derive
the most exact estimations of solutions, as level surfaces Vi(x, t) = αi, i = 1, N − 1
of Lyapunov functions Vi(x, t), i = 1, N − 1, completely consisting of integral curves.
However, the construction of such functions is connected with the presence of a matrix
exponential etA, i.e. with the presence of a fundamental matrix of solutions. That is a
strong condition.

In [11] it has been proposed to use autonomous Lyapunov functions with symmetric,
positive definite matrices Hi, i = 1, N − 1 which are calculated using a solution of the
matrix Lyapunov equations

AT
i Hi + HiAi = Ci

for i = 1, N − 1. However this requires the asymptotic stability of matrices Ai, i =
1, N − 1 . Finally, in [12] estimations of disturbances of logic-dynamical system (1)
without the requirement of asymptotic stability of matrices Ai, i = 1, N − 1 has been
obtained.
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2 Estimations of solutions of stable subsystems

We’ll first obtain some auxiliary results. We investigate the behavior of the solution x(t)
of a linear stationary subsystem with delay

ẋ(t) = Ax(t) + Bx(t − τ), (3)

determined on an interval t0 ≤ t ≤ t1. For obtaining an estimation of solutions we use a
functional of the form

V [x(t), t] = eγt

{

xT (t)Hx(t) +

0
∫

−τ

eβsxT (t + s)Gx(t + s)ds

}

. (4)

Let’s denote

ϕ11(H) =
λmax(H)

λmin(H)
, ϕ12(G, H) =

λmax(G)

λmin(H)
,

ϕ21(G, H) =
λmax(H)

λmin(G)
, ϕ22(G) =

λmax(G)

λmin(G)
,

S[G, H ] =

[

−AT H − HA − G −HB

−BT H G

]

.

(5)

The following statement holds.

Theorem 2.1 Let there exist positive definite matrices G and H for which the matrix
S[G, H ] is also positive definite. Then the system (3) is asymptotic stable and for its
solutions x(t) it follows the top exponential estimations of convergence hold:

|x(t)| ≤
[

√

ϕ11(H) |x(0)| +
√

ϕ12(G, H) ‖x(0)‖τ,β

]

exp

{

−
1

2
ςt

}

, t ≥ 0, (6)

and

‖x(t)‖τ,β ≤
[

√

ϕ21 (G, H) |x(0)| +
√

ϕ22(G) ‖x(0)‖τ,β

]

exp

{

−
1

2
ςt

}

, t ≥ 0 (7)

for

ς(β, γ) = min

{

λmin(S[G, H ])

λmax(H)
, β

λmin(G)

λmax(G)
+ γ

[

1 −
λmin(G)

λmax(G)

]}

. (8)

The value β ≥ 0 can be arbitrary for

λmin(S[G, H ]) ≥ λmax(G).

And

β ≤
1

τ
ln

{

λmax(G)

λmax(G) − λmin(S[G, H ])

}

,

if

λmin(S[G, H ]) < λmax(H).

The value γ satisfies a condition γ ≤ β.
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Proof For the proof we use the Lyapunov-Krasovsky functional of the form (4) with
positive definite matrices G and H . It satisfies the following bilateral estimations:

eγt
{

λmin(H)|x(t)|2 + λmin(G) ‖x(t)‖
2
τ,β

}

≤ V [x(t), t]

≤ eγt
{

λmax(H)|x(t)|2 + λmax(G) ‖x(t)‖
2
τ,β

} (9)

We find an estimation for its derivative in force of system (3). We make a substitution
t + s = ξ. Then the functional transforms to

V [x(t), t] = eγt

{

xT (t)Hx(t) +

t
∫

t−τ

e−β(t−ξ)xT (ξ)Gx(ξ) dξ

}

. (10)

We calculate a full derivative of the transformed functional (10) along solutions x(t) of
system (3). We obtain

d

dt
V [x(t), t] = γeγt

{

xT (t)Hx(t) +

t
∫

t−τ

e−β(t−ξ)xT (ξ)Gx(ξ)dξ

}

+ eγt
{

[Ax(t) + Bx(t − τ)]
T

Hx(t) + xT (t)H [Ax(t) + Bx(t − τ)]

+ xT (t)Gx(t) − e−βτxT (t − τ)Gx(t − τ)
}

− eγt

{

β

t
∫

t−τ

e−β(t−ξ)xT (ξ)Gx(ξ)dξ

}

.

We transform the obtained expression as follows:

d

dt
V [x(t), t] = −eγt

{

(β − γ)

t
∫

t−τ

e−β(t−ξ)xT (ξ)Gx(ξ)dξ

}

− eγt
(

xT (t), xT (t − τ)
)

[

−AT H − HA − G −HB

−BT H G

] (

x(t)
x(t − τ)

)

+ γeγtxT (t)Hx(t) + eγt
(

1 − e−βτ
)

xT (t − τ)Gx(t − τ).

