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Abstract: The restricted three-body problem and the quasi-bicircular problem
are the dynamical systems used as models in this paper. The first one describes
the motion of one massless body in the potential field of the two massive bodies
revolving in circular orbit around their center of mass. The quasi-bicircular
problem (QBCP) is a variation of the restricted four-body problem, where the
three massive primaries move in a quasi-circular motion around their center of
mass. Here, we consider the Earth–Moon as primaries of the restricted three-
body problem (RTBP) and the Earth–Moon-Sun as primaries of the QBCP.
One of the spatial periodic solutions around the collinear point are known as
halo orbits. Our objective is to determine, in both models, transfer orbits from
a parking orbit around the Earth to a halo orbit. We apply the two-point
boundary value problem, where the boundary points are on the parking and
on the halo orbits. Since there is no Keplerian orbit involved in this transfer
method, we have called it an adapted Lambert’s problem. We compare the
total velocity increment obtained with this method applied to both dynamical
models. We find that there is a positive solar contribution decreasing the total
impulse.
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1 Introduction

The restricted three-body problem is one of most studied problem in orbital dynamics. It
has been investigated since Euler and Lagrange because of two important reasons: it is the
simplest model of the N-body problem yielding a non-integrable system and it also fits,
in first approximation, the motion of celestial bodies and artificial satellites. However, we
have to consider other perturbations to describe accurately the real problem, such as the
effect of other planets of the Solar System, the solar radiation pressure, the atmosphere
drag (for objects close to the Earth) and the non circular orbit of the primary bodies. In
this work we consider two cases: the planar circular restricted three-body problem and
the four-body case when the circular orbits of the primaries are perturbed by the Sun,
known as quasi-bicircular problem.

The five equilibrium points of the RTBP are the well known Lagrangian points. Three
of them, L1, L2 and L3, lie along the line joining both primaries. Usually L1 denotes the
solution located between the primaries while L2 is behind the less massive primary, and
L3 is located in the opposite side of L1, with respect to the center of mass. The other
two points, L4 and L5, are on the plane of the motion and form an equilateral triangle
with the primary bodies.

The collinear points are unstable for all mass ratios because the linear approximation
has a pair of real eigenvalues. The other two are imaginary and span the linear center
manifold. The full dynamics near the Li’s has two families of periodic orbits known as
Lyapunov orbits, plane and vertical, which are continuation of the linear center manifold
and tangent to it. When the horizontal and vertical frequencies attain a certain resonance,
the plane Lyapunov family bifurcates into spatial orbits known, since Faquhar [1], as halo
orbits. These orbits are such that an observer, placed on one of the primaries and looking
towards the second primary, sees the massless body describing a halo around that body.
All these periodic orbits can be calculated numerically or by perturbation methods, see
for instance [2].

In the 1970s aerospatial engineers began the exploration of these orbits. They were
proposed as good places to locate certain space observatories due to two main reasons.
First, the point L1 provides uninterrupted access to the solar visual field without occul-
tation by the Earth; and second, in these places the solar wind is beyond the influence
of the Earth’s magnetosphere. The first satellite in a halo orbit was Isee-3 , launched
in 1978 by NASA. It was maintained in a halo orbit for nearly 4 years while observing
the solar wind and cosmic rays, and then it undertook a complex trip to observe the tail
of a comet in a heliocentric orbit. Since Isee-3 launch, five satellites were inserted into
halo orbits of the Sun–Earth system. The second mission was the Soho telescope pro-
jected by ESA-NASA, launched at 1996 for solar observations; Ace satellite was launched
at 1997 by NASA for solar wind observations. In 2001 two NASA satellites arrived at
halo orbits: the WMap satellite, to observe cosmic microwave background radiation, and
Genesis, another solar observatory whose re-entry occurred in 2004. Future missions are
under development for launching in the next ten years.

For the Earth–Moon system the RTBP is just the first approximation since the pre-
sence of the Sun perturbs the Earth–Moon distance strongly. In 1998, Andreu [3] intro-
duced a consistent model of the restricted four-body problem, named the Quasi-Bicircular
Problem, where the motion of the three primary bodies is given by the solution of the
non-restricted three body problem. In the QBCP the primaries are revolving around
their center of mass in a quasi-circular motion and the massless body moves under the
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effect of their potential field. In [4] Andreu showed that the quasi-bicircular problem fits
better the real case than the bicircular one.

