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Abstract: The present paper deals with the constrained model predictive con-
trol for linear time invariant systems. Even if these techniques reached a con-
siderable maturity in the last decade, the feasibility problems remain a sensitive
point at least for applications which involve tracking of challenging reference
signals, most often in conjunction with restrictive physical limitations. The
main goal here is the adaptation (enlargement) of the set of feasible trajecto-
ries. Two strategies are discussed: the tuning of the predictive control param-
eters and the reference governor schemes. Specifically on the former direction
it will be shown that a compact piecewise affine ”feedback control law” with
guarantees of feasibility can be constructed. This compactness is given by mix-
ing the explicit formulations of the predictive law and those of the reference
adjustment mechanism.
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1 Introduction

Model Predictive Control (MPC) has imposed itself as a flexible optimization based tech-
nique with versatile constraints handling capabilities due to its time-domain formulation
(see the up-to-date monographies [15], [6], [19], [9]). In the same time, the optimization
fundament imposes the feasibility as a crucial demand as long as it represents the main
ingredient for the stability of the entire closed loop [16].

For the regulation problem, the necessary and sufficient conditions of MPC feasibility
are based on pseudo-infinite prediction horizons or, similarly, on terminal constraints
[11] designed in concordance with positive invariant sets principles [4]. The reference
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tracking problem [5] is somehow more laborious but it can take advantage of the pre-
diction capabilities of MPC and thus deliver excellent control performances. However,
the infeasibility threatening becomes severe in this case [22], mainly when the reference
contradicts with the imposed constraints or when the a priori information regarding the
set-point is limited. The modification of the trajectory to be followed may induce the
reduction of the feasible domain and even lead to infeasibility.

In order to deal with this phenomenon several strategies can be followed and a possible
taxonomy can differentiate between: infeasibility avoidance and feasibility recovery. The
first category contains the predictive laws which deal with the feasibility in terms of a
robustness issue. This elegant approach implies that the exogenous reference signal can be
described either statistically, either by deterministic models and by consequence included
in the control law synthesis. The main criticisms are linked to the numerical difficulties in
solving the new optimizations (for example the computational aspects involving min-max
problems) and often to the conservative performances due to the worst case combination
of set-points which have to be considered.

The feasibility recovery strategies follow a different philosophy. The idea is to design
a control law which optimizes the performances in relation with an usual reference signal
and to treat the eventual infeasible situation either through the enhancement of the fea-
sible domain either by increasing the prediction horizon, either by the on-line adjustment
of the trajectory to be followed (using a so-called ”reference governor”). In the first case,
the feasible domain is enlarged but remains limited, another disadvantage being the rela-
tive augmentation of the set of decision variables and related constraints. The ”reference
governor” method (see [3, 7] and the citations therein) replaces the set-points with the
best admissible reference found as the solution of an optimization problem apart MPC.

The current paper revisits the main concepts related to the feasibility of MPC and
extends their definitions to the reference tracking case. The structure of the feasible
domain and the limitations on the reference signal are further considered together with
their links to the MPC parameters. As infeasibility avoidance technique, this paper
focuses on the reference governor schemes, the main goal being to obtain a control law
with guarantees of feasibility. Due to the fact that both ingredients (MPC and reference
governors) are represented by multiparametric optimization problems (mpOP) [2, 12],
their explicit formulation is obtained and the result gathered in a compact form. The
main contribution will be the construction of this piecewise affine control law, feasible
over any initial set. The conservativeness and the compromise between the memory needs
and the performance of the evaluation mechanism are some of the addressed issues.

In the following, Section 2 reminds the MPC problem, the explicit formulation and
states some definitions related with the feasibility. Section 3 deals with the reference
tracking problems, analyzing the feasibility limitations. In Section 4, the infeasibility
avoidance mechanism is integrated in the predictive control scheme resulting in the com-
pact MPC with guarantees of feasibility. Finally, Section 5 presents some study cases
and section VI the conclusions.