(11)

We suppose, as follows from the conditions of Theorem 1, there are positive definite
matrices G and H for which the matrix S[G, H ] is also positive definite and β ≥ γ ≥ 0.
Then we obtain

d

dt
V [x(t), t] ≤ −eγtλmin

(

S[G, H ]
)(

|x(t)|2 + |x(t − τ)|2
)

+ eγtγλmax(H)|x(t)|2 + eγt
(

1 − e−βτ
)

λmax(G) |x(t − τ)|
2

− eγt(β − γ)λmin(G) ‖x(t)‖
2
τ,β .

Let’s transform the obtained expression as follows

d

dt
V [x(t), t] ≤ −eγt{λmin(S[G, H ]) − γλmax(H)}|x(t)|2

− eγt
{

λmin(S[G, H ]) −
(

1 − e−βτ
)

λmax(G)
}

|x(t − τ)|2

− eγt(β − γ)λmin(G) ‖x(t)‖
2
τ,β .

(12)
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If the parameters of system and functional are

λmin(S[G, H ]) ≥ λmax(G)

then from inequality (12) it follows, that

d

dt
V [x(t), t] ≤ −eγt {λmin(S[G, H ]) − γλmax(H)} |x(t)|2 − eγt(β − γ)λmin(G) ‖x(t)‖

2
τ,β

(13)
for any β ≥ 0. If

λmin(S[G, H ]) < λmax(G),

then inequality (13) will be used for

0 ≤ β <
1

τ
ln

[

λmax(G)

λmax(G) − λmin(S[G, H ])

]

.

We transform the right part of the inequality of quadratic forms (9) as

−eγtλmax(H)|x(t)|2 − eγtλmax(G) ‖x(t)‖
2
τ,β ≤ −V [x(t), t] . (14)

Let’s consider two cases.
1. Let’s transform the inequality (14) as

−eγt|x(t)|2 ≤ −
1

λmax(H)
V [x(t), t] + eγt λmax(G)

λmax(H)
‖x(t)‖2

τ,β

and we substitute it in the first part of the inequalities (13). We obtain

d

dt
V [x(t), t] ≤ −

λmin(S[G, H ]) − γλmax(H)

λmax(H)
V [x(t, t)]

− eγt

{

(β − γ)λmin(G) − [λmin(S[G, H ]) − γλmax(H)]
λmax(G)

λmax(H)

}

‖x(t)‖2
τ,β .

If the parameters are

(β − γ)λmin(G) ≥ [λmin(S[G, H ]) − γλmax(H)]
λmax(G)

λmax(H)
, (15)

then
d

dt
V [x(t), t] ≤ −

λmin(S[G, H ]) − γλmax(H)

λmax(H)
V [x(t), t].

Solving the obtained differential inequality, we get

V [x(t), t] ≤ V [x(0), 0] e−αt, α =
λmin(S[G, H ]) − γλmax(H)

λmax(H)
, t ≥ 0. (16)

From here

ζ = α + γ =
λmin(S[G, H ])

λmax(H)
.

2. We transform inequality (14) to the following form

−eγt ‖x(t)‖
2
τ,β ≤ −

1

λmax(G)
V [x(t), t] + eγt λmax(H)

λmax(G)
|x(t)|2
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and again we substitute it in the second part of the inequalities (13). We obtain

d

dt
V [x(t), t] ≤ −(β − γ)

λmin(G)

λmax(G)
V [x(t), t]

− eγt

{

λmin(S[G, H ]) − γλmax(H) − (β − γ)λmin(G)
λmax(H)

λmax(G)

}

|x(t)|2.

And if parameters are such that

λmin(S[G, H ]) − γλmax(H) − (β − γ)λmin(G)
λmax(H)

λmax(G)
> 0, (17)

then
d

dt
V [x(t)] ≤ −(β − γ)

λmin(G)

λmax(G)
V [x(t)] .

Having integrated the obtained expression, we get

V [x(t), t] ≤ V [x(0), 0] e−αt, α = (β − γ)
λmin(G)

λmax(G)
, t ≥ 0. (18)

We get

ζ = α + γ = β
λmin(G)

λmax(G)
+ γ

[

1 −
λmin(G)

λmax(G)

]

.

For obtaining the required result we return to bilateral estimations of Lyapunov–
Krasovsky functional (9). Using expressions (16), (18), we write down

eγt
{

λmin(H)|x(t)|2 + λmin(G) ‖x(t)‖2
τ,β

}

≤ V [x(t), t] ≤ V [x(0), 0] e−αt

≤ e−αt
{

λmax(H) |x(0)|
2

+ λmax(G) ‖x(0)‖
2
τ,β

}

.