Transference of space vehicles has been widely studied by many authors and this
resulted in the development of a wide variety of methods. The most recent ones explore
the unstable character of the libration point orbits to design low cost missions [5], using
the stable/unstable manifold dynamics. However, the large time spent in these transfer
orbits could not be appropriate for certain missions. On the other hand, transfers with
the control of flight time, based on the optimization procedures, give paths with greater
fuel consumption but with shorter transfer time. The choice of a specific method should
be guided by the mission requirements.

In the case of the two body problem, the determination of a transfer orbit connec-
ting the boundary conditions with a specified flight time, is the well-known Lambert’s
problem. This formulation has been applied by several authors who developed numerical
tools for its resolution. The solution of the classical Lambert’s problem, with a fixed
flight time, has been undertaken by [6] and [7] who developed sophisticated algorithms
and accurate methods, dealing with convergence techniques. A new version of Lambert’s
problem has been studied by [8], replacing the condition of a given transfer time by that
of minimal fuel expenditure. We apply the latter conception to the restricted three and
four-body problem and call it the adapted Lambert’s problem.

In this paper we find transfer orbits from the Earth to a halo orbit in the vicinity of
L1 of the Earth–Moon system. We compare the total ∆V required by RTBP and QBCP
models, showing that the presence of the Sun decreases the total impulse necessary to
achieve the desired transfer.

2 Equations of Motion

2.1 The Restricted Three-Body Problem

In the restricted three-body problem, the mass of one of the bodies is supposed to be
infinitely small when compared to the other two that move in circular motion around
their center of mass. The reference frame is set according to the notation defined in [9],
where the origin is on the center of mass, the positive x-direction is towards the biggest
primary and rotates in the counterclockwise direction. The unit of length is the distance
between the primaries and the unit of time is chosen so that the period of the primaries
is 2π; consequently the gravitational constant is set to one. The potential function of the
RTBP in this synodic coordinate system is given by

Ω(x, y, z) =
1

2
(x2 + y2) +

(1 − µ)

r1

+
µ

r2

+
1

2
µ(1 − µ), (1)

where r1 and r2

r2

1
= (x − µ)2 + y2 + z2,

r2

2
= (x − (µ − 1))2 + y2 + z2,

are the distances from the primary bodies (m1, m2) to the massless particle. The equa-
tions of motion are:

ẍ − 2ẏ = Ωx,

ÿ + 2ẋ = Ωy,

z̈ = Ωz .

(2)
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Defining the momenta as px = ẋ − y and py = ẏ + x, the equations of motion can
be written as an autonomous Hamiltonian system with three degrees of freedom derived
from:

H =
1

2
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1 − µ

r1

−
µ

r2

.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1 -0.8 -0.6 -0.4 -0.2 0

y

x

|| |
L1L2 L3

L4

m1m2

L5

Figure 2.1: The restricted three-body problem configuration.

2.2 The Quasi-Bicircular Problem

The quasi-bicircular model is a restricted four-body problem where the three primaries
are revolving in a quasi-bicircular motion. The fourth body, which has infinitely small
mass, moves under the potential field generated by the primaries without disturbing their
motion. In this case the equations of motion are time dependent with the frequency
of the biggest primary. The Earth–Moon distance is no longer constant due to the
Sun perturbation, therefore the equations of motion are written in a rotating pulsating
reference frame to make the Earth–Moon distance constant. This coordinate system is
centered on the barycenter of the Earth–Moon system and rotates with it.