2 Model Predictive Control

2.1 Constrained model predictive control

MPC implies the idea of minimizing a cost index based on the predicted plant evolution.
For the regulation to origin, consider the discrete time LTI system in a state-space
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description:

ΣP :







xt+1 = Axt + But, t ≥ 0, x0 = x0 ∈ X0,
yt = Hxt,
Cxt + Dut ≤ γ,

(1)

where xt ∈ R
n, ut ∈ R

m, yt ∈ R
r are the state, input and output vectors and X0 is

the set of initial conditions. It is assumed throughout that the pair (A,B) is stabiliz-
able. The inequality constraints, given by γ ∈ R

q, D ∈ R
q×m, C ∈ R

q×n, describe
a polyhedral region including the origin. At each sampling time, the current state,
x = xt (assumed available), is used to find the optimal open-loop control sequence
k∗

u = [uT
t|t, . . . , u

T
t+N−1|t]

T ∈ R
N×m:

k∗
u = arg min

ku

xT
t+N |tPxt+N |t +

N−1∑

k=0

{

xT
t+k|tQxt+k|t + uT

t+k|tRut+k|t

}

,






xt+k+1|t = Axt+k|t + But+k|t, k ≥ 0,

Cxt+k|t + Dut+k|t ≤ γ, 0 ≤ k ≤ N − 1,
xN ∈ XN ,

(2)

where Q = QT ≥ 0 and R = RT > 0 are weighting matrices and the pair (Q1/2, A) is
detectable. P is characterizing the terminal cost while XN is the associated terminal set.
The prediction horizon - N , together with the matrices P,Q and R are the knobs of this
construction based on optimization.

The first part of the resulting optimal open-loop control sequence (2) - u∗
t|t, is ef-

fectively applied and the whole procedure is restarted following the ”receding horizon
principle” which provides the MPC law with all the advantages of a closed-loop control
law.

2.2 Multiparametric optimization. Explicit solutions

The optimization problem (2) is tractable as it has mN decision variables and qN con-
straints. It can be rewritten after simple matrix manipulations as:

arg min
ku

kT
u Hku + kT

u Fx + xT Gx,

subject to : Ainku ≤ bin + Binx.
(3)

This is known in the literature as the multiparametric quadratic problem (mpQP)
and its solution is represented by a piecewise linear and continuous function [2, 20, 17]:

k∗
u(x) = Ki ∗ x + κi, for x ∈ Di , (4)

where Di are convex polyhedral regions in R
n. MPC uses only the first component of

this optimal solution:

uMPC(x) = KMPC
i ∗ x + κMPC

i , with i such that x ∈ Di , (5)

and KMPC
i , κMPC

i the first components of Ki, κi.
Lately, efficient algorithms are available [13] to develop these explicit solutions and

thus the constrained predictive control policy can dispose of an additional design and
analysis tool.
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2.3 Feasibility within constrained MPC

Definition 2.1 The feasible set for the MPC law (2), is the set of all states for which
a control sequence k∗

u(x) exists:

Xf =
⋃

i

Di , (6)

with Di as in (4). Xf is a convex polyhedron and corresponds to the projection of the
parameterized polyhedron [18] formed by the constraints in (3), onto the state space.

Definition 2.2 A set X ∈ R
n is positively invariant with respect to the dynamic

xt+1 = Axt if and only if ∀xt ∈ X ⇒ xt+1 ∈ X.

In the literature, one can find exhaustive results regarding the feasibility of MPC laws
[11]. In the following a classification of the infeasibility for MPC based on the relation
with the set of initial conditions, X0 is introduced:

• X0 \ Xf 6= ∅.

The MPC law is infeasible w.r.t. X0, because it exists at least one initial condition
x0 ∈ X0 such that uMPC(x0) is not well defined.

• X0 = Xf

The MPC law is feasible w.r.t. X0 if and only if Xf is positively invariant w.r.t.
xt+1 = Axt + BuMPC(xt).

• X0 ⊂ Xf

The MPC law is feasible w.r.t. X0 if and only if it exists a set Ω ⊂ R
n, positively

invariant w.r.t. xt+1 = Axt + BuMPC(xt), which satisfies X0 ⊂ Ω ⊂ Xf .

This classification does underline the role of the initial conditions and also the threat-
ening represented by the inappropriate tuning of the MPC which may lead to self-
generated infeasibility [21]. However, the set Xf depends on the MPC parameters and
thus constructive methods do exist for designing feasible laws for the regulation problem
(1-2).

Definition 2.3 [8] The maximal admissible set for (1) under a constant feedback law
u = Kx is represented by:

O∞ =
{
x ∈ R

n|(C(A + BK)k + DK(A + BK)k−1)x ≤ γ,∀k ≥ 0
}

. (7)

Definition 2.4 A set X ⊂ R
n is called control invariant for the system xt+1 =

Axt + Bg(xt) if there exists a function g(xt) such that X is positive invariant with
respect to this dynamic. The maximal control invariant set - C∞, is the control invariant
set containing all other control invariant sets.