It is possible to obtain two estimations. First, we get

|x(t)|2 ≤

[

λmax(H)

λmin(H)
|x(0)|

2
+

λmax(G)

λmin(H)
‖x(0)‖

2
τ,β

]

e−(α+γ)t.

And, using denotations ϕ11(H), ϕ12(G, H), we obtain

|x(t)| ≤
[

√

ϕ11(H) |x(0)| +
√

ϕ12(G, H) ‖x(0)‖τ,β

]

exp

{

−
1

2
(α + γ)t

}

, t ≥ 0.

Further it is possible to write down

‖x(t)‖2
τ,β ≤

[

λmax(H)

λmin(G)
|x(0)|2 +

λmax(G)

λmin(G)
‖x(0)‖2

τ,β

]

e−(α+γ)t.

And, using designations ϕ21(G, H), ϕ22(G), we obtain an inequality

‖x(t)‖τ,β ≤
[

√

ϕ21 (G, H) |x(0)| +
√

ϕ22(G) ‖x(0)‖τ,β

]

exp

{

−
1

2
ςt

}

, t ≥ 0.

As follows from consideration of both cases we have

ς =
λmin(S[G, H ])

λmax(H)
for β

λmin(G)

λmax(G)
+ γ

[

1 −
λmin(G)

λmax(G)

]

≥
λmin(S[G, H ])

λmax(H)
(19)

ς =
βλmin(G)

λmax(G)
+ γ

[

1 −
λmin(G)

λmax(G)

]

for β
λmin(G)

λmax(G)
+ γ

[

1 −
λmin(G)

λmax(G)

]

<
λmin(S[G, H ])

λmaxH)
.

(20)

Uniting these expressions, we obtain the statement of Theorem 2.1. 2
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3 Estimations of solutions of unstable subsystems

We consider a case where it is not possible to find matrices G and H for which the matrix
S[G, H ] is positive definite. Let’s denote

S[G, H, γ] =

[

−AT H − HA − γH − G −HB

−BT H G

]

. (21)

Obviously, due to the choice of a scalar value γ < 0 the matrix S[G, H, γ] can be made
positive definite.

Lemma 3.1 Let the matrices G, H be positive definite and let the following inequality
hold

γ <
λmin

[

−AT H − HA − G − HBG−1BT H
]

λmax(H)
. (22)

Then the matrix S[G, H, γ] is also positive definite.

Proof We introduce a vector zT (t, τ) =
(

xT (t), xT (t − τ)
)

. The condition of positive
definiteness of matrix S[G, H, γ] is equivalent to positiveness of the minimal eigenvalue

λmin [S (G, H)] = min
|z|=1

{

zT (t, τ)S[G, H, γ]z(t, τ)
}

> 0,

or to the condition
min

x(t−τ)

{

zT (t, τ)S[G, H, γ]z(t, τ)
}

> 0

at an arbitrary x(t) ∈ Rn. In braces the quadratic form is written down

zT (t, τ)S[G, H,γ]z(t, τ) = xT (t)
[

−AT H − HA − γH − G
]

x(t)

− xT (t)HBx(t − τ) − xT (t − τ)BT Hx(t) + xT (t − τ)Gx(t − τ).

The necessary and sufficient condition for a minimum on a variable x(t − τ) is equality
to zero of a partial derivative on x(t − τ) and positive definiteness of a matrix G, i.e.

∂

∂x(t − τ)

{

zT (t, τ)S[G, H, γ]z(t, τ)
}

= 0.

Calculating the derivative, we get

−BT Hx(t) + Gx(t − τ) = 0.

As the matrix G is positive definite, it is non special. From this it follows that x(t− τ) =
G−1BT Hx(t). We calculate the value of the quadratic form in the obtained point x(t−τ)

zT (t, τ)S[G, H, γ]z (t, τ) = xT (t)
[

−AT H − HA − γH − G − HBG−1BT H
]

x(t).

From this we obtain that the matrix S[G, H, γ] is positive definite, if there are positive
definite matrices G and

Q[G, H, γ] = −AT H − HA − γH − G − HBG−1BT H.

This expression is used for

λmin (Q[G, H, γ]) > λmin

[

−AT H − HA − G − HBG−1BT H
]

− γλmax(H) > 0.

