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PERSONAGE IN SCIENCE

Alexander Mikhaylovich Liapunov

Yu.A. Mitropolskii 1, P. Borne 2 and A.A. Martynyuk 3∗

1 Institute of Mathematics, National Academy of Sciences of Ukraine,

Tereshchenkivska Str., 3, Kyiv, 04604, Ukraine
2 Ecole Centrale de Lille, F-59651 Villeneuve d’Ascq cedex, France,
3 Institute of Mechanics, National Academy of Sciences of Ukraine,

Nesterov Str., 3, Kyiv, 03057, MSP-680, Ukraine

The sixth of June, 2007 is the 150-th birthday anniversary of the outstanding

Russian mathematician and mechanical scientist, Academician Liapunov. Tak-

ing into account great significance of Liapunov’s works for modern development

of nonlinear dynamics and systems theory, the Editorial Board of the journal is

publishing a sketch of his life, a brief survey of main directions of his scientific

activity and a list of his works published to date.

1 Biographical sketch

Alexander Mikhaylovich Liapunov was born on the 6th of June, 1857 in the family of the
prominent astronomer Mikhail Vasilievich Liapunov in the town of Yaroslavl.

The grandfather of Alexander Mikhaylovich, Vasiliy Alexandrovich Liapunov, served
for the Kazan University. The elder son of Vasiliy Alexandrovich was the grandfather of
Academician Krylov and his younger daughter Ekaterina was the wife of R.M. Sechenov,
the brother of the prominent Russian physiologist I.M.Sechenov. Their daughter Nataliya
Rafailovna Sechenova was the cousin of Alexander Mikhaylovich. She became his wife in
1886.

In the family of Mikhail Vasilievich and Sofiya Alexandrovna Shipilova there were
seven children born but only three sons survived: Alexander (1857–1918), Sergey (1859–
1924), and Boris (1864–1942). Four other children died in infancy.

In 1863 Alexander Mikhaylovich’s father resigned and settled in the family estate of
his parents but soon he moved to the family estate of his wife Sofiya Alexandrovna in
the village of Bolobonovo, Simbirskaya province.

Sofiya Alexandrovna was the first to raise the Liapunov’s sons until they reached the
age of 7 and then Mikhail Alexandrovich took over. He trained his children on his own,
applying deliberately developed technique to practicing fast calculation and stirring the

∗ Corresponding author: anmart@stability.kiev.ua

c© 2007 Informath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 113
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interest to geography by encouraging the children’s games with the elements of travelling
around the world.

After the death of Mikhail Vasilievich in 1868 Alexander Mikhaylovich was brought
up in the family of his uncle R.M.Sechenov. In 1870 together with his mother Alexander
Mikhaylovich moved to Nizhniy Novgorod, where he was admitted to the third class
of Nizhegorodskaya gymnasium. At gymnasium he was a bright student and read a
lot of books on Russian and European literature, history and natural science. He fin-
ished gymnasium with a golden medal in 1876 and entered the Natural Science Depart-
ment of Physico-Mathematical Faculty of the St Petersburg University where Professor
Mendeleyev delivered his lectures, but soon changed it for the Mathematical Depart-
ment. At that time professors of the Mathematical Department were P.L. Chebyshev,
A.N. Korkin and E.I. Zolotariov. In 1880 Alexander Mikhaylovich finished his education
and joined the Chair of Mechanics of the University to be prepared for professor rank,
as Professor Bobylev had proposed.

In 1882 Alexander Mikhaylovich passed the master’s examinations and got down to
his master’s thesis. P.L. Chebyshev proposed him to investigate the loss of ellipsoidal
equilibrium forms of rotating fluid. He was to find out if in this case they would turn into
other forms of equilibrium that under slight increase of angular velocity would be little
different from ellipsoids. This problem proved to be quite difficult, but its statement
involved the other one, namely, the problem on stability of ellipsoidal equilibrium forms.
Alexander Mikhaylovich solved this problem in 1885 and defended his master’s thesis
“On stability of ellipsoidal equilibrium forms of rotating fluid”. His opponents were
Professors Bobylev and Budayev.

In August, 1885 Alexander Mihaylovich moved to Kharkov on invitation of the
Kharkov University to deliver lectures on mechanics at the University and the Tech-
nological Institute.

In January, 1886 he went to St Petersburg to get married to Natalia Rafailovna
Sechenova. Natalia Rafailovna was a highly educated woman, very sophisticated, she
had a profound knowledge of Slavonic philology and was good at painting.

In June–July, 1886 Alexander Mikhaylovich and his family went on a trip to Germany,
Switzerland, Austria and also to Serbia for his wife doing research in philology.

Since 1888 Alexander Mikhaylovich began publication of his works on motion stabil-
ity of mechanical systems with finite number of degrees of freedom. In 1892 the Kharkov
Mathematical Society published Liaponov’s work “A general problem on stability of mo-
tion”. This work was defended by Alexander Mikhaylovich as the doctor thesis at Moscow
University in 1892. His opponents were Professors Zhukovskii and Mlodzeevskii. Soon
A.M. Liapunov was assigned as ordinary professor. In December, 1900 A.M. Liapunov
was elected a corresponding member of the St Petersburg Academy of Sciences and in
October, 1901 he became an ordinary academician of the Academy.

In spring, 1902 A.M. Liapunov returned to St Petersburg to take up exclusively
the scientific work. At the St Petersburg University he headed the Chair of Applied
Mathematics Department, this position being vacant since P.L. Chebyshev’s death in
1884.

At this period of his scientific activity Alexander Mikhaylovich turned back to the
problem on equilibrium figures of rotating fluid. In 1908 A.M. Liapunov took part in
the work of the 4th International Mathematical Congress in Rome. In November, 1907
Alexander Mikhaylovich was elected a member of the Palermo Mathematical Society and
in September, 1908 — a member of the Academy of Sciences dei Lincei in Rome. Since
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1909 Alexander Mikhaylovich was involved in publication of the collected works by Euler
who once had commented with humour that it would take quite a bit of time for the
Academy of Sciences to publish his papers after his death.

In June, 1917 on doctors’ request Alexander Mikhaylovich took his wife away
from starving St Petersburg to settle in Odessa where at that time his brother Boris
Mikhaylovich lived and worked. In spring, 1918 Natalia Rafailovna suffered from a se-
vere cold which caused an acute attack of a pulmonary tuberculosis. In the end of summer
her state became critical.

By that time the wave of revolutionary transformation had reached the Liapunovs’
family estate. The house was destroyed and the unique library was burnt. The “Ghost
of communism” had strayed to the Russian empire from the West and warmed itself by
bonfires made of libraries of intellectuals which were not been in demand of revolutionary
crowd.

On the 31st of October, 1918 Natalia Rafailovna died. On the same day Alexander
Mikhaylovich was brought to Professor Sapezhko’s surgical clinics with a gun-shot wound
of his head. Three days later on the 3rd of November, 1918 Alexander Mikhaylovich
passed away. His ante-mortem note expressed his last will to be buried in his wife’s grave
and it was executed.

So was the tragic end of the life of a mathematical genius of the 19th century who
under other circumstances would have done a lot of good for his country and world
science.

2 Main Directions of Scientific Activity

Being the closest disciple of P.L. Chebyshev Alexander Mikhaylovich upheld the best
traditions of the St Petersburg mathematical school founded by Chebyshev. Hence, the
fundamental importance of problems, accuracy of statement and strictness of solutions
are the characteristics of Liapunov’s research. Now we shall briefly outline the main
directions of his scientific activity.

2.1 Stability of equilibrium and motion of mechanical systems with a finite number of

degrees of freedom

The problem on stability of equilibrium and motion which is traced back to the an-
cient times had remained unsolved until A.M. Liapunov undertook his research in this
direction. The strict definition of stability was given by Liapunov in 1892 and was the
completion of his intensive work during 1889–1892. The notion “stability by Liapunov”
accepted nowadays defines the stability of solutions with respect to perturbations of ini-
tial data on infinite time interval. The accurate formulation of the notion of stability was
of great importance for further searching for the criteria of equilibrium stability and/or
motion of mechanical systems.

A.M. Liapunov considers differential equations of perturbed motion of a general type
to discover two general methods for analyzing their solutions. The first method is based
on integration of the equations considered by means of special form series. The second is
based on application of a certain auxiliary function whose properties together with the
properties of its total time derivative along solutions of the system under study allow
one to draw a conclusion about the system dynamic behavior. Along with these two
methods A.M. Liapunov introduces a new concept of a function characteristic number to
apply it to analyzing the stability of solutions of linear systems of differential equations
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with variable coefficients. A.M. Liapunov completely solved the problem on the first
approximation stability and investigated the problem on solutions stability in certain
critical cases.

2.2 Equilibrium figures of uniformly rotating fluid

A.M. Liapunov dedicated the last 15 years of his life to this field of research to obtain
results of utmost importance. No strict theory existed before Liapunov. His precursors,
including Newton, Makloren, Jacobi, Darvin, and Laplace failed to develop a faultless
theory, the convergence matters being involved. It was Liapunov, who succeeded. In his
work dated by 1903 he and established the existence of figures of equilibrium close to a
sphere in the case of heterogeneous fluid slowly rotating around its axis. In a series of
works dated by 1905–1914 he studied a more complex problem on existence of equilibrium
figures close to known ellipsoidal figures in the case of homogeneous fluid. The subsequent
works published in 1915–1917 investigated the problems on equilibrium figures of weakly
heterogeneous fluids close to the Macloren or Jacobi ellipsoids. Moreover it was proved
that any Macloren or Jacobi ellipsoid different from the bifurcation one generated a series
of new equilibrium figures of almost the same shape as the initial ellipsoid, the new figures
being also similar to the initial ellipsoid in heterogeneity of density and angular velocity
of rotation. To solve the problem considered A.M. Liapunov applied various means of
mathematical analysis required for obtaining the result.

2.3 Stability of equilibrium figures of rotating fluid

Works of Liouville and Riemann preceded A.M. Lipunov’s research in this field. The
first work of Alexander Mikhaylovich on this problem was his master’s thesis. Of prin-
ciple importance was the formulation of definition of equilibrium stability of rotating
fluid. Having done this, Alexander Mikhaylovich reduced the problem considered to
purely mathematical problem on minimum of a certain expression representing a poten-
tial energy of fluid. Analyzing the expression obtained, Liapunov established stability
conditions of Macloren and Jacobi ellipsoids as well as instability of pear-shaped fig-
ures. In so doing the erroneous Darvin’s result on stability of pear-shaped figures was
corrected.

As far as the viscous fluid is concerned A.M. Liapunov noticed the following “Ac-
cording to this principle (principle of energy minimum), if the fluid considered is viscous,
then the equilibrium figure will be stable or unstable depending on the complete energy
corresponding to this figure having minimum or not having minimum provided invari-
ability of momentum with respect to center of gravity. Although this principle has never
been proved satisfactorily, there is a good reason to believe it to be valid.” This principle
for the ideal fluid was proved by Liapunov yet in 1884.

2.4 Equations of mathematical physics

The results obtained by Liapunov in this area of research were of great value both for
substantiation of the methods of mathematical physics (Green, Neyman, Roben methods)
and for Alexander Mikhaylovich to gain a foothold in the international mathematical
community. While investigating properties of simple and double layer potentials the
fundamentals of the potential theory and harmonic function theory were first established.
In 1899 he found sufficient condition for existence and equality of limiting values of double
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layer normal derivative. The results obtained caused a sensation since they either refuted
or justified the methods of mathematical physics the versions of which belonged to the
famous authors such as Poincare, Shvarts and others.

2.5 Probability theory

In this field A.M. Liapunov published two papers in Russian and two in French in 1900
and 1901 correspondingly. These works deal with the problem on probability limit of a
sum of infinitely growing number of magnitudes, dependent on random causes, being in
the given limits. To prove the limit theorem for this case A.M. Liapunov developed a
new method referred to as the method of characteristic functions. It is one of the basic
methods in the modern probability theory.

2.6 Lecture courses on theoretical mechanics

During Kharkov period of his activity (1885–1902) A.M. Liapunov prepared the courses
of lectures on theoretical mechanics which he delivered at the University and the Techno-
logical Institute. On the occasion of the 125-th birthday of A.M. Liapunov these lectures
were issued by “Naukova Dumka” Publisher in 1982. The book begins with the sketches
about life and activity of A.M. Liapunov and about his lectures on theoretical mechanics
written by Boris Liapunov and A.N. Krylov. The first section of the book contains the
course of theoretical mechanics which was delivered by Liapunov at the Technological
Institute. The second, third and fourth sections contain the university course of lectures
on analytical mechanics including “bases of deformable bodies and hydrostatics” and
“attraction theory”.

These lectures, as Academician Steklov pointed out, had been written by Liapunov
himself and were a valuable contribution to theoretical mechanics.

3 A.M. Liapunov’s credo

It is generally acknowledged that in many branches of mathematics and mechanics
A.M. Liapunov established a certain level of consideration accuracy and proof strictness
that raised the mathematical sciences to the state of the art and made them classical.

The characteristic feature of A.M.Liaponov’s creative work is his interest to the most
difficult problems of mechanics arised due to the development of science and whose
solution was of great importance for applications. In all his scientific work Alexander
Mikhaylovich adheared to the rule:

“It is not appropriate to make use of ambiguous means in solving a certain
problem no matter if it refers to mechanics or physics but is definitely stated
from the mathematical point of view. It becomes a pure analysis problem
and must be dealt with as it is.”

In the end of our survey of scientific and pedagogical activity of A.M. Liapunov
we note the permanent effect of his works on further development of mathematics and
mechanics in the 20-th century. In all cases when for a real process or a natural phe-
nomenon there was constructed a mathematical model in the form of differential or other
type equation or system of such equations the application of Liapunov methods provides
the possibility to carry out dynamic analysis of the phenomenon considered no matter
whether this phenomenon occurs in biology or astrodynamics.
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Entirely devoted to science, a person of perfect integrity Alexander Mikhaylovich
actively supported democratic transformations in Russia, freedom of press and opposed
reactionaries’ impact on secondary and high school. V.A.Steklov wrote that “his spiritual
values matched each other so well and nobly that Russia can do be proud of her son”.

List of the published works of A.M. Liapunov*

[1] On equilibrium of solids in heavy fluid contained in a certain form vessel. Zhurnal Russkogo
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238. [Russian]
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[39] Sur les équations qui appartiennent aux surfaces des figures d’équilibre dérivées des ellip-
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Abstract: In this paper, the observation problem for the descriptor systems
with disturbances is studied. It is assumed that the disturbances and their first
order derivatives are bounded, where the upper and lower bounds are unknown.
First, the formulated descriptor system is decomposed into a dynamical sys-
tem and an algebraic equation. The dynamical system is the relation among
a part of the descriptor state, the input-output and the disturbance. The al-
gebraic equation is the relation between the descriptor state variable and the
disturbance. Second, the disturbances and one part of the descriptor state are
estimated based on the obtained dynamical system. Finally, the other part
of the descriptor state is estimated based on the obtained algebraic equation.
Examples are presented to illustrate the proposed method.
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1 Introduction

In the last years, considerable attention has been focused on the control synthesis prob-
lems of linear descriptor systems. Structures of such control systems were first studied
in the frequency domain by Rosenbrock using matrix pencil theory [13]. Later, con-
trollability, observability and feedback control problems have been investigated by many
researchers [2, 5, 7, 8, 9, 15, 16, 19, 20]. However, little effort has been made to develop
a theory of observers for descriptor systems. Based on singular-value decomposition,
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El-Tohami et al. have proposed the reduced-order observer for a class of descriptor sys-
tems satisfying a simple rank condition [9]. By using the concept of a matrix generalized
inverse, a new method is given for constructing a minimal reduced-order observer under
a certain observability condition on the constructed observer [14]. Then, a Luenberger-
type observer is formulated by using the descriptor standard form [12]. It should be
noted that these results are restricted to linear time-invariant descriptor systems with
known parameters and without any additional uncertainties.

Recently, the problem of constructing a state observer for the input unknown systems
has received some attention. Construction of a state variable observer is a very difficult
task for the dynamical system with disturbances, not to say descriptor system with
disturbances. For the dynamical systems with disturbances, one typical method is the
disturbance decoupled observer by using an elegant geometric approach [3, 18]. Then, this
method is applied to disturbance decoupling problems for descriptor systems [11, 10, 1].
However, the results are very complicated and far from complete. The index and stability
of the resulting combined systems and the numerical computation of the desired observer
have not been considered. As a matter of fact, these geometric solution methods are not
suited for numerical computations. The need for reliable numerical method was pointed
out in [18]. Later, the computation of the desired disturbance decoupling observer is
effectively considered in [6] by using the orthogonal matrix transformation, where the
descriptor systems under consideration must be regular and of index at most one.

For the input unknown dynamical systems, another typical effective method about
the construction of the state observer is the VSS-type one [17]. However, this approach
can only cope with the minimum phase dynamical systems with relative degree one, and
the upper and lower bounds of the disturbances are required. It should be noted that this
method cannot be applied to the state observation problem for input unknown descriptor
systems.

In this paper, the observation problem for the descriptor systems with disturbances
is studied by using a totally different approach, where both the descriptor state and
the disturbances are estimated. The requirement that the descriptor system must be
of index at most one is not needed. It is assumed that the disturbances and their first
order derivatives are bounded in the open loop. However, the upper and lower bounds
are unknown. The formulated descriptor system is decomposed into a dynamical system
and an algebraic equation. The dynamical system is the relation among a part of the
descriptor state, the input-output and the disturbance. The algebraic equation is the
relation between the descriptor state variable and the disturbance. Based on the obtained
dynamical system, the disturbances are first estimated, where the nonlinear method
proposed by the authors in [4] for single disturbance single output (SDSO) systems is
applied; then, one part of the descriptor state is estimated. Finally, the other part of the
descriptor state is calculated based on the obtained algebraic equation.

This paper is organized as follows. Section 2 gives the problem formulation. In Section
3, the disturbance and the state variable are estimated for a special case, the dynamical
system case, of the formulated descriptor system. In Section 4, the observation for the
general descriptor system with disturbances is studied. In Section 5, design examples and
computer simulation results are presented to illustrate the proposed method. Section 6
concludes this paper.
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2 Problem formulation

Let us consider the following uncertain system

{

Eẋ(t) = Fx(t) +Gu(t) +Kv(t),

y(t) = Hx(t) +Bu(t) +Dv(t),
(2.1)

where u(t) ∈ Rq, y(t) ∈ Rr and x(t) ∈ Rn are the input, output and the unknown
descriptor state variable, respectively; v(t) ∈ Rp represents the disturbance, which may
include modeling errors, noise, higher order terms in linearization or just an unknown
input to the system; E ∈ Rn×n is a known matrix which may not be nonsingular;
F ∈ Rn×n, G ∈ Rn×q, K ∈ Rn×p, H ∈ Rr×n, B ∈ Rr×q and D ∈ Rr×p are known
matrices.

About the system (2.1), the following assumptions are made.

Assumption 1 rank

[

E

H

]

= n, rank

[

F − cE

H

]

= n for all c ∈ C , where C denotes the

complex plane.

Assumption 2 For any c ∈ C satisfying Re(c) ≥ 0 ,

[

F − cE K

H D

]

is of full rank,

i.e. the system (2.1) is in “minimum phase” with respect to the relation between the
disturbance and the output.

Assumption 3 The signals u(t), y(t) and v(t) are bounded. However, the upper bound
of ‖v(t)‖2 is unknown.

Assumption 4 The disturbance v(t) is continuous and piecewise differentiable. Fur-
thermore, the derivative (at the undifferentiable points, we mean the right- and left-hand
derivatives) is bounded.

Assumption 5 r ≥ p , i.e. the number of the outputs is not smaller than that of the
disturbances.

Remark 2.1 When the disturbance v(t) is absent, Assumption 1 means that the
system (2.1) is observable [12].

The purpose of this paper is to estimate the uncertain signal v(t) and the descriptor
state variable x(t) by using the input-output information even though the matrix E may
not be nonsingular.

In the following, we assume B = 0. Otherwise, we regard the signal y(t) − Bu(t) as
y(t).

First, the observation problem is discussed for the case that E is nonsingular. Then,
the observation problem is studied for the general descriptor system.

3 Observation for the system when E is nonsingular

Without loss of generality, we assume E = I. Otherwise, we pre-multiply the first
equation of (2.1) with E−1.
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3.1 Observation for the system when D is of full rank

If D is of full rank, then the difference between the observed state x̂(t) and the genuine
state x(t) can be designed to decay to zero exponentially, and the disturbance can be
asymptotically observed, where Assumption 4 about the disturbance v(t) is not needed.

Theorem 3.1 If D is of full rank, then the state observer of the system (2.1) with

E = I can be constructed as
{

˙̂x(t) =
(

F −KD−1
1 Ω1H

)

x̂(t) +Gu(t) +KD−1
1 Ω1y(t) + L̄

(

Ω2y(t) − ŷ(t)
)

, x̂(t0) = 0,

ŷ(t) = Ω2Hx̂(t),

(3.1)

where x̂(t) is the estimated state, L̄ is chosen such that F − KD−1
1 Ω1H − L̄Ω2H is a

stable matrix, Ω =

[

Ω1

Ω2

]

is a r × r nonsingular matrix such that

ΩD =

[

Ω1

Ω2

]

D =

[

D1

0

]

, (3.2)

in which D1 is a p × p nonsingular matrix. Furthermore, the disturbance v(t) can be

observed by

v̂(t) = D−1
1 Ω1y(t) −D−1

1 Ω1Hx̂(t), (3.3)

where x̂(t) is the estimated state generated in (3.1). For the estimated state and the

disturbance, we have

x(t) − x̂(t) → 0, v(t) − v̂(t) → 0 (3.4)

as t→ ∞.

Proof Equation (2.1) gives











ẋ(t) = Fx(t) +Gu(t) +Kv(t),

Ω1y(t) = Ω1Hx(t) +D1v(t),

Ω2y(t) = Ω2Hx(t).

(3.5)

From the second equation in (3.5), we have

v(t) = D−1
1 Ω1y(t) −D−1

1 Ω1Hx(t). (3.6)

By substituting (3.6) into the first equation in (3.5), equation (3.5) yields

{

ẋ(t) =
(

F −KD−1
1 Ω1H

)

x(t) +Gu(t) +KD−1
1 Ω1y(t),

Ω2y(t) = Ω2Hx(t).
(3.7)

Since




I −KD−1
1 0

0 I 0
0 0 I









I 0
0 Ω1

0 Ω2





[

F − cI K

H D

]

=





F −KD−1
1 Ω1H − cI 0
Ω1H D1

Ω2H 0



 , (3.8)
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from Assumption 2, it can be seen that

[

F −KD−1
1 Ω1H − cI

Ω2H

]

is of full rank for all

c ∈ C satisfying Re(c) ≥ 0 by observing that D1 ∈ Rp×p is a nonsingular matrix. Thus,
the system (3.7) is detectable, i.e. the matrix L̄ exists such that F −KD−1

1 Ω1H− L̄Ω2H

is a stable matrix. If the observer is constructed as in (3.1), it yields

d

dt
(x(t) − x̂(t)) =

(

F −KD−1
1 Ω1H − L̄Ω2H

)

(x(t) − x̂(t)). (3.9)

It can be easily seen that x(t) − x̂(t) → 0 as t → ∞. From (3.6), it can be concluded
that (3.3) is an observer of the disturbance v(t) and v(t) − v̂(t) → 0 as t→ ∞.

3.2 Observation for the system when D is not of full rank

3.2.1 Some preliminaries

Let s denote the differential operator. Then, equation (2.1) can be written as
[

F − sI K

H D

] [

x(t)
v(t)

]

=

[

−Gu(t)
y(t)

]

. (3.10)

Now, pre-multiplying (3.10) by

(

adj
(

[

F − sI K

H D

]T [

F − sI K

H D

]

)

)

[

F − sI K

H D

]T

yields

k(s)

[

x(t)
v(t)

]

=

(

adj
(

[

F − sI K

H D

]T [

F − sI K

H D

]

)

)

[

F − sI K

H D

]T [

−Gu(t)
y(t)

]

,

(3.11)

where k(s) is defined as

k(s) = det

(

[

F − sI K

H D

]T [

F − sI K

H D

]

)

= k0s
q0 + · · · + kq0

, k 6= 0. (3.12)

By Assumption 2, it can be easily known that k(s) is a Hurwitz polynomial.
By observing the calculation methods of the adjoint of a matrix and the multiplication

of the matrices, equation (3.11) can be expressed as














































sl11(β11y(t)) = Φ11(s)y(t) + Ψ11(s)u(t) + k(s)x1(t),
...

sl1n(β1ny(t)) = Φ1n(s)y(t) + Ψ1n(s)u(t) + k(s)xn(t),

sl21(β21y(t)) = Φ21(s)y(t) + Ψ21(s)u(t) + k(s)v1(t),
...

sl2p(β2py(t)) = Φ1p(s)y(t) + Ψ2p(s)u(t) + k(s)vp(t),

(3.13)

where βji 6= 0 are row vectors whose entries are constants, Φji(s) are row vectors whose
entries are at most (lji − 1) − th order polynomials of s, Ψji(s) are row vectors whose
entries are at most (lji − 1) − th order polynomials of s.

Because F, G, K, H and D are known matrices, βji , Φji(s) , Ψji(s) and k(s) can
be calculated.
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Remark 3.1 If r = p, i.e. the number of the outputs equals to that of the distur-

bances, then we can simply pre-multiply the both sides of (3.10) by

[

F − sI K

H D

]

.

3.2.2 Observation of the disturbances

About the disturbance v(t) = [v1(t) · · · vp(t)]
T , from (3.13), we have















sl21(β21y(t)) = Φ21(s)y(t) + Ψ21(s)u(t) + k(s)v1(t),
...

sl2p(β2py(t)) = Φ2p(s)y(t) + Ψ2p(s)u(t) + k(s)vp(t).

(3.14)

For the i− th equation in (3.14), l2i − q0 can be regarded as the “relative degree” with
respect to the relation between the disturbance vi(t) and the “output” β2iy(t). It is easy
to see that l2i ≥ q0, otherwise, equation (3.13) contradicts with the original differential
equation (2.1).

We start with equation (3.14) to estimate the disturbances.
For simplicity, let

ηi = l2i − q0. (3.15)

To estimate the disturbances, the discussion is divided into the following two cases.
Case 1: l2i = q0

In this case, from (3.14), it gives

vi(t) =
sl2i

k(s)
(β2iy(t)) −

Φ2i(s)

k(s)
y(t) −

Ψ2i(s)

k(s)
u(t), (3.16)

i.e. the disturbance vi(t) can be expressed by the outputs and the filters of the inputs
and outputs, where only the input and output information is employed. Thus,

wi,0 ,
sl2i

k(s)
(β2iy(t)) −

Φ2i(s)

k(s)
y(t) −

Ψ2i(s)

k(s)
u(t) (3.17)

can be regarded as the estimate of vi(t).

Remark 3.2 For a complex constant Γ ∈ C satisfying Re(Γ) > 0, 1
s+Γy(t) is defined

as the solution of the following differential equation

ξ̇(t) + Γξ(t) = y(t), ξ(t0) = 0, (3.18)

where t0 is the starting time. Thus, the filters in (3.17) and the upcoming ones can be
analogously defined.
Case 2: l2i > q0

Introduce a monic li − th order Hurwitz polynomial

gi(s) =
1

k0
k(s) · (s+ λ)ηi , (3.19)

where λ is a positive constant. Then, the i− th equation in (3.14) can be rewritten as

żi(t) + λzi(t) = Li(y(t), u(t)) +
k0

(s+ λ)ηi−1
vi(t), (3.20)
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where zi(t) and Li(y(t), u(t)) are respectively defined as

zi(t) = β2iy(t), (3.21)

Li(y(t), u(t)) = (s+ λ)

{

gi(s) − sli

gi(s)
{β2iy(t)} +

Φ2i(s)

gi(s)
y(t) +

Ψ2i(s)

gi(s)
u(t)

}

. (3.22)

Remark 3.3 It should be pointed out that zi(t) and Li(y(t), u(t)) are computable
signals.

Since vi(t) are bounded signals, it can be seen that, for a positive constant λ, signals
∣

∣

∣

1
(s+λ)ji

vi(t)
∣

∣

∣
are also bounded for any positive integer ji.

The next theorem gives a method to estimate 1
(s+λ)ηi−ji

vi(t), where the upper bounds

of
∣

∣

∣

1
(s+λ)ηi−ji

vi(t)
∣

∣

∣
are adaptively updated.

