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Abstract: The Rendezvous maneuvers are used in many important techno-
logical space missions. Today, the interception between space bodies (vehicles,
stations, debris, etc.) is far from negligible, due the large number of such bod-
ies in Earth orbit and the growth of the current rate space activities. The
Rendezvous are realized during many satellites special formations, interception
between space stations and satellites or spacecrafts, interception between this
bodies and space debris, runaway maneuvers, Formation Flying, etc. In this
paper, we study the Rendezvous maneuvers between one satellite and other
space vehicle, considering the thrust direction deviations and the mass varia-
tion in the satellite, due to the non-ideal propulsion system. We found to the
noncoplanar maneuvers, one nonlinear cause/effect relations between the po-
sition coordinates uncertainess of the vehicle-interceptor and the ”pitch” and
”yaw” deviations. Besides, this relation is weighed by time penalty functions,
due the variation mass effect. This model is very close to the realistic case
and can be implemented inside the technological missions range to the thrust
deviations.
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1 Introduction

The Rendezvous is one completely constrained, with several applications, mainly for
the space station and space debris. In this maneuver the orbit parameters and the
distance between the two space objects can be divergent. The encounter between the
two vehicles must occur without collisions between them, that is, the relative velocity
must be null in same time. The Rendezvous coplanar solution, given the impulses and
fixed time, was found by Clohessy-Wiltshire [1] in 1960. After him, many authors studied
this maneuvers under many conditions and constraints. Stern [2] in 1984 approximated
the Clohessy-Wiltshire equations to the small time transfer and obtained non-jouned
rectilinear trajectories. Examples of applications of this result are the terminal and
extra-vehicle Rendezvous and satellite operation service. The generalization to planar,
minimum consumption Rendezvous case, in the general central force field was done by
Humi [3]in 1993. In this year Abramovitz and Grunwald [4] developed an iterative
graphical method to the optimal and planar Rendezvous inside many spacecraft of one
space station environment, under several operational constraints saving more than 30 per
cent fuel. Also in 1993, Lutze and Lawton [5] investigated optimal Rendezvous with free
time, using regularized variables of the true anomaly, obtaining a simple form for the co-
states equations during coast arcs. They established a new optimal necessary condition
to the optimality problem. In 1994 Yuan and Hsu [6] proposed a new direction scheme to
use the terminal Rendezvous phase. The solution related the fuel consumption to the new
direction guidance law with propellant mass. They used the spacecraft variation mass
and non-variation mass approach. Shaohua et all [7] also in 1994 applied a transverse
propulsion to the Rendezvous trajectory, transforming it in an omni-direction and more
fuel-economic trajectory with respect to the conventional cases and Jones and Bishop
[8] developed one law target for the Rendezvous terminal phase, using a small Halo
translunar orbit ratio with 3 bodies approach. They found 3D Rendezvous in terminal
phase and a total minimum cost function for the transfer time, inclination angle and inital
condition angle. Pardis and Carter [9] in 1995 considered the impulse saturation effects in
optimal Rendezvous with limited power propulsion system and found that the saturation
pointed to a degradation of the consumption performance index, which could be improved
if the fly time was increased or if additional impulses were applied. In this year, Yu [10]
showed that an stable equilibrium state can occur in the relative motion between two
close spacecrafts to Rendezvous inside a local coordinate system. Prado [11] also in 1995,
derived an algorithm to solve optimal Rendezvous maneuvers with two impulses for a
mono-revolution transfer or a multi-revolutions transfer, coplanar or non-coplanar. He
found fits of the fuel consumption as function of transfer time. In 2001 Prado and Felipe
[12] used impulsive control to study the Rendezvous maneuvers ... . All this results were
obtained to impulsive maneuvers and ideal propulsion system and the most with non-
variable mass. Our approach is non-impulsive continuous Rendezvous maneuvers under
thrust directions deviations and mass variations. We applied Rendezvous maneuvers
between the control satellite and the interceptor satellite in one ”Formation Flying”.

2 Mathematical Model and Preliminaries

The mathematical model considers one control satellite in R ratio initial orbit with
velocity v = (GMT /R)1/2 and one satellite interceptor in a transfer orbit with apogee
close to R, conform Figure 2.1.
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Figure 2.1: Space Satellites in Rendezvous.