From this we obtain inequality (22), i.e. the statement of the Lemma. 2

Using the proved Lemma, we obtain the following statement.
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Theorem 3.1 Let there not be any positive definite matrices G, H for which the
matrix S[G, H ] is also positive definite. If the value γ is chosen according to an inequality
(22) and β ≥ γ then for the solutions x(t) of system (3) there are truly top exponential
estimations of convergence (6), (7)

|x(t)| ≤
[

√

ϕ11(H) |x(0)| +
√

ϕ12(G, H) ‖x(0)‖τ,β

]

exp

{

−
1

2
ςt

}

, t ≥ 0,

‖x(t)‖τ,β ≤
[

√

ϕ21 (G, H) |x(0)| +
√

ϕ22(G) ‖x(0)‖τ,β

]

exp

{

−
1

2
ςt

}

, t ≥ 0,

and

ς(β, γ) = min

{

λmin(S[G, H ])

λmax(H)
+ γ, β

λmin(G)

λmax(G)
+ γ

[

1 −
λmin(G)

λmax(G)

]}

. (23)

The value β can be arbitrary if

λmin (S[G, H, γ]) ≥ λmax(G)

and

β ≤
1

τ
ln

{

λmax(G)

λmax(G) − λmin (S[G, H, γ])

}

if
λmin (S[G, H, γ]) < λmax(H).

Proof For the proof of the statements of Theorem 3.1 again we use a Lyapunov–
Krasovsky functional of the form (4) with positive definite matrices G and H . We write
the full derivative of the functional (10) along solutions x(t) of system (3) as

d

dt
V [x(t), t] = −eγt

{

(β − γ)

t
∫

t−τ

e−β(t−ξ)xT (ξ)Gx(ξ) dξ

}

− eγt(xT (t), xT (t − τ))

[

−AT H − HA − γH − G −HB

−BT H G

](

x(t)
x(t − τ)

)

+ eγt(1 − e−βτ )xT (t − τ)Gx(t − τ).

Let the matrix S[G, H ] described in (4), be nonpositive definite. Then, as follows from
the Lemma, if γ satisfies conditions (22), then the matrix S[G, H, γ] will be positive
definite and the following inequality holds

d

dt
V [x(t), t] ≤ −eγtλmin (S[G, H, γ])

(

|x(t)|2 + |x(t − τ)|2
)

+ eγt
(

1 − e−βτ
)

λmax(G) |x(t − τ)|
2
− eγt(β − γ)λmin(G) ‖x(t)‖

2
τ,β .

Let’s transform the obtained expression as follows

d

dt
V [x(t), t] ≤ −eγtλmin (S[G, H, γ]) |x(t)|2

− eγt
{

λmin (S[G, H, γ]) −
(

1 − e−βτ
)

λmax(G)
}

|x(t − τ)|2

− eγt(β − γ)λmin(G) ‖x(t)‖
2
τ,β .

(24)
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If the parameters of system and functional are such that

λmin (S[G, H, γ]) ≥ λmax(G),

then

d

dt
V [x(t), t] ≤ −eγtλmin (S[G, H, γ]) |x(t)|2 − eγt(β − γ)λmin(G) ‖x(t)‖

2
τ,β (25)

for arbitrary β ≥ 0. If

λmin (S[G, H, γ]) < λmax(G),

then inequality (25) is used for

0 ≤ β <
1

τ
ln

[

λmax(G)

λmax(G) − λmin (S[G, H, γ])

]

.

We transform the right part of inequality of quadratic forms (9) to the form of expression
(14)

−eγtλmax(H)|x(t)|2 − eγtλmax(G) ‖x(t)‖
2
τ,β ≤ −V [x(t), t]

and we consider two cases.
1. Let’s transform the right part of the inequality (14) as

−eγt|x(t)|2 ≤ −
1

λmax(H)
V [x(t), t] + eγt λmax(G)

λmax(H)
‖x(t)‖

2
τ,β

and we substitute it in the first part of inequalities (25). We get

d

dt
V [x(t), t] ≤ −

λmin (S[G, H, γ])

λmax(H)
V [x(t, t)]

− eγt

{

(β − γ)λmin(G) − [λmin (S[G, H ], γ)]
λmax(G)

λmax(H)

}

‖x(t)‖2
τ,β .

(26)

If the parameters are such that

(β − γ)λmin(G) ≥ λmin (S[G, H, γ])
λmax(G)

λmax(H)
, (27)

then
d

dt
V [x(t), t] ≤ −

λmin (S[G, H, γ])

λmax(H)
V [x(t), t].

Solving the obtained differential inequality, we get

V [x(t), t] ≤ V [x(0), 0] e−αt, α =
λmin (S[G, H, γ])

λmax(H)
, t ≥ 0. (28)

2. Further we transform inequality (14) as follows:

−eγt ‖x(t)‖
2
τ,β ≤ −

1

λmax(G)
V [x(t), t] + eγt λmax(H)

λmax(G)
|x(t)|2,
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and we also substitute it in the second part of inequality (27). We get

d

dt
V [x(t), t] ≤ −(β − γ)

λmin(G)

λmax(G)
V [x(t), t]

− eγt

{

λmin (S[G, H, γ]) − (β − γ)λmin(G)
λmax(H)

λmax(G)

}

|x(t)|2.