Theorem 3.2 Construct the following differential equations

˙̂zi(t) + λẑi(t) = Li(y(t), u(t)) + k0wi,1(t), ẑi(t0) = zi(t0), (3.23)

˙̂wi,µi−1(t) + λŵi,µi−1(t) = wi,µi
(t), ŵi,µi−1(t0) = 0, (3.24)

where ẑi(t) and ŵi,µi−1(t) (1 < µi ≤ ηi) are the variables which can be obtained by respec-

tively solving (3.23) and (3.24); wi,1(t) and wi,µi
(t) are the inputs described respectively

by

wi,1(t) = ω̂i,1(t)
k0{zi(t) − ẑi(t)}

∣

∣k0{zi(t) − ẑi(t)}
∣

∣+ δi,1
(3.25)

and

wi,µi
(t) = ω̂i,µi

(t)
wi,µi−1(t) − ŵi,µi−1(t)

∣

∣wi,µi−1(t) − ŵi,µi−1(t)
∣

∣+ δi,µi

, (1 < µi ≤ ηi) (3.26)

δi,ji
> 0 (i = 1, · · · , p; ji = 1, · · · , ηi) are design parameters which are usually chosen to

be very small; ω̂i,µi
(t) (1 ≤ µi ≤ ηi) are updated by the following adaptive algorithms

˙̂ωi,1(t) =

{

2αi,1|zi(t) − ẑi(t)| if |k0{zi(t) − ẑi(t)}| > δi,1

0 otherwise
, (3.27)

˙̂ωi,µi
(t) =

{

2αi,µi
|wi,µi−1(t) − ŵi,µi−1(t)| if |wi,µi−1(t) − ŵi,µi−1(t)| > δi,µi

0 otherwise
(3.28)

for 1 < µ ≤ ηi, ω̂i,µi
(t0) can be chosen as any positive constants, αi,µi

are positive

constants for i = 1, · · · , p, 1 ≤ µi ≤ ηi. It can be concluded that wi,µi
(t) are the

corresponding approximate estimates of 1
(s+λ)ηi−µi

vi(t) for 1 ≤ µi ≤ ηi as t is large
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enough, i.e. there exist Ti,µi
≥ t0 and functions ǫi,µi

(ν1, · · · , νµi
) > 0 with the property

lim
∑µi

j=1
|νi|→0

ǫi,µi
(ν, · · · , νµi

) = 0 such that

∣

∣

∣

∣

∣

1

(s+ λ)ηi−µi
vi(t) − wi,µi(t)

∣

∣

∣

∣

∣

< ǫi,µi
(δi,1, · · · , δi,µi

) (3.29)

for all t ≥ Ti,µi

Proof This theorem can be proved by a similar procedure as in [4], where Assump-
tions 3 and 4 are employed.

Remark 3.4 The design parameters δi,ji
> 0 (1 ≤ ji ≤ ηi) and λ > 0 determine the

estimating precision and the estimating speed. The parameters αi,ji
> 0 should be chosen

large enough to adjust the estimated upper bounds ω̂i,ji
(t) rapidly for 1 ≤ ji ≤ ηi. The

estimation error for the disturbances can be designed to be arbitrarily small by choosing
the design parameters. The influence of the measurement noises in the output can be
similarly discussed as in [4].

Remark 3.5 For i 6= j, it can be seen that the estimation of vi(t) is independent of
the estimation of vj(t).

3.2.3 Observation of the state

About the state x(t) = [x1(t) · · · xn(t)]T , from (3.13), we have















sl11(β11y(t)) = Φ11(s)y(t) + Ψ11(s)u(t) + k(s)x1(t),
...

sl1n(β1ny(t)) = Φ1n(s)y(t) + Ψ1n(s)u(t) + k(s)xn(t).

(3.30)

To estimate the state, the discussion is divided into the following two cases.
Case 1: l1i ≤ q0

In this case, from (3.30), it gives

xi(t) =
sl1i

k(s)
(β1iy(t)) −

Φ1i(s)

k(s)
y(t) −

Ψ1i(s)

k(s)
u(t), (3.31)

i.e. the partial state xi(t) can be expressed by the outputs and the filters of the inputs
and outputs, where only the input and output information is employed. Thus,

x̂i(t) ,
sl1i

k(s)
(β1iy(t)) −

Φ1i(s)

k(s)
y(t) −

Ψ1i(s)

k(s)
u(t) (3.32)

can be regarded as the estimate of xi(t).

Remark 3.6 If l1i ≤ q0 for all i = 1, · · · , n, then there is no steady error between
the estimated state and the genuine state x(t).

Case 2: l2i > q0
In this case, the partial state xi(t) can be similarly estimated by the method proposed

for estimating the disturbances in Section 3.2.2 if the partial state xi(t) is bounded.
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However, the computation for all such partial states xi(t) satisfying l2i > q0 will become
very complicated, and the partial state xi(t) may not be bounded.

One simple method of estimating the partial state in this case is to construct a
Luenberger-type state observer for the full state x(t) by using the estimates of the dis-
turbances obtained in Section 3.2.2, and then extract the partial states xi(t) satisfying
l2i > q0. We have the following theorem to approximately construct the full state ob-
server. The estimation error is controlled by the design parameters.

Theorem 3.3 The state observer of the system (2.1) with E = I can be considered

as
{

˙̂x(t) = F x̂(t) +Gu(t) +Kw(t) + L(y(t) − ŷ(t)), x̂(t0) = 0,

ŷ(t) = Hx̂(t) +Dw(t),
(3.33)

where x̂(t) is the estimated state, w(t) = [w1,η1
· · · wp,ηp

]T is the estimate of the distur-

bance v(t) obtained in Section 3.2.2, the design matrix L is chosen such that the matrix

F − LH is stable. Then, there exists a function ǫ(νi,ji

∣

∣i ∈ S; ji = 1, · · · , ηi) > 0 with

the property lim
∑p

i=1

∑ηi
ji=1

|νi,ji
|→0

ǫ(νi,ji

∣

∣i ∈ S; ji = 1, · · · , ηi) → 0 such that

‖x(t) − x̂(t)‖2 ≤ ǫ(δi,ji

∣

∣i ∈ S; j = 1, · · · , ηi), (3.34)

as t → ∞, where S is the subset of {1, · · · , p} satisfying the condition: if i ∈ S, then

ηi > 0.

Proof It can be seen from Assumption 1 that there exists a matrix L such that
F − LH is stable. From (2.1) and (3.33), it gives

ė(t) = (F − LH)e(t) − (K + LD){v(t) − w(t)}, (3.35)

where e(t) is defined as e(t) = x(t) − x̂(t). As w(t) is the estimate of v(t), by employing
Theorem 3.1 and the stability of matrix F − LH , the result can be easily proved.

3.3 The numerical observation algorithm for the case that E is nonsingular

Suppose E = I. Otherwise, pre-multiply the first equation of (2.1) with E−1.

S1 If D is of full rank, then the disturbance v(t) and the state x(t) are asymptotically
identified by Theorem 3.1. Otherwise, go to S2.

S2 Derive the system (3.13) based directly on (2.1).

S3 Identify the disturbance vi(t) by (3.17) or Theorem 3.2.

S4 Identify the state xi(t) by using (3.32) or extracting from the constructed Luenberger-
type state observer formulated in Theorem 3.3.

4 Observation for the general descriptor system

4.1 Some preparations

Suppose the matrix E is of rank l (l < n). Since E is known, we can find nonsingular
matrices P,Q ∈ Rn×n such that

PEQ−1 =

[

Il×l 0
0 0

]

. (4.1)
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Thus, by taking the transformation

x̄(t) = Qx(t), (4.2)

the system (2.1) can be rewritten as











[

Il×l 0

0 0

]

˙̄x(t) = PFQ−1x̄(t) + PGu(t) + PKv(t),

y(t) = HQ−1x̄(t) +Dv(t).

(4.3)

Lemma 4.1 For the system (4.3), we have

rank





[

Il×l 0
0 0

]

HQ−1



 = n, (4.4)

rank





PFQ−1
− c

[

Il×l 0
0 0

]

HQ−1



 = n for all c ∈ C, (4.5)

and





PFQ−1
− c

[

Il×l 0
0 0

]

PK

HQ−1 D



 is of full rank for any c ∈ C satisfying Re(c) ≥ 0.

Proof The lemma can be easily proved by observing the following facts




[

Il×l 0
0 0

]

HQ−1



 =

[

P 0
0 I

] [

E

H

]

Q−1, (4.6)





PFQ−1
− c

[

Il×l 0
0 0

]

HQ−1



 =

[

P 0
0 I

] [

F − cE

H

]

Q−1, (4.7)





PFQ−1
− c

[

Il×l 0
0 0

]

PK

HQ−1 D



 =

[

P 0
0 I

] [

F − cE K

H D

] [

Q−1 0
0 I

]

, (4.8)

From now on, we will start with the system (4.3) to estimate the disturbance and the
state. Now rewrite the system (4.3) as











˙̄x1(t) = F11x̄1(t) + F12x̄2(t) +G1u(t) +K1v(t),

0 = F21x̄1(t) + F22x̄2(t) +G2u(t) +K2v(t),

y(t) = H1x̄1(t) +H2x̄2(t) +Dv(t),

(4.9)

where

x̄(t) =

[

x̄1(t)
x̄2(t)

]

, PFQ−1 =

[

F11 F12

F21 F22

]

, PG =

[

G1

G2

]

, HQ−1 = [H1 H2], PK =

[

K1

K2

]

,

(4.10)
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Lemma 4.2 H2 ∈ Rr×(n−l) is of full rank and r satisfies r ≥ n− l.

Proof From Lemma 4.1 and the assumptions, the lemma is obvious.
Since the matrix H2 ∈ Rr×(n−l) is of full rank, there exists a nonsingular matrix

O =

[

O1

O2

]

∈ Rr×r such that

OH2 =

[

H21

0

]

, (4.11)

where H21 ∈ R(n−l)×(n−l) is a nonsingular matrix.
Therefore, by pre-multiplying the third equation in (4.9) with O, equation (4.9) yields



















˙̄x1(t) = F11x̄1(t) + F12x̄2(t) +G1u(t) +K1v(t),

0 = F21x̄1(t) + F22x̄2(t) +G2u(t) +K2v(t),

O1y(t) = O1H1x̄1(t) +H21x̄2(t) +O1Dv(t),

O2y(t) = O2H1x̄1(t) +O2Dv(t).

(4.12)

By the third equation in (4.12), x̄2(t) can be expressed as

x̄2(t) = H−1
21 O1

(

y(t) −H1x̄1(t) −Dv(t)
)

. (4.13)

By substituting (4.13) into the first two equations in (4.12), equation (4.12) yields















˙̄x1(t)=(F11−F12H
−1
21 O1H1)x̄1(t)+F12H

−1
21 O1y(t)+G1u(t)+(K1−F12H

−1
21 O1D)v(t),

[

F22H
−1
21 O1

O2

]

y(t)=

[

F21−F22H
−1
21 O1H1

O2H1

]

x̄1(t)+

[

G2

0

]

u(t)+

[

K2−F22H
−1
21 O1D

O2D

]

v(t).

(4.14)

Now, for simplicity, we rewrite the system (4.14) in the following compact form

{

˙̄x1(t) = F̄ x̄1(t) + ū(t) + K̄v(t),

ȳ(t) = H̄x̄1(t) + D̄v(t),
(4.15)

where the matrices F̄ , K̄, H̄, D̄ are defined as

F̄ = F11 − F12H
−1
21 O1H1, K̄ = K1 − F12H

−1
21 O1D, (4.16)

H̄ =

[

F21 − F22H
−1
21 O1H1

O2H1

]

, D̄ =

[

K2 − F22H
−1
21 O1D

O2D

]

, (4.17)

ū(t) and ȳ(t) are represented by

ū(t) = F12H
−1
21 O1y(t) +G1u(t), ȳ(t) =

[

F22H
−1
21 O1y(t) −G2u(t)

O2y(t)

]

. (4.18)

Remark 4.1 The matrices F̄ ∈ Rl×l, K̄ ∈ Rl×p, H̄ ∈ Rr×l, D̄ ∈ Rr×p are available
because they can be computed out by using the known matrices E, F, G, K, H , and
D.
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Remark 4.2 ū(t) ∈ Rl and ȳ(t) ∈ Rr are available signals. Since r ≥ p, the number
of the outputs of the system (4.15) is not smaller than that of the disturbances.

Lemma 4.3 The system (4.15) is observable in the absence of the disturbance v(t).

Proof Since





PFQ−1
− c

[

Il×l 0
0 0

]

HQ−1



 =





I 0 0
0 I 0
0 0 O−1













F11 − cI F12

F21 F22

O1H1 H21

O2H1 0









=





I 0 0
0 I 0
0 0 O−1













I 0 F12H
−1
21 0

0 I F22H
−1
21 0

0 0 I 0
0 0 0 I

















F11 − F12H
−1
21 O1H1 − cI 0

F21 − F22H
−1
21 O1H1 0

O1H1 H21

O2H1 0









,

(4.19)

we obtain by Lemma 4.1 that





F11 − F12H
−1
21 O1H1 − cI

F21 − F22H
−1
21 O1H1

O2H1



, i.e.

[

F̄ − cI

H̄

]

, is of full

rank for all c ∈ C by using the fact that H21 ∈ R(n−l)×(n−l) is a nonsingular matrix.
Thus, the observability of the system (4.15) is verified.

Lemma 4.4 The system (4.15) is in minimum phase with respect to the relation

between the disturbance v(t) and the “output” ȳ(t).

Proof Since





PFQ−1
−c

[

Il×l 0
0 0

]

PK

HQ−1 D



=





I 0 0
0 I 0
0 0 O−1













F11−cI F12 K1

F21 F22 K2

O1H1 H21 O1D

O2H1 0 O2D









=





I 0 0
0 I 0
0 0 O−1













I 0 F12H
−1
21 0

0 I F22H
−1
21 0

0 0 I 0
0 0 0 I









×









F11−F12H
−1
21 O1H1−cI 0 K1 − F12H

−1
21 O1D

F21−F22H
−1
21 O1H1 0 K2−F22H

−1
21 O1D

O1H1 H21 O1D

O2H1 0 O2D









, (4.20)

we obtain from Lemma 4.1 that





F11 − F12H
−1
21 O1H1 − cI K1 − F12H

−1
21 O1D

F21 − F22H
−1
21 O1H1 K2 − F22H

−1
21 O1D

O2H1 O2D



, i.e.

[

F̄ − cI K̄

H̄ D̄

]

, is of full rank for any c ∈ C satisfying Re(c) ≥ 0 by observing that

H21 ∈ R(n−l)×(n−l) is a nonsingular matrix. Thus, the lemma is proved.
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From Lemmas 4.3 and 4.4, the system (4.15) can be used to estimate the distur-
bances and to observe the partial state x̄1(t) by the algorithm proposed in Section 3.3.
Furthermore, from (4.13), the partial state x̄2(t) can be estimated as

ˆ̄x2(t) = H−1
21 O1(y(t) −H1 ˆ̄x1(t) −Dw(t)), (4.21)

where ˆ̄x1(t) is the estimate of the partial state x̄1(t), w(t) is the estimate of the distur-
bance v(t). Therefore, the state x(t) can be estimated by using the transformation

x̂(t) = Q−1

[

ˆ̄x1(t)
ˆ̄x2(t)

]

. (4.22)

4.2 The numerical observation algorithm for the general descriptor systems

with disturbances

Step1 If E is nonsingular, then the algorithm is given in Section 3.3. Otherwise, go to
step 2.

Step2 Determine the nonsingular matrices P and Q satisfying (4.1), derive the system
(4.9), and consider the state observer and the disturbance observer for the system
(4.9).

Step3 For the matrix H2 in the system (4.9), determine the nonsingular matrix O

satisfying (4.11). The system (4.10) is rearranged as the dynamical system (4.15)
and relation (4.13). For the dynamical system (4.15), the algorithm presented in
Section 3.3 can be used to estimate the disturbance v(t) and the partial state x̄1(t).

Step4 Construct the observer ˆ̄x2(t) for the partial descriptor state x̄2(t) by (4.21).

Step5 The descriptor state x(t) is estimated by (4.22).

5 Design examples and simulation results

Example 5.1 Consider the descriptor system





0 1 1
0 1 0
0 0 1









ẋ1

ẋ2

ẋ3



 =





0 0 1
1 −2 0
−2 0 2









x1

x2

x3



+





1 0
0 2
1 −1





[

v1(t)
v2(t)

]

,





x1(0)
x2(0)
x3(0)



 =





1
0
2



 , (5.1)

[

y1
y2

]

=

[

1 0 0
1 1 0

]





x1

x2

x3



+

[

0 1
0 2

] [

v1
v2

]

, (5.2)

where the input u(t) is assumed as zero, the disturbances are governed by

v1(t) = φ(t) + ψ(t), v2(t) = 1 + ψ(t) (5.3)

with φ(t) =

{

t 0 ≤ t ≤ 3

3 t > 3
and ψ(t) =

{

t 0 ≤ t ≤ 6

4 t > 6
.
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It can be easily checked that the assumptions in Section 2 are all satisfied. Further-
more, it can be checked that deg(det(sE − F )) = rank(E), i.e. this descriptor system is
of index at most one.

In the following, the disturbance observer and the descriptor state observer will be
formulated by following the algorithm summarized in Section 4.2.

Step1 Since E is singular with rank(E) = 2, go to step 2.

Step2 The nonsingular matrices P and Q satisfying (4.1) are determined as

P =





0 0 1
0 1 0
1 −1 −1



 , Q =





0 0 1
0 1 0
1 0 0



 .

Let x̄(t) =

[

x̄1(t)
x̄2(t)

]

=





x̄11

x̄12

x̄21



 = Qx(t). Then, corresponding to (4.9), it yields



































˙̄x1(t) =

[

2 0

0 −2

]

x̄1(t) +

[

−2

1

]

x̄2(t) +

[

1 −1

0 2

]

v(t),

0 = [−1 2]x̄1(t) + x̄2(t) + [0 − 1]v(t),

y(t) =

[

0 0

0 1

]

x̄1(t) +

[

1

1

]

x̄2(t) +

[

0 1

0 2

]

v(t).

Step3 For the matrix H2 =

[

1
1

]

, the nonsingular matrix O satisfying (4.11) can be

determined as

O =

[

1 0
−1 1

]

.

Thus, corresponding to (4.12), it gives


























˙̄x1(t) =

[

2 0
0 −2

]

x̄1(t) +

[

−2
1

]

x̄2(t) +

[

1 −1
0 2

]

v(t),

0 = [−1 2]x̄1(t) + x̄2(t) + [0 − 1]v(t),

[1 0] y(t) = [0 0]x̄1(t) + x̄2(t) + [0 1]v(t),

[−1 1] y(t) = [0 1]x̄1(t) + [0 1]v(t).

(5.4)

Then, from the third equation in (5.4), x̄2(t) can be expressed as

x̄2(t) = [1 0]y(t) − [0 1]v(t). (5.5)

By substituting the expression of x̄2(t) into the other equations in (5.4), the equa-
tion corresponding to (4.15) is given by























˙̄x1(t) =

[

2 0

0 −2

]

x̄1(t) +

[

−2 0

1 0

]

y(t) +

[

1 1

0 1

]

v(t),

[

−1 0

−1 1

]

y(t) =

[

−1 2

0 1

]

x̄1(t) +

[

0 −2

0 1

]

v(t).

(5.6)
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Now, based on (5.6), the disturbance v(t) and the variable x̄1(t) will be estimated
by following the algorithm summarized in Section 3.3.

S1 Since D̄ =

[

0 −2
0 1

]

is not of full rank, go to S2.

S2 Rewrite (5.6) as









2 − s 0 1 1
0 −2 − s 0 1
−1 2 0 −2
0 1 0 1









[

x̄1(t)
v(t)

]

=









2 0
−1 0
−1 0
−1 1









y(t). (5.7)

By pre-multiplying the both sides of (5.7) with

adj









2 − s 0 1 1
0 −2 − s 0 1
−1 2 0 −2
0 1 0 1









=









0 4 s+ 3 2s+ 2
0 1 0 −1

−s− 3 4s− 7 s2 + s− 6 2s2 − s− 2
0 −1 0 −s− 2









the system corresponding to (3.13) is derived as



















s(3y1 − 2y2) + 9y1 − 2y2 = (s+ 3)x̄11,

y2 = (s+ 3)x̄12,

s2(3y1 − 2y2) = −s(6y1 + y2) + 9y1 − 2y2 + (s+ 3)v1,

s(−y1 + y2) = 3y1 − 2y2 + (s+ 3)v2.

(5.8)

S3 Based on (5.8), the disturbance v2(t) can be simply estimated by

w2,0 ,
s

s+ 3
(−y1 + y2) −

1

s+ 3
(3y1 − 2y2).

The disturbance v1(t) is estimated as follows.

Introduce the Hurwitz polynomial

g1(s) = (s+ 3)(s+ 2),

where λ is chosen as λ = 2.

Define z1 = 3y1 − 2y2. Corresponding to (3.10), the third equation in (5.8)
can be rewritten as

ż1(t) + 2z1(t) =
s

s+ 3
(9y1 − 11y2) +

1

s+ 3
(27y1 − 14y2) + v1(t).

By Theorem 3.2, construct the following differential equation

˙̂z1(t) + 2ẑ1(t) =
s

s+ 3
(9y1 − 11y2) +

1

s+ 3
(27y1 − 14y2) + w1,1(t),

ẑ1(0) = z1(0),

w1,1(t) = ω̂1,1(t)
z1(t) − ẑ1(t)

|z1(t) − ẑ1(t)| + δ1,1
,
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ω̂1,1(t) is updated by the following adaptive algorithms

˙̂ω1,1(t) =







1200|z1(t) − ẑ1(t)| if |z1(t) − ẑ1(t)| > δ1,1

0 otherwise
, ˙̂ω1,1(0) = 5 .

Then, w1,1(t) can be regarded as an estimate of v1(t).

S4 By the theory in Section 3.2.3, the variables x̄11(t) and x̄12(t) can be respec-
tively estimated by ˆ̄x11(t) and ˆ̄x12(t) defined by

ˆ̄x11 =
s

s+ 3
(3y1 − 2y2) +

1

s+ 3
(9y1 − 2y2),

ˆ̄x12 =
1

s+ 3
y2.

Step4 Construct the observer ˆ̄x2(t) for the partial descriptor state x̄2(t) by (5.5).

ˆ̄x2(t) = [1 0]y(t) − [0 1]

[

w1,1(t)
w2,0(t)

]

= y1(t) − w2,0(t).

Step5 The descriptor state x(t) is estimated by

x̂(t) =





0 0 1
0 1 0
1 0 0









ˆ̄x11(t)
ˆ̄x12(t)
ˆ̄x2(t)



 .

It can be seen that some steady error exists in the estimation of v1(t), and the error
depends on the design parameter δ11. Furthermore, there are no steady errors existing
in the estimation of the disturbance v2(t) and the descriptor state x(t).

Computer simulation results show that the disturbance v2(t) and the descriptor state
x(t) can be perfectly identified. The figures are omitted. The estimation error of the
disturbance v1(t) is shown in Figure 5.1, where the parameter δ11 is chosen as δ11 =
0.0001.

It should be noted v1(t) is not differentiable at t = 3 and t = 6 and is not continuous at
t = 6. Simulation results show that the disturbance observer works well at the continuous
points and has a transient error at the discontinuous points. This is because that the
proposed method is trying to identify the unknown signals by using a differentiable
approach. It is considered that the new method can be applied to practical problems
with piecewise differentiable disturbances. For the sake of strictness, the disturbances
are assumed to be continuous and piecewise differentiable.

Example 5.2 Consider the descriptor system





0 1 1
1 1 0
−1 0 1









ẋ1

ẋ2

ẋ3



 =





2 0 1
1 −2 0
−2 0 2









x1

x2

x3



+





1 0
0 2
1 −1





[

v1(t)
v2(t)

]

,





x1(0)
x2(0)
x3(0)



 =





1
0
2



 , (5.9)

[

y1
y2

]

=

[

1 0 0
1 1 0

]





x1

x2

x3



+

[

0 1
0 2

] [

v1
v2

]

, (5.10)

where the input u(t) is assumed as zero, v1(t) and v2(t) are the disturbances.
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Figure 5.1: The difference between the disturbance v1(t) and its estimate

It can be easily checked that the assumptions in Section 2 are all satisfied. Further-
more, it can be checked that deg(det(sE − F )) 6= rank(E), i.e. this descriptor system is
not of index at most one.

Since E is singular with rank(E) = 2, the nonsingular matrices P and Q satisfying
(3.32) are determined as

P =





0 0 1
0 1 0
1 −1 −1



 , Q =





−1 0 1
1 1 0
1 0 0



 .

Let x̄(t) =

[

x̄1(t)
x̄2(t)

]

=





x̄11

x̄12

x̄21



 = Qx(t) . Then, by a computation similar to that in

Example 5.1, the relations corresponding to (5.5) and (5.8) are derived as

x̄2(t) = [1 0]y(t) − [0 1]v(t), (5.11)



















s(−y2) + 15y1 − 4y2 = (2s+ 3)x̄11,

6y1 − y2 = (2s+ 3)x̄12,

s2(−y2) = −s(15y1 − y2) + 33y1 − 10y2 + (2s+ 3)v1,

s(y2) = 3y1 − 2y2 + (2s+ 3)v2.

(5.12)

Similar to Example 5.1, the disturbances and the descriptor state can be identified.
It can be seen that the proposed method can also deal with the descriptor systems which
are not of index at most one.

6 Conclusions

In this paper, the observation problem for the descriptor systems with disturbances is
studied. It is assumed that the disturbances and their first order derivatives are bounded
in the open loop. However, the upper and lower bounds are unknown. The formulated
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descriptor system can be decomposed into a dynamical system and an algebraic equation.
Based on this obtained dynamical system, first, the disturbances are estimated; then, one
part of the descriptor state is observed. Finally, the other part of the descriptor state is
estimated based on the obtained algebraic equation.

If D (if E is nonsingular; or D̄ if E is singular) is of full rank, then the estimation
errors of the full state and all the disturbances decay to zero exponentially. For the
cases lji < q0, the estimation errors of the corresponding partial states and disturbances
still remain, and they can be controlled to be as small as necessary by choosing the
design parameters. For the cases lji ≥ q0, no steady errors exist in the estimates of the
corresponding partial states and disturbances. After the disturbance and the descriptor
state are estimated, the controller can be designed by referring to the results in [8, 16, 20].
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Abstract: A path planning method which is nearly time-optimal is designed
for computer numerical control machines which must handle sharp corners.
The nominal geometrical trajectory is modified in a way that limitations of
the drives’ accelerations are taken into account, which will avoid acceleration
discontinuities at the cornering point. The method uses two consecutive opti-
mization procedures based on the theory of time-optimal control of single axes
while maximizing the travel length of the fastest axis. Simulation results show
that the method, which can be generalized to a machine with several axes, is
quite effective.

Keywords: Computer numerical control machines; path-planning; contour error.
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1 Introduction

The need for increased productivity leads computer numerical control (CNC) machine
tools to be faster, i.e. to reduce cycle time, while keeping a good contouring quality (i.e.
keeping the tool path within prescribed bounds). Whereas the main goal of trajectory
planning is to ensure the following of a nominal geometrical path, smooth modifications
of the path can be used as pre-filtering functions which act as a feedforward controller
for each individual axis. Afterwards, a feedback control algorithm will be designed which
will allow to maintain the positioning accuracy while taking the dynamics into account.
However, high speed machines are generally flexible and have to bear vibrations which
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are harmful for the mechanical parts and deteriorate the accuracy, which excludes dis-
continuities in the drive speed and/or the acceleration. The path planning is thus an
important stage of control because it has to take into account speed, acceleration or jerk
limitations, which is necessary to obtain good overall performances [2].

Time-optimal path planning of a machine tool with one single rigid axis usually results
in a bang-bang scheme [5]. The problem is more complex when considering a machine
with multiple axes, because geometrical constraints generate coupling terms between
the trajectories of the different axes. When considering limitations in acceleration and
jerk, the optimal trajectory of each of the individual axes cannot generally be left to
an optimal bang-bang scheme because the geometrical trajectory would be outside the
prescribed error bounds. For example, when a discontinuity in curvature occurs, the
speed of the axes before and after the cornering point have to be adapted, and, thus,
a discontinuity in acceleration will appear, which is not acceptable in practice. Indeed,
this would excite vibratory modes – that could be neglected or compensated when the
acceleration is smooth [2]. A first way to keep close to the nominal trajectory without
bearing discontinuities in accelerations consists of letting the manipulator come at a full
stop at the corner, and then accelerate again, or gradually reduce the speed to zero
(e.g. introducing jerk limitations in the individual axes) [2], [1], [4]. One can also design
a feedback controller which will manage in a way such that the contouring accuracy
keeps acceptable, e.g. by cross-coupling controllers [8]. This is partially achieved by the
look-ahead function that is built into CNC machines which will ensure that acceleration
commands in the interpolated trajectory never exceed their allowed limitations, or by
low-pass filtering of acceleration commands [9], [10], [11].

Sharp corners can also be traveled by modifying the toolpath and adjusting the fee-
drate, which is classical in robotics applications where interpolation is only needed,[3]
and related references. It is possible to replace sharp corner with a smooth curve, which
can be, for example, a circular arc [6] or an under or over-corner quintic spline [4]. How-
ever, very few indications exist how to perform this smoothing in a way that the traveling
time keeps close to the optimum, while respecting the geometrical error bandwidth.

This paper proposes a method to obtain a near-time-optimal path planning for ma-
chines with several axes, considering speed and acceleration limitations. This optimal
trajectory will be given as a geometrical path where the time is not directly given, and
will be a function of the allowed contouring error. For the sake of simplicity, the algo-
rithm will be presented for only two axes. The trajectory will be divided into 3 parts,
the first one consist of a sequence where the path follows the nominal trajectory which
will be a straight line. Then, the modified geometrical path leaves the nominal trajectory
before corner crossing and will reach the new direction after the cornering point. The
second sequence consists of a point-to-point motion between the leaving and reaching
points. The motion will be designed in a way that it is time-optimal for each part of the
path taken separately, and, in a second time, that the resulting geometrical path uses the
fastest axis at full speed during the maximal time, while staying within the contouring
error bandwidth.