In this Figure we show two reference systems: {X ′, Y ′, Z ′} - inertial, Earth-centered,
ratio R0 and {X, Y, Z} - rotational, satellite control-centered. For our Rendezvous ma-
neuver the condition that the distance r between the satellites compared with the distance
R between the control satellite and the Earth is small must be satisfied. This condition
can be satisfied, to technological purposes, with {(x(t)2 + y(t)2 + z(t)2)}1/2 ≤ 200mi.
This condition allows us to neglect terms in higher order of the gravitational force expan-
sion in serie. The movie equations for the satellite interceptor with respect the rotational
system are

ẍ(t) − 2Wẏ(t) = −vex
d{ln[M(t)]}

dt
, (1)

ÿ(t) − 3W 2y(t) + 2Wẋ(t) = −vey
d{ln[M(t)]}

dt
, (2)

z̈(t) + W 2z(t) = −vez
d{ln[M(t)]}

dt
. (3)

These equations determine the Rendezvous dynamics between two satellites under
thrusters and gravitational forces. In the right size of these equations are the propulsion
force components, modeled as

~f =

{

−~ve
dm

dt

}

1

M(t)
, (4)

where ~ve is the escape velocity vector of the fuel. The total satellite mass can be modeled
as the sum of the satellite constant mass M, and the fuel variable mass m(t), that is,

M(t) = M + m(t). (5)
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Besides this, we consider that the satellite mass is proportional to the initial fuel mass
So,

χ ≡
M

m(0)
=

M

m0
. (6)

The solution of the differential equations (1), (2), (3) depend of the satellite time
variation mass model.We consider in this paper the exponential model, that is,

M(t) = m0(χ + 1) + ṁt. (7)

In this equation ṁ = constant < 0. If we suppose that χ ≥ 1 (technological ap-
proximation), we can expand the logarithms function. In this way, the solution of those
equations are, after many algebraic manipulations,

x(t) = 2A sin(Wt) − 2B cos(Wt) + Et +

∞
∑

n=1

Fne−nγt + G, (8)

y(t) = A cos(Wt) + B sin(Wt) +

∞
∑

n=1

Cne−nγt + D, (9)

z(t) = H cos(Wt) + I sin(Wt) −

∞
∑

n=1

Jne−nγt. (10)

The constants A,B,D,E,G,H,I depend of the initial conditions and of the χ, γ, W .
The constants Cn, Fn and Jn are sum in n.

For introduce the thrust direction ”pitch”, ∆α(t), and ”yaw”, ∆β(t), deviations, we
write the ~ve components and the solutions x(t), y(t) and z(t) with symbol (∗) and without
it for these variables without deviations. So,

vex(t) = v sinα(t) cos β(t), (11)

vey(t) = v cosα(t) cos β(t), (12)

vez(t) = v sin β(t). (13)

And these variables with direction deviations,

v∗ex(t) = v sin[α(t) + ∆α(t)] cos[β(t) + ∆β(t)], (14)

v∗ey(t) = v cos[α(t) + ∆α(t)] cos[β(t) + ∆β(t)], (15)

v∗ez(t) = v sin[β(t) + ∆β(t)]. (16)

We define the difference between the both values, to coordinate y(t), for example,

y∗(t) − y(t) = ∆y(t) =
1

W

∫ t

0

[G∗(τ) − G(τ)] sin[W (t − τ)]dτ, (17)
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where

G∗(τ) = 2Wv∗ex ln[M(τ)] − v∗ey

d[ln M(τ)]

dτ
− 2WC1 (18)

or, considering this result, we have

∆y(t) =
1

W

∫ t

0

[2W (v∗ex − vex) lnM(τ) − (v∗ey − vey)
d[lnM(τ)]

dτ
] sin[W (t − τ)]dτ. (19)

We adopted probabilistic approach, that is, we adopted the mean variables values,
because we do not know about the final variables values. The thrust direction devia-
tions were modeled through one uniform or gaussian probability distribution function.
The expectation operator E is the mean in the assemble values. We consider that the
stochastic processes are ergodic, so, the expectation operator commutes with the integral
operator (in time). We consider too that the ln[M(τ)] and sin[W (t − τ)] functions are
deterministic in time. So,

E{∆y(t)} =
1

W

∫ t

0

[2WE{(v∗ex − vex)} lnM(τ) −

E{(v∗ey − vey)}
d[lnM(τ)]

dτ
] sin[W (t − τ)]dτ. (20)

Equation (20) is general for any probability distribution deviations. We considered
the uniform probability distribution.

3 Rendezvous under Direction ”pitch” Deviations

To compute the means in Equation (20) in the fixed time and considering the random-bias
deviations,that is, (∆α(t) = ∆α = constant), we have

E{∆y(t)} = K1(t){
sin ∆αmax

∆αmax
− 1}, (21)

where

K1(t) = {2vex(tf )

∫ t

0

lnM(τ) sin W (t − τ)dτ −

vef (tf )

W

∫ t

0

d{lnM(τ)}

dτ
sin W (t − τ)dτ}. (22)

Equation (21) is the cause/effect relation very important between the thrust devia-
tions through the ”pitch” direction and the position satellite deviation y(t) coordinate.
We observe too that in this relation there is one penalty time-function K1(t). This func-
tion depends of the mass parameters χ,γ and the control satellite angular velocity W .
After the computation,