And if parameters are

λmin (S[G, H, γ]) − (β − γ)λmin(G)
λmax(H)

λmax(G)
> 0

then
d

dt
V [x(t)] ≤ −(β − γ)

λmin(G)

λmax(G)
V [x(t)] .

Having integrated it, we obtain

V [x(t), t] ≤ V [x(0), 0] e−αt, α = (β − γ)
λmin(G)

λmax(G)
, t ≥ 0. (29)

Let’s return to bilateral estimations of Lyapunov–Krasovsky functional (9). Using ex-
pressions (28), (29), we obtain

eγt
{

λmin(H)|x(t)|2 + λmin(G) ‖x(t)‖
2
τ,β

}

≤ V [x(t), t] ≤ V [x(0), 0] e−αt

≤ e−αt
{

λmax(H) |x(0)|
2

+ κmax(G) ‖x(0)‖
2
τ,β

}

.

From this we obtain

|x(t)| ≤
[

√

ϕ11(H) |x(0)| +
√

ϕ12(G, H) ‖x(0)‖τ,β

]

exp

{

−
1

2
(α + γ)t

}

, t ≥ 0,

‖x(t)‖τ,β ≤
[

√

ϕ21 (G, H) |x(0)| +
√

ϕ22(G) ‖x(0)‖τ,β

]

exp

{

−
1

2
(α + γ)t

}

, t ≥ 0.

From the consideration of both cases we get the following expressions

α + γ =



















































λmin (S[G, H, γ])

λmax(H)
+ γ, for β

λmin(G)

λmax(G)
+ γ

[

1 −
λmin(G)

λmax(G)

]

≥

λmin (S[G, H, γ])

λmax(H)
,

βλmin(G)

λmax(G)
, for β

λmin(G)

λmax(G)
+ γ

[

1 −
λmin(G)

λmax(G)

]

<

λmin (S[G, H, γ])

λmaxH)
.

Uniting these expressions, we obtain the statement of Theorem 3.1. 2

Remark 3.1 As for the value ‖x(t)‖
2
τ,β the top estimations hold

‖x(t)‖2
τ,β =

0
∫

−τ

eβs |x(t + s)| ds ≤ max
−τ≤s≤0

{

|x (t + s)|2
}

0
∫

−τ

eβsds

≤
1

β

(

1 − e−βτ
)

‖x(t)‖
2
τ ≤ τ ‖x(t)‖τ
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where
‖x(t)‖τ = max

−τ≤s≤0
{|x(t + s)|} ,

then it is possible to transform the inequality (6) to the following

|x(t)| ≤
[

√

ϕ11(H) |x(0)| +
√

ϕ12(G, H) ‖x(0)‖τ

]

e−
1

2
ςt, t ≥ 0,

or, even,

|x(t)| ≤
[

√

ϕ11(H) +
√

ϕ12(G, H)
]

‖x(0)‖τ e−
1

2
ςt, t ≥ 0. (30)

Remark 3.2 As estimations of majorant type, they contain two free parameters β

and γ, and in the second theorem γ can be negative. If put to the task of finding
an “optimum estimation” for a given class of functionals it is possible to calculate the
parameters β and γ precisely.

4 Estimations of solutions of scalar subsystems

Let’s consider the scalar linear differential equation with constant delay

ẋ(t) = −ax(t) + bx(t − τ), a > 0, 0 ≤ t ≤ t1, τ > 0. (31)

For the equation (31) the Lyapunov–Krasovsky functional (10) looks like

V [x(t), t] = eγt

{

hx2(t) + g

0
∫

−τ

eβsx2(t + s) ds

}

, (32)

where h > 0, g > 0 are positive constants. We obtain estimations of the divergence of
disturbances on a finite time interval. As h > 0, g > 0 are scalar values then

λmin(H) = λmax(H) = h, λmin(G) = λmax(G) = g.

For the full derivative of functional (32) along solutions of the equation (31) the equality
holds

d

dt
V [x(t), t] = γeγt

{

hx2(t) + g

t
∫

t−τ

e−β(t−ξ)x2(ξ) dξ

}

+ eγt
{

2hx(t) [−ax(t) + bx(t − τ)] + gx2(t) − ge−βτx2(t − τ)
}

− eγt

{

βg

t
∫

t−τ

e−β(t−ξ)x2(ξ)dξ

}

.