2 Point to Point Time-Optimal Trajectory Planning for One-Axis Rigid Ma-

chines

The rigid machine is supposed to exhibit an ideal dynamics :

Ẋ = ku,
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where X is the position, u is the driving force. For the sake of simplicity, k will be set
to 1.

The limitations in speed and acceleration of the drive will be considered, i.e. there
exist A, U such that |Ẋ| = u ≤ U , |Ẍ| = u̇ ≤ A.

The general solution is given for example in [5]. A particular solution is recalled
hereafter when the constraints are met (trajectory with full speed and maximum accel-
eration):

∃ (t1, t2) : |Ẋ(t1)| = U, |Ẍ(t2)| = A.

A “point to point” trajectory starts from X0(t0), Ẋ0(t0), where Ẍ0(t0), . . . , X
(n)
0 (t0) = 0

and reaches Xf (tf ), Ẋf(tf ), where Ẍf (tf ), . . . , X
(n)
f (tf ) = 0.

Particular cases include “rest-to-rest“ motion (Ẋ0(t0) = Ẋf (tf ) = 0), “starting stage”

(Ẋ0(t0) = 0, Ẋf (tf ) 6= 0) and “stop stage” (Ẋ0(t0) 6= 0, Ẋf (tf ) = 0).

Time minimal control t = tf leads to maximize the speed along the trajectory which
increases from 0 to U , which yields a piecewise-polynomial curve,i.e, for a rest-to-rest
motion from X0(t0 = 0) = 0 to Xf :

t ≤
U

A
, Ẋ = At, X = At2/2,

U

A
≤ t ≤

Xf

U
, Ẋ = U, X = Ut −

U2

2A
,

Xf

U
≤ t ≤

Xf

U
+

U

A
= tf , X = Xf − A(t − tf )2/2.

3 Optimal Control of a 2-Axes Rigid Machine: Objectives And Constraints

The aim of time-optimal control is to minimize the final time tf for a motion between

(X0, Y0) and (Xf , Yf ) (where Ẋ0 = Ẏ0 = Ẋf = Ẏf = 0), when spatial and drive con-
straints are taken into account. This is a far most difficult problem than in Section 1,
because, even when the axes are not coupled dynamically, they are made dependent by
the geometric constraints imposed by the trajectory. This is particularly crucial when a
change in angle occurs, because the speed both axes have to change “simultaneously”.
Without any constraints on speed and acceleration, it would be only necessary to fol-
low the nominal trajectory and adapt the driving forces at the cornering point. In fact,
this is not possible because of drive speed and acceleration limitations, and, in practice,
abrupt changes are not desirable because they would excite oscillating modes that are
present in mechanical structures. For high-speed machining which are lighter and thus
very flexible, these oscillations enforce, in industrial drives, to decrease the speed to zero
(or nearly zero) at the crossing point, thus generating an important loss of time.

Figure 3.1: Corner crossing.
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For the sake of simplicity, the case where one axis will move in the first straight line
(Y0 = 0), and the final direction has a slope α will be addressed. Both axes are supposed
to exhibit rigid dynamics:

Ẋ = u, Ẏ = v.

Constraints are of three kinds:
– saturation on drive speed and acceleration,

– constraints on final states (zero derivative and acceleration), which are not consid-
ered in the present case;

– geometrical constraints;

The machine should follow the following contour:

|Y | ≤ ε, X ≤ Xc, |Y − α(X − Xc)| ≤ ε, X ≥ Xc.

As shown in Figure 3.1, is is difficult to stick to the nominal trajectory when drive
constraints exist, when the speed is changed and does not decrease to zero. Moreover,
the trajectory is supposed to be modified as follows: the motion stays on the nominal
trajectory until the point Xd (which is to be determined), and reaches the new direction
at the point Xa (also to be determined), while staying in the error bounds.

The following additional hypotheses are taken:

– Straight lines before and after corner crossing are long enough to reach maximum
speed and acceleration.

– Limitations in speed and acceleration occur, i.e. |Ẋ | = |u| ≤ U , |Ẍ | = |u̇| ≤ A,
|Ẏ | = |v| ≤ V , |Ÿ | = |v̇| ≤ B.

The methodology will be presented with an illustrative case, but can be generalized to
multiple axes and additional configurations (e.g. maximum speed is not reached, etc. . . ).

4 Near time-Optimal Control

4.1 Basic algorithm

The time optimal criterion can be written as follows

J =

tf
∫

0

dt, (1)

and can be separated into three parts

J =

td
∫

0

dt +

ta
∫

td

dt +

td
∫

ta

dt = J1 + J2 + J3. (2)

where td is the time where the motion leaves the horizontal axis, ta is the time where
the new direction is reached tf is the final time where the final position is reached.

The near-optimal trajectory planning consists of 3 steps.
Given the positions, X0, Xd Xa, Xf the first step consists in minimizing the final

time which leads to minimize the time of motion for each of the three parts
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(a) minimize td for fixed X0, Xd given initial conditions in X0,

(b) minimize tf − ta for fixed Xf , Xa given final conditions in Xf ,

(c) minimized ta − td for a motion from fixed Xd to Xa starting from initial conditions
in Xd given by the solution in (a) and final conditions Xa given by (b).

In the case (a), the time optimal control is a “start” from X0(t0) to Xd, where Ẋ0 = 0
which yields Ẋ = U .

In the case (b), geometric constraints imply that Y = α(X − Xc). The maximum
speed of the axis Y is min (αU, V ) and the maximum speed of X is min

(

V
α

, U
)

. If the
maximum speed is reached at the point (Xa, Ya), the minimum-time control tf − ta is of
the “stop” type.

The time-optimal control (c) will be a “point-to-point” strategy for both axes, where
the speed in Y increases from 0 to min(αU, V ) between Yd and Ya and the speed of axis
X stays equal to U or decreases from U to V

α
between Xd and Ya.

In summary, the problem is simplified by solving three time-optimal control problems
for one-axis machines where the solutions are given in Section 2. These solutions are
parametrized by the points Xd, Xa. This is of course a near-optimal control because it
is well known that the sum of optima is not necessarily the optimal solution. However,
the solution is quite simple to obtain and can be expected to be close to the true optimal
control.

The second step consists of minimizing tf , by the optimization of the location of Xd

(and thus of Xa) which will consists of keeping the longest possible trajectory on the axis
which exhibits the higher velocity. Two cases arise based on the comparative values of
αU and V . The strategy will be different whether the axis X is faster or if the motion is
faster along the slope.

In fact, one now tries to keep the maximum speed on the fastest axis, and thus try
to adapt the trajectory and point Xd. Only the first case αU ≤ V will be considered for
illustration of the methodology, as the other case can be considered as “dual”.

4.2 Illustrative example

Let us suppose that αU ≤ V and αA ≤ B. In this case, the velocity of the axis X is kept
to U , from t = 0 to t = tf (while respecting acceleration constraints). Since the axis Y

is faster, it has to adapt and to be bounded.
Applying point (a), the axis Y starts to move at time td, until Y = Ya, the velocity

of axis Y will increase from 0 to αU .
The near optimal control consists of minimizing td and thus Xd while respecting

drive constraints and geometric constraints i.e. |Y | ≤ ε, X ≤ Xc, |Y − α(X − Xc)| ≤ ε,
X ≥ Xc.

The configuration (1) does not answer the problem correctly since td is imposed by
geometric considerations which does not leave any degree of freedom for optimization.
Configuration (2) will allow to maximize the speed on the fastest (slope) axis: one
supposed, for the sake of simplicity, that the maximum speed V is reached by axis Y and
decreases again to reach the nominal speed.

On the X axis, the motion will be:

X = Ut −
U2

2A
, t ≥

U

A
. (3)
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Figure 4.1: Speed profile for X and Y axes.

On the axis Y , time-optimal motion is:

Y = B(t − td)
2/2, t − td ≤

V

B
,

Y = V (t − td) −
(V )2

2B
, if t1 ≥ t − td ≥

V

B
,

Y = V (t − t1) − B(t − t1)
2/2 + Y1, where t2 ≥ t − td ≥ t1,

Y = Uα(t − t2) + Y2, where t − td ≥ t2

with Y1 = Y (t1), Y2 = Y (t2).
Continuity considerations (same derivative and position at breaking points) for axis

Y yield:

Uα = V − B(t2 − t1), Y2 = V (t2 − t1) −
B(t2 − t1)

2

2
+ Y1, Y1 = V (t1 − td) −

(V )2

2B
.

Condition Y = α(X − Xc), t ≥ t2, yields Uα(t − t2) + Y2 = α
(

Ut − U2

2A
− Xc

)

, i.e.

Uαt2 − Y2 = α

(

U2

2A
+ Xc

)

.

All variables can be expressed as a function of one degree of freedom (i.e. td or t2 can
be “freely” chosen), one obtains:

Uα = V − B(t2 − t1), (4)

Y2 = V (t2 − t1) − B(t2 − t1)
2/2 + Y1, (5)

Y1 = V (t1 − td) − (V )2/2B, (6)

Uαt2 − Y2 = α

(

U2

2A
+ Xc

)

, (7)

where

t1 =
AU2α2

− 2AUV α + BαU2 + 2ABαXc − 2ABV td

2AB(Uα − V )
.

One can eliminate the expression of time within the equations. Since X−Xd = U(t− td)
one obtains a piecewise polynomial curve:

Y =
B

2

(

X − Xd

U

)2

, X ≥ Xd, Y ≤

V 2

2B
, (8)
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Y = V
X − Xd

U
−

V 2

2B
,

V 2

2B
≤ Y ≤ Y1 (9)

as X − X1 = U(t − t1),

Y = V
X − X1

U
−

B

2

(

X − X1

U

)2

+ Y1, Y1 ≤ Y ≤ Y2, (10)

Y = α(X − Xc), Y2 ≤ Y, (11)

where Xd, Y1, Y2 are given above.
This solution is particularly interesting because it is a geometric path which is sup-

posed to yield the time-optimal controller. One can use it as a geometrical reference
trajectory which the axes should follow using feedback control to eliminate the effect of
disturbances.

Now, one should determine td (or Xd) such that |Y | ≤ ε, X ≤ Xc, |Y −α(X−Xc)| ≤
ε, X ≥ Xc. Since corner crossing Xc can be met in the piecewise parts (8,9,10), the
resulting constraints will be different, and several cases can be considered.

Lets now write the constraints on the trajectory as a function of td:
The profile in Figure 4.1 can exist if the nominal speed is reached after the full

acceleration stage:
td + V/B < t1 (12)

and the leaving time should occur after the acceleration step has been completed:

U

A
≤ td,

td +
V

B
≤

AU2α2
− 2AUV α + BαU2 + 2ABαXc − 2ABV td

2AB(Uα − V )
,

(13)

i.e.
AU2α2

− 4AUV α + BαU2 + 2ABαXc + 2V 2A

2ABUα
≤ td.

Suppose that the cornering point Xc is met during the motion (8). This implies that

the leaving point lies before the corner and td ≤ tc =
Xc

U
+

U

2A
, which can be turned,

eliminating the time,
B

2

(

Xc − Xd

U

)2

≤

V 2

2B
and thus

Xc

U
−

V

B
+

U

2A
≤ td ≤

Xc

U
+

U

2A
. (14)

Once the path has left the nominal trajectory, it should stay nevertheless between pre-
scribed error bounds, e.g. for the section described by equation (8), when the trajectory

stays ahead of the corner:
B

2

(

Xc − Xd

U

)2

< ε and thus

Xc

U
+

U

2A
− U

√

2ε

B
< td. (15)

Since when X ≥ Xc, Y ≤
V 2

2B
one must have for equation (8), when the path travels the

corner and the trajectory should be close to the new direction −ε < Y −α(X −Xc) < ε,
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and, replacing:

−ε <
B

2

(

X − Xd

U

)2

− α(X − Xc) < ε. (16)

The maximum of this function is given for X = Xd + αU
B

2
which yields:

−

ε

αU
+

αU

2B
≤

Xc

U
+

U

2A
− td ≤

ε

αU
+

αU

2B
,

i.e.
Xc

U
+

U

2A
−

ε

αU
−

αU

2B
≤ td ≤

Xc

U
+

U

2A
+

ε

αU
−

αU

2B
. (17)

When, in a second time, the trajectory is given by equation (9), it should also stay within
prescribed error bounds

−ε ≤ V
X − Xd

U
−

V 2

2B
− α(X − Xc) ≤ ε,

where
V 2

2B
≤ V

X − Xd

U
−

V 2

2B
≤ Y1.

Since the function is increasing, one has only to verify, that −ε ≤ Y1−α(X1−Xc) ≤ ε,

where Y1 = V (t1 − td) − (V )2/2B which yields:

−ε ≤ V (t1 − td) −
V 2

2B
− α

(

Ut1 −
U2

2A
− Xc

)

≤ ε

and one obtains

−ε ≤ V
X − X1

U
−

B

2

(

X − X1

U

)2

+ Y1 − α(X − Xc) ≤ ε,

if Y1 ≤ V
X − X1

U
−

B

2

(

X − X1

U

)2

+ Y1 ≤ Y2.

(18)

Last, when the trajectory is described by equation (10), one has to check that

−ε ≤ V
X2 − X1

U
−

B

2

(

X2 − X1

U

)2

+ Y1 − α(X2 − Xc)) ≤ ε

which leads to −ε ≤ Uαt2 − α
(

U2

2A
+ Xc

)

− α
(

Ut2 + U2

2A
− Xc

)

≤ ε, i.e.

α

(

U2

A

)

≤ ε. (19)

In summary, one obtains easily a set of inequality constraints (13)–(19) which should
in a first time be all compatible in a way such that the profile (2) in Figure 4.1 is really
feasible. This gives upper and lower bounds on the value of td, and, since the motion on
the fastest axis (the vertical one) should be preferred, the value of td will be the minimum
one.
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Figure 4.2: Near-time-optimal trajectory.

Figure 4.3: Near-optimal versus full stop at corner trajectory.

Example 4.1 Taking numerical values as

U = 1, A = 4, B = 0.4, V = 1, Xc = 4, ε = 0.2, α = 0.8.

The maximum constraints are given by (13) and (18) which yields 3.25 ≤ td ≤ 3.37.
The optimal path is given in Figure 4.2. The “nominal” path (a stop of the axis

X at point Xc, and a “start” from point Xc of axes X and Y , considering speed and
acceleration limitations) is also represented in Figure 4.2. One sees that the result is
an “under corner” trajectory smoothing [4]. In Figure 4.3, the time history of axis X
is represented; for the nominal trajectory following, ones sees that a stop is needed for
X = Xc. Modified trajectory (solid), nominal trajectory and error bounds (dotted) X
position as a function of time, near-optimal trajectory in solid. Classical (with full stop
and restart at the corner) dotted. In the case of the modified trajectory, the axis X stays
at full speed. The saved time exceeds that which would have been saved by canceling the
start and stop procedures, i.e. 2U

A
. The time for which the modified trajectory reaches

X = 8 equals 8.14 s compared to 12.38 s for the traditional algorithm. One also can verify
that the modified trajectory does not reach the upper breaking point (X = Xc, Y = ε)
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since, in this case, other limitations (in speed, acceleration, or geometrical) would not be
respected. This demonstrates that the optimum path planning does not reduce to taking
the chord.

5 Conclusion

A near-time-optimal path planning method for traveling sharp corners has been designed
for a machine with multiple axes. Its main originality consists of modifying, on purpose,
the geometric path in order to smooth the nominal trajectory and to respect the drives’
capabilities in term of acceleration and speed. The time-dependent trajectory is bang-
bang when traveling straight lines and is a point-to-point optimal trajectory between the
two points where the trajectory deviates from the geometrical discontinuity. The second
step of the algorithm consists of maximizing the travelling time of the fastest axis, by
moving forward or backward the point where the modified trajectory leaves the nominal
path, while staying within the prescribed contouring accuracy.

This method proves to be quite effective and can be generalized to a machine with
more than two axes. In a next work, this algorithm will be tested on a real-time cartesian
machine tool.
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1 Introduction

During the past decades, stochastic modeling has come to play an important role in many
branches of science such as biology, economics and engineering applications. Therefore,
much attention has been drawn to systems with stochastic perturbations from researchers
working in related areas. By stochastic systems, we generally refer to systems whose
parameter uncertainties are modeled as white noise processes. These parameter uncer-
tainties are usually due to some stochastic environment, and thus it is a natural way
to represent them in the model by stochastic parameters fluctuating around some de-
terministic nominal values. This kind of systems has been called systems with random
parametric excitation [2], stochastic bilinear systems [18] and linear stochastic systems
with multiplicative noise [15, 31]. Analysis and synthesis of stochastic systems have been
investigated extensively and many fundamental results for deterministic systems have
been extended to stochastic cases. To mention a few, the analysis of asymptotic behav-
ior can be found in [19, 21, 24]; the optimal control problems were reported in [15, 31];
and recently with the development of H∞ control theory, the robust control and filtering
results have also been extended to stochastic systems through Riccati-like approaches as
well as by means of linear matrix inequality (LMI) [3, 4, 9, 16, 29, 33].

On the other hand, for the purpose of analysis and synthesis, estimating the state
variables of a dynamic model is important in helping to improve our knowledge about
the system concerned [1]. Hence, state estimation has long been an important and inter-
esting problem in the control and signal processing area. Among the existing approaches
for estimating the state variables of a linear system described by a state-space equation,
arguably, the most popular and useful one is the celebrated Kalman filter [6, 7, 17] which
has been applied to a wide range of problems (biology, economics, aerospace, and even
population analysis etc. [23, 26]). Usually, it is supposed that a precisely known sys-
tem model is available and that the dynamic and measurement equations are additively
affected by white noise processes satisfying standard assumptions. In many practical sit-
uations, however, the availability of the a priori information about the external noise is
unrealistic. In this case, the filtering problem is more involved and many researchers have
made great efforts in proposing useful algorithms in different contexts (see, for instance,
[11, 13, 27, 34, 35] and the references therein). Among these available filtering results, the
H∞ filtering approach provides both a guaranteed noise attenuation level and robustness
against unmodeled dynamics. In the presence of both unknown statistics of the external
noises and uncertain parameters in the system model, a common approach is to design
robust H∞ filters. The problem of robust H∞ filtering consists on designing a linear
stationary asymptotically stable filter that assures a prescribed H∞ performance for the
filtering error system, irrespective of modeling uncertainties. In general, two popular ap-
proaches used to solve the aforementioned filtering problem are Riccati equation approach
[30] and linear matrix inequality (LMI) approach [22, 32, 33], and two kinds of parame-
ter uncertainty have been widely used in the literature: norm-bounded uncertainty and
polytopic uncertainty. In solving the robust H∞ filtering problem, most of the reported
results are based on quadratic Lyapunov functions, which have been largely used for ro-
bust analysis and synthesis in the past decades. Although being able to ensure stability
for systems with arbitrarily fast time-varying parameters, methods based on quadratic
stability can produce conservative results since the same parameter-independent Lya-
punov function must be used for the entire uncertainty domain. One recognized way
to overcome this conservativeness is to consider a parameter-dependent Lyapunov func-
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tion. An example of a less conservative stability condition based on parameter-dependent
Lyapunov functions can be found in [8].

Recently, the problem of robust H∞ filtering for uncertain stochastic systems has
been investigated in [14] by using LMI technique. It is worth mentioning that the filter
designs are based on the quadratic stability notion, which requires a common Lyapunov
function for the entire uncertainty domain, and thus much overdesign has been introduced
in the derivation process. In this paper, we revisit the problem solved in [14], and present
two approaches to solve the H∞ filtering problem for continuous-time stochastic systems
with parameter uncertainties residing in a polytope. One approach is concerned with
the robust stochastic H∞ filter design, where stationary constant filters are designed to
ensure the filtering error system to be asymptotically stable and has a guaranteed H∞

performance for the entire uncertainty domain. The other approach designs parameter-
dependent filters whose system matrices are dependent on the available information of the
uncertain parameters. Both approaches solve the filtering problems based on a modified
(improved) bounded real lemma for continuous-time stochastic systems, which decouples
the product terms between the Lyapunov matrix and systems matrices and enables us
to exploit parameter-dependent stability idea in the filter designs. Sufficient conditions
for the existence of admissible robust stochastic H∞ filters and parameter-dependent
stochastic H∞ filters are obtained in terms of LMIs, upon which the filter designs are
cast into convex optimization problems. Since the filter designs make full use of the
parameter-dependent stability idea, the obtained results are less conservative than the
existing one in the quadratic framework. A numerical example is provided to illustrate
the effectiveness and advantage of the filter design methods proposed in this paper.

The remainder of this paper is organized as follows. The problem of H∞ filtering for
uncertain continuous-time stochastic systems is formulated in Section 2. Sections 3 and
4 present results for parameter-dependent and robust stochastic H∞ filtering problems
respectively. An illustrative example is provided to show the effectiveness and advantages
of the proposed filter designs in Section 5. Finally, some concluding remarks are given
in Section 6.

Notations: The notations used throughout the paper are fairly standard. The su-
perscript “T ” stands for matrix transposition; R

n denotes the n-dimensional Euclidean
space, R

m×n is the set of all real matrices of dimension m × n and the notation P > 0
means that P is real symmetric and positive definite. L2[0,∞) is the space of square-
integrable vector functions over [0,∞); the notation | · | refers to the Euclidean vector
norm and ‖ · ‖2 stands for the usual L2[0,∞) norm. In symmetric block matrices or long
matrix expressions, we use an asterisk (∗) to represent a term that is induced by symme-
try and diag{. . .} stands for a block-diagonal matrix. Matrices, if their dimensions are
not explicitly stated, are assumed to be compatible for algebraic operations. In addition,
let (Ω,F , {Ft}t≥0,P) be a complete probability space with a filtration {Ft}t≥0 satisfying
the usual conditions (i.e. the filtration contains all P-null sets and is right continuous)
and E{·} denotes the expectation operator with respect to the probability measure P .

2 Problem Description

Consider a mean-square stable system S with state-dependent noise:

S : dx(t) = [A(λ)x(t) + B(λ)w(t)] dt + E(λ)x(t)dβ(t),

dy(t) = [C(λ)x(t) + D(λ)w(t)] dt + F (λ)x(t)dζ(t),

z(t) = L(λ)x(t),

(1)
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where x(t) ∈ R
n is the state vector; y(t) ∈ R

m is the measured output; z(t) ∈ R
p is the

signal to be estimated; w(t) ∈ R
q is the disturbance input which belongs to L2 [0,∞).

The variables β(t) and ζ(t) are zero-mean real scalar Wiener processes that satisfy

E {dβ(t)} = 0, E
{

dβ(t)2
}

= dt,

E {dζ(t)} = 0, E
{

dζ(t)2
}

= dt,

E {dβ(t)dζ(t)} = αdt, |α| < 1,

A(λ), B(λ), E(λ), C(λ), D(λ), F (λ) and L(λ) are appropriately dimensioned matrices.
It is assumed that

Ω(λ) , (A(λ), B(λ), E(λ), C(λ), D(λ), F (λ), L(λ)) ∈ R,

where R is a given convex bounded polyhedral domain described by s vertices:

R ,

{

Ω(λ) : Ω(λ) =

s
∑

i=1

λiΩi;

s
∑

i=1

λi = 1, λi ≥ 0

}

and Ωi , (Ai, Bi, Ei, Ci, Di, Fi, Li) denotes the vertex of the polytope.
Since the signal z(t) cannot be measured directly, our purpose in this paper is to

estimate z(t) via the available measurement y(t), such that the estimation error is small
in the H∞ sense with respect to the energy bounded noise w(t).

According to practical situations, we make two different assumptions on the uncertain
parameter λ.

Assumption 1 The uncertain parameter λ is unknown, and cannot be measured

online.

Assumption 2 The uncertain parameter λ does not depend explicitly on the time

variable but can be measured online. The uncertain parameter λ can vary slowly due to

changes in temperature, wind, pressure, humidity, atmosphere, or operating points [20].

For Assumption 1, since the uncertain parameter λ cannot be measured online, a
natural way to deal with the filtering problem is to consider a robust filter of the following
form (whose filter matrices are not dependent on the parameter λ):

FR : dxF (t) = AF xF (t)dt + BF dy(t), xF (0) = 0,

zF (t) = CF xF (t).
(2)

In some situations, however, the uncertain parameter λ does not depend explicitly on
the time variable but can be measured online. In such cases (Assumption 2), it may be
desirable to utilize the available information on parameter λ to reduce the conservatism of
the robust filter designs. That is, to design a parameter-dependent filter of the following
form (whose filter matrices are explicitly dependent on the parameter λ):

FP : dxF (t) = AF (λ)xF (t)dt + BF (λ)dy(t), xF (0) = 0,

zF (t) = CF (λ)xF (t).
(3)

Throughout the paper, the estimation error is denoted by e(t) , z(t) − zF (t). We
define, for a given scalar γ > 0, the following performance index:

J , ‖e‖
2
E − γ2

‖w‖
2
2 ,
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where

‖e‖
2
E , E

{
∫ ∞

0

|e(t)|2 dt

}

.

In the following sections, we will present LMI-based approaches to solve the above
two stochastic filtering problems. We first present results on the parameter-dependent
stochastic H∞ filtering problem, and then solve the robust stochastic H∞ filtering prob-
lem.

3 Parameter-Dependent Stochastic H∞ Filtering

In the parameter-dependent stochastic H∞ filtering problem, by augmenting the model
of S to include the states of the filter FP , we obtain the filtering error system EP :

EP : dξ(t) =
[

Ā(λ)ξ (t) + B̄(λ)w(t)
]

dt + Ē(λ)ξ (t) dβ(t) + F̄ (λ)ξ (t) dζ(t),

e(t) = C̄(λ)ξ(t),
(4)

where ξ(t) =
[

xT(t), xT
F (t)

]T
and

Ā(λ) =

[

A(λ) 0
BF (λ)C(λ) AF (λ)

]

, B̄(λ) =

[

B(λ)
BF (λ)D(λ)

]

,

Ē(λ) =

[

E(λ) 0
0 0

]

, F̄ (λ) =

[

0 0
BF (λ)F (λ) 0

]

,

C̄(λ) = [L(λ), −CF (λ)] .

(5)

Then, the parameter-dependent stochastic H∞ filtering problem to be addressed in
this section can be expressed as follows.

Problem PDSHinfF (Parameter-dependent Stochastic H∞ Filtering): Given
system S in (1), determine the parameter-dependent matrices (AF (λ), BF (λ), CF (λ))
of the filter FP in (3), such that the filtering error system EP in (4) is mean-square
asymptotically stable and J < 0 for all nonzero w(t) ∈ L2 [0,∞). Filters satisfying the
above conditions are called parameter-dependent stochastic H∞ filters.

3.1 Preliminaries

To solve Problem PDSHinfF, we need the following lemma (see, for instance, Lemma 1
in [14]).

Lemma 3.1 Suppose system S in (1) and filter FP in (3) are given, the filtering

error system EP in (4) is mean-square asymptotically stable with J < 0 for all nonzero

w(t) ∈ L2 [0,∞) under zero initial conditions if and only if there exists a matrix function

Q(λ) > 0 satisfying

ĀT(λ)Q(λ) + Q(λ)Ā(λ) + C̄T(λ)C̄(λ) + γ−2Q(λ)B̄(λ)B̄T(λ)Q(λ) + ĒT(λ)Q(λ)Ē(λ)

+ F̄T(λ)Q(λ)F̄ (λ) + αĒT(λ)Q(λ)F̄ (λ) + αF̄T(λ)Q(λ)Ē(λ) < 0
(6)
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The above lemma characterizes the H∞ performance for continuous-time stochastic
systems by using matrix inequality. Denoting ᾱ ,

√

1 − α2, by Schur complement [5],
condition (6) in Lemma 3.1 can be transformed into













−Q(λ) 0 ᾱQ(λ)Ē(λ) 0 0
∗ −Q(λ) Q(λ)

(

αĒ(λ) + F̄ (λ)
)

0 0
∗ ∗ ĀT(λ)Q(λ) + Q(λ)Ā(λ) Q(λ)B̄(λ) C̄T(λ)
∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ −I













< 0. (7)

(7) is an LMI formulation of the H∞ performance presented in Lemma 3.1 for continuous-
time stochastic systems. A robust stochastic H∞ filtering result has been presented in
[14] based on the performance condition (7). Due to the existence of product terms
between the Lyapunov matrix Q(λ) and system matrices, the robust filtering result in
[14] is obtained by imposing Q(λ) ≡ Q, which leads to a filtering result within the
quadratic framework. In the following, we will present an improved version of (7) by
decoupling the product terms between the Lyapunov matrix Q(λ) and system matrices,
which will be used in our filter designs.

Proposition 3.1 Suppose system S in (1) and filter FP in (3) are given, the filtering

error system EP in (4) is mean-square asymptotically stable with J < 0 for all nonzero

w(t) ∈ L2 [0,∞) under zero initial conditions if and only if for a sufficiently small scalar

ǫ > 0, there exist matrix functions Q(λ) > 0 and W (λ) satisfying

















Υ 0 0
√

ǫᾱWT(λ)Ē(λ) 0 0
∗ Υ 0

√

ǫWT(λ)
(

αĒ(λ) + F̄ (λ)
)

0 0
∗ ∗ Υ WT(λ)

(

I + ǫĀ(λ)
) √

ǫWT(λ)B̄(λ) 0
∗ ∗ ∗ −Q(λ) 0

√

ǫC̄T(λ)
∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −I

















< 0, (8)

where

Υ , Q(λ) − WT(λ) − W (λ).