E{∆y(t)} =

∞
∑

j=2

(−1)j+1{∆αmax}
2(j−1)

(2j − 1)!
[A′ cos(Wt) +

B′ sin(Wt) +

∞
∑

n=1

Cne−nγt + D′], (23)
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where

A′ = {−
2vex(tf )

W
ln(moχ) −

∞
∑

n=1

(−1)n+1

χnn
{
2vex(tf )

W
+

nγvex(tf )

W 2
}

1

{1 + (nγ
W )2}

, (24)

and

B′ = {
vey(tf )

W
ln(

χ + 1

χ
) +

∞
∑

n=1

(−1)n+1

χnn
{−

vey(tf )

W
+

2nγvex(tf )

W 2
}

1

{1 + {nγ
W }2}

, (25)

and

Cn =
(−1)n+1

χnn
{
2vex(tf )

W
+

nγvey(tf )

W 2
}

1

{1 + {nγ
W }2}

, (26)

and

D′ = {
2vex(tf )

W
ln(moχ)}. (27)

The penalty function K1(t) weighted the cause/effect relation in time, besides the
thrust deviations effects. Its effect is oscillate in the increasing time and the orbit will
be damaged. But, the Rendezvous maneuvers under the realistic conditions are wanted
realized in minimum time.

The similar mathematical proceedings to the x(t) coordinate, integrating the Equa-
tion (1), give

ẋ(t) = 2Wy(t) − vex ln[M(t)] + C1, (28)

and with the thrust deviations

ẋ∗(t) = 2Wy∗(t) − v∗ex ln[M(t)] + C1, (29)

and

∆x(t) = 2W

∫ t

0

∆y(t′)dt′ −

∫ t

0

(v∗ex − vex) ln[M(t′)dt′]. (30)

Applying the expectation operator E ,

E{∆x(t)} = 2W

∫ t

0

E{∆y(t′)}dt′ −

∫ t

0

E{(v∗ex − vex)} ln[M(t′)]dt′. (31)

Taking deviations only in ”pitch” direction,

E{∆x(t)} = K2(t){
sin ∆αmax

∆αmax
− 1}, (32)

where

K2(t) = 2W

∫ t

0

K1(t
′)dt′ − vex(tf )

∫ t

0

ln[M(t′)]dt′. (33)
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Expanding in ∆αmax power serie, and integrating,

E{∆x(t)} =

∞
∑

j=2

(−1)j+1{∆αmax}
2(j−1)

(2j − 1)!
[2A′ sin(Wt) −

2B′ cos(Wt) − 2

∞
∑

n=1

C′

ne−nγt + D′′t − L], (34)

where

C′

n =
(−1)n+1

χnn2γ
{{2vex(tf ) +

nγvey(tf )

W
}

1

{1 + (nγ
W )2}

− vex(tf)}, (35)

and

D′′ =
3WD′

2
, (36)

and

L = vex(tf )

∞
∑

n=1

(−1)n+1

χnn2γ
. (37)

We observe, again, the nonlinear cause/effect relation in the ”pitch” deviations and
too the time penalty function K2. This function presents a growing linear time term.

4 Rendezvous under Direction ”yaw” Deviations

We consider the random-bias deviations in ”yaw” direction, that is, (∆β(t) = ∆β =
constant). With similar steps used previously, we obtain the results to the ∆y(t) and
∆x(t), that is,

E{∆y(t)} =

∞
∑

j=2

(−1)j+1{∆βmax}
2(j−1)

(2j − 1)!
[A′ cos(Wt) +

B′ sin(Wt) +

∞
∑

n=1

Cne−nγt + D′] (38)

and

E{∆x(t)} =

∞
∑

j=2

(−1)j+1{∆βmax}
2(j−1)

(2j − 1)!
[2A′ sin(Wt) −

2B′ cos(Wt) − 2

∞
∑

n=1

C′

ne−nγt + D′′t − L]. (39)

But, in this case, we must consider the z(t) coordinate, because the ”yaw” deviation
affects the movie in this direction. The velocity component in this direction depends
only this angle. So, the solution for this coordinate with ”yaw” deviation is

z∗(t) = C1 cos(Wt) + C2 sin(Wt) −
1

W

∫ t

0

v∗ez

d{ln[M(τ)]}

dτ
sin[W (t − τ)]dτ (40)



286 A.D.C. JESUS AND T.N. TELES

and without this deviations is

z(t) = C1 cos(Wt) + C2 sin(Wt) −
1

W

∫ t

0

vez
d{ln[M(τ)]}

dτ
sin[W (t − τ)]dτ. (41)