Let’s transform it similarly to the form of (11)

d

dt
V [x(t), t] = −eγt

{

(β − γ)g

t
∫

t−τ

e−β(t−ξ)x2(ξ)dξ

}

− eγt (x(t), x(t − τ))

[

2ah− g −hb

−hb g

] (

x(t)
x(t − τ)

)

+ eγtγhx2(t) + eγt
(

1 − e−βτ
)

gx2(t − τ).

(33)
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4.1 Derivation of estimations of disturbances in the case of stable equation

Let’s find h > 0, g > 0 from the condition of “maximal” positive definiteness of the
matrix

S[g, h] =

[

2ah − g −hb

−hb g

]

.

If the parameters of equation (31) and the Lyapunov–Krasovsky functional (32) are

g (2ah− g) − h2b2 > 0,

as follows from Silvester criterion, the matrix S[g, h] is positive definite. As h > 0, g > 0,
then, taking into account uniformity, we denote h = 1 and we transform the inequality
to

g (2a − g) − b2 > 0.

Function F (g) = g(2a − g) − b2 with respect to the variable g represents a parabola
with the branches directed downwards. And it reaches the extreme value at g = a.
Thus “maximal positive definiteness” of matrixes S[g, h] is reached at g = a. And the
Lyapunov – Krasovsky functional (32) is chosen as

V [x(t), t] = eγt

{

x2(t) + a

t
∫

t−τ

e−β(t−ξ)x2(ξ)dξ

}

. (34)

In this case a matrix S[g, h] looks like

S[g, h] =

[

a −b

−b a

]

. (35)

Let’s transform the expression for a full derivative (33) in view of h = 1, g = a to the
form similar to (12)

d

dt
V [x(t), t] ≤ −eγt {λmin (S[g, h]) − γ} |x(t)|2

− eγt
{

λmin (S[g, h]) −
(

1 − e−βτ
)

a
}

|x(t − τ)|
2

− eγt(β − γ)a ‖x(t)‖
2
τ,β

If
λmin (S[g, h]) = a − |b|, λmin (S[g, h]) −

(

1 − e−βτ
)

a = e−βτa − |b|,

then

β <
1

τ
ln

a

|b|
. (36)

Then for a full derivative the inequality such as (13) becomes

d

dt
V [x(t), t] ≤ −eγt {a − |b| − γ} |x(t)|2 − eγt(β − γ)a ‖x(t)‖

2
τ,β . (37)

It is easy to see that for the functional (33) the following inequality holds:

−eγt|x(t)|2 − eγta ‖x(t)‖2
τ,β ≤ −V [x(t), t]. (38)
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a) We transform (38) to

−eγt|x(t)|2 ≤ −V [x(t), t] + eγta ‖x(t)‖
2
τ,β . (39)

Also we substitute it in the first part of (37). We obtain

d

dt
V [x(t), t] ≤ − (a − |b| − γ)V [x(t), t] − eγt [(β − γ)a − (a − |b| − γ) a] ‖x(t)‖

2
τ,β .

And, if for the parameters β > a − |b| holds then

d

dt
V [x(t), t] ≤ −(a − |b| − γ)V [x(t), t].

And from this
V [x(t), t] ≤ V [x(0), 0] e−(a−|b|−γ)t, t ≥ 0. (40)

b) We transform (38) to

eγt ‖x(t)‖
2
τ,β ≤ −

1

a
V [x(t), t] + eγt 1

a
|x(t)|2. (41)

Also we substitute it in the second part of (37). We obtain

d

dt
V [x(t), t] ≤ −(β − γ)V [x(t), t] + (β − a + |b|) ‖x(t)‖2

τ,β .

And, if β ≤ a − |b|, then

d

dt
V [x(t), t] ≤ −(β − γ)V [x(t), t].

We get
V [x(t), t] ≤ V [x(0), 0] e−(β−γ)t, t ≥ 0. (42)

Uniting inequalities (40), (41), we obtain

V [x(t), t] ≤ V [x(0), 0] e−αt, t ≥ 0 (43)

if

α =

{

a − |b| − γ for β > a − |b|,

β − γ for β ≤ a − |b|.

Let’s transform the inequality (43) as

eγt|x(t)|2 + eγta ‖x(t)‖
2
τ,β ≤

[

|x(0)|
2

+ a ‖x(0)‖
2
τ,β

]

e−αt, t ≥ 0.

We get

|x(t)| ≤
√

|x(0)|2 + a ‖x(0)‖2
τ,β e−

1

2
(α+γ)t,

‖x(0)‖
≤
τ,β

√

1

a
|x(0)|

2
+ ‖x(0)‖

2
τ,β e−

1

2
(α+γ)t, t ≥ 0.