Proof We first show that (8) is equivalent to

















−Q(λ) 0 0
√

ǫᾱQ(λ)Ē(λ) 0 0
∗ −Q(λ) 0

√

ǫQ(λ)
(

αĒ(λ) + F̄ (λ)
)

0 0
∗ ∗ −Q(λ) Q(λ)

(

I + ǫĀ(λ)
) √

ǫQ(λ)B̄(λ) 0
∗ ∗ ∗ −Q(λ) 0

√

ǫC̄T(λ)
∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −I

















< 0.

(9)
The equivalence between (8) and (9) can be proved as follows. On one hand, if there
exists a matrix function Q(λ) > 0 satisfying (9), (8) is readily established by choos-
ing WT(λ) = W (λ) = Q(λ). On the other hand, if there exist matrix functions
Q(λ) > 0 and W (λ) satisfying (8), we can easily see that W (λ) is nonsingular. In

addition, we have (Q(λ) − W (λ))
T

Q−1(λ) (Q(λ) − W (λ)) ≥ 0, which implies that
Γ , −WT(λ)Q−1(λ)W (λ) ≤ Q(λ) − WT(λ) − W (λ). Therefore we can conclude from
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(8) that

















Γ 0 0
√

ǫᾱWT(λ)Ē(λ) 0 0
∗ Γ 0

√

ǫWT(λ)
(

αĒ(λ) + F̄ (λ)
)

0 0
∗ ∗ Γ WT(λ)

(

I + ǫĀ(λ)
) √

ǫWT(λ)B̄(λ) 0
∗ ∗ ∗ −Q(λ) 0

√

ǫC̄T(λ)
∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −I

















< 0. (10)

Performing a congruence transformation to (10) by diag {W−1(λ)Q(λ), W−1(λ)Q(λ),
W−1(λ)Q(λ), I, I, I} yields (9).

Now, performing a congruence transformation to (9) by diag
{

I, I, I, ǫ−1/2I, I, I
}

, we
obtain

















−Q(λ) 0 0 ᾱQ(λ)Ē(λ) 0 0
∗ −Q(λ) 0 Q(λ)

(

αĒ(λ) + F̄ (λ)
)

0 0

∗ ∗ −Q(λ) Q(λ)
(

ǫ−1/2I +
√

ǫĀ(λ)
) √

ǫQ(λ)B̄(λ) 0
∗ ∗ ∗ −ǫ−1Q(λ) 0 C̄T(λ)
∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −I

















< 0

(11)
by Schur complement, (11) is equivalent to

















−Q(λ) 0 ᾱQ(λ)Ē(λ) 0 0
∗ −Q(λ) Q(λ)(αĒ(λ) + F̄ (λ)) 0 0

∗ ∗

Q(λ)Ā(λ) + ĀT(λ)Q(λ)+
ǫĀT(λ)Q(λ)Ā(λ)

Q(λ)B̄(λ)+
ǫĀT(λ)Q(λ)B̄(λ)

C̄T(λ)

∗ ∗ ∗ −γ2I + ǫB̄T(λ)Q(λ)B̄(λ) 0
∗ ∗ ∗ ∗ −I

















< 0

(12)
which is further equivalent to

[

Υ̃ Q(λ)B̄(λ)
∗ −γ2I

]

+ ǫ

[

ĀT(λ)
B̄T(λ)

]

Q(λ)
[

Ā(λ) B̄(λ)
]

< 0, (13)

where
Υ̃ , Q(λ)Ā(λ) + ĀT(λ)Q(λ) + C̄T(λ)C̄(λ) + ᾱ2ĒT(λ)Q(λ)Ē(λ)

+
(

αĒ(λ) + F̄ (λ)
)T

Q(λ)
(

αĒ(λ) + F̄ (λ)
)

.

Since Q(λ) > 0 and ǫ is sufficiently small positive, (13) is in fact equivalent to (6), and
the proof is completed. 2

The advantage of Proposition 3.1 lies in the fact that by introducing the slack (in the
sense that no structural restriction is imposed) matrix function W (λ) and a sufficient
small positive constant ǫ, (8) does not contain product terms between the Lyapunov
matrix Q(λ) and system matrices. This decoupling property has been proved to be an
advantage for polytopic uncertain systems concerning reducing conservativeness [25]. In
the following (sub)sections, we will develop parameter-dependent and robust stochastic
H∞ filters based on Proposition 3.1.

It is noted that if the filter matrices (AF (λ), BF (λ), CF (λ)) are given, (8) is a linear
matrix inequality over the matrix variables Q(λ) and W (λ) for fixed λ. However, since
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our purpose is to determine the filter matrices (AF (λ), BF (λ), CF (λ)), condition (8)
is actually a nonlinear matrix inequality. In addition, to test the feasibility of these
conditions is an infinite-dimensional problem in terms of the uncertain parameter λ. Our
main objective hereafter is to transform (8) into finite-dimensional LMI condition.

3.2 Main Results

Our result depends on the following proposition.

Proposition 3.2 Given system S in (1). For a sufficiently small scalar ǫ > 0, there

exist matrix functions Q(λ) > 0 and W (λ) satisfying (8) if and only if there exist matrices

Q̄(λ) ,

[

Q̄1(λ) Q̄2(λ)
∗ Q̄3(λ)

]

> 0, R(λ), S(λ), T (λ), ĀF (λ), B̄F (λ), and C̄F (λ) satisfying

Ψ(λ) ,

































Π1 Π2 0 0 0 0
√

ǫᾱRT(λ)E(λ) 0 0 0
∗ Π3 0 0 0 0

√

ǫᾱST(λ)E(λ) 0 0 0
∗ ∗ Π1 Π2 0 0 Π4 0 0 0
∗ ∗ ∗ Π3 0 0 Π5 0 0 0
∗ ∗ ∗ ∗ Π1 Π2 Π6 T (λ) + ǫĀF (λ) Π8 0
∗ ∗ ∗ ∗ ∗ Π3 Π7 T (λ) + ǫĀF (λ) Π9 0
∗ ∗ ∗ ∗ ∗ ∗ −Q̄1(λ) −Q̄2(λ) 0

√

ǫLT(λ)
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q̄3(λ) 0 −

√

ǫC̄T
F (λ)

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

































< 0,

(14)
where

Π1 = Q̄1(λ) − RT(λ) − R(λ), Π2 = Q̄2(λ) − T (λ) − S(λ),

Π3 = Q̄3(λ) − T (λ) − T T(λ), Π4 =
√

ǫαRT(λ)E(λ) + B̄F (λ)F (λ),

Π5 =
√

ǫαST(λ)E(λ) + B̄F (λ)F (λ), Π6 = RT(λ) + ǫRT(λ)A(λ) + ǫB̄F (λ)C(λ),

Π7 = ST(λ) + ǫST(λ)A(λ) + ǫB̄F (λ)C(λ), Π8 =
√

ǫRT(λ)B(λ) +
√

ǫB̄F (λ)D(λ),

Π9 =
√

ǫST(λ)B(λ) +
√

ǫB̄F (λ)D(λ).

Moreover, under the above condition, the matrix functions for an admissible parameter-

dependent stochastic H∞ filter FP in the form of (3) are given by
[

AF (λ) BF (λ)
CF (λ) 0

]

=

[

T−1(λ) 0
0 I

] [

ĀF (λ) B̄F (λ)
C̄F (λ) 0

]

. (15)

Proof Necessity. Given a sufficiently small scalar ǫ > 0, suppose there exist filter
matrices (AF (λ), BF (λ), CF (λ)) and matrices Q(λ) > 0 and W (λ) satisfying (8). Let
the matrix functions Q(λ) and W (λ) be partitioned as

Q(λ) =

[

Q1(λ) Q2(λ)
QT

2 (λ) Q3(λ)

]

, W (λ) =

[

W1(λ) W2(λ)
W4(λ) W3(λ)

]

. (16)

By invoking a small perturbation if necessary, we can assume that W4(λ) and W3(λ) are
nonsingular. Define the following invertible matrix functions

J(λ) =

[

I 0
0 W−1

3 (λ)W4(λ)

]

, K(λ) = diag {J(λ), J(λ), J(λ), J(λ), I, I} (17)
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and define

Q̄(λ) =

[

Q̄1(λ) Q̄2(λ)
∗ Q̄3(λ)

]

= JT(λ)Q(λ)J(λ). (18)

Then, performing a congruence transformation to (8) by K(λ) together with the
consideration of (5) yields

















Q̄(λ) − Ψ1 − ΨT
1 0 0

√

ǫᾱΨ5 0 0
∗ Q̄(λ) − Ψ1 − ΨT

1 0
√

ǫ(αΨ5 + Ψ6) 0 0
∗ ∗ Q̄(λ) − Ψ1 − ΨT

1 ΨT
1 + ǫΨ3

√

ǫΨ2 0
∗ ∗ ∗ −Q̄(λ) 0

√

ǫΨ4

∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −I

















< 0,

(19)
where

Ψ1 =

[

W1(λ) W2(λ)W−1
3 (λ)W4(λ)

WT
4 (λ)W−T

3 (λ)W4(λ) WT
4 (λ)W−T

3 (λ)W4(λ)

]

,

Ψ2 =

[

WT
1 (λ)B(λ) + WT

4 (λ)BF (λ)D(λ)

WT
4 (λ)W−T

3 (λ)WT
2 (λ)B(λ) + WT

4 (λ)BF (λ)D(λ)

]

,

Ψ3 =





WT
1 (λ)A(λ) + WT

4 (λ)BF (λ)C(λ) WT
4 (λ)AF (λ)W−1

3 (λ)W4(λ)

WT
4 (λ)W−T

3 (λ)WT
2 (λ)A(λ)+

WT
4 (λ)BF (λ)C(λ)

WT
4 (λ)AF (λ)W−1

3 (λ)W4(λ)



 ,

Ψ4 =

[

LT(λ)

−WT
4 (λ)W−T

3 (λ)CT
F (λ)

]

,

Ψ5 =

[

WT
1 (λ)E(λ) 0

WT
4 (λ)W−T

3 (λ)WT
2 (λ)E(λ) 0

]

,

Ψ6 =

[

WT
4 (λ)BF (λ)F (λ) 0

WT
4 (λ)BF (λ)F (λ) 0

]

.

By defining

R(λ) = W1(λ), (20)

S(λ) = W2(λ)W−1
3 (λ)W4(λ), (21)

T (λ) = WT
4 (λ)W−1

3 (λ)W4(λ), (22)
[

ĀF (λ) B̄F (λ)
C̄F (λ) 0

]

=

[

WT
4 (λ) 0
0 I

] [

AF (λ) BF (λ)
CF (λ) 0

] [

W−1
3 (λ)W4(λ) 0

0 I

]

,

(23)

(19) is equivalent to (14), and the necessity is proved.
Sufficiency. Suppose for a sufficiently small scalar ǫ > 0, there exist matrix functions

Q̄(λ) > 0, R(λ), S(λ), T (λ), ĀF (λ), B̄F (λ) , and C̄F (λ) satisfying (14), we will prove
that there must exist filter matrices (AF (λ), BF (λ), CF (λ)) and matrices Q(λ) > 0 and
W (λ) satisfying ( 8).

First (14) implies T (λ) + T T(λ)− Q̄3(λ) > 0, then we know that T (λ) is nonsingular
due to Q̄3(λ) > 0. Thus one can always find square and nonsingular matrix functions
W3(λ) and W4(λ) satisfying (22). Now introduce the matrix functions J(λ), K(λ) as
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defined in (17) and

W (λ) =

[

R(λ) S(λ)W−1
4 (λ)W3(λ)

W3(λ) W4(λ)

]

,

Q(λ) = J−T (λ)Q̄(λ)J−1(λ),
[

AF (λ) BF (λ)
CF (λ) 0

]

=

[

W−T
4 (λ) 0
0 I

] [

ĀF (λ) B̄F (λ)
C̄F (λ) 0

] [

W−1
4 (λ)W3(λ) 0

0 I

]

.

(24)
Then, we have Q(λ) > 0. Now, by some algebraic matrix manipulations, it can be
established that (14) is equivalent to
























˜Φ 0 0
√

ǫᾱJT(λ)WT(λ)Ē(λ)J(λ) 0 0

∗
˜Φ 0

√

ǫJT(λ)WT(λ)×
(αĒ(λ) + F̄ (λ))J(λ)

0 0

∗ ∗
˜Φ

JT(λ)WT(λ)×
(I + ǫĀ(λ))J(λ)

√

ǫJT(λ)WT(λ)B̄(λ) 0

∗ ∗ ∗ −JT(λ)Q(λ)J(λ) 0
√

ǫJT(λ)C̄T(λ)
∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ −I

























< 0,

(25)

where ˜Φ = JT(λ)ΥJ(λ). Now, performing a congruence transformation to (25) by
K−1(λ) yields (8), and the sufficiency proof is completed.

Proof of Second Part. If the condition in Proposition 3.2 has a set of feasible solutions
{Q̄(λ), R(λ), S(λ), T (λ), ĀF (λ), B̄F (λ), C̄F (λ)}, from the above proof we know that
the filter with a state-space realization

(

Ā(λ), B̄(λ), C̄(λ)
)

defined in (24) guarantees the
filtering error system EP in (4) to be mean-square asymptotically stable with J < 0 for
all nonzero w(t) ∈ L2 [0,∞). Now denote the operator from y(t) to zF (t) by TzF y(λ) =
(AF (λ), BF (λ), CF (λ)), then we have TzF y(λ) is equivalent to GzF y(λ) under a similarity
transformation, where

GzF y(λ)

=
(

W−1
4 (λ)W3(λ)AF (λ)W−1

3 (λ)W4(λ), W−1
4 (λ)W3(λ)BF (λ), CF (λ)W−1

3 (λ)W4(λ)
)

.

By substituting the matrices with (24) and by considering the relationship (22), we have

GzF y(λ) =
(

T−1(λ)ĀF (λ), T−1(λ)B̄F (λ), C̄F (λ)
)

.

Therefore, an admissible filter can be given by (15), and the proof is completed. 2

Proposition 3.2 is a preliminary result for solving the parameter-dependent H∞ filter-
ing problem. It casts the nonlinear matrix inequality in Lemma 3.1 into an LMI condition
by using linearization procedures, upon which desired filters can be constructed by using
the obtained matrix functions Q̄(λ), R(λ), S(λ), T (λ), ĀF (λ), B̄F (λ) , and C̄F (λ). How-
ever, this LMI condition still cannot be implemented due to it infinite-dimensional nature
in the parameter λ. Our purpose hereafter is to transform the infinite-dimensional condi-
tion in Proposition 3.2 into finite-dimensional condition that depends only on the vertex
matrices of the polytope R. Then, we have the main filtering result in the following
theorem.

Theorem 3.1 (Parameter-Dependent Stochastic H∞ Filtering) Given sys-

tem S in (1), an admissible parameter-dependent stochastic H∞ filter in the form of FP
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in (3) exists if for a sufficiently small scalar ǫ > 0, there exist matrices Ri, Si, Ti, ĀFi,

B̄Fi, C̄Fi and Q̄i =

[

Q̄1i Q̄2i

∗ Q̄3i

]

> 0, satisfying

Ψii < 0, i = 1, . . . , s, (26)

Ψij + Ψji ≤ 0, 1 ≤ i < j ≤ s, (27)

where

Ψij =

















































Φ1 Φ2 0 0 0 0
√

ǫᾱRT
i Ej 0 0 0

∗ Φ3 0 0 0 0
√

ǫᾱST
i Ej 0 0 0

∗ ∗ Φ1 Φ2 0 0

√

ǫαRT
i Ej+

B̄FiFj
0 0 0

∗ ∗ ∗ Φ3 0 0

√

ǫαST
i Ej+

B̄FiFj
0 0 0

∗ ∗ ∗ ∗ Φ1 Φ2 Φ4 Ti + ǫĀFi

√

ǫRT
i Bj+

√

ǫB̄FiDj
0

∗ ∗ ∗ ∗ ∗ Φ3 Φ5 Ti + ǫĀFi

√

ǫST
i Bj+

√

ǫB̄FiDj
0

∗ ∗ ∗ ∗ ∗ ∗ −Q̄1i −Q̄2i 0
√

ǫLT
j

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q̄3i 0 −

√

ǫC̄T
Fi

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

















































,

Φ1 = Q̄1i − RT
i − Ri, Φ2 = Q̄2i − Ti − Si, Φ3 = Q̄3i − Ti − T T

i ,

Φ4 = RT
i + ǫRT

i Aj + ǫB̄FiCj , Φ5 = ST
i + ǫST

i Aj + ǫB̄FiCj .

(28)

Moreover, under the above conditions, the matrix functions for an admissible

parameter-dependent stochastic H∞ filter FP in the form of (3) are given by

[

AF (λ) BF (λ)
CF (λ) 0

]

=





(

s
∑

i=1

λiTi

)−1

0

0 I













s
∑

i=1

λiĀFi

s
∑

i=1

λiB̄Fi

s
∑

i=1

λiC̄Fi 0









. (29)

Proof From Propositions 3.1 and 3.2, an admissible parameter-dependent
stochastic H∞ filter FP in the form of (3) exists if there exist matrix functions Q̄(λ) > 0,
R(λ), S(λ), T (λ), ĀF (λ), B̄F (λ), and C̄F (λ) satisfying (14). Now assume the above
matrix functions to be of the following form

Q̄(λ) =

s
∑

i=1

λiQ̄i =

s
∑

i=1

λi

[

Q̄1i Q̄2i

∗ Q̄3i

]

,

R(λ) =

s
∑

i=1

λiRi, S(λ) =

s
∑

i=1

λiSi, T (λ) =

s
∑

i=1

λiTi, (30)

ĀF (λ) =

s
∑

i=1

λiĀFi, B̄F (λ) =

s
∑

i=1

λiB̄Fi, C̄F (λ) =

s
∑

i=1

λiC̄Fi.
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With (30) it is not difficult to rewrite Ψ(λ) in (14) as

Ψ(λ) =

s
∑

j=1

s
∑

i=1

λiλjΨij =

s
∑

i=1

λ2
i Ψii +

s−1
∑

i=1

s
∑

j=i+1

λiλj (Ψij + Ψji) , (31)

where Ψij is defined in (28). Then, (26) and (27) guarantee Ψ(λ) < 0, and the first part
of the proof is completed.

By substituting the matrices defined in (30) into (15), we readily obtain (29) and the
proof is completed. 2

Remark 3.1 The idea behind Theorem 3.1 is to use convex combinations of vertex
matrices in the form of (30) to substitute the matrix functions in Proposition 3.2. With
the introduction of these matrices, the infinite-dimensional nonlinear matrix inequality
condition in Proposition 3.2 is cast into finite-dimensional LMI condition, which depends
only on the vertex matrices of the polytope R, and therefore can be readily checked by
using standard numerical software [10].

Remark 3.2 Note that the condition in Theorem 3.1 is an LMI not only over the
matrix variables, but also over the scalar γ. This implies that the scalar γ can be included
as an optimization variable to obtain a reduction of the attenuation level bound. Then
the minimum (in terms of the feasibility of Theorem 3.1) attenuation level of H∞ filters
can be readily found by solving the following convex optimization problem:

Minimize γ subject to (26) and (27) for sufficiently small ǫ > 0.

4 Robust Stochastic H∞ Filtering

In the robust stochastic H∞ filtering problem, by augmenting the model of S to include
the states of the filter FR, we obtain the filtering error system ER:

ER : dξ(t) =
[

Ā(λ)ξ (t) + B̄(λ)w(t)
]

dt + Ē(λ)ξ (t) dβ(t) + F̄ (λ)ξ (t) dζ(t),

e(t) = C̄(λ)ξ(t),
(32)

where

Ā(λ) =

[

A(λ) 0
BF C(λ) AF

]

, B̄(λ) =

[

B(λ)
BF D(λ)

]

, Ē(λ) =

[

E(λ) 0
0 0

]

,

F̄ (λ) =

[

0 0
BF F (λ) 0

]

, C̄(λ) =
[

L(λ) −CF

]

.

(33)

Then, the robust stochastic H∞ filtering problem to be addressed in this section can
be expressed as follows:

Problem RSHinfF (Robust Stochastic H∞ Filtering): Given system S in (1),
determine the matrices (AF , BF , CF ) of the filter FR in (2), such that the filtering error
system ER in (32) is mean-square asymptotically stable and J < 0 for all nonzero w(t) ∈
L2 [0,∞) under zero initial conditions . Filters satisfying the above conditions are called
robust stochastic H∞ filters.

In the following, we will solve the robust stochastic H∞ filtering problem. First
according to Proposition 3.1, when system S in (1) and filter FR in (2) are given, the
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filtering error system ER in (32) is mean-square asymptotically stable with J < 0 for
all nonzero w(t) ∈ L2 [0,∞) under zero initial conditions if and only if for a sufficiently
small scalar ǫ > 0, there exist matrix functions Q(λ) > 0 and W (λ) satisfying (8). It is
worth noting that if we solve the robust filter design problem by following the idea in
previous references [12, 28], we need to set the general-structured matrix W (λ) ≡ W for
the entire uncertainty domain. To reduce the conservativeness while keeping the filter
synthesis problem tractable simultaneously, here we assume W (λ) takes the following
structure:

W (λ) =

[

W1(λ) W2(λ)
W4 W3

]

.

Then, by following similar lines as in the proof of Proposition 3.2, we have the following
proposition.

Proposition 4.1 Given system S in (1), an admissible robust stochastic H∞ filter

in the form of FR in (2) exists if for a sufficiently small scalar ǫ > 0, there exist matrices

Q̄(λ) ,

[

Q̄1(λ) Q̄2(λ)
∗ Q̄3(λ)

]

> 0, R(λ), S(λ), T , ĀF , B̄F , and C̄F satisfying

∆(λ) ,

































Π̄1 Π̄2 0 0 0 0
√

ǫᾱRT(λ)E(λ) 0 0 0
∗ Π̄3 0 0 0 0

√

ǫᾱST(λ)E(λ) 0 0 0
∗ ∗ Π̄1 Π̄2 0 0 Π̄4 0 0 0
∗ ∗ ∗ Π̄3 0 0 Π̄5 0 0 0
∗ ∗ ∗ ∗ Π̄1 Π̄2 Π̄6 T (λ) + ǫĀF Π̄8 0
∗ ∗ ∗ ∗ ∗ Π̄3 Π̄7 T (λ) + ǫĀF Π̄9 0
∗ ∗ ∗ ∗ ∗ ∗ −Q̄1(λ) −Q̄2(λ) 0

√

ǫLT(λ)
∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q̄3(λ) 0 −

√

ǫC̄T
F

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I

































< 0,

(34)
where

Π̄1 = Q̄1(λ) − RT(λ) − R(λ), Π̄2 = Q̄2(λ) − T − S(λ), Π̄3 = Q̄3(λ) − T − T T,

Π̄4 =
√

ǫαRT(λ)E(λ) + B̄F F (λ), Π̄5 =
√

ǫαST(λ)E(λ) + B̄F F (λ),

Π̄6 = RT(λ) + ǫRT(λ)A(λ) + ǫB̄F C(λ), Π̄7 = ST(λ) + ǫST(λ)A(λ) + ǫB̄F C(λ),

Π̄8 =
√

ǫRT(λ)B(λ) +
√

ǫB̄F D(λ), Π̄9 =
√

ǫST(λ)B(λ) +
√

ǫB̄F D(λ).

Moreover, under the above condition, the matrices for an admissible robust stochastic

H∞ filter are given by

[

AF BF

CF 0

]

=

[

T−1 0
0 I

] [

ĀF B̄F

C̄F 0

]

. (35)

Based on Proposition 4.1, we readily have the main robust filtering result.

Theorem 4.1 (Robust Stochastic H∞ Filtering) Given system S in (1), an ad-

missible robust stochastic H∞ filter in the form of FR in (2) exists if for a sufficiently

small scalar ǫ > 0, there exist matrices Q̄i ,

[

Q̄1i Q̄2i

∗ Q̄3i

]

> 0, Ri, Si, T , ĀF , B̄F ,
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C̄F satisfying

∆ii < 0, i = 1, . . . , s, (36)

∆ij + ∆ji ≤ 0, 1 ≤ i < j ≤ s, (37)

where

∆ij =









































Λ1 Λ2 0 0 0 0
√

ǫᾱRT
i Ej 0 0 0

∗ Λ3 0 0 0 0
√

ǫᾱST
i Ej 0 0 0

∗ ∗ Λ1 Λ2 0 0
√

ǫαRT
i Ej + B̄F Fj 0 0 0

∗ ∗ ∗ Λ3 0 0
√

ǫαST
i Ej + B̄F Fj 0 0 0

∗ ∗ ∗ ∗ Λ1 Λ2 Λ4 T + ǫĀF

√

ǫRT
i Bj+

√

ǫB̄F Dj
0

∗ ∗ ∗ ∗ ∗ Λ3 Λ5 T + ǫĀF

√

ǫST
i Bj+

√

ǫB̄F Dj
0

∗ ∗ ∗ ∗ ∗ ∗ −Q̄1i −Q̄2i 0
√

ǫLT
j

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Q̄3i 0 −

√

ǫC̄T
F

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −γ2I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −I









































,

Λ1 = Q̄1i − RT
i − Ri, Λ2 = Q̄2i − T − Si, Λ3 = Q̄3i − T − T T,

Λ4 = RT
i + ǫRT

i Aj + ǫB̄F Cj , Λ5 = ST
i + ǫST

i Aj + ǫB̄F Cj .

(38)

Moreover, under the above conditions, the matrices for an admissible robust stochastic

H∞ filter in the form of (2) are given by (35).

The theorem can be proved by following similar lines as in the proof of Theorem 3.1
and thus omitted.

With Theorem 4.1, the minimum (in terms of the feasibility of Theorem 4.1) attenu-
ation level of robust stochastic H∞ filters can be readily found by solving the following
convex optimization problem:

Minimize γ subject to (36) and (37) for sufficiently small ǫ > 0.

5 Illustrative Example

Consider the following numerical example:

dx(t) =

{[

−0.6 4 + a

−4 −0.6

]

x(t) +

[

0 0
1.5 0

]

w(t)

}

dt +

[

−0.4 0.2
0.3 0.5

]

x(t)dβ(t),

y(t) =
{[

0 −1.2
]

x(t) +
[

0 1
]

w(t)
}

+
[

0.3 0.4 + 0.1a
]

x(t)dβ(t),

z(t) =
[

0 1
]

x(t),
(39)

where a represents an uncertain parameter satisfying |a| ≤ ā. This uncertain system can
be modeled with a two-vertex polytope.

First assume ā = 0.5, we solve the filtering problem for this system by several ap-
proaches described as follows:
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1. By Theorem 4.1, the obtained minimum H∞ performance of robust stochastic
filters is γ = 1.6988 for (ǫ = 0.001), and the associated matrices for filter FR in
(2) are given by

AF =

[

−7.2213 6.8684
−5.4021 −0.1494

]

, BF =

[

0.0024
−0.0066

]

, CF =
[

0.0000 −1.0000
]

.

The actual calculated H∞ performance of the filtering error system for different
a by connecting the above filter to the original system is depicted in Figure 5.1.
From this figures, we can see that the H∞ performances for the entire uncertainty
domain are below the prescribed value γ = 1.6988.

Figure 5.1: H∞ performance of robust stochastic filter for entire uncertainty domain.

Figure 5.2: H∞ performance of parameter-dependent stochastic filter for entire uncertainty
domain.
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2. By Theorem 3.1, the obtained minimum H∞ performance of parameter-dependent
stochastic filters is γ = 1.6900 for (ǫ = 0.001), and the associated matrices needed
for the calculation of (29) are given by

T1 =

[

0.6035 −0.1113
−0.1113 0.5390

]

, T2 =

[

0.6251 −0.1128
−0.1129 0.7156

]

,

ĀF1 =

[

−0.1019 2.1424
−2.0922 −0.7071

]

, ĀF2 =

[

−0.0988 2.8630
−2.7663 −0.7701

]

,

B̄F1 =

[

0.0009
−0.00331

]

, B̄F2 =

[

0.0031
−0.0054

]

,

C̄F1 =
[

0.0001 −1.0000
]

, C̄F2 =
[

0.0001 −1.0003
]

.

The actual calculated H∞ performance of the filtering error system for different a

by connecting the above filter to the original system is depicted in Figure 5.2. It
can be seen that the H∞ performances for the entire uncertainty domain are below
the prescribed value γ = 1.6900.

3. By Corollary 1 of [14], the obtained minimum H∞ performance of robust stochastic
filters is γ = 2.0472, and the associated matrices for filter FR in (2) are given

AF =

[

−0.1735 4.0691
−4.0141 −1.9794

]

, BF =

[

0.0874
−1.4642

]

, CF =
[

0.0000 1.0000
]

.

The above calculated results show that for this example, the robust filtering result
in the quadratic framework [14] is conservative than the approaches presented in this
paper. In addition, since the parameter-dependent stochastic filter design makes use of
information of the uncertain parameter, it is reasonable to obtain less conservative filter
designs than the robust filtering approach.