Through the similar way, we can compute the difference between these function

∆z(t) =
1

W

∫ t

0

[G∗(τ) − G(τ)] sin[W (t − τ)]dτ, (42)

where

G∗(τ) = −v∗ez

d{ln[M(τ)]}

dτ
. (43)

So,

∆z(t) =
1

W

∫ t

0

{(vez − v∗ez)
d{ln[M(τ)]}

dτ
} sin[W (t − τ)]dτ. (44)

Applying the expectation operator E ,

E{∆z(t)} =
1

W

∫ t

0

{E{(vez − v∗ez)}
d{ln[M(τ)]}

dτ
} sin[W (t − τ)]dτ (45)

and

E{∆z(t)} = K3(t){
sin ∆βmax

∆βmax
− 1}, (46)

where

E{∆z(t)} =

∞
∑

j=2

(−1)j+1{∆βmax}
2(j−1)

(2j − 1)!
[H ′ cos(Wt) +

I ′ sin(Wt) −

∞
∑

n=1

J ′

ne−nγt], (47)

and

H ′ =

∞
∑

n=1

(−1)n+1vez(tf )γ

χnW 2{1 + (nγ
W )2}

, (48)

and

I ′ = −
vez(tf )

W
ln{

χ + 1

χ
} + J ′

n, (49)

and

J ′

n =

∞
∑

n=1

(−1)n+1vez(tf )

nχnW{1 + (nγ
W )2}

. (50)

These results show that the the ”yaw” deviations affect all the velocity components,
that is, these deviations affects all the movie of the satellite. We observe too the presence
of the time penalty function K3 in this nonlinear relation.
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5 Rendezvous under Superposed Direction ”pitch” and ”yaw” Deviations

Satellite trajectories under superposed direction ”pitch” and ”yaw” deviations is the
general and realistic case, because, during the thrusters burns these deviations occur
simultaneously. In this approach we consider deviations non-correlated, that is, they
occur non affecting each in other. With the same approach and mathematical proceedings
used previously,

E{∆y(t)} = K1(t){
sin ∆αmax

∆αmax

sin ∆βmax

∆βmax
− 1} (51)

or

E{∆y(t)} =

∞
∑

j=2

∞
∑

s=2

(−1)j+s+2{∆βmax}
2(j−1){∆αmax}

2(s−1)

(2j − 1)!(2s − 1)!
[A′ cos(Wt) +

B′ sin(Wt) +

∞
∑

n=1

Cne−nγt + D′], (52)

and

E{∆x(t)} = K2(t){
sin∆αmax

∆αmax

sin ∆βmax

∆βmax
− 1} (53)

or

E{∆x(t)} =

∞
∑

j=2

∞
∑

s=2

(−1)j+s+2{∆βmax}
2(j−1){∆αmax}

2(s−1)

(2j − 1)!(2s − 1)!
[2A′ sin(Wt) −

2B′ cos(Wt) − 2

∞
∑

n=1

C′

ne−nγt + D′′t − L], (54)

and

E{∆z(t)} = K3(t){
sin ∆αmax

∆αmax

sin ∆βmax

∆βmax
− 1} (55)

or

E{∆z(t)} =

∞
∑

j=2

∞
∑

s=2

(−1)j+s+2{∆βmax}
2(j−1){∆αmax}

2(s−1)

(2j − 1)!(2s − 1)!
[H ′ cos(Wt) +

I ′ sin(Wt) −

∞
∑

n=1

J ′

ne−nγt]. (56)

So, we obtain the nonlinear cause/effect relations for the superposed ”pitch” and
”yaw” direction deviations between these thrust deviations and the satellite position
coordinates uncertainess. These relations are more realistic and are pondered under
penalty time-functions K1(t), K2(t), K3(t) due the mass variation.These results are
obtained when we considered the eject velocity components constants.
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6 Conclusions

The results obtained in this study showed nonlinear cause/effect relations between the
thrust direction deviations, ”pitch” and ”yaw”, and the Rendezvous satellite position
coordinates uncertainess. When the eject velocity components are constants, these re-
lations are averaged by penalty time-functions, due the effects of the mass variation.
This functions are like weight-functions over the nonlinear relations and the Rendezvous
conditions are affected due two reasons: the thrust deviations and the mass variation.
The time dependence in these functions shows that the wanted Rendezvous maneuvers
are the minimum time maneuvers, because these dependence is linear. For the long time
Rendezvous maneuver the penalty functions are time oscillate functions in the y(t) and
z(t) coordinates and linear in the x(t) coordinate. It means larger uncertainess in this
coordinate in this time regime. Besides this, in general, the results showed that there is
a satellite position probability region where it occurs the Rendezvous maneuvers. These
uncertainess are due the deviations influence during the thrusters burns. If the eject
velocity components were not constants in the time, the penalty functions would be
quadratures.
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