Let’s denote
ς = min t{a − |b|, β}.

As the value β is chosen according to (36), finally the following most exact estimation of
convergence is obtained.
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Proposition 4.1 Let the condition a > |b| be satisfied. Then the equation (31) is
asymptotically stable and for its solutions the exponential estimation of convergence is
valid

|x(t)| ≤
√

|x(0)|
2

+ a ‖x(0)‖
2
τ,β e−

1

2
ςt, ‖x(0)‖

≤
τ,β

√

1

a
|x(0)|

2
+ ‖x(0)‖

2
τ,β e−

1

2
ςt, t ≥ 0,

for

ς = min

{

a − |b|,
1

τ
ln

a

|b|

}

.

4.2 Derivation of estimations of disturbances in the case of unstable equation

Let’s transform the expression for a full functional (34) derivative to

d

dt
V [x(t), t] = −eγt

{

(β − γ)g

t
∫

t−τ

e−β(t−ξ)x2(ξ)dξ

}

− eγt (x(t), x(t − τ))

[

2a − g − γh −hb

−hb g

](

x(t)
x(t − τ)

)

+ eγt
(

1 − e−βτ
)

gx2(t − τ).

(44)

Similarly to the first case, we denote h = 1, g = a. Then

S [g, h, γ] =

[

a − γ −b

−b a

]

, λmin (S [g, h, γ]) = a −
1

2
γ −

√

b2 +
1

4
γ2. (45)

Let’s suppose, that a < |b|, i.e. the equation is unstable. Then if

γ <
a2 − b2

a
, (46)

the matrix S [g, h.γ] is positive definite, i.e. λmin (S [g, h, γ]) > 0 and expression for a full
functional (34) derivative can be written down as

d

dt
V [x(t), t] ≤ −eγtλmin (S [g, h, γ]) |x(t)|2

− eγt
{

λmin (S [g, h, γ]) −
(

1 − e−βτ
)

a
}

|x(t − τ)|
2
− eγt(β − γ)a ‖x(t)‖

2
τ,β .

As the value

λmin (S [g, h, γ]) − a = −
1

2
γ −

√

b2 +
1

4
γ2 < 0

is always negative, then if

β <
1

τ
ln

a

1
2γ +

√

b2 + 1
4γ2

(47)

it yields

d

dt
V [x(t), t] ≤ −eγtλmin (S [g, h, γ]) |x(t)|2 − eγt(β − γ)a ‖x(t)‖

2
τ,β . (48)
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1) We substitute inequality (39) in the first part of (48). We obtain

d

dt
V [x(t), t] ≤ −λmin (S [g, h, γ])V [x(t), t] + eγt {aλmin (S [g, h, γ]) − (β − γ)a} ‖x(t)‖

2
τ,β .

And, if inequality
λmin (S [g, h, γ]) < β − γ (49)

holds, then
d

dt
V [x(t), t] ≤ −λmin (S [g, h, γ])V [x(t), t]. (50)

From this, we have

V [x(t), t] ≤ V [x(0), 0] e−αt, α = a −
1

2
γ −

√

b2 +
1

4
γ2, t ≥ 0. (51)

2) We substitute an inequality (41) in the second part of (48). We obtain

d

dt
V [x(t), t] ≤ −(β − γ)V [x(t), t] + eγt {−λmin (S [g, h, γ]) + (β − λ)} |x(t)|2

and, if
λmin (S [g, h, γ]) ≥ β − γ, (52)

then
d

dt
V [x(t), t] ≤ −(β − γ)V [x(t), t]. (53)

We get
V [x(t), t] ≤ V [x(0), 0] e−αt, α = β − γ, t ≥ 0. (54)

Uniting expressions (51), (54) connected by conditions (49), (52) and having substituted
instead of λmin(S[g, h, γ]) its value, we obtain

V [x(t), t] ≤ V [x(0), 0] e−αt, t ≥ 0,

if

α =















a −
1

2
γ −

√

b2 +
1

4
γ2 for a −

1

2
γ −

√

b2 +
1

4
γ2 < β − γ,

β − γ, for a −
1

2
γ −

√

b2 +
1

4
γ2 ≥ β − γ.

Let’s denote α + γ = ς, and we obtain

ς(β, γ) =







a + 1
2γ −

√

b2 + 1
4γ2 for a −

√

b2 + 1
4γ2 < β;

β for a −
√

b2 + 1
4γ2 ≥ β.