Finally, Table 5.1 presents a comparison of minimum H∞ performance obtained by
using Theorem 4.1, Theorem 3.1 and Corollary 1 of [14] for different cases. This table
shows again the reduced conservativeness of the filtering approaches proposed in this
paper. Notably for 1.0 ≤ ā ≤ 4 where Corollary 1 of [14] fails to find feasible solutions,
the parameter-dependent and robust approach presented here are still able to provide
desired filters.

ā = 0.5 ā = 0.8 ā = 1.0 ā = 3 ā = 4
Minumum γ by Theorem 4.1 1.6900 1.7102 1.7280 2.5071 21.5990
Minumum γ by Theorem 3.1 1.6988 1.7189 1.7399 2.5293 22.5724

Minumum γ by [14] 2.0472 6.0166 infeasible infeasible infeasible

Table 5.1: Minimum H∞ performance for different cases.

6 Conclusions

The problem of H∞ filtering for continuous-time stochastic systems with parameter un-
certainties residing in a polytope has been investigated in this paper. Two approaches,
namely robust stochastic H∞ filtering and parameter-dependent stochastic H∞ filtering,
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have been proposed according to the online availability of the information on the uncer-
tain parameters. Sufficient conditions are derived based on an improved bounded real
lemma for stochastic systems and formulated in terms of linear matrix inequalities, upon
which desired filters can be obtained by solving convex optimization problems. Since
the filter designs make full use of the parameter-dependent stability idea, the obtained
results are less conservative than the existing one in the quadratic framework, which has
been illustrated via a numerical example.
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Abstract: The logic-dynamical hybrid system given by a set of subsystems
which are linear differential-difference equations with constant coefficients and
constant delay is investigated in the paper. The estimations of disturbances
of such system are obtained. We consider the cases of stable and unstable
subsystems. Besides the estimations of solutions of hybrid system given by a
set of scalar subsystems are obtained.
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1 Introduction

Nowadays the disturbances in hybrid systems dynamic is an actual research problem [2,9].
Since in different branches such as medicine, ecology, construction of control systems,
the state at a given moment in time essentially depends on the previous history, more
adequate instrument for researching the dynamic of separate subsystems is formed by
equations with delay [4-6].

Let the logic-dynamical system be given by a set of subsystems which are linear
differential-difference equations with constant coefficients and constant delay

ẋ(t) = Aix(t) + Bix(t − τ), i = 1, n, x(t) ∈ Rn, t ≥ 0. (1)
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Each of these subsystems describes the dynamics on a fixed finite time interval ti−1 ≤

t < ti, i = 1, N, t0 = 0. Subsystems can be stable or unstable. We suppose, the
initial disturbance is in δ-vicinity of the origin. It is required to estimate the size of the
deviation of solutions x(t) of the logic-dynamical system (1) from the origin at the final
moment t = tN . We consider finite time intervals, and at switching times coordinates
have no discontinuity, i.e.

lim
s→+0

x(ti − s) = lim
s→+0

x(ti + s), i = 1, N − 1, (2)

and on separate time intervals the subsystems are systems of linear differential-difference
equations such that, by virtue of a continuity, all solutions which start from δ-vicinity
do not leave ε(δ)-vicinity. On the contrary, for any ε > 0 there exists δ(ε) > 0, such that
|x(tN )| < ε, if ‖x(0)‖τ < δ(ε). In the paper the mentioned values are calculated. Special
attention is given to the case of unstable subsystems. Here and further the following
vector and matrix norms are used

|A| =
{

λmax(A
T A

}1/2
,

|x(t)| =

{

n
∑

i=1

x2
i (t)

}1/2

,

‖x(t)‖τ = max
−τ≤s≤0

{|x(s + t)|} ,

‖x(t)‖τ,β =

{ 0
∫

−τ

eβs
|x(t + s)|

2
ds

}1/2

,

λmax(·), λmin(·) are the largest and smallest eigenvalues of the corresponding symmetric,
positive definite matrices.

For the derivation of estimations the method of Lyapunov-Krasovsky functionals [7–9]
is used.

Research of such type of logic-dynamic systems has been carried out earlier. In [10]
the logic-dynamical system consisting of linear differential equations subsystems was
examined. The method of quadratic Lyapunov functions was used. The Lyapunov’s
functions were built as non-autonomous quadratic forms V (x, t) = xT H(t)x, H(t) =

e−tAT

e−tA by using a first integral. This kind of Lyapunov function allows to derive
the most exact estimations of solutions, as level surfaces Vi(x, t) = αi, i = 1, N − 1
of Lyapunov functions Vi(x, t), i = 1, N − 1, completely consisting of integral curves.
However, the construction of such functions is connected with the presence of a matrix
exponential etA, i.e. with the presence of a fundamental matrix of solutions. That is a
strong condition.

In [11] it has been proposed to use autonomous Lyapunov functions with symmetric,
positive definite matrices Hi, i = 1, N − 1 which are calculated using a solution of the
matrix Lyapunov equations

AT
i Hi + HiAi = Ci

for i = 1, N − 1. However this requires the asymptotic stability of matrices Ai, i =
1, N − 1 . Finally, in [12] estimations of disturbances of logic-dynamical system (1)
without the requirement of asymptotic stability of matrices Ai, i = 1, N − 1 has been
obtained.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(2) (2007) 169–186 171

2 Estimations of solutions of stable subsystems

We’ll first obtain some auxiliary results. We investigate the behavior of the solution x(t)
of a linear stationary subsystem with delay

ẋ(t) = Ax(t) + Bx(t − τ), (3)

determined on an interval t0 ≤ t ≤ t1. For obtaining an estimation of solutions we use a
functional of the form

V [x(t), t] = eγt

{

xT (t)Hx(t) +

0
∫

−τ

eβsxT (t + s)Gx(t + s)ds

}

. (4)

Let’s denote

ϕ11(H) =
λmax(H)

λmin(H)
, ϕ12(G, H) =

λmax(G)

λmin(H)
,

ϕ21(G, H) =
λmax(H)

λmin(G)
, ϕ22(G) =

λmax(G)

λmin(G)
,

S[G, H ] =

[

−AT H − HA − G −HB

−BT H G

]

.

(5)

The following statement holds.

Theorem 2.1 Let there exist positive definite matrices G and H for which the matrix

S[G, H ] is also positive definite. Then the system (3) is asymptotic stable and for its

solutions x(t) it follows the top exponential estimations of convergence hold:

|x(t)| ≤
[

√

ϕ11(H) |x(0)| +
√

ϕ12(G, H) ‖x(0)‖τ,β

]

exp

{

−

1

2
ςt

}

, t ≥ 0, (6)

and

‖x(t)‖τ,β ≤

[

√

ϕ21 (G, H) |x(0)| +
√

ϕ22(G) ‖x(0)‖τ,β

]

exp

{

−

1

2
ςt

}

, t ≥ 0 (7)

for

ς(β, γ) = min

{

λmin(S[G, H ])

λmax(H)
, β

λmin(G)

λmax(G)
+ γ

[

1 −

λmin(G)

λmax(G)

]}

. (8)

The value β ≥ 0 can be arbitrary for

λmin(S[G, H ]) ≥ λmax(G).

And

β ≤

1

τ
ln

{

λmax(G)

λmax(G) − λmin(S[G, H ])

}

,

if

λmin(S[G, H ]) < λmax(H).

The value γ satisfies a condition γ ≤ β.
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Proof For the proof we use the Lyapunov-Krasovsky functional of the form (4) with
positive definite matrices G and H . It satisfies the following bilateral estimations:

eγt
{

λmin(H)|x(t)|2 + λmin(G) ‖x(t)‖
2
τ,β

}

≤ V [x(t), t]

≤ eγt
{

λmax(H)|x(t)|2 + λmax(G) ‖x(t)‖
2
τ,β

} (9)

We find an estimation for its derivative in force of system (3). We make a substitution
t + s = ξ. Then the functional transforms to

V [x(t), t] = eγt

{

xT (t)Hx(t) +

t
∫

t−τ

e−β(t−ξ)xT (ξ)Gx(ξ) dξ

}

. (10)

We calculate a full derivative of the transformed functional (10) along solutions x(t) of
system (3). We obtain

d

dt
V [x(t), t] = γeγt

{

xT (t)Hx(t) +

t
∫

t−τ

e−β(t−ξ)xT (ξ)Gx(ξ)dξ

}

+ eγt
{

[Ax(t) + Bx(t − τ)]
T

Hx(t) + xT (t)H [Ax(t) + Bx(t − τ)]

+ xT (t)Gx(t) − e−βτxT (t − τ)Gx(t − τ)
}

− eγt

{

β

t
∫

t−τ

e−β(t−ξ)xT (ξ)Gx(ξ)dξ

}

.

We transform the obtained expression as follows:

d

dt
V [x(t), t] = −eγt

{

(β − γ)

t
∫

t−τ

e−β(t−ξ)xT (ξ)Gx(ξ)dξ

}

− eγt
(

xT (t), xT (t − τ)
)

[

−AT H − HA − G −HB

−BT H G

] (

x(t)
x(t − τ)

)

+ γeγtxT (t)Hx(t) + eγt
(

1 − e−βτ
)

xT (t − τ)Gx(t − τ).

(11)

We suppose, as follows from the conditions of Theorem 1, there are positive definite
matrices G and H for which the matrix S[G, H ] is also positive definite and β ≥ γ ≥ 0.
Then we obtain

d

dt
V [x(t), t] ≤ −eγtλmin

(

S[G, H ]
)(

|x(t)|2 + |x(t − τ)|2
)

+ eγtγλmax(H)|x(t)|2 + eγt
(

1 − e−βτ
)

λmax(G) |x(t − τ)|
2

− eγt(β − γ)λmin(G) ‖x(t)‖
2
τ,β .

Let’s transform the obtained expression as follows

d

dt
V [x(t), t] ≤ −eγt

{λmin(S[G, H ]) − γλmax(H)}|x(t)|2

− eγt
{

λmin(S[G, H ]) −
(

1 − e−βτ
)

λmax(G)
}

|x(t − τ)|2

− eγt(β − γ)λmin(G) ‖x(t)‖
2
τ,β .

(12)
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If the parameters of system and functional are

λmin(S[G, H ]) ≥ λmax(G)

then from inequality (12) it follows, that

d

dt
V [x(t), t] ≤ −eγt

{λmin(S[G, H ]) − γλmax(H)} |x(t)|2 − eγt(β − γ)λmin(G) ‖x(t)‖
2
τ,β

(13)
for any β ≥ 0. If

λmin(S[G, H ]) < λmax(G),

then inequality (13) will be used for

0 ≤ β <
1

τ
ln

[

λmax(G)

λmax(G) − λmin(S[G, H ])

]

.

We transform the right part of the inequality of quadratic forms (9) as

−eγtλmax(H)|x(t)|2 − eγtλmax(G) ‖x(t)‖
2
τ,β ≤ −V [x(t), t] . (14)

Let’s consider two cases.
1. Let’s transform the inequality (14) as

−eγt
|x(t)|2 ≤ −

1

λmax(H)
V [x(t), t] + eγt λmax(G)

λmax(H)
‖x(t)‖2

τ,β

and we substitute it in the first part of the inequalities (13). We obtain

d

dt
V [x(t), t] ≤ −

λmin(S[G, H ]) − γλmax(H)

λmax(H)
V [x(t, t)]

− eγt

{

(β − γ)λmin(G) − [λmin(S[G, H ]) − γλmax(H)]
λmax(G)

λmax(H)

}

‖x(t)‖2
τ,β .

If the parameters are

(β − γ)λmin(G) ≥ [λmin(S[G, H ]) − γλmax(H)]
λmax(G)

λmax(H)
, (15)

then
d

dt
V [x(t), t] ≤ −

λmin(S[G, H ]) − γλmax(H)

λmax(H)
V [x(t), t].

Solving the obtained differential inequality, we get

V [x(t), t] ≤ V [x(0), 0] e−αt, α =
λmin(S[G, H ]) − γλmax(H)

λmax(H)
, t ≥ 0. (16)

From here

ζ = α + γ =
λmin(S[G, H ])

λmax(H)
.

2. We transform inequality (14) to the following form

−eγt
‖x(t)‖

2
τ,β ≤ −

1

λmax(G)
V [x(t), t] + eγt λmax(H)

λmax(G)
|x(t)|2
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and again we substitute it in the second part of the inequalities (13). We obtain

d

dt
V [x(t), t] ≤ −(β − γ)

λmin(G)

λmax(G)
V [x(t), t]

− eγt

{

λmin(S[G, H ]) − γλmax(H) − (β − γ)λmin(G)
λmax(H)

λmax(G)

}

|x(t)|2.

And if parameters are such that

λmin(S[G, H ]) − γλmax(H) − (β − γ)λmin(G)
λmax(H)

λmax(G)
> 0, (17)

then
d

dt
V [x(t)] ≤ −(β − γ)

λmin(G)

λmax(G)
V [x(t)] .

Having integrated the obtained expression, we get

V [x(t), t] ≤ V [x(0), 0] e−αt, α = (β − γ)
λmin(G)

λmax(G)
, t ≥ 0. (18)

We get

ζ = α + γ = β
λmin(G)

λmax(G)
+ γ

[

1 −

λmin(G)

λmax(G)

]

.

For obtaining the required result we return to bilateral estimations of Lyapunov–
Krasovsky functional (9). Using expressions (16), (18), we write down

eγt
{

λmin(H)|x(t)|2 + λmin(G) ‖x(t)‖2
τ,β

}

≤ V [x(t), t] ≤ V [x(0), 0] e−αt

≤ e−αt
{

λmax(H) |x(0)|
2

+ λmax(G) ‖x(0)‖
2
τ,β

}

.

It is possible to obtain two estimations. First, we get

|x(t)|2 ≤

[

λmax(H)

λmin(H)
|x(0)|

2
+

λmax(G)

λmin(H)
‖x(0)‖

2
τ,β

]

e−(α+γ)t.

And, using denotations ϕ11(H), ϕ12(G, H), we obtain

|x(t)| ≤
[

√

ϕ11(H) |x(0)| +
√

ϕ12(G, H) ‖x(0)‖τ,β

]

exp

{

−

1

2
(α + γ)t

}

, t ≥ 0.

Further it is possible to write down

‖x(t)‖2
τ,β ≤

[

λmax(H)

λmin(G)
|x(0)|2 +

λmax(G)

λmin(G)
‖x(0)‖2

τ,β

]

e−(α+γ)t.

And, using designations ϕ21(G, H), ϕ22(G), we obtain an inequality

‖x(t)‖τ,β ≤

[

√

ϕ21 (G, H) |x(0)| +
√

ϕ22(G) ‖x(0)‖τ,β

]

exp

{

−

1

2
ςt

}

, t ≥ 0.

As follows from consideration of both cases we have

ς =
λmin(S[G, H ])

λmax(H)
for β

λmin(G)

λmax(G)
+ γ

[

1 −

λmin(G)

λmax(G)

]

≥

λmin(S[G, H ])

λmax(H)
(19)

ς =
βλmin(G)

λmax(G)
+ γ

[

1 −

λmin(G)

λmax(G)

]

for β
λmin(G)

λmax(G)
+ γ

[

1 −

λmin(G)

λmax(G)

]

<
λmin(S[G, H ])

λmaxH)
.

(20)

Uniting these expressions, we obtain the statement of Theorem 2.1. 2
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3 Estimations of solutions of unstable subsystems

We consider a case where it is not possible to find matrices G and H for which the matrix
S[G, H ] is positive definite. Let’s denote

S[G, H, γ] =

[

−AT H − HA − γH − G −HB

−BT H G

]

. (21)

Obviously, due to the choice of a scalar value γ < 0 the matrix S[G, H, γ] can be made
positive definite.

Lemma 3.1 Let the matrices G, H be positive definite and let the following inequality

hold

γ <
λmin

[

−AT H − HA − G − HBG−1BT H
]

λmax(H)
. (22)

Then the matrix S[G, H, γ] is also positive definite.

Proof We introduce a vector zT (t, τ) =
(

xT (t), xT (t − τ)
)

. The condition of positive
definiteness of matrix S[G, H, γ] is equivalent to positiveness of the minimal eigenvalue

λmin [S (G, H)] = min
|z|=1

{

zT (t, τ)S[G, H, γ]z(t, τ)
}

> 0,

or to the condition
min

x(t−τ)

{

zT (t, τ)S[G, H, γ]z(t, τ)
}

> 0

at an arbitrary x(t) ∈ Rn. In braces the quadratic form is written down

zT (t, τ)S[G, H,γ]z(t, τ) = xT (t)
[

−AT H − HA − γH − G
]

x(t)

− xT (t)HBx(t − τ) − xT (t − τ)BT Hx(t) + xT (t − τ)Gx(t − τ).

The necessary and sufficient condition for a minimum on a variable x(t − τ) is equality
to zero of a partial derivative on x(t − τ) and positive definiteness of a matrix G, i.e.

∂

∂x(t − τ)

{

zT (t, τ)S[G, H, γ]z(t, τ)
}

= 0.

Calculating the derivative, we get

−BT Hx(t) + Gx(t − τ) = 0.

As the matrix G is positive definite, it is non special. From this it follows that x(t− τ) =
G−1BT Hx(t). We calculate the value of the quadratic form in the obtained point x(t−τ)

zT (t, τ)S[G, H, γ]z (t, τ) = xT (t)
[

−AT H − HA − γH − G − HBG−1BT H
]

x(t).

From this we obtain that the matrix S[G, H, γ] is positive definite, if there are positive
definite matrices G and

Q[G, H, γ] = −AT H − HA − γH − G − HBG−1BT H.

This expression is used for

λmin (Q[G, H, γ]) > λmin

[

−AT H − HA − G − HBG−1BT H
]

− γλmax(H) > 0.

From this we obtain inequality (22), i.e. the statement of the Lemma. 2

Using the proved Lemma, we obtain the following statement.
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Theorem 3.1 Let there not be any positive definite matrices G, H for which the

matrix S[G, H ] is also positive definite. If the value γ is chosen according to an inequality

(22) and β ≥ γ then for the solutions x(t) of system (3) there are truly top exponential

estimations of convergence (6), (7)

|x(t)| ≤
[

√

ϕ11(H) |x(0)| +
√

ϕ12(G, H) ‖x(0)‖τ,β

]

exp

{

−

1

2
ςt

}

, t ≥ 0,

‖x(t)‖τ,β ≤

[

√

ϕ21 (G, H) |x(0)| +
√

ϕ22(G) ‖x(0)‖τ,β

]

exp

{

−

1

2
ςt

}

, t ≥ 0,

and

ς(β, γ) = min

{

λmin(S[G, H ])

λmax(H)
+ γ, β

λmin(G)

λmax(G)
+ γ

[

1 −

λmin(G)

λmax(G)

]}

. (23)

The value β can be arbitrary if

λmin (S[G, H, γ]) ≥ λmax(G)

and

β ≤

1

τ
ln

{

λmax(G)

λmax(G) − λmin (S[G, H, γ])

}

if

λmin (S[G, H, γ]) < λmax(H).

Proof For the proof of the statements of Theorem 3.1 again we use a Lyapunov–
Krasovsky functional of the form (4) with positive definite matrices G and H . We write
the full derivative of the functional (10) along solutions x(t) of system (3) as

d

dt
V [x(t), t] = −eγt

{

(β − γ)

t
∫

t−τ

e−β(t−ξ)xT (ξ)Gx(ξ) dξ

}

− eγt(xT (t), xT (t − τ))

[

−AT H − HA − γH − G −HB

−BT H G

](

x(t)
x(t − τ)

)

+ eγt(1 − e−βτ )xT (t − τ)Gx(t − τ).

Let the matrix S[G, H ] described in (4), be nonpositive definite. Then, as follows from
the Lemma, if γ satisfies conditions (22), then the matrix S[G, H, γ] will be positive
definite and the following inequality holds

d

dt
V [x(t), t] ≤ −eγtλmin (S[G, H, γ])

(

|x(t)|2 + |x(t − τ)|2
)

+ eγt
(

1 − e−βτ
)

λmax(G) |x(t − τ)|
2
− eγt(β − γ)λmin(G) ‖x(t)‖

2
τ,β .

Let’s transform the obtained expression as follows

d

dt
V [x(t), t] ≤ −eγtλmin (S[G, H, γ]) |x(t)|2

− eγt
{

λmin (S[G, H, γ]) −
(

1 − e−βτ
)

λmax(G)
}

|x(t − τ)|2

− eγt(β − γ)λmin(G) ‖x(t)‖
2
τ,β .

(24)
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If the parameters of system and functional are such that

λmin (S[G, H, γ]) ≥ λmax(G),

then

d

dt
V [x(t), t] ≤ −eγtλmin (S[G, H, γ]) |x(t)|2 − eγt(β − γ)λmin(G) ‖x(t)‖

2
τ,β (25)

for arbitrary β ≥ 0. If

λmin (S[G, H, γ]) < λmax(G),

then inequality (25) is used for

0 ≤ β <
1

τ
ln

[

λmax(G)

λmax(G) − λmin (S[G, H, γ])

]

.

We transform the right part of inequality of quadratic forms (9) to the form of expression
(14)

−eγtλmax(H)|x(t)|2 − eγtλmax(G) ‖x(t)‖
2
τ,β ≤ −V [x(t), t]

and we consider two cases.
1. Let’s transform the right part of the inequality (14) as

−eγt
|x(t)|2 ≤ −

1

λmax(H)
V [x(t), t] + eγt λmax(G)

λmax(H)
‖x(t)‖

2
τ,β

and we substitute it in the first part of inequalities (25). We get

d

dt
V [x(t), t] ≤ −

λmin (S[G, H, γ])

λmax(H)
V [x(t, t)]

− eγt

{

(β − γ)λmin(G) − [λmin (S[G, H ], γ)]
λmax(G)

λmax(H)

}

‖x(t)‖2
τ,β .

(26)

If the parameters are such that

(β − γ)λmin(G) ≥ λmin (S[G, H, γ])
λmax(G)

λmax(H)
, (27)

then
d

dt
V [x(t), t] ≤ −

λmin (S[G, H, γ])

λmax(H)
V [x(t), t].

Solving the obtained differential inequality, we get

V [x(t), t] ≤ V [x(0), 0] e−αt, α =
λmin (S[G, H, γ])

λmax(H)
, t ≥ 0. (28)

2. Further we transform inequality (14) as follows:

−eγt
‖x(t)‖

2
τ,β ≤ −

1

λmax(G)
V [x(t), t] + eγt λmax(H)

λmax(G)
|x(t)|2,
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and we also substitute it in the second part of inequality (27). We get

d

dt
V [x(t), t] ≤ −(β − γ)

λmin(G)

λmax(G)
V [x(t), t]

− eγt

{

λmin (S[G, H, γ]) − (β − γ)λmin(G)
λmax(H)

λmax(G)

}

|x(t)|2.

And if parameters are

λmin (S[G, H, γ]) − (β − γ)λmin(G)
λmax(H)

λmax(G)
> 0

then
d

dt
V [x(t)] ≤ −(β − γ)

λmin(G)

λmax(G)
V [x(t)] .

Having integrated it, we obtain

V [x(t), t] ≤ V [x(0), 0] e−αt, α = (β − γ)
λmin(G)

λmax(G)
, t ≥ 0. (29)

Let’s return to bilateral estimations of Lyapunov–Krasovsky functional (9). Using ex-
pressions (28), (29), we obtain

eγt
{

λmin(H)|x(t)|2 + λmin(G) ‖x(t)‖
2
τ,β

}

≤ V [x(t), t] ≤ V [x(0), 0] e−αt

≤ e−αt
{

λmax(H) |x(0)|
2

+ κmax(G) ‖x(0)‖
2
τ,β

}

.

From this we obtain

|x(t)| ≤
[

√

ϕ11(H) |x(0)| +
√

ϕ12(G, H) ‖x(0)‖τ,β

]

exp

{

−

1

2
(α + γ)t

}

, t ≥ 0,

‖x(t)‖τ,β ≤

[

√

ϕ21 (G, H) |x(0)| +
√

ϕ22(G) ‖x(0)‖τ,β

]

exp

{

−

1

2
(α + γ)t

}

, t ≥ 0.

From the consideration of both cases we get the following expressions

α + γ =



















































λmin (S[G, H, γ])

λmax(H)
+ γ, for β

λmin(G)

λmax(G)
+ γ

[

1 −

λmin(G)

λmax(G)

]

≥

λmin (S[G, H, γ])

λmax(H)
,

βλmin(G)

λmax(G)
, for β

λmin(G)

λmax(G)
+ γ

[

1 −

λmin(G)

λmax(G)

]

<

λmin (S[G, H, γ])

λmaxH)
.

Uniting these expressions, we obtain the statement of Theorem 3.1. 2

Remark 3.1 As for the value ‖x(t)‖
2
τ,β the top estimations hold

‖x(t)‖2
τ,β =

0
∫

−τ

eβs
|x(t + s)| ds ≤ max

−τ≤s≤0

{

|x (t + s)|2
}

0
∫

−τ

eβsds

≤

1

β

(

1 − e−βτ
)

‖x(t)‖
2
τ ≤ τ ‖x(t)‖τ
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where
‖x(t)‖τ = max

−τ≤s≤0
{|x(t + s)|} ,

then it is possible to transform the inequality (6) to the following

|x(t)| ≤
[

√

ϕ11(H) |x(0)| +
√

ϕ12(G, H) ‖x(0)‖τ

]

e−
1

2
ςt, t ≥ 0,

or, even,

|x(t)| ≤
[

√

ϕ11(H) +
√

ϕ12(G, H)
]

‖x(0)‖τ e−
1

2
ςt, t ≥ 0. (30)

Remark 3.2 As estimations of majorant type, they contain two free parameters β

and γ, and in the second theorem γ can be negative. If put to the task of finding
an “optimum estimation” for a given class of functionals it is possible to calculate the
parameters β and γ precisely.

4 Estimations of solutions of scalar subsystems

Let’s consider the scalar linear differential equation with constant delay

ẋ(t) = −ax(t) + bx(t − τ), a > 0, 0 ≤ t ≤ t1, τ > 0. (31)

For the equation (31) the Lyapunov–Krasovsky functional (10) looks like

V [x(t), t] = eγt

{

hx2(t) + g

0
∫

−τ

eβsx2(t + s) ds

}

, (32)

where h > 0, g > 0 are positive constants. We obtain estimations of the divergence of
disturbances on a finite time interval. As h > 0, g > 0 are scalar values then

λmin(H) = λmax(H) = h, λmin(G) = λmax(G) = g.

For the full derivative of functional (32) along solutions of the equation (31) the equality
holds

d

dt
V [x(t), t] = γeγt

{

hx2(t) + g

t
∫

t−τ

e−β(t−ξ)x2(ξ) dξ

}

+ eγt
{

2hx(t) [−ax(t) + bx(t − τ)] + gx2(t) − ge−βτx2(t − τ)
}

− eγt

{

βg

t
∫

t−τ

e−β(t−ξ)x2(ξ)dξ

}

.

Let’s transform it similarly to the form of (11)

d

dt
V [x(t), t] = −eγt

{

(β − γ)g

t
∫

t−τ

e−β(t−ξ)x2(ξ)dξ

}

− eγt (x(t), x(t − τ))

[

2ah− g −hb

−hb g

] (

x(t)
x(t − τ)

)

+ eγtγhx2(t) + eγt
(

1 − e−βτ
)

gx2(t − τ).

(33)
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4.1 Derivation of estimations of disturbances in the case of stable equation

Let’s find h > 0, g > 0 from the condition of “maximal” positive definiteness of the
matrix

S[g, h] =

[

2ah − g −hb

−hb g

]

.

If the parameters of equation (31) and the Lyapunov–Krasovsky functional (32) are

g (2ah− g) − h2b2 > 0,

as follows from Silvester criterion, the matrix S[g, h] is positive definite. As h > 0, g > 0,
then, taking into account uniformity, we denote h = 1 and we transform the inequality
to

g (2a − g) − b2 > 0.

Function F (g) = g(2a − g) − b2 with respect to the variable g represents a parabola
with the branches directed downwards. And it reaches the extreme value at g = a.
Thus “maximal positive definiteness” of matrixes S[g, h] is reached at g = a. And the
Lyapunov – Krasovsky functional (32) is chosen as

V [x(t), t] = eγt

{

x2(t) + a

t
∫

t−τ

e−β(t−ξ)x2(ξ)dξ

}

. (34)

In this case a matrix S[g, h] looks like

S[g, h] =

[

a −b

−b a

]

. (35)

Let’s transform the expression for a full derivative (33) in view of h = 1, g = a to the
form similar to (12)

d

dt
V [x(t), t] ≤ −eγt

{λmin (S[g, h]) − γ} |x(t)|2

− eγt
{

λmin (S[g, h]) −
(

1 − e−βτ
)

a
}

|x(t − τ)|
2

− eγt(β − γ)a ‖x(t)‖
2
τ,β

If
λmin (S[g, h]) = a − |b|, λmin (S[g, h]) −

(

1 − e−βτ
)

a = e−βτa − |b|,

then

β <
1

τ
ln

a

|b|
. (36)

Then for a full derivative the inequality such as (13) becomes

d

dt
V [x(t), t] ≤ −eγt

{a − |b| − γ} |x(t)|2 − eγt(β − γ)a ‖x(t)‖
2
τ,β . (37)

It is easy to see that for the functional (33) the following inequality holds:

−eγt
|x(t)|2 − eγta ‖x(t)‖2

τ,β ≤ −V [x(t), t]. (38)
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a) We transform (38) to

−eγt
|x(t)|2 ≤ −V [x(t), t] + eγta ‖x(t)‖

2
τ,β . (39)

Also we substitute it in the first part of (37). We obtain

d

dt
V [x(t), t] ≤ − (a − |b| − γ)V [x(t), t] − eγt [(β − γ)a − (a − |b| − γ) a] ‖x(t)‖

2
τ,β .