In order to obtain a coherent formulation we first should find a solution for the three-
body problem, where the three masses move in planar non-circular orbits around their
common center of mass. This solution expressed as Fourier expansion is:

αk(t) = αk0
+

∑

j≥1

αkj cos(jnt) for k = 1, 3, 4, 6, 7,

αk(t) =
∑

j≥1

αkj sin(jnt) for k = 2, 5, 8,

where n is the mean relative angular velocity n = 1 − ns in inertial coordinates, ns is
the angular velocity of the Sun. We recall that the mean angular velocity of the Moon
is unity in the inertial frame. The units of distance and time are the same as in the last
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section. Then, the Hamiltonian of the QBCP is:

H =
1

2
α1(p

2
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z) + α2(pxx + pyy + pzz) + α3(pxy − pyx) + α4x

+ α5y − α6

(
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,

where qpe, qpm and qps are given by

q2

pe = (x − µ)2 + y2 + z2,

q2
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q2

ps = (x − α7)
2 + (y − α8)

2 + z2,

and are the distances of the particle to the Moon, Earth and Sun, respectively. We note
that they are written in the synodical reference frame centered in the barycenter of the
Earth–Moon system. For more details see [3]. The Hamiltonian equations of motion are:

ẋ = α1 + α2x + α3y,

ẏ = α1py + α2y − α3x,

ż = α1pz + α2z,
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3 Impulsive Transfer Orbit

When a system of differential equations is supposed to satisfy a set of initial and final
conditions, it becomes a two point boundary value problem (TPBVP), where the time
is a free variable. In this work, the boundary conditions are a point on the parking orbit
(Pi) around the Earth and a point on the halo orbit (Pf ). Without any time constraint,
the problem of finding a trajectory that links the points Pi and Pf has infinite set of
solutions with different flight times. However, if we add the flight time as a constraint,
the set of solutions become finite. In this case, for each set of boundary conditions
(Pi, Pf ) with a fixed flight time (∆t), we have two solutions which are related via the
Mirror Theorem [10].

As the restricted three and four-body models have no analytical solution, the bound-
ary value problem has to be numerically solved. We use the following steps to find a
solution of this time constrained TPBVP:

- guess an initial velocity ~vi. Together with the initial prescribed position ~ri the
complete initial state is known;

- guess a final time tf and integrate the equations of motion from ti to tf ;

- check the final position ~rf obtained from the numerical integration with the pre-
scribed final position and the final real time with the specified time of flight. If
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there is an agreement (difference less than a specified error allowed) the solution is
found and the process can stop here.

This is a simple shooting method described in reference [11], where an algorithm is also
available.

As mentioned in the introduction, such a formulation: the two point boundary value
problem plus a time constraint in the RTBP is a kind of Lambert’s problem for the three-
body problem. Thus the name adapted Lambert’s problem, since there is no Keplerian
orbit involved.

Our investigation begins by the search of transfer trajectories travelling between the
points Pi and Pf with minimum velocity increment defined as follows. Let ~Vi and ~Vf be
the velocity vectors on the parking orbit around the Earth and the halo orbit, respectively.
The initial velocity increment (∆V ) is:

∆Vi = |~Vi − ~VT |, (4)

where ~VT is the transfer velocity given by the above numerical method, which satisfies
the time and the boundary constraints. The second impulse, introduced to insert the
space vehicle in the halo orbit, is given by:

∆Vf = |~VT − ~Vf |. (5)

The total impulse is the sum of these impulses:

∆V = ∆Vi + ∆Vf . (6)

4 Halo and Parking Orbits

As the QBCP is a three degrees of freedom time periodic Hamiltonian system, we can have
an intuition of its periodic solutions considering it as a time periodic perturbation of the
RTBP. So, the periodic solutions of QBCP are related to the period of the perturbation.
Therefore, to compute halo orbits in the QBCP, one first looks for a halo perodic orbit in
the RTBP which has the Solar period or a multiple of it. Then, a numerical continuation
method can be used to find the corresponding QBCP halo orbit. As usual, we set the
problem of continuation as follows:

H = HRTBP + ǫ(HQBCP − HRTBP ),

where ǫ is a small parameter. When ǫ is equal to zero we have H = HRTBP and if ǫ is
equal to unity, then H = HQBCP . The halo initial conditions considered here are those
labelled 01E and 1E in [3]. The period of the chosen halo in the QBCP is three times
multiple of its equivalent orbit in the RTBP, which were determined in [12].