As the values β and γ satisfy the expressions

β <
1

2
ln

a

1
2γ +

√

b2 + 1
4γ2

, γ <
a2 − b2

a
,

the following result holds.
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Proposition 4.2 Let the condition a < |b| be satisfied. Then the equation (31) is
unstable and for its solutions the following exponential estimation holds

|x(t)| ≤
√

|x(0)|
2

+ a ‖x(0)‖
2
τ,βe−

1

2
ςt, ‖x(0)‖

≤
τ,β

√

1

a
|x(0)|

2
+ ‖x(0)‖

2
τ,βe−

1

2
ςt, t ≥ 0,

for

ς =
a2 − b2

a
.

5 Estimations of solutions of hybrid systems

In the previous sections majorant estimations of solutions of stable and unstable subsys-
tems were separately obtained. Now we shall consider whole hybrid system (1). On each
of intervals ti−1 ≤ t < ti, i = 1, N let’s select Lyapunov–Krasovsky functional of the
form (4) with positive definite matrices Hi, Gi, i = 1, N . If there are positive definite
matrices Hi, Gi, i ∈ I, such that matrices

Si [Gi, Hi] =

[

−AT
i Hi − HiAi − Gi −HiBi

−BT
i Hi Gi

]

, i ∈ I

are positive definite, then we designate

Ni =
[

√

ϕ11 (Hi) +
√

ϕ12 (Gi, Hi)
]

exp {ςi (βi, γi) τ} ,

where the value βi > 0 can be arbitrary at

λmin (S [Gi, Hi]) ≥ λmax(Gi)

and

βi ≤
1

τ
ln

{

λmax(Gi)

λmax(Gi) − λmin (S [Gi, Hi])

}

,

if λmin (S [Gi, Hi]) < λmax (Hi). The value γ satisfies the condition γ ≤ β. If such
matrices Hi, Gi , j ∈ J do not exist, then we assume

γj <
λmin

[

−AT
j Hj − HjAj − Gj − HjBjG

−1
j BT

j Hj

]

λmax(Hj)
,

and we denote

S [Gj , Hj , γj] =

[

−AT
j Hj − HjAj − γjHj − Gj −HjBj

−BT
j Hj Gj

]

,

Nj =

[

√

ϕ11 (Hj) +
√

ϕ12 (Gj , Hj)

]

exp {ςj (βj , γj)} ,

for

ςj (βj , γj) = min

{

λmin (S [Gj , Hj , γj ])

λmax(Hj)
+ γj , βj

λmin(Gj)

λmax(Gj)
+ γj

[

1 −
λmin(Gj)

λmax(Gj)

]}

.

The value βj can be arbitrary at

λmin (S [Gj , Hj , γj ]) ≥ λmax(Gj)
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and

βj ≤
1

τ
ln

{

λmax(Gj)

λmax(Gj) − λmin (S [Gj , Hj, γj ])

}

,

if
λmin (S [Gj , Hj , γj ]) < λmax (Hj) .

Theorem 5.1 Let the initial state of the logic-dynamical hybrid system (1) satisfy
the condition ‖x(0)‖τ < δ. Then at t = tN the following inequality holds

‖x(tN )‖ ≤
N
∏

i=1

Ni exp

{

−
1

2

N
∑

i=1

ςi (ti − ti−1)

}

.

Proof Let’s consider the first time interval t0 ≤ t ≤ t1, t0 = 0. If there are positive
definite matrices G1, H1, for which the matrix S[G1, H1] is also positive definite, then
as follows from expression (30) of Remark 1, the following inequality holds:

‖x(t1)‖ ≤
[

√

ϕ1(H1) + ϕ (G1, H1)
]

‖x(t0)‖τ e−
1

2
ς1(t1−τ).

If there are no such matrices, for arbitrary positive definite matrices G1, H1, there exists
γ1, for which the matrix S[G1, H1, γ1] is also positive definite. Again using expression
(30) of Remark 1, we get

‖x(t1)‖ ≤
[

√

ϕ1(H1) + ϕ (G1, H1)
]

‖x(t0)‖τ e−
1

2
ς1(t1−t0).

And for the moment t = t1

‖x(t1)‖τ ≤ N1 ‖x(t0)‖τ e−
1

2
ς1(t1−t0)

holds. Let us consider the next interval t1 ≤ t ≤ t2. As for the second interval a similar
estimate

‖x(t2)‖τ ≤ N2 ‖x(t1)‖τ e−
1

2
ς2(t2−t1)

holds we obtain

‖x(t2)‖τ ≤ N1N2 ‖x(t0)‖τ exp

{

−
1

2
[ς1 (t1 − t0) + ς2 (t2 − t1)]

}

.

Continuing the process further, for the moment t = tN we get

‖x(tN )‖ ≤

N
∏

i=1

Ni exp

{

−
1

2

N
∑

i=1

ςi (ti − ti−1)

}

,

which was required to prove. 2
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