And, if for the parameters β > a − |b| holds then

d

dt
V [x(t), t] ≤ −(a − |b| − γ)V [x(t), t].

And from this
V [x(t), t] ≤ V [x(0), 0] e−(a−|b|−γ)t, t ≥ 0. (40)

b) We transform (38) to

eγt
‖x(t)‖

2
τ,β ≤ −

1

a
V [x(t), t] + eγt 1

a
|x(t)|2. (41)

Also we substitute it in the second part of (37). We obtain

d

dt
V [x(t), t] ≤ −(β − γ)V [x(t), t] + (β − a + |b|) ‖x(t)‖2

τ,β .

And, if β ≤ a − |b|, then

d

dt
V [x(t), t] ≤ −(β − γ)V [x(t), t].

We get
V [x(t), t] ≤ V [x(0), 0] e−(β−γ)t, t ≥ 0. (42)

Uniting inequalities (40), (41), we obtain

V [x(t), t] ≤ V [x(0), 0] e−αt, t ≥ 0 (43)

if

α =

{

a − |b| − γ for β > a − |b|,

β − γ for β ≤ a − |b|.

Let’s transform the inequality (43) as

eγt
|x(t)|2 + eγta ‖x(t)‖

2
τ,β ≤

[

|x(0)|
2

+ a ‖x(0)‖
2
τ,β

]

e−αt, t ≥ 0.

We get

|x(t)| ≤
√

|x(0)|2 + a ‖x(0)‖2
τ,β e−

1

2
(α+γ)t,

‖x(0)‖
≤
τ,β

√

1

a
|x(0)|

2
+ ‖x(0)‖

2
τ,β e−

1

2
(α+γ)t, t ≥ 0.

Let’s denote
ς = min t{a − |b|, β}.

As the value β is chosen according to (36), finally the following most exact estimation of
convergence is obtained.
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Proposition 4.1 Let the condition a > |b| be satisfied. Then the equation (31) is

asymptotically stable and for its solutions the exponential estimation of convergence is

valid

|x(t)| ≤
√

|x(0)|
2

+ a ‖x(0)‖
2
τ,β e−

1

2
ςt, ‖x(0)‖

≤
τ,β

√

1

a
|x(0)|

2
+ ‖x(0)‖

2
τ,β e−

1

2
ςt, t ≥ 0,

for

ς = min

{

a − |b|,
1

τ
ln

a

|b|

}

.

4.2 Derivation of estimations of disturbances in the case of unstable equation

Let’s transform the expression for a full functional (34) derivative to

d

dt
V [x(t), t] = −eγt

{

(β − γ)g

t
∫

t−τ

e−β(t−ξ)x2(ξ)dξ

}

− eγt (x(t), x(t − τ))

[

2a − g − γh −hb

−hb g

](

x(t)
x(t − τ)

)

+ eγt
(

1 − e−βτ
)

gx2(t − τ).

(44)

Similarly to the first case, we denote h = 1, g = a. Then

S [g, h, γ] =

[

a − γ −b

−b a

]

, λmin (S [g, h, γ]) = a −

1

2
γ −

√

b2 +
1

4
γ2. (45)

Let’s suppose, that a < |b|, i.e. the equation is unstable. Then if

γ <
a2

− b2

a
, (46)

the matrix S [g, h.γ] is positive definite, i.e. λmin (S [g, h, γ]) > 0 and expression for a full
functional (34) derivative can be written down as

d

dt
V [x(t), t] ≤ −eγtλmin (S [g, h, γ]) |x(t)|2

− eγt
{

λmin (S [g, h, γ]) −
(

1 − e−βτ
)

a
}

|x(t − τ)|
2
− eγt(β − γ)a ‖x(t)‖

2
τ,β .

As the value

λmin (S [g, h, γ]) − a = −

1

2
γ −

√

b2 +
1

4
γ2 < 0

is always negative, then if

β <
1

τ
ln

a

1
2γ +

√

b2 + 1
4γ2

(47)

it yields

d

dt
V [x(t), t] ≤ −eγtλmin (S [g, h, γ]) |x(t)|2 − eγt(β − γ)a ‖x(t)‖

2
τ,β . (48)
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1) We substitute inequality (39) in the first part of (48). We obtain

d

dt
V [x(t), t] ≤ −λmin (S [g, h, γ])V [x(t), t] + eγt

{aλmin (S [g, h, γ]) − (β − γ)a} ‖x(t)‖
2
τ,β .

And, if inequality
λmin (S [g, h, γ]) < β − γ (49)

holds, then
d

dt
V [x(t), t] ≤ −λmin (S [g, h, γ])V [x(t), t]. (50)

From this, we have

V [x(t), t] ≤ V [x(0), 0] e−αt, α = a −

1

2
γ −

√

b2 +
1

4
γ2, t ≥ 0. (51)

2) We substitute an inequality (41) in the second part of (48). We obtain

d

dt
V [x(t), t] ≤ −(β − γ)V [x(t), t] + eγt

{−λmin (S [g, h, γ]) + (β − λ)} |x(t)|2

and, if
λmin (S [g, h, γ]) ≥ β − γ, (52)

then
d

dt
V [x(t), t] ≤ −(β − γ)V [x(t), t]. (53)

We get
V [x(t), t] ≤ V [x(0), 0] e−αt, α = β − γ, t ≥ 0. (54)

Uniting expressions (51), (54) connected by conditions (49), (52) and having substituted
instead of λmin(S[g, h, γ]) its value, we obtain

V [x(t), t] ≤ V [x(0), 0] e−αt, t ≥ 0,

if

α =















a −

1

2
γ −

√

b2 +
1

4
γ2 for a −

1

2
γ −

√

b2 +
1

4
γ2 < β − γ,

β − γ, for a −

1

2
γ −

√

b2 +
1

4
γ2

≥ β − γ.

Let’s denote α + γ = ς, and we obtain

ς(β, γ) =







a + 1
2γ −

√

b2 + 1
4γ2 for a −

√

b2 + 1
4γ2 < β;

β for a −

√

b2 + 1
4γ2

≥ β.

As the values β and γ satisfy the expressions

β <
1

2
ln

a

1
2γ +

√

b2 + 1
4γ2

, γ <
a2

− b2

a
,

the following result holds.
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Proposition 4.2 Let the condition a < |b| be satisfied. Then the equation (31) is

unstable and for its solutions the following exponential estimation holds

|x(t)| ≤
√

|x(0)|
2

+ a ‖x(0)‖
2
τ,βe−

1

2
ςt, ‖x(0)‖

≤
τ,β

√

1

a
|x(0)|

2
+ ‖x(0)‖

2
τ,βe−

1

2
ςt, t ≥ 0,

for

ς =
a2

− b2

a
.

5 Estimations of solutions of hybrid systems

In the previous sections majorant estimations of solutions of stable and unstable subsys-
tems were separately obtained. Now we shall consider whole hybrid system (1). On each
of intervals ti−1 ≤ t < ti, i = 1, N let’s select Lyapunov–Krasovsky functional of the
form (4) with positive definite matrices Hi, Gi, i = 1, N . If there are positive definite
matrices Hi, Gi, i ∈ I, such that matrices

Si [Gi, Hi] =

[

−AT
i Hi − HiAi − Gi −HiBi

−BT
i Hi Gi

]

, i ∈ I

are positive definite, then we designate

Ni =
[

√

ϕ11 (Hi) +
√

ϕ12 (Gi, Hi)
]

exp {ςi (βi, γi) τ} ,

where the value βi > 0 can be arbitrary at

λmin (S [Gi, Hi]) ≥ λmax(Gi)

and

βi ≤
1

τ
ln

{

λmax(Gi)

λmax(Gi) − λmin (S [Gi, Hi])

}

,

if λmin (S [Gi, Hi]) < λmax (Hi). The value γ satisfies the condition γ ≤ β. If such
matrices Hi, Gi , j ∈ J do not exist, then we assume

γj <
λmin

[

−AT
j Hj − HjAj − Gj − HjBjG

−1
j BT

j Hj

]

λmax(Hj)
,

and we denote

S [Gj , Hj , γj] =

[

−AT
j Hj − HjAj − γjHj − Gj −HjBj

−BT
j Hj Gj

]

,

Nj =

[

√

ϕ11 (Hj) +
√

ϕ12 (Gj , Hj)

]

exp {ςj (βj , γj)} ,

for

ςj (βj , γj) = min

{

λmin (S [Gj , Hj , γj ])

λmax(Hj)
+ γj , βj

λmin(Gj)

λmax(Gj)
+ γj

[

1 −

λmin(Gj)

λmax(Gj)

]}

.

The value βj can be arbitrary at

λmin (S [Gj , Hj , γj ]) ≥ λmax(Gj)
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and

βj ≤

1

τ
ln

{

λmax(Gj)

λmax(Gj) − λmin (S [Gj , Hj, γj ])

}

,

if
λmin (S [Gj , Hj , γj ]) < λmax (Hj) .

Theorem 5.1 Let the initial state of the logic-dynamical hybrid system (1) satisfy

the condition ‖x(0)‖τ < δ. Then at t = tN the following inequality holds

‖x(tN )‖ ≤

N
∏

i=1

Ni exp

{

−

1

2

N
∑

i=1

ςi (ti − ti−1)

}

.

Proof Let’s consider the first time interval t0 ≤ t ≤ t1, t0 = 0. If there are positive
definite matrices G1, H1, for which the matrix S[G1, H1] is also positive definite, then
as follows from expression (30) of Remark 1, the following inequality holds:

‖x(t1)‖ ≤

[

√

ϕ1(H1) + ϕ (G1, H1)
]

‖x(t0)‖τ e−
1

2
ς1(t1−τ).

If there are no such matrices, for arbitrary positive definite matrices G1, H1, there exists
γ1, for which the matrix S[G1, H1, γ1] is also positive definite. Again using expression
(30) of Remark 1, we get

‖x(t1)‖ ≤

[

√

ϕ1(H1) + ϕ (G1, H1)
]

‖x(t0)‖τ e−
1

2
ς1(t1−t0).

And for the moment t = t1

‖x(t1)‖τ ≤ N1 ‖x(t0)‖τ e−
1

2
ς1(t1−t0)

holds. Let us consider the next interval t1 ≤ t ≤ t2. As for the second interval a similar
estimate

‖x(t2)‖τ ≤ N2 ‖x(t1)‖τ e−
1

2
ς2(t2−t1)

holds we obtain

‖x(t2)‖τ ≤ N1N2 ‖x(t0)‖τ exp

{

−

1

2
[ς1 (t1 − t0) + ς2 (t2 − t1)]

}

.

Continuing the process further, for the moment t = tN we get

‖x(tN )‖ ≤

N
∏

i=1

Ni exp

{

−

1

2

N
∑

i=1

ςi (ti − ti−1)

}

,

which was required to prove. 2
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Abstract: This paper studies linear impulsive systems with varying time-delay
and uncertainty. By using the method of the variation of constants formula for
impulsive system, robustly global exponential stability criteria are established
in terms of fairly simple algebraic conditions. Estimate of the decay rate of
the solutions of such systems are also derived. Some examples are given to
illustrate the main results.
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1 Introduction

Many real world systems display both continuous and discrete characteristics. For exam-
ple, evolutionary processes such as biological neural networks, bursting rhythm models in
pathology, optimal control models in economics, frequency-modulated signal processing
systems, and flying object motions, etc., are characterized by abrupt changes of states at
certain time instants. Those sudden and sharp changes are often of very short duration
and are thus assumed to occur instantaneously in the form of impulses. Such impulses
may be represented by discrete maps. Systems undergoing abrupt changes may not be
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well described by using purely continuous or purely discrete models. However, they can
be appropriately modelled by impulsive systems. It is now recognized that the theory
of impulsive systems provides a natural framework for mathematical modelling of many
such real world phenomena. Significant progress has been made in the theory of impul-
sive systems in recent years, see [1-8, 15] and references therein. Meantime, the robust
stability problems for discrete systems have also been studied in recent literatures, see
[15-18] and references therein. However, the corresponding theory for impulsive systems
with uncertainty has not been fully developed. Recently, some robust asymptotic sta-
bility results for impulsive systems and impulsive hybrid systems with uncertainty have
been established in [9-14]. In this paper, by using the variation of constants formula
for impulsive systems, we shall establish some criteria on robustly global exponential
stability and provide some estimate on the decay rate for time-varying linear impulsive
systems with uncertainty.

The rest of this paper is organized as follows. In Section 2, we introduce some
notations and definitions. In Section 3, we establish robustly exponential stability for
time-varying linear impulsive systems with uncertainty. In Section 4, some examples are
also worked out to demonstrate the main results.

2 Preliminaries

Let Rn denote the n-dimensional real vector space and ||A|| be the norm of a matrix

A induced by the Euclidean norm, i.e., ||A|| = [λmax(A
T A)]

1

2 . Let N denote the set of
positive integers, i.e., N = {1, 2, · · · }, and R+ = [0, +∞). Let PC[R+, R] denote the
class of piecewise continuous functions from R+ to R, with discontinuities of the first
kind only at t = tk, k = 1, 2, · · · . Let λi(X), i = 1, 2, · · · , n, be all the eigenvalues of the
matrix X and λmax(X) (respectively, λmin(X)) the maximum (respectively, minimum)
eigenvalue of the matrix X .

Consider the following time-varying linear impulsive system with uncertainty
{

ẏ(t) = A(t)y(t) + Ã(t)y(t), t ∈ (tk−1, tk],

∆y(t) = Cky(t−) + C̃ky(t−), t = tk, k ∈ N,
(1)

and its nominal system
{

ẋ(t) = A(t)x(t), t ∈ (tk−1, tk],
∆x(t) = x(t+) − x(t−) = Ckx(t−), t = tk, k ∈ N,

(2)

under the following assumptions:
(A1) The sequence {tk} satisfies 0 ≤ t0 < t1 < t2 < · · · , with limk→∞ tk = ∞.
(A2) A(t) = (aij(t)) is an n × n matrix, and aij ∈ PC[R+, R], i, j = 1, 2, · · · , n.

(A3) Ã(t) = (ãij(t)) is a disturbance matrix of A(t) with ãij ∈ PC[R+, R], i, j =
1, 2, · · · , n.

(A4) For every k ∈ N , Ck and its disturbance matrix C̃k are n × n matrices.
(A5) Every solution of (1) (respectively, (2)) exists globally and uniquely on R+ and

is continuous except at tk, k ∈ N , at which it is left-hand continuous, i.e., y(tk) = y(t−k ).
Let y(t) = y(t, t0, y0) be the solution of system (1) with initial condition y(t+0 ) = y0.

Let Ω1 be the set of all disturbance matrices Ã(t) satisfying (A3) such that, for any
t ∈ R+, ‖Ã(t)‖ ≤ K1, where K1 is some positive constant. Furthermore, let Ω2 be the
set of all disturbance matrices C̃k, k ∈ N, satisfying (A4) such that, for any k ∈ N ,
‖C̃k‖ ≤ K2, where K2 is an appropriate positive constant.
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Definition 2.1 System (1) is said to be robustly global exponential stable with decay
rate α > 0 if, for any initial condition y(t+0 ) = y0 and for every disturbance matrices
Ã(t) ∈ Ω1, C̃k ∈ Ω2, k ∈ N , the trivial solution of system (1) is globally exponentially
stable with decay rate α > 0, i.e., there exist two positive numbers α > 0, and K ≥ 1,
such that

‖y(t)‖ ≤ K‖y0‖e
−α(t−t0), t ≥ t0. (3)

The aim of this paper is to establish the robustly exponential stability criteria for the
time-varying linear impulsive system with uncertainty. The following preliminaries are
adopted from [1].

Let Φk(t, s) be the fundamental matrix solution (Cauchy Matrix) (see [1]) of the linear
system

ẋ(t) = A(t)x, tk−1 < t < tk. (4)

Then the solution x(t) to system (2), which satisfies the initial condition x(t+0 ) = x0, can
be written in the form

x(t) = W (t, t+0 )x0, t ≥ t0, (5)

where W (t, s) is the fundamental matrix solution (Cauchy Matrix) of the linear system
(2) with W (t, t) = I given by (see [1])

W (t, s) =















Φk(t, s), for t, s ∈ (tk−1, tk];
Φk+1(t, tk)(I + Ck)Φk(tk, s), for tk−1 < s ≤ tk < t ≤ tk+1;

Φk+1(t, tk)Πi+1
j=k(I + Cj)Φj(tj , tj+1) · (I + Ci)Φi(ti, s),

for ti−1 < s ≤ ti < tk < t ≤ tk+1.

(6)

Lemma 2.1 [1] Assume that (A1) holds. Suppose that m ∈ PC1[R+, R], p ∈

C[R+, R+] and m(t) is left-continuous at tk, k = 1, 2, · · · . If for k = 1, 2, · · · ,

m(t) ≤ C +

∫ t

t0

p(s)m(s)ds +
∑

t0<tk<t

βkm(tk), t ≥ t0, (7)

where βk ≥ 0, and C are constants, then

m(t) ≤ CΠt0<tk<t(1 + βk)e
∫

t

t0
p(s)ds

, t ≥ t0. (8)

3 Main Results

In this section, we shall establish the robust exponential stability criteria for system (1).

Theorem 3.1 Suppose Assumptions (A1)-(A5) hold. Then, the system (2) is expo-

nentially stable with decay rate α > 0 if and only if there exists a constant M ≥ 1 such

that

‖W (t, s+)‖ ≤ Me−α(t−s), t ≥ s ≥ t0. (9)

Proof Sufficiency. Suppose (9) holds. Then, by (5), we get

‖x(t)‖ ≤ ‖W (t, t+0 )‖‖x0‖ ≤ M‖x0‖e
−α(t−t0), for all t ≥ t0, x0 ∈ Rn. (10)

Hence, the system (2) is globally exponentially stable with decay rate α.
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Necessity. If the system (2) is globally exponentially stable with decay rate α > 0,
then there exists a positive constant M ≥ 1 such that ‖x(t)‖ ≤ M‖x0‖e

−α(t−t0) holds.
Thus, for any x0 6= 0, we get

Me−α(t−t0)
≥

‖x(t)‖

‖x0‖
=

‖W (t, t+0 )x0‖

‖x0‖
, (11)

which implies that

‖W (t, t+0 )‖ = sup
x0 6=0

{

‖W (t, t+0 )x0‖

‖x0‖

}

≤ Me−α(t−t0) (12)

and hence, by the properties of Cauchy matrix, we have

‖W (t, s+)‖ = ‖W (t, t+0 )W−1(s, t+0 )‖ ≤ ‖W (t, t+0 )‖‖W−1(s, t+0 )‖

≤ Me−α(t−t0)
· {Me−α(s−t0)

}
−1 = e−α(t−s)

≤ Me−α(t−s). (13)

The proof is complete. 2

Theorem 3.2 Assume that Assumption (A1)-(A5) hold. Furthermore, suppose that

the following conditions hold.

(1) For any k ∈ N , the system (4) is exponentially stable with decay rate α > 0, i.e.,

there exists a constant M ≥ 1 such that

‖Φk(t, s)‖ ≤ Me−α(t−s), tk−1 < s ≤ t ≤ tk, k ∈ N. (14)

(2) There exist constants γ > 0, M1 ≥ 0, with 0 < γ < min{ α
M

, K1} such that

∫ t

t0

‖Ã(s)‖ds ≤ γ(t − t0) + M1, t ≥ t0. (15)

(3) There exists a constant β with 0 < β < α − Mγ such that

sup
C̃i∈Ω2

{ k
∑

i=0

ln
(

M‖I + Ci + C̃i‖

)

}

≤ β(tk − t0), for all k ∈ N. (16)

Then system (1) is robustly exponentially stable and at least with decay rate α−Mγ−β >

0.

Proof Let y(t) = y(t, t0, y0) be the solution of system (1) with initial condition
y(t+0 ) = y0. For t ∈ (tk−1, tk], k ∈ N , by the variation of constants formula, we get

y(t) = W (t, t+k−1)y(t+k−1) +

∫ t

tk−1

W (t, s)Ã(s)y(s)ds

= Φk(t, t+k−1)y(t+k−1) +

∫ t

tk−1

Φk(t, s)Ã(s)y(s)ds (17)

Thus, by (14) and (17), for t ∈ (tk−1, tk], k ∈ N , we obtain

‖y(t)‖ ≤ ‖Φk(t, t+k−1)‖‖y(t+k−1)‖ +

∫ t

tk−1

‖Φk(t, s)‖‖Ã(s)‖‖y(s)‖ds

≤ Me−α(t−tk−1)
‖y(t+k−1)‖ + M

∫ t

tk−1

e−α(t−s)
‖Ã(s)‖‖y(s)‖ds. (18)
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This implies

‖y(t)‖eαt
≤ Meαtk−1

‖y(t+k−1)‖ + M

∫ t

tk−1

eαs
‖Ã(s)‖‖y(s)‖ds, t ∈ (tk−1, tk], k ∈ N. (19)

By Gronwall-Bellman inequality, we have

‖y(t)‖eαt
≤ Meαtk−1

‖y(t+k−1)‖e
M

∫

t

tk−1

‖Ã(s)‖ds
, t ∈ (tk−1, tk], k ∈ N. (20)

Hence, by (20), for t ∈ (tk−1, tk], k ∈ N , we get

‖y(t)‖ ≤ Me−α(t−tk−1)
‖y(t+k−1)‖e

M
∫

t

tk−1

‖Ã(s)‖ds

= Me−α(t−tk−1)e
M

∫

t

tk−1

‖Ã(s)‖ds
‖I + Ck−1 + C̃k‖‖y(tk−1)‖. (21)

Specially, we have

‖y(tk)‖ ≤ Me−α(tk−tk−1)e
M

∫ tk
tk−1

‖Ã(s)‖ds
‖I + Ck−1 + C̃k‖‖y(tk−1)‖. (22)

Thus, by (21)-(22) and conditions (2)-(3), for t ∈ (tk−1, tk], k ∈ N , it follows that

‖y(t)‖ ≤

(

Πk−1
i=1 M‖I + Ci + C̃i‖

)

e
−α(t−t0)+M

∫

t

t0
‖Ã(s)‖ds

‖y0‖

= e
−α(t−t0)+M

∫

t

t0
‖Ã(s)‖ds+

∑k−1

i=1
ln M‖I+Ci+C̃i‖

‖y0‖

≤ e−α(t−t0)+Mγ(t−t0)+MM1+β(tk−1−t0)
‖y0‖

≤ eMM1e−(α−Mγ−β)(t−t0)
‖y0‖. (23)

Hence, the system (1) is robustly exponentially stable and at least with decay rate α −

Mγ − β. The proof is complete. 2

Theorem 3.3 Assume that Assumptions (A1)-(A5) hold and system (2) is exponen-

tially stable with decay rate α > 0, i.e., (9) holds. Furthermore, suppose that the condition

(2) of Theorem 3.2 holds and the following condition is satisfied.

(1*) There exists a constant β with 0 < β < α − Mγ such that

sup
C̃i∈Ω2

{ k
∑

i=0

ln
(

1 + M‖C̃i‖

)

}

≤ β(tk − t0), for all k ∈ N. (24)

Then system (1) is robustly exponentially stable and at least with decay rate α−Mγ−β >

0.

Proof Let y(t) = y(t, t0, y0) be the solution of system (1) with initial condition
y(t+0 ) = y0. For t ∈ (tk−1, tk], k ∈ N , by the variation of constants formula for impulsive
system (Theorem 2.5.1 in [1]), we get

y(t) = W (t, t+0 )y(t+0 ) +

∫ t

t0

W (t, s)Ã(s)y(s)ds +

k−1
∑

i=1

W (t, t+i )C̃iy(ti). (25)
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Thus, by (9) and (25), for t ∈ (tk−1, tk], k ∈ N , we obtain

‖y(t)‖ ≤ ‖W (t, t+0 )‖‖y(t+0 )‖ +

∫ t

t0

‖W (t, s)‖‖Ã(s)‖‖y(s)‖ds

+

k−1
∑

i=1

‖W (t, t+i )‖‖C̃i‖‖y(ti)‖ ≤ Me−α(t−t0)
‖y0‖

+M

∫ t

t0

e−α(t−s)
‖Ã(s)‖‖y(s)‖ds + M

k−1
∑

i=1

e−α(t−ti)
‖C̃i‖‖y(ti)‖. (26)

This implies that for t ∈ (tk−1, tk], k ∈ N ,

‖y(t)‖eαt
≤ Meαt0

‖y0‖ + M

∫ t

t0

eαs
‖Ã(s)‖‖y(s)‖ds + M

k−1
∑

i=1

eαti
‖C̃i‖‖y(ti)‖. (27)

By Lemma 2.1, we have

‖y(t)‖eαt
≤ Meαt0Πk−1

i=1 (1 + M‖C̃i‖) · e
M

∫

t

t0
‖Ã(s)‖ds

‖y0‖, t ∈ (tk−1, tk], k ∈ N. (28)

Hence, by (28), for t ∈ (tk−1, tk], k ∈ N , we get

‖y(t)‖ ≤ Me−α(t−t0)Πk−1
i=1 (1 + M‖C̃i‖) · e

M
∫

t

t0
‖Ã(s)‖ds

‖y(t0)‖

≤ Me−α(t−t0)+
∑ k−1

i=1
ln(1+M‖C̃i‖)+Mγ(t−t0)+MM1

‖y0‖

≤ MeMM1e−(α−β−Mγ)(t−t0)
‖y0‖ (29)

Hence, the system (1) is robustly exponentially stable and at least with decay rate
α − Mγ − β. The proof is complete. 2

In the following, we specialize the results obtained above to a class of interval linear
impulsive systems (see [13-14]). Interval linear impulsive systems can be described as:

{

ẋ(t) = Ãx(t), t ∈ (tk−1, tk],

∆x(t) = C̃kx(t), t = tk, k ∈ N,
(30)

where Ã, C̃k ∈ Rn×n are interval matrices satisfying

Ã ∈ N [A(1), A(2)] = {Ã = (ãij)n×n : aij
(1)

≤ ãij ≤ aij
(2)

},

and
C̃k ∈ N [C

(1)
k , C

(2)
k ] = {C̃k = (c̃ijk

)n×n : cijk

(1)
≤ c̃ijk

≤ cijk

(2)
}.

By [13], an interval matrix X̃ ∈ N [X(1), X(2)] can be described as:

X̃ = X + EXΣXFX , (31)

where X = 1
2 (X(1) + X(2)), H = (hij)n×n = 1

2 (X(2)
− X(1)),

ΣX ∈ Σ∗ =
{

Σ ∈ Rn2×n2

: Σ = diag{ε11, · · · , εn2n2}, |εij| ≤ 1; i, j = 1, 2, · · · , n.
}

,

EXET
X = diag

{

∑n

j=1 h1j ,
∑n

j=1 h2j , · · · ,
∑n

j=1 hnj

}

∈ Rn×n,

FT
XFX = diag

{

∑n

j=1 hj1,
∑n

j=1 hj2, · · · ,
∑n

j=1 hjn

}

∈ Rn×n.
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By (31), we denote Ã = A + EAΣAFA, and C̃k = Ck + ECk
ΣCk

FCk
, k ∈ N .

Let JA be the Jordan matrix of A and PAP−1 = JA for some n × n nonsingular
matrix P . Denote MA(P ) = ‖P‖‖P−1

‖. Clearly, MA(P ) ≥ 1.

Corollary 3.1 Assume that the following conditions hold.

(1) A is a Hurwitz matrix.

(2) Let α = −max1≤i≤n

{

(Re(λi(A))
}

. Then

‖EA‖‖FA‖ <
α

MA(P )
. (32)

(3) There exists a constant β with 0 < β < α − MA(P )‖EA‖‖FA‖ such that

k
∑

i=0

ln
(

MA(P )‖I + Ci‖ + MA(P )‖ECi
‖‖FCi

‖

)

≤ β(tk − t0), for all k ∈ N. (33)

Then system (30) is robustly exponentially stable and at least with decay rate: α −

MA(P )‖EA‖ ·‖FA‖ − β.

Proof Obviously, for the linear system (30), we have

Φk(t, s+) = eA(t−s), tk−1 < s ≤ t ≤ tk, k ∈ N. (34)

Since A is a Hurwitz matrix, we get max1≤i≤n

{

(Re(λi(A))
}

< 0 and

‖Φk(t, s+)‖ = ‖eA(t−s)
‖ ≤ MA(P ) · ‖ePAP−1(t−s)

‖ ≤ MA(P )e−α(t−s), (35)

where α = −max1≤i≤n

{

(Re(λi(A))
}

> 0.
The rest of the proof follows as a direct consequence of Theorem 3.2 with γ =

‖EA‖‖FA‖, and the inequality

ln
(

MA(P )(‖I+Ci+ECi
ΣCi

FCi
‖)

)

≤ ln
(

MA(P )‖I+Ci‖+MA(P )‖ECi
‖‖FCi

‖

)

, i ∈ N.