The parking orbits belong to the BD family of direct periodic orbits around the
primary body (see [13]) and calculated them using a numerical continuation method
described in [14]. The orbit Parking 1 is about 6.696 km from the Earth and the Parking
2 is 11.612 km. To make a clear identification of the selected points on the parking
and the halo orbit, we choose angular coordinates θ1 and θ2 on the xy-projection of the
former and on the yz -projection of the latter. The origin of these angles are the positive
x and y axis, for θ1 and θ2, respectively, and the direction of rotation is taken to be
counterclockwise (see Figure 4.1).
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Figure 4.1: Projection of halo orbit in both dynamical systems.

5 Results

In this section we apply the adapted Lambert’s method to the initial conditions shown
in the table below. The first application considers only the RTBP while the second one
considers both the RTBP and the QBCP.

Table 5.1: Initial Conditions

ORBIT x0 z0 ẏ0

Halo - RTBP –9.87982557457513E-01 –2.48226957833054E-03 3.13139586195729E+00

Halo - QBCP –9.879722904635280E-01 –2.462095060502300E-03 3.184909363998671E+00

Parking 1 –0.005270250000000E+0 0.0000E+0 7.547700390000000E+0

Parking 2 –0.018068060000000E+0 0.0000E+0 5.747748530000000E+0

5.1 Transfers in RTBP

To begin our simulations, we have chosen the parking orbit 0.0302 canonical units away
from the center of the Earth (Parking 2 on Table 5.1) and the halo orbit. In these two
orbits we take angular steps of approximately 6◦, and the transfer method is applied
considering the boundary conditions: the initial one on the parking orbit and the final
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one on the halo orbit. We stress that we explored all these possibilities of boundary
conditions with a fixed time. This procedure was decisive to select which angular range
on each orbit furnishes the lower total ∆V . Three time intervals, t = 0.2, 0.3 and 0.4,
were used in this simulations. These preliminary study restricted the angular range to
[300◦, 40◦] for θ1 and [230◦, 330◦] for θ2 (see Figure 5.1).

With this selected points we make simulations considering several time intervals, from
0.2 to 2.0 canonical units of time with step 0.05, as seen on Figure 5.2. As expected, the
maximal contribution to the total ∆V comes from ∆Vi which is the departure impulse.
The final impulse, which injects the vehicle into the halo orbit is, on average, one fourth
of the initial impulse. The result of these simulations can be summarized as follows: the
minimum ∆V is 4.7283 and occurs at θ1 = 36◦.3874 and θ2 = 261◦.8722 for t = 0.85.
This can be seen in Figure 5.2. We also tested the corresponding retrograde parking
orbits and the result is practically the same as for the direct ones.
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Figure 5.1: Boundary points on the parking and the halo orbit.
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5.2 Comparison between the PRTC and QBCP

To obtain the transfer orbits in the QBCP, we apply a methodology similar to the one
described above. Because the QBCP is a non-autonomous system, the set of initial
conditions is time-dependent, implying that we have less freedom to vary the flight time
as in the RTBP case. The transfer time must be the same in the state vector of the final
boundary value if we begin the all the integrations at a common epoch.

Since our objective is to compare the total ∆V obtained in the RTBP and QBCP,
we select the points on the halo orbit which are geometrically equivalent to the ones in
the RTBP. The periodic parking orbits of the RTBP are, of course, no longer periodic in
the QBCP. However, the satellite remains a short time on the parking orbit, so we take
for it the same initial conditions as before. All simulations are done for the Parking 1
orbit.

The Figure 5.3 shows the total ∆V of both models for 10 different time intervals. In
general, the simulations show that the Sun’s presence improves the fuel consumption of
approximately 9%.

6 Comments

It is difficult to show which parameter involved in the problem allows an optimal transfer,
because the dynamical system is complex and very sensitive to initial conditions. If we
change the flight time, it is possible that the economical boundary condition, selected
for another flight time, will also change significantly. For this reason, we simulated
many possibilities, varying the set of boundary conditions and flight time. However, it
is possible that our results do not correspond to the exact global minimum, but just a
discrete approximation. The graphics on the Figure 5.3 show that the presence of the Sun
could contribute to decrease the total impulse (∆V ), specially for longer flight times.
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