(36)
The proof is thus complete. 2

Corollary 3.2 For system (2), if A(t) = A, where A is a constant matrix, and (2)

is exponentially stable with decay rate α > 0, i.e., (9) holds. Furthermore, suppose that

the following conditions hold.

(1)

‖EA‖‖FA‖ <
α

M
. (37)

(2) There exists a constant β with 0 < β < α − Mγ such that

k
∑

i=0

ln
(

1 + M‖ECi
‖‖FCi

‖

)

≤ β(tk − t0), for all k ∈ N. (38)

Then system (30) is robustly exponentially stable and at least with decay rate α−Mγ−β >

0.

Proof By Theorem 3.3, it is easy to show that the results of the corollary are valid.
The details are omitted. 2
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4 Examples

In this Section, we shall consider two examples to illustrate the results obtained in Section
3.

Example 4.1 Consider system (1) in the form of system (30), where t0 = 0, tk =
k, k ∈ N , and

A(1) =

(

−3.5 −0.5
0 −2.8

)

, A(2) =

(

−2.5 0.5
0 −1.2

)

,

C
(1)
k =

(

−2.5 −0.4
0 −2.6

)

, C
(2)
k =

(

−1.5 0.4
0.2 −1.4

)

.

Obviously, A =

(

−3 0
0 −2

)

, Ck =

(

−2 0
0.1 −2

)

, k ∈ N .

Let P = I. Then,

α = − max
1≤i≤n

{

(Re(λi(A))
}

= 2 > 0, MA(P ) = 1, ‖EA‖ = 1, ‖FA‖ = 1.1402,

‖ECk
‖ = 0.9487, ‖FCk

‖ = 1, k ∈ N.

Let β = 0.6931. Then, we obtain

β + MA(P )‖EA‖‖FA‖ = 1.8333 < 2 = α,

k
∑

i=0

ln
(

MA(P )‖I + Ci‖ + MA(P )‖ECi
‖‖FCi

‖

)

= 0.6931 · k ≤ β(tk − t0).

Hence, by Corollary 3.1, we conclude that the system is robustly global exponential
stable and at least with decay rate 0.1667.

Example 4.2 Consider system (1), where t0 = 0, tk = k, k ∈ N , and

A =

(

−2 0
0 −3

)

, Ã(t) =

(

ã11(t) 0
0 ã22(t)

)

, Ck =

(

−2 0
0 −2

)

, C̃k =

(

c̃k11
0

0 c̃k22

)

.

The uncertainty entries satisfy:

|ã11(t)| ≤ | sin t|, |ã22(t)| ≤ | cos t|, |c̃k11
| ≤ 1 +

1

(1 + k)2
, |c̃k22

| ≤ 1 +
1

(1 + k)2
, k ∈ N.

Then, we obtain
‖W (t, s+)‖ ≤ e−2(t−s)

and
∫ t

t0

‖Ã(s)‖ds =

∫ t

0

‖Ã(s)‖ds ≤ t,

and hence, α = −2, M = 1, γ = 1, M1 = 0.
Moreover,

k
∑

i=0

ln
(

1 + M‖C̃i‖

)

≤ ln(2.25) · k = 0.8109 · (tk − t0).

Thus, by letting β = 0.8109, we obtain 0 < β + γM < α.
Hence, by Theorem 3.3, we conclude that the system is robustly global exponential

stable and at least with decay rate 0.1891.
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5 Conclusions

In this paper, by employing the variation of constants formula for impulsive system, we
have established some global exponential stability criteria for time-varying linear impul-
sive system with uncertainties. We have also obtained estimates for decay rates. The
criteria obtained are verifiable via solving algebraic inequalities in Matlab environment.
Some examples have been worked out to demonstrate the main results.
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1 Introduction

Euler-Lagrange systems with n generalized configuration coordinates q = (q1, . . . , qn)T

are described by equations of the form

q̇ = v,

M(q)v̇ + C(q, v)v + V (q) = τ,
(1)

where M(q) denotes the inertia matrix, while C(q, v)v, with v = q̇ = (q̇1, . . . , q̇n)T

the generalized velocities, denotes the centrifugal and Coriolis forces, V (q) consists of
the gravity terms and τ is the vector of input torques. This celebrated family of sys-
tems has been the subject of an important literature over half a century, because the
equations of many physical devices belong to this family (see [18], [20], [17], [4] and
references therein). When these systems are fully-actuated, they are globally feedback
linearizable. But feedback linearization can be performed only when all the variables are
measured. Unfortunately in practice, very often the variables of velocity cannot be mea-
sured. Therefore, the global output feedback stabilization of these systems with y = q

as output is challenging from a practical point of view. But, from a theoretical point of
view, it is one of the most difficult problems in the field of nonlinear control: indeed, the
matrix C(q, v)v is a nonaffine function of the unmeasured part of the state v: this fact
precludes from applying most of the classical techniques; for instance, the methods of
[16], [15] and [14]. For more explanations on the obstacles due to the presence of terms
which are nonaffine with respect to the unmeasured variables, see the introduction of
[10].

Recently, in [2], an elegant alternative for one-degree-of-freedom systems was re-
ported. The author presented a reduced order observer which converge exponentially.
This observer is based upon a global nonlinear change of coordinates which makes the
system affine in the unmeasured part of the state. This is crucial to define a very simple
controller to solve the problem of tracking trajectory. So a very natural question arises:
which conditions ensure that an Euler-Lagrange systems (1) can be transformed, with
the help of a change of coordinates, into some structure affine in the unmeasured part of
the state.

This question has been addressed in [2] and [17]. However the questions of existence
and computation of the required solution were not answered. In the present paper, we
address these question: we show that this problem can be brought back to the resolution
of a set of partial differential equation for which an explicit solution is given.

The paper is organized as follows. In Section 4, we present first necessary and suffi-
cient condition which gives to system (1) some structure affine in the unmeasured part
of the state. Next we introduce triangular forms. A method of construction of observers
is proposed. Section 7 contains concluding remarks.

2 Preliminary

In this section we briefly review some results and terminology from Euler-Lagrange dy-
namics that will be useful in the sequel. The interested reader should consult [12], [13]
and [18] for a more detailed discussion.

The dynamics of equations (1) has the following properties [21]:

Property 2.1 The matrix M(q) = (Mij)1≤i,j≤n is symmetric positive definite for
all q.
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Property 2.2 The inertia and centripetal-Coriolis matrices satisfy the following re-
lationship

dM(q)

dt
= CT(q, v) + C(q, v), (2)

where T denotes the transposition and
dM

dt
is a shorthand for

n
∑

i=1

vi

∂M

∂qi

.

It is also well known [18], that the (j, k)-entry of the matrix C(q, v) is given by

Cjk(q, v) =
n
∑

i=1

Cijk(q)vi, (3)

where

Cijk(q) =
1

2

(

∂Mjk

∂qi

+
∂Mji

∂qk

−

∂Mik

∂qj

)

(4)

are the so called Christoffel symbols of the first kind.
Equality (3) shows that we can write the matrix C(q, v) as

C(q, v) =
n
∑

i=1

viCi(q), (5)

where the entries of matrix Ci are the Cijk(q)’s; these matrices satisfy the relation

Ci + CT
i =

∂M

∂qi

.

Now, we state the following theorem which is proved in [1] and will be used in the
next section.

Theorem 2.1 Let x1, . . . , xm denote the coordinates of a point x ∈ Rm and

y1, . . . , yn the coordinates of a point y ∈ Rn. Let M1, . . . , Mm be smooth functions

M i Rm
→ Rn×n (6)

such that
∂M i

∂xk

−

∂Mk

∂xi

+ M iMk
− MkM i = 0. (7)

Consider the set of partial differential equations

∂y(x)

∂xi

= M i(x)y(x), 1 ≤ i ≤ m. (8)

Given a point (x0, y0) ∈ Rm
× Rn, there exist a neighborhood U of x0 and a unique

smooth function y(x) which satisfies (8) and is such that y(x0) = y0.

Throughout the paper,

- Mn(R) denotes the set of n-square real matrices;

- GLm(R) denotes the set of n-square real invertible matrices;

- for S ∈ Mn(R) symmetric positive definite S1/2 denotes the square root of S.
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3 Problem statement

We consider the family of Euler-Lagrange systems described by equations (1) where the
output is q = (q1, . . . , qn)T ∈ Rn, and the input is τ = (τ1, . . . , τn)T ∈ Rn. The
unmeasured part of the state is v = (q̇1, . . . , q̇n)T.

As pointed out in the introduction the difficulty to stabilize or to construct observers
for system (1) mainly stems from the fact that Coriolis and centrifugal forces vector in
(1), have a quadratic growth in the generalized velocities v, which are not measured.
The global change of coordinates introduced in [2] for one-degree-of freedom (i.e. n = 1)
systems overcomes this problem by rewriting the dynamics with functions which are
linear in the unmeasured velocities. As it is discussed in [2], the design procedure might
be extended to the case of systems with more degrees of freedom, as soon as the same
kind of change of coordinates can be found, that is to say if we can select an invertible
matrix T (q) such that

d T (q)

dt
= T (q)M−1(q)C(q, v). (9)

Remark 3.1 We can notice that a more general condition which allows us to rewrite
system (1) with an unmeasured part which is linear is the existence of a nonsingular
matrix T such that

d T (q)

dt
v = T (q)M−1(q)C(q, v)v. (10)

The following example shows that condition (10) is weaker than condition (9). Con-
sider the following inertia matrix M(q)

M(q) =

(

e−q2 0
0 1

)

.

Using the Christoffel symbols of the first kind [18], matrix C is given by

C(q, v) =
1

2
e−q2

(

−v2 −v1

v1 0

)

and an easy calculation shows that the matrix

T (q) =

(

e−q2 0
1

2
q1e

−q2 1

)

(11)

satisfies equation (10), but not (9). In fact, equation (9) does not admit any solution (as
we will see later).

Necessary geometric conditions, so that (9) admits a solution are given in [6], fur-
thermore necessary conditions in terms of Riemmanien curvature are given in [18].

The main contribution of the paper is to give an algebraic necessary and sufficient
condition in terms of the matrix of centrifugal and Coriolis forces, so that (9) admits a
solution, and make the relation between it and Riemannain curvature as in [18].

4 Main results

4.1 Equation
d T (q)

dt
= T (q)M−1(q)C(q, v)

This subsection is composed of two parts. In the first part, we propose a necessary and
sufficient condition which ensures the existence of a solution of equation (9) as well as
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methods to compute it (Lemma 4.4).
In the second part, we explain the relation between (9) and Riemannain curvature.

4.2 Necessary and sufficient conditions

Theorem 4.1 Consider the nonlinear system (1); equation (9) admits a solution if

and only if
∂Ci

∂qj

−

∂Cj

∂qi

= CT
j M−1Ci − CT

i M−1Cj , (12)

for all 1 ≤ i, j ≤ n where the matrices Ci are defined by relation (5).

To establish Theorem 4.1, we need to prove the following preliminary lemma.

Lemma 4.1 Let M1(q), . . . , Mn(q) be matrices in Mm(R) depending smoothly on q

and consider the set of partial differential equations

∂T

∂qi

(q) = T (q)Mi(q), ∀ i = 1, . . . , n. (13)

Given any matrix T0 ∈ GLm(R) and q0 ∈ Rn, there exists an unique smooth matrix

T (q) which satisfies (13) and is such that T (q0) = T0 if and only if the functions

M1(q), . . . , Mn(q) satisfy the conditions

∀ i < j ≤ n; MjMi − MiMj =
∂Mj

∂qi

−

∂Mi

∂qj

. (14)

Proof Necessity Let T (q) be a solution of equations (13), then from the
property

∂2T (q)

∂qi∂qj

=
∂2T (q)

∂qj∂qi

(15)

one has
∂(T (q)Mj(q))

∂qi

=
∂(T (q)Mi(q))

∂qj

. (16)

Expanding the derivatives on both sides we obtain

T (q)

(

Mi(q)Mj(q) +
∂Mj(q)

∂qi

)

= T (q)

(

Mj(q)Mi(q) +
∂Mi(q)

∂qj

)

(17)

which, due to the fact that T (q) is invertible (since T (q0) ∈ GLm(R)), yields the
condition (14).

Sufficiency The proof of this part of the demonstration can be easily derived from
Theorem 2.3 as follows. Let T0 ∈ GLm(R) and denote by (Γ1

0, . . . , Γ
n
0 ), Γi

0 the columns
of matrix T−1

0 . Conditions (14) ensure the existence of a family of functions Γk such that
for all k we have

∂Γk

∂qi

= −MiΓ
k, Γk(q0) = Γk

0 . (18)

The matrix Γ with columns Γ1, . . . , Γn satisfies the equality:

∂Γ

∂xi

= −MiΓ, Γ(q0) = T−1
0 . (19)
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Since Γ(q0) = T−1
0 which is non singular, we conclude that there exists a neighborhood

U of q0 such that Γ is non singular as a solution of (13), then for T (q) we take the matrix
Γ−1(q). 2

The above proof gives a condition of existence, but not a method allowing the con-
struction of the solution; however, the control implementation needs the knowledge of a
matrix T (q).

In the sequel we will give another proof of the sufficient part of Lemma 4.4, based
on a reasoning by induction which provides an explicit solution of (9). Moreover this
solution is defined on the whole domain of definition of the matrices Mi and not only
locally.

Alternative proof of the sufficient part of Lemma 4.4. By induction on n we show
that if (14) holds, then we have the following property denoted by P(n).

For all m ≥ 1, there exists an invertible matrix T (q) ∈ GLm(R) such that equations
(13) holds.

For n = 1: Equation (13) becomes

∂T (q1)

∂q1
= T ′(q1) = T (q1)M(q1)

which admits solutions defined on the whole domain of definition of M1 ∈ Mm(R) and
so P(1) is true.

Assume that P(n) is true and let M1, . . . , Mn+1 ∈ Mm(R) be such that

MjMi − MiMj =
∂Mj

∂qi

−

∂Mi

∂qj

for i, j = 1, . . . , n + 1. (21)

The induction hypothesis implies that there exists an invertible matrix Tqn+1
=

Tqn+1
(q1, q2, . . . , qn) such that

∂Tqn+1

∂qi

= Tqn+1
Mi, i = 1, . . . , n.

We will show that there exists a solution of the form T = Ψ1(qn+1)Tqn+1
. First, observe

that
∂T

∂qi

= Ψ1(qn+1)
∂Tqn+1

∂qi

= Ψ1(qn+1)Tqn+1
Mi = TMi,

for i = 1, . . . , n. Moreover T satisfies the (n + 1)-th equation if and only if

dΨ1

dqn+1
Tqn+1

+ Ψ
∂Tqn+1

∂qn+1
= Ψ1Tqn+1

Mn+1 (22)

which is equivalent to

dΨ1

dqn+1
= Ψ1(Tqn+1

Mn+1 −
∂Tqn+1

∂qn+1
)T−1

qn+1
. (23)

This equation with unknown function Ψ1 depending only on qn+1 admits a solution

if and only if the term
(

Tqn+1
Mn+1 −

∂Tqn+1

∂qn+1

)

T−1
qn+1

does not depend on q1, . . . , qn.

Now, taking into account that matrix Tqn+1
satisfies equations (13), a straightforward
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calculation leads to the following expression for the derivative of this term in respect
of qi:

Tqn+1

(

Mi Mn+1 +
∂Mn+1

∂qi

−

∂Mi

∂qn+1
− Mn+1 Mi

)

T−1
qn+1

which is zero because matrices Mi satisfy equalities (21). 2

Proof of the main result.

Since we have
d T (q)

dt
=

n
∑

i=1

∂T (q)

∂qi

vi

and from the decomposition of the matrix C(q, v) (see equality (5)), equation (9) is
equivalent to the set of equations

∂T (q)

∂qi

= T (q)Mi(q) i = 1, . . . , n, (24)

where Mi(q) = M−1(q)Ci(q). According to Lemma 4.4, we deduce that a solution of (9)
exists if and only if

Mj(q)Mi(q) − Mi(q)Mj(q) =
∂Mj(q)

∂qi

−

∂Mi(q)

∂qj

.

Now,

∂Mj

∂qi

−

∂Mi

∂qj

= −M−1(Ci + CT
i )M−1Cj +M−1 ∂Cj

∂qi

−M−1 ∂Ci

∂qj

+ M−1(Cj + CT
j )M−1Ci

= MjMi − MiMj + M−1

(

∂Cj

∂qi

−

∂Ci

∂qj

− CT
i M−1Cj + CT

j M−1Ci

)

.

It follows that a necessary and sufficient condition for the existence of a solution T (q)
of equation (9) is given by

∂Ci

∂qj

−

∂Cj

∂qi

= CT
j M−1Ci − CT

i M−1Cj .

this concludes the proof. 2

The preceding theorem gives an algebraic characterization of a family of Euler-Lag-
range systems which can be transformed, with the help of a change of coordinates into
some structure, affine in the unmeasured part of the state v = q̇. The following one gives
another characterization for the existence of a solution of equation (9).

Theorem 4.2 Consider an Euler-Lagrange system (1). The following conditions are

equivalent.

1. There exists a matrix T (q) such that (9) holds.

2. There exists a matrix N(q) such that M(q) = NT(q)N(q) and NT(q)
dN(q)

dt
=

C(q, v).

3. There exists a function Θ(q) Rn
→ Rn and N(q) nonsingular such that M(q) =

NT(q)N(q) and the Jacobian matrix of Θ is equal to N(q).
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Proof 1 ⇒ 2

Suppose that (9) admits a solution; the computation of
dM

dt
, where M =

(T T)
−1

MT−1, gives

dM

dt
= −(T T)−1(CTM−1T T)(T T)−1M(T T)−1

− (T T)−1MT−1(TM−1C)T−1

+ (T T)−1 dM

dt
T−1 = −(T T)−1(CT + C −

dM

dt
)T−1 = 0

because CT + C =
dM

dt
. So, M = (T T)

−1
MT−1 is a constant symmetric positive

definite matrix. Letting N = M
1

2 T , one can check easily that M(q) = NT(q)N(q) and

N(q)T
d

dt
N(q) = C(q, v).

2 ⇒ 1 Suppose that conditions (2) are satisfied then N(q) is nonsingular and an
easy computation shows that this matrix is a solution of equation (9).

2 ⇒ 3 Let us denote the columns of matrix N by N i; N(q) is the Jacobian matrix
of a function Θ if and only if

∂N i

∂qj

=
∂N j

∂qi

. (25)

Now the equality NT dN

dt
= C is equivalent to

∂N i

∂qj

= NTCi
j , i, j = 1, . . . , n,

where Ci
j denotes the i-th column of Cj . But from formula (3), we know that C

j
i = Ci

j ;
this proves formula (25).

3 ⇒ 2 Denoting by Nij the entries of matrix N(q), conditions (3) imply that

∂Nij

∂qk

=
∂Nik

∂qj

for all triple (i, j, k). From (4) and taking into account that M(q) = N(q)TN(q), we
have

2Cijk =
∂Mjk

∂qi

+
∂Mji

∂qk

−

∂Mik

∂qj

=

n
∑

s=1

(

∂Nsj

∂qi

Nsk + Nsj

∂Nsk

∂qi

)

+

n
∑

s=1

(

∂Nsj

∂qk

Nsi + Nsj

∂Nsi

∂qk

)

−

n
∑

s=1

(

∂Nsi

∂qj

Nsk + Nsi

∂Nsk

∂qj

)

=

n
∑

s=1

(

Nsj

∂Nsk

∂qi

+ Nsj

∂Nsi

∂qk

)

= 2

(

NT ∂N

∂qi

)

jk

so we have

Ci = NT ∂N

∂qi

which is equivalent to

C(q) = NT(q)
dN(q)

dt
.

2
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4.3 The Riemmanian curvature

Now suppose that the conditions of theorem 4.5 are fulfilled, then there exists a function
Θ Rn

→ Rn such that, denoting by N(q) the Jacobian matrix of Θ,

M(q) = NT(q)N(q). (26)

In terms of the new variables Q = Θ(q), V = N(q)v the Lagrangian dynamics equations
(1) can be shown to reduce to

Q̇ = V, (27)

V̇ = Ṅv + Nv̇ = (NT)−1 (τ − V (q)) . (28)

Thus a double integrator model in terms of Q is achieved by the much simpler inner loop
feedback control law

τ − V (q) = NT(q)ν. (29)

The point is that, in the new coordinates, the computation of the Coriolis and cen-
trifugal terms in the inner loop is avoided. However, a necessary and sufficient condition
for existence of the factorization (26) is that the Riemannian curvature of the metric
defined by the robot inertia matrix be zero [5, 18]. More precisely we have the following
theorem which summarizes our result and the result of papers [5, 18].

Theorem 4.3 Consider an Euler-Lagrange system (1). The following conditions are

equivalent:

1. There exists a matrix T (q) such that (9) holds.

2. The Riemmanian Curvature Tensor defined by

Rijkl =
∂2Mik(q)

∂ql∂qj

+
∂2Mjl(q)

∂qk∂qi

−

∂2Mil(q)

∂qk∂qj

−

∂2Mjk(q)

∂ql∂qi

+
1

2

n
∑

r,s=1

M−1
r,s (q)[CrjlCsik − CrilCsjk ]

(30)

are identically zero, where M−1
r,s (q) are the components of the inverse M−1(q) of

the inertia matrix M(q) and Crjl are the Christoffel symbols of the first kind

defined by (3).

4.4 Example: The cart pendulum system

As an example, we will consider the inverted pendulum. The Euler-Lagrange equations
write:

(M + m)ẍ + mlθ̈ cos θ − mlθ̇2 sin θ = τ1,

mlẍ cos θ + ml2θ̈ − mlg sin θ = 0,
(31)

where M and x denote the mass and the position of the cart (which is moving horizon-
tally), m, l and θ denote the mass, the length and the angular derivation from the upward
vertical position of the pendulum which is pivoting around a point fixed on the cart. We
denote the state vector (x, θ, ẋ, θ̇)T as (q1, q2, v1, v2)

T. The output is y = (q1, q2)
T.
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The inertia matrix is

M(q) =

(

a1 a2 cos q2

a2 cos q2 a3

)

with a1 = M + m, a2 = ml and a3 = ml2.

Using the Christoffel symbols, we obtain

C1 =

(

0 0
0 0

)

and C2 =

(

0 −a2 sin(q2)
0 0

)

.

One can check easily that condition (14) are verified so according to Theorem 4.3, equa-
tion (9) admits a solution that we will make explicit by using the method explained in
the proof of Lemma 4.4.

First, if we denote by Tq2
the 2-dimensional identity matrix, Tq2

is obviously a solution
of the differential equation

d Tq2

dq1
(q1) = Tq2

M−1C1.

so we can find a solution of equations (9) under the form Ψ(q2), a 2-dimensional square
matrix solution of the equation

dΨ(q2)

dq2
= Ψ(q2)M

−1C2. (32)

An easy calculations shows that the solution of equation (32) with initial condition
Ψ(0) = the identity matrix is

Ψ(q2) =









1
a2β(0) cos(q2) − a2β(q2)

a1β(0)

0
β(q2)

β(0)









, (33)

where β(q2) =
√

a1a3 − a2
2 cos (q2)2.

Moreover the diffeomorphism Θ = (Θ1, Θ2)
T defined by

Θ1 = q1 +

q2
∫

0

a2β(0) cos(s) − a2β(s)

a1β(0)
ds,

Θ2 =

q2
∫

0

β(s)

β(0)
ds,

is such that Jacobian (Θ) = Ψ(q2).
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The following change of coordinates:

Θ1 = q1 +

q2
∫

0

a2β(0) cos(s) − a2β(s)

a1β(0)
ds,

Θ2 =

q2
∫

0

β(s)

β(0)
ds,

z1 = v1 +
a2β(0) cos(q2) − a2β(q2)

a1β(0)
v2,

z2 =
β(q2)

β(0)
v2

transforms the dynamics of the Cart-Pendulum into a double integrator

Θ̇ = p, (34)

ż = T (q)M−1(q)(τ − V (q)) = u. (35)

where τ = (τ1, 0)T and V (q) = (0,−mlg sin q2)
T.

Clearly this system is linear in the unmeasured part of the state and an exponentially
converging observer can be constructed.

5 Discussion about equation (10)

Let us consider the problem of finding T such that (10) is satisfied.

Observe first that the matrix M−1C(q, v)v is quadratic in v with coefficients depend-
ing only on q, i.e. there exists Ri such that

M−1(q)C(q, v)v =

n
∑

i=1

viRiv. (36)

The matrices Ri are not uniquely determined.

In the case of one degree of freedom, a solution of (10) always exists [2]. In the case
of higher order system, equation (9) can admit no solution while equation (10) admits
one: see the example of Remark 3.1. In this example, observe that there is no function
Θ(q) such that the Jacobian matrix of Θ is equal to T (q) and thus the Riemmanian
curvature Tensor are not identically zero.

The following theorem gives a necessary and sufficient condition for equation (10) has
a solution.

Theorem 5.1 Consider the Euler-Lagrange system (1), equation (10) admits a so-

lution if and only if there exist matrices Ri satisfying equality (36) and such that

RjRi − RiRj =
∂Rj

∂qi

−

∂Ri

∂qj

(37)

for i, j = 1, . . . , n.
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Proof Let us suppose that there exist a family of matrices Rk(q), k = 1 . . . , n, such
that equality (36) holds. Condition (37) ensures the existence of an invertible matrix
T (q) such that

∂T

∂q
= TRk, (38)

moreover a method of construction of solution is given by Lemma 4.4. So we get

Ṫ (q)v =

n
∑

i=1

vi

∂T

∂qk

v =

n
∑

i=1

viTRiv = T (q)M−1(q)C(q, v)v.

For the necessary part assume that there exists a matrix T (q) such that (10) and
(36) hold. It follows that

n
∑

k=1

vkT−1(q)
∂T

∂qk

v = M−1C(q, v)v.

Let Rk = T−1(q)
∂T

∂qk

, it follows that

∂Rj

∂qi

−

∂Ri

∂qj

=
∂

∂qi

(

T−1 ∂T

∂qj

)

−

∂

∂qj

(

T−1 ∂T

∂qi

)

= −T−1 ∂T

∂qi

T−1 ∂T

∂qj

+ T−1 ∂2T

∂qi∂qj

+ T−1 ∂T

∂qj

T−1 ∂T

∂qi

− T−1 ∂2T

∂qj∂qi

= RjRi − RiRj ,

which proves the result. 2

6 Triangular form for a particular family of Euler-Lagrange systems

It is now well-known that under certain conditions, we can carry out the transformation
of a system, by a diffeomorphism into a state affine system in the velocity and carry out
the synthesis of an observer. In the same way, we know that the necessary and sufficient
conditions under which a system is transformable are very restrictive.

For that, we propose the triangular form in the unmeasured part of the state q̇ = v

for the analysis of observability. We will consider a particular family of Euler-lagrange
systems, and we show that it can be transformed into some triangular structure for which
an almost exponentially converging observer is given.

6.1 A family of Euler-Lagrange systems

In this section, we restrict ourselves to a particular family of Euler-Lagrange systems.
We consider systems having two degrees of freedom and which satisfy the following
properties.

Property 6.1 The inertia matrix depend only on the variable q2, this allows us to
introduce the following notations:

M(q2) =

(

M11(q2) M12(q2)
M12(q2) M22(q2)

)

.
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Property 6.2 There exist three positive constants m1, m2 and K such that for all
q

m1I2 ≤ M(q) ≤ m2I2, (39)

‖C(q, v)‖ ≤ K‖v‖, (40)

where I2 denotes the 2-dimensional identity matrix.

Property 6.3 The function τ1 − V1 is bounded in norm.

These properties are satisfied by many Euler-Lagrange systems with two degree of
freedom: e.g. the cart-pole system [6, 19], the manipulator system [9]. In the problem
under consideration, matrices C1 and C2 write

C1(q2) =







0
1

2
M ′

11(q2)

−

1

2
M ′

11(q2) 0






, C2(q2) =







1

2
M ′

11(q2) M ′
12(q2)

0
1

2
M ′

22(q2)







(the ′ denotes the derivative). So, according to Theorem 4.3, equation (9) admits a
solution iff

∂C1

∂q2
−

∂C2

∂q1
= CT

2 M−1C1 − CT
1 M−1C2,

which is equivalent to

M ′′
11(q2) =

M ′
11(q2)∆

′(q2)

2∆(q2)
, (41)

where ∆ = M11(q2)M22(q2) − M12(q2)
2, which is positive since matrix M is positive

definite.
An example of systems satisfying equation (41) is, for instance, the cart-pendulum

system [6] and the tora system [20]. But, other systems such that the manipulator or the
two links manipulator do not satisfy this conditions. In spite of this, we will show that,
this class of systems can be turned with the help of an appropriate change of coordinates
into some triangular form near to feedforward form.

More precisely, we have the following result.

Proposition 6.1 Under properties 2.1–6.3, the map

Φ: (q1, v1, q2, v2) → (x1, x2, x3, x4)

defined by

x1 = q1 +

q2
∫

0

M12(s)

M11(s)
ds,

x2 = M11(q2)v1 + M12(q2)v2,

x3 = q2,

x4 = α(q2)v2,

where

α(q2) =

√

∆(q2)

M11(q2)
,
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defines a global change of coordinates which transforms system (1) into

ẋ1 =
x2

M11(x3)
,

ẋ2 = u1,

ẋ3 =
x4

α(x3)
,

ẋ4 =
1

α(x3)

(

M ′
11(x3)

2M2
11(x3)

x2
2 + u2

)

,

Y = (x1, x3)
T.

(42)

where u1 = τ1 − V1 and u2 = τ2 − V2 −
M12

M11
u1.

Proof The proposed transformation is obviously one-to-one and onto, moreover
its jacobian matrix is equal to











1 0
M12

M11
0

0 M11 M ′
11v1 + M ′

12v2 M12

0 0 1 0
0 0 α′v2 α











and we can see that this transformation is a global diffeomorphism.
On the other hand equations for ẋ1 and ẋ3 are obvious. One can determine the

expression of ẋ2 as follows; from

M(q2)v̇ = −C(q2, v)v + τ − V

we have
M11(q2)v̇1 + M12(q2)v̇2 = −M ′

11(q2) v1v2 − M ′
12(q2) v2

2

and so

ẋ2 = M11(q2)v̇1 + M12(q2)v̇2 + M ′
11(q2) v1v2 + M ′

12(q2) v2
2 = τ1 − V1 = u1.

We will now compute the expression of ẋ4. From

v̇ = −M(q2)
−1(C(q2, v) + τ − V )

we have

∆(q2)v̇2 =
1

2
M11M

′
11 v2

1 + M12M
′
11 v1v2 +

(

M12M
′
12 −

1

2
M11M

′
22

)

v2
2

− M12(τ1 − V1) + M11(τ2 − V2)

=
M ′

11

2M11

(

M2
11 v2

1 + 2M12
M11 v1v2 + M2

12 v2
2

)

+
2M11M12M

′
12 − M2

11M
′
12 − M2

12M
′
11

2M11
v2
2 − M12(τ1 − V1) + M11(τ2 − V2)

=
M ′

11

2M11
x2

2 +
2M11M12M

′
12 − M2

11M
′
12 − M2

12M
′
11

2M11α2
x2

4 − M12(τ1 − V1)

+ M11(τ2 − V2).
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Now
ẋ4 = α′(q2) v2

2 + α(q2) v̇2

and, taking into account that

α′ =
1

2α

M2
11M

′
22 − 2M11M12M

′
12 + M2

12M
′
11

M2
11

,

we get the formula stated in the above proposition. 2

6.2 Construction of observers

Let us point out some particular interests of the system exhibited in Proposition 6.5.
System (42) is triangular with respect to the unmeasured part of the state. The difficulty
in designing an observer for the above system lies in the presence of the nonlinearity
M ′

11(x3)

2M2
11(x3)

x2
2, which depends on the unmeasured part of the state x2. Moreover, due

to the presence of term x2
2 in the dynamics of x4, hypothesis [H2′] of paper [3] is not

satisfied. This fact precludes from applying the techniques of [3] to construct an observer.
However, from the ẋ1, ẋ2–equations in (42) we can see that the unmeasured state x4

not appears in the derivative ẋ1, ẋ2.
Therefore, we can obtain the information about x2

2 from the x1, x2–subsystem.
Consider x1, x2–subsystem constituted by the two first equations of system (42)

ẋ1 =
x2

M11(x3)
,

ẋ2 = u1,

Y1 = x1.

(43)

This subsystem does not depend on x4. Moreover it is linear with respect to the unmea-
sured variable x2. In fact it can be considered as a linear system with a time-varying

coefficient
1

M(x3)
. Consequently, one can easily determine a globally exponentially con-

verging observer. More precisely we have,

Proposition 6.2 The auxiliary dynamical system

˙̂x1 =
1

M11(x3)
(x̂2 + k1(x̂1 − x1)) ,

x̂2 =
1

M11(x3)
k2(x̂1 − x1) + u1,

(44)

is a globally exponentially converging observer for system (43), provided that the para-

meters k1 and k2 are negative.

Proof Let (ε1, ε2) = (x̂1 − x1, x̂2 − x2). The error equation is

ε̇1 =
1

M11(x3)
(ε2 − k1ε1),

ε̇2 =
1

M11(x3)
k2ε1,

(45)
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or, in more compact form,

(

ε̇1

ε̇2

)

=
1

M11(x3)

(

k1 1
k2 0

)(

ε1

ε2

)

.

The matrix in the system above is Hurwitz since k1 and k2 are negative. Moreover the
inequality (39) in Assumption 6.3 implies the existence of two constants κ1 and κ2 such
that

0 < κ1 ≤ M11(x3) ≤ κ2.

Consequently, we can find a positive definite quadratic Lyapunov function V (ε1, ε2)
whose derivative along the trajectories of system (45) satisfies

V̇ = −

1

M11(x3)
W (ε1, ε2) ≤ −

1

κ2
W (ε1, ε2), (46)

where W (ε1, ε2) is a quadratic positive definite function. this implies that the system
(44) is an exponential observer for the system (43). 2

We are ready to give an observer for the system (42).

Proposition 6.3 Consider the following auxiliary dynamical system:

˙̂x3 =
x̂4

α(x4)
+ k3(x̂1 − x1) +

k4

α(x3
(x̂3 − x3),

˙̂x4 =
1

α(x3)

(

M ′
11(x3)

2M2
11(x3)

x̂2
2 + u2 + k6(x̂3 − x3)

)

+ k5(x̂1 − x1),

˙̂x1 =
1

M11(x3)
(x̂2 + k1(x̂1 − x1)) ,

x̂2 =
1

M11(x3)
k2(x̂1 − x1) + u1,

(47)

where the parameters k1, k2, k4 and k6 are chosen negative. Under the Assumptions 6.2–

6.4, system (47) is a globally converging observer for system (42).

Proof Let ε3 = x̂3 − x3 and ε4 = x̂4 − x4. The error equation writes:

ε̇3 =
ε4

α(x4)
+ k3ε1 +

k4

α(x3
ε3,

ẋ4 =
1

α(x3)

(

M ′
11(x3)

2M2
11(x3)

(x̂2
2 − x2) + k6ε3

)

+ k6ε1,

ε̇1 =
1

M11(x3)
(ε2 − k1ε1),

ε̇2 =
1

M11(x3)
k2ε1,

(48)

From inequalities (39), (40) in property 6.3 and the positive definiteness of the inertia
matrix, we can show easily that there exist α1, α2 and c > 0 such that

α1 ≤ α(x3) ≤ α2,

∣

∣

∣

∣

m′
11(x3)

2k2m11(x3)2

∣

∣

∣

∣

≤ c.
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Moreover since k4 and k6 are negative, one can determine a positive definite quadratic
function Q(ε3, ε4) such that it’s derivative along the trajectories of (48) satisfies

Q̇ ≤ −ε2
3 − ε2

4 + c(|ε3| + |ε4|)(|ε1| + x̂2
2 − x2

2)

≤ −ε2
3 − ε2

4 + c(|ε3| + |ε4|)(|ε1| + |ε2||ε2 + 2x2|)

≤ −

1

2
ε2
3 −

1

2
ε2
4 + 2c2(|ε1| + |ε2||ε2 + 2x2|)

2.

(49)

Now, property 6.4 ensures that ẋ2 is bounded and (46) holds. It follows that there
exist three constants a, k, β such that for all t ≥ 0,

|ε1(t)| ≤ k(|ε1(0)| + |ε2(0)|)e−βt,

|ε2(t)| ≤ k(|ε1(0)| + |ε2(0)|)e−βt,

|x2(t)| ≤ |x2(0)| + at.

(50)

It follows readily that there exists two constants K1, K2 which depends on ε1(0), ε2(0)
and x2(0) such that

Q̇ ≤ −K1Q(ε3, ε4) + K2e
− β

2
t, (51)

which implies

Q(ε3(t), ε4(t)) ≤ −K1

t
∫

0

Q(ε3(s), ε4(s))ds + K3 + Q(ε3(0), ε4(0)) (52)

with K3 > 0. It follows from Gronwall’s Lemma that

Q(ε3(t), ε4(t)) ≤ (K3 + Q(ε3(0), ε4(0))) e−K1t. (53)

This concludes the proof. 2

6.3 Example

Consider the two-link manipulator studied in [4, 11]. The equations of motion are given
by

q̇ = v,

M(q)v̇ + C(q, v)v + V (q) = τ,
(54)

with q = (q1, q2)
T, τ = (τ1, τ2)

T,

M(q) =

(

p1 + 2p3 cos q2 p2 + p3 cos q2

p2 + p3 cos q2 p2

)

,

C(q, v) =

(

−v2p3 sin q2 −(v1 + v2)p3 sin q2

v1p3 sin q2 0

)

,

V (q) = 0 and p1 = 3.473, p2 = 0.193, p3 = 0.242.
Easy calculations show that

M ′′
11(q2) −

M ′
11(q2)∆

′(q2)

2∆(q2)
= 2p3

(

−1 −

2p2
3 sin2 q2

−p1p2 + p2
2 + p2

3 cos2 q2

)

cos q2
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which is non zero. It yields that equation (9) does not admits any solution. But one can
check readily that this fully-actuated system satisfies Assumptions 2.1–6.3. Thanks to
Proposition 6.5 the change of coordinates

x1 = q1 +
p2 + p3 cos(s)

p1 + 2p3 cos(s)
ds = q1 +

p1 − 2p2
√

4p2
3 − p2

1

arctanh

(

2p3 − p1 tan( q2

2 )
√

4p2
3 − p2

1

)

,

x2 = (p1 + 2p3 cos q2)v1 + (p2 + p3 cos q2) v2,

x3 = q2,

x4 = α(q2)v2

with

α(q2) =

√

p1p2 − p2
2 − p2

3 cos2(q2)

p1 + 2p3 cos(q2)

transforms (54) into

ẋ1 =
x2

p1 + 2p3 cos q2
,

ẋ2 = u1,

ẋ3 =
x4

α(x3)
,

ẋ4 =
1

α(x3)

(

−p3 sin x3

2(p1 + 2p3 cosx3)2
x2

2 + u2

)

,

Y = (x1, x3)
T,

(55)

where

u1 = (p1 + 2p3 cos q2)τ1, u2 = τ2 −
p2 + p3 cos q2

p1 + 2p3 cos q2
τ1.

According to Proposition 6.8, the following system

˙̂x1 =
x̂2

p1 + 2p3 cos q2
+

k1

p1 + 2p3 cos q2
(x̂1 − x1),

˙̂x2 = τ1 +
k2

p1 + 2p3 cos q2
(x̂−x1),

˙̂x3 =
x̂4

α(x3)
+ k3(x̂1 − x1) + k4(x̂3 − x3),

˙̂x4 =
1

α(x3)

(

−p3 sin x3

2(p1 + 2p3 cosx3)2
x̂2

2 + u2

)

+ k5(x̂1 − x1) +
k6

α(x3)
(x̂3 − x3),

is a global observer for (55) when the ki, i = 1, 2, 4, 6, are negative.

7 Conclusion

A necessary and a sufficient condition for determining a state change of coordinate which
transform an Euler-Lagrange system into an affine system in the unmeasured part of state
was given. Obviously in the case of one degree of freedom, a solution always exists. A
case of higher order system, is for instance, that of the cart-pendulum system [10], the
tora system [20] and the overhead crane [7]. We conjecture the result several others
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problems in nonlinear control. Whereas, we know that these necessary and sufficient
conditions so that a system is transformable are very restrictive. For that, we proposed
the triangular forms in the unmeasured part of the state q̇ = v for the analysis of
observability. We have considered a particular family of Euler-lagrange systems, and
we show that it can be transformed into some triangular structure for which an almost
exponentially converging observer is given. Thanks to this triangular forms, a globally
converging observer presented so called “two-link manipulator” system. Moreover the
rate of convergence can be chosen arbitrary. Note also that our approach applies to the
“cart-pendulum” system and an exponentially converging observers with an arbitrary
rate of convergence can be constructed.
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Abstract: New results concerned with the Liapunov stability of composite or
interconnected systems, described by linear difference equations are established.
These results involve a matrix-valued Liapunov function. Furthemore, using
a new approach for constructing Liapunov functions we obtain some results
related to uniform asymptotic stability and compare our results with some
know results which were obtained via vector Liapunov functions. The examples
illustrating the efficiency of the proposed approach are given.

Keywords: Large scale difference system; matrix-valued Liapunov function; uniform

asymptotic stability.

Mathematics Subject Classification (2000): 39A10, 93D05, 93D20, 93D30.

1 Introduction and Main Results

The aim of this paper is to study stability in the sense of Liapunov of a linear large-scale
system of difference equations in the form

xi(τ + 1) = Aiixi(τ) +

m
∑

j=1, j 6=i

Aij(τ)xj(τ), i = 1, 2, . . . , m, (1)

where x = (xT
1 , . . . , xT

m)T, τ ∈ N+
τ = {τ0 + k, k = 0, 1, . . . , } τ0 > 0, xi ∈ Rni , x ∈ Rn,

n =
m
∑

i=1

ni, Aii, i = 1, . . . , m, are constant matrices of appropriate dimensions, Aij(τ),

i, j = 1, . . . , m, i 6= j, are determined on the set N+
τ .
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The transformation of initial systems to the form (1) is made by means of mathemat-
ical decomposition for the preassigned order of independent subsystems or in terms of
some physical speculations formed in the description of real physical system by a system
of difference equations.

For system (1) we construct the matrix-valued function U(τ, x) (for the details see
[5]). The diagonal elements vii(xi) are taken as the quadratic forms

vii(xi) = xT
i Piixi, i = 1, 2, . . . , m, (2)

where Pii are symmetric positive definite matrices. We assume that at least one of the
matrices Aij or Aji is not equal to constant and takes the corresponding non-diagonal
elements vij(τ, xi, xj) as the bilinear form

vij(τ, xi, xj) = vji(τ, xi, xj) = xT
i Pij(τ)xj , i, j = 1, 2, . . . , m, i 6= j, (3)

where the matrix Pij(τ) satisfies difference equation

Pij(τ + 1) − Pij(τ) + AT
iiPij(τ + 1)Ajj − Pij(τ + 1)

= −

ηi

ηj

AiiPiiAij(τ) −
ηj

ηi

AT
ji(τ)PjjAjj .

(4)

Equation (4) can be solved in the explicit form. Consider two cases.
Case 1. Assume that the matrices Aii and Ajj are such that

q = max
k,l

|λk(Aii)λl(Ajj)| < 1.

We consider the linear operators

Fij Rni×nj
→ Rni×nj , FijX = AT

iiXAjj .

and present equation (4) as

Pij(τ) = −FijPij(τ + 1) +
ηi

ηj

AiiPiiAij(τ) +
ηj

ηi

AT
ji(τ)PjjAjj . (5)

Using the method of mathematical induction it is easy to show that

Pij(τ) = F ν
ijPij(τ + ν) +

ν
∑

k=0

F k
ij

ηi

ηj

AiiPiiAij(τ + k)

+
ηj

ηi

AT
ji(τ + k)PjjAjj .

(6)

for any positive integer ν. It is shown (see [1]) that the eigenvalues of the operators Fij

are λk(Aii)λl(Ajj), therefore the norm of the operator F ν
ij admits the estimate

‖F ν
ij‖ =

∥

∥

∥

∥

∥

1

2πi

∫

|z|= 1+q

2

zνRz(Fij) dz

∥

∥

∥

∥

∥

≤

c

2π

∫

|z|= 1+q

2

|z|ν dl = c
(1 + q

2

)ν

,

where c = max
|z|= 1+q

2

‖Rz(Fij)‖, Rz(Fij) is a resolvent of the operator Fij . Taking into

account 1+q

2 < 1, we get ‖F ν
ij‖ → 0 as ν → ∞.
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Further we are interested only in bounded solutions of equation (4). Passing to the
limit in (6) as ν → ∞, we get

Pij(τ) =

∞
∑

k=τ

F−τ+k
ij

{

ηi

ηj

AiiPiiAij(k) +
ηj

ηi

AT
ji(k)PjjAjj

}

. (7)

Further it is assumed that the series in the right-side part of (7) converges.

Case 2. Assume that

q = max
k,l

|λk(Aii)λl(Ajj)| ≥ 1.

It is easy to notice that the operator Fij is non-degenerated. We present equation (4) as

Pij(τ + 1) = F−1
ij Pij(τ) − F−1

ij

{

ηi

ηj

AiiPiiAij(τ) +
ηj

ηi

AT
ji(τ)PjjAjj

}

. (8)

Using the method of mathematical induction it is easy to show that

Pij(τ) = F−τ+τ0

ij Pij(τ0)

−

τ−τ0−1
∑

k=0

F−τ+τ0+k
ij

[

ηi

ηj

AiiPiiAij(τ0 + k) +
ηj

ηi

AT
ji(τ0 + k)PjjAjj

]

.

Setting Pij(τ0) = 0 we find partial solution of equation (4) in the form

Pij(τ) = −

τ−τ0−1
∑

k=0

F−τ+τ0+k
ij

[

ηi

ηj

AiiPiiAij(τ0 + k) +
ηj

ηi

AT
ji(τ0 + k)PjjAjj

]

. (9)

Assuming that the matrices Pij(τ) are bounded for all τ ≥ τ∗ we introduce designa-
tions

c̄ii = λM (Pii), c̄ij = sup
τ≥τ∗

‖Pij(τ)‖,

c ii = λm(Pii), c ij = − sup
τ≥τ∗

‖Pij(τ)‖.

In view of the results from [2, 4] the estimates for the elements matrix-valued function
U(τ, x) are

c ii‖xi‖
2
≤ vii(xi) ≤ c̄ii‖xi‖

2, i = 1, 2, . . . , m,

c ij‖xi‖ ‖xj‖ ≤ vij(τ, xi, xj) ≤ c̄ij‖xi‖ ‖xj‖, i, j = 1, 2, . . . , m, i 6= j.

Therefore for scalar function v(τ, x, η) = ηTU(τ, x)η, η ∈ Rm
+ , η > 0, the bilateral

inequality

wTHTCHw ≤ v(τ, x, η) ≤ wTHTCHw, (10)

is satisfied, where

C = [c̄ij ]
m
i,j=1, C = [cij ]

m
i,j=1,

H = diag (η1, . . . , ηm), w = (‖x1‖, . . . , ‖xm‖)T.
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For the first difference of function v(τ, x, η) along solutions of system (1) in view of (4)
one can get the estimate

∆v(τ, x, η)
∣

∣

∣

(1)
≤ wTS(τ)w, (11)

where w = (‖x1‖, . . . , ‖xm‖)T, S(τ) = [σij(τ)]mi,j=1. The elements of matrix S(τ) have
the following structure

σii(τ) = − λm(Gii)η
2
i +

m
∑

j=1, j 6=i

Aji‖
2
‖Pjj‖η

2
j

+

m
∑

k,j=1, k 6=j

λM (AT
kiPkjAji + AT

jiP
T
jkAki)ηkηj ,

σij(τ) =

m
∑

k=1, k 6=j, k 6=i

η2
i ‖Akj‖ ‖Pkk‖ ‖Aki‖

+

m
∑

k,l=1, k 6=i, k 6=j, l 6=j

‖Aki‖ ‖Pkl‖ ‖Alj‖ηjηl, i 6= j,

where Gii = −(AT
iiPiiAii−Pii), ‖·‖ is a spectral norm of the corresponding matrix. Using

the function U(τ, x), estimate (10) of the scalar function v(τ, x, η) and estimate (11) of
the first difference of this function along solutions of system (1) we formulate sufficient
conditions of stability and uniform asymptotic stability of the equilibrium state x = 0
of system (1).

Theorem 1.1 Let system of equations (1) be such that

(1) matrices C and C in estimate (10) are positive definite;

(2) there exist negative semidefinite (negative definite) matrix S such that

1

2

[

S(τ) + ST(τ)
]

≤ S for all τ ≥ τ0.

Then the equilibrium state x = 0 of system (1) is uniformly stable (uniformly asympto-

tically stable).

Proof Condition (2) of Theorem 1.1 ensures the existence of τ1 ∈ N+
τ0

such that
for all τ ≥ τ1 for matrix S(τ) the generalized Silvester conditions are satisfied. So, for
function v(τ, x, η) = ηTU(τ, x)η for all τ ≥ τ̃ = max{τ1, τ

∗
} all conditions of Theorem

16.3 from Hahn [3] are satisfied. Thus, the equilibrium state x = 0 is stable (uniformly
asymptotically stable) with respect to N+

τ̃ . Taking into account continuity of solutions
x(τ, τ0, x0) of system (1) in x0 and discreteness of the set N+

τ0
one can conclude on

stability (uniform asymptotic stability) of the equilibrium state of system (1).

2 Examples

Consider the system
x(τ + 1) = ρ1x(τ) + αA(ω, τ)y(τ),

y(τ + 1) = ρ2y(τ) + βAT(ω, τ)x(τ),
(12)
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where x, y ∈ R2, and α, β, ρ1, ρ2 ∈ R, ω ∈ [0, 2π),

A(ω, τ) =

(

cosωτ sin ωτ

− sinωτ cosωτ

)

, τ ∈ N+
0 .

Moreover, we designate q = ρ1ρ2. Applying the approach proposed in Section 1 for
system (12) we construct an auxiliary function

v(τ, x, y) = xTx + yTy + 2xTP (τ)y, (13)

where

P (τ) =























αρ1 + βρ2

1 − 2q cosω + q2
A(ω, τ − 1)(A(ω, 1) − qI), if |q| ≤ 1;

−

αρ1 + βρ2

1 − 2q cosω + q2

[

qA(ω, τ − 1) − A(ω, τ) −

q−τ+1AT(1) + q−τI
]

, if |q| > 1,

and I is an identify matrix of dimension 2. Theorem 1.1 allows us to establish sufficient
stability conditions of system (12) in the form of a system of inequalities

|αρ1 + βρ2| <
√

1 − 2q cosω + q2;

σ11 < 0, σ11σ22 − σ2
12 > 0,

(14)

where

σ11 = ρ2
1 − 1 −

2ρ1β(αρ1 + βρ2)(q − cosω)

1 − 2q cosω + q2
+ β2,

σ22 = ρ2
2 − 1 −

2ρ2α(αρ1 + βρ2)(q − cosω)

1 − 2q cosω + q2
+ α2,

and

σ21 = σ12 = |αβ|
|αρ1 + βρ2|

√

1 − 2q cosω + q2
.

It this case the equilibrium state x = y = 0 of system (12) is uniformly asymptotically
stable, and the constructed function (13) is the Liapunov function.

In order to compare the obtained stability conditions with the conditions obtained in
terms of vector Liapunov function we employ the results from [6]. Construct the vector
function V (x, y) = (v1(x), v2(y))T with the components v1(x) = xTx and v2(y) = yTy.
Applying Theorem 3.3.14 from [6] we present sufficient conditions of uniform asymptotic
stability of system (12) in the form of the system of inequalities

ρ2
1 + β2

− 1 < 0,

(ρ2
1 + β2

− 1)(ρ2
2 + α2

− 1) − 4|αβ||ρ1ρ2| > 0.
(15)

To compare conditions (15) and (14) obtained in terms of Theorem 1.1 we consider a
system of difference equations

x(τ + 1) = 0.95 x + αA

(

π

3
, τ

)

y,

y(τ + 1) = −0.95 y + βAT

(

π

3
, τ

)

x

(16)
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and construct in the space of parameters (α, β) the domains of stability of the equilibrium
space x = y = 0 of system (16). Figures 2.1 and 2.2 show that the domain constructed in
terms of conditions (14) is wider than the domain constructed in terms of conditions (15).

Figure 2.1: The domain of stability of (16) in the parameter space via Liapunov’s vector
function.

Figure 2.2: The domain of stability of (16) in the parameter space via Liapunov’s matrix-
valued function.

Note that for the system

x(τ + 1) = 1.2 x + αA

(

π

3
, τ

)

y,

y(τ + 1) = −0.8 y + βAT

(

π

3
, τ

)

x

(17)
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it is impossible to apply the vector function, because subsystem x(τ + 1) = 1.2 x is not
exponentially stable. Nevertheless conditions (14) allow us to construct for system (16)
in the space (α, β) a domain of stability shown in Figure 2.3.

Figure 2.3: The domain of stability of (17) in the parameter space.

Figure 2.4: The domain of stability of (18) with exponentially unstable subsystem.

The system

x(τ + 1) = 1.05 x + αA

(

π

3
, τ

)

y,

y(τ + 1) = −1.05 y + βAT

(

π

3
, τ

)

x

(18)

has exponentially unstable subsystems. However in this case as well conditions (14) allow
us to construct for system (18) a domain of stability in the space of parameters shown
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in Figure 2.4.

3 Concluding Remarks

Generalized Liapunov function method for a class of large-scale difference systems (1)
were developed. In particular, stability and uniform asymptotic stability theorems were
presented. The efficiency of the proposed approach was demonstrated by two examples.
An important aspect of the new results is that they account an estimation stability
domain of parameters of the systems. In connection with the developed theory, there
remain many open problems. Some of these include the following: to established guides
for choosing “best” vector η in the scalar function v(τ, x, η); to apply the developed
theory to specific problems of uncertain systems. Because in general, one is not only
interested in stability of systems (1), but also in trajectory bounds, it is desirable to
investigate the behavior of systems (1) with respect to sub-sets of the state space.
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Modern stability theory, oscillations and optimization of nonlinear systems developed in
respond to the practical problems of celestial mechanics and engineering has become an
integral part of human activity at the end of XX century.

If, for a process or a phenomenon, for example, atom oscillations or a supernova
explosion, a mathematical model is constructed in the form of a system of differential
equations, the investigation of the latter is possible either by a direct (numerical as a
rule) integration of the equations or by its analysis by qualitative methods.

In XX century the fundamental works by Euler (1707 – 1783), Lagrange (1736 – 1813),
Poincaré (1854 – 1912), Lyapunov (1857 – 1918) and others have been thoroughly devel-
oped and applied in stability and oscillations investigation of nature phenomena and
solution of many problems of technical progress.

In particular, the problems of piloted space flights and those of astrodynamics were
solved due to modern achievements of stability theory and motion control. The Poincaré
and Lyapunov methods of qualitative investigation of solutions to nonlinear systems of
differential equations in macro-world study have been refined to a great extend though
not completed. On the other hand modeling and establishing stability conditions for
micro-processes are still on the stage of accumulating ideas and facts and forming the
principles. One of the examples is the fact that the stability problem of thermonuclear
synthesis has not been solved yet.

Obviously, this is one of the areas for application of stability and control theory in
XXI century. For the development of efficient methods and algorithms in this area the
interaction and spreading of the ideas and results of various mathematical theories will
be necessary as well as the co-operation of scientists specializing in different fields.

The mathematical theory of optimal control (of moving objects, water resources,
global process in world economy, etc.) is being developed in terms of basic ideas and
results obtained in 1956 – 1961 and formulated in the Pontryagin’s principle of optimality
and Bellman’s principle of dynamical programming. Considering manufacturing and pro-
duction engineering activities, due to the difficulties of description of discrete events and
hybrid processes, various heuristic and soft computing approaches have been developed
for solving optimization problems. The efforts of many scholars and engineers in the
framework of these ideas resulted in the efficient methods of control for many concrete
systems and technological processes.



Thus, the development of classical ideas and results of stability and control theory
remains the principle direction for the scholars and experts at modern stage of the math-
ematical theories. This fact will be demonstrated in the International Series Stability,

Oscillations and Optimization of Systems by Cambridge Scientific Publishers Ltd.
Stability, Oscillations and Optimization of Systems provides a medium for the

publication of high quality original monographs in the following areas:

Development of the theory and methods of stability analysis:

A. Stability Theory (ordinary differential equations, partial differential equations,
stochastic differential equations, functional differential equations, integral equations, dif-
ference equations, etc.)
B. Dynamical Systems and Ergodic Theory (bifurcations and singularity, critical point
theory, polystability, etc.)

Development of methods of the theory of nonlinear oscillations:

A. Analytical methods.
B. Qualitative methods.
C. Topological methods.
D. Numerical and computational methods, etc.

Development of the theory and methods of optimization of systems:

A. Optimal control of systems involving ODE, PDE, integral equations, equations with
retarded argument, etc.
B. Minimax problems and nonsmooth analysis.
C. Necessary and sufficient conditions for optimality.
D. Hamilton-Jacobi theories.
E. Methods of successive approximations, etc.
F. Heuristics and metaheuristics for the optimization of ill defined and complex systems.

Applications:

A. Physical sciences (classical mechanics, including fluid and solid mechanics, quantum
and statistical mechanics, plasma physics, astrophysics, etc.).
B. Engineering (mechanical engineering, aeronautical engineering, electrical engineering,
chemical engineering).
C. Mathematical biology and life sciences (molecular biology, population dynamics, the-
oretical ecology).
D. Complex systems (synchronization, information and self-organization, collective dy-
namics, spatiotemporal chaos, biological and neural networks).
E. Manufacturing and production engineering.
F. Social sciences (economics, philosophy, sociology).

In the forthcoming publications of the series the readers will find fundamental results
and survey papers by the experts from the worldwide which sum up the results of in-
vestigations in many directions of stability and control theory including uncertain and
hybrid systems and systems with chaotic behavior of trajectories.

It is in this spirit that we see the importance of the Stability, Oscillations and Op-

timization of Systems series, and we are immensely thankful to Cambridge Scientific
Publishers, Ltd. for their interest and cooperation in publishing this series.

visit us at our web site!

www.cambridgescientificpublishers.com