Remark 2.1 X is control invariant only if X ⊂ C∞.

Given these definitions, a design sketch for a feasible MPC law could be:

• Compute C∞.

• If X0 \ C∞ 6= ∅ stop ; there is no MPC control law feasible for all x ∈ X0.
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• Choose a stabilizing control law u = Kx and compute the maximal admissible set
O∞. Fix XN = O∞.

• Find N < ∞ for the problem (2) such that X0 ⊂ Xf .

Remark 2.2 This discussion was dedicated to the feasibility analysis as it represents
the main issue of the current paper. It must be mentioned that the feasibility of the
predictive control law is not guaranteeing the stability but is one of its major ingredients
(see [16]). If all the signals of the system are directly or indirectly bounded, then a BIBO
stability is achieved once the infeasibility is avoided.

3 MPC Feasibility For Tracking Systems

A case which is often studied in the literature [5], [14] is the one of ”constant reference
tracking”. The necessary and sufficient condition in the unconstrained case for such
reference signals is resumed by the following assumption.

Assumption 1: The pencil matrix:

Ac =

[
A − I B

H 0

]

(8)

is invertible.
Given the discrete-time dynamical system (1) with the associated mixed state-inputs

constraints it is worth to recall that the set of admissible constant references Yr which
the system will be able to track will be given by:

Yr =
{

yr| [CHT (HT H)−1 − D(H(A − I)−1B)−1]yr ≤ γ
}

. (9)

Remark 3.1 If the polyhedron described by:

PC =

{[
xt

ut

]∣
∣
∣
∣
Cxt + Dut ≤ γ

}

(10)

is bounded, then the admissible constant references Yr will be also bounded.

In the following it is considered the reference tracking in the general case by relax-
ing this ”piece-wise constant” assumption for the reference signal. However, the results
obtained for this family of set-point can be found as particular cases of reference man-
agement.

3.1 Classification of general reference tracking problems

The problem of regulating the system state to origin using optimal control sequences over
receding horizons can be extended to the reference tracking problems. A classification of
these tracking problems [1] might be:

1) The model-following problem: The reference signal is the output of a known linear
model:

ΣR :

{
zt+1 = Azzt, z0 ∈ Z0,
rt = Hzzt

(11)

with rt ∈ R
p, Az stable, the pair (Az,Hz) observable and Z0 ∈ R

nz the set of initial
conditions. The model predictive control is supposed to find the optimal control sequence
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Figure 3.1: Classical MPC tracking scheme (qt-the tracking quality).

for the system (1) such that the output y tracks the incoming reference r. By recasting
this problem on the form:

x̃t+1 =

[
zt+1

xt+1

]

=

[
Az 0
0 A

]

︸ ︷︷ ︸

Ã

x̃t +

[
0
B

]

︸ ︷︷ ︸

B̃

ut,

C̃x̃t + Dut ≤ γ̃,

C̃ =
[

0 C
]
, D̃ = D, γ̃ = γ

(12)

and putting Q̃ =
[

Hz −H
]
Q

[
Hz −H

]T
, the classical MPC design techniques

for the problem (1-2) can be applied to assure the existence of a feasible law for all initial

conditions x̃0 ∈ X̃0 =

{[
z0

x0

]∣
∣
∣
∣
z0 ∈ Z0;x0 ∈ X0

}

.

2) The tracking problem: The desired trajectory is the output of a known linear model
(Figure 3.1) excited by an exogenous signal, partially known:

ΣR :

{
zt+1 = Azzt + Bzwt, z0 ∈ Z0,
rt = Hzzt

(13)

with Z0 ∈ R
nz and considering that the same assumptions as for the previous case are

satisfied. Note that wk can be the output of a high-order, time-varying system.
All the information on the exogenous signal wt should be incorporated in the reference

model such that the MPC law could improve the prediction accuracy. For example if the
signal wt is supposed to be known in advance over a horizon Nw −

{
wt|t, . . . , wt+Nw−1|t

}
,

then the reference model to be used for the MPC design is:

Az ←












Az Bz 0 · · · 0

0

0 1
. . .

...

0 0
. . . 0

...
...

. . . 1
0 0 · · · 0












, Bz ←










0
0
...
0
1










,

Hz ←








Hz

0
...
0








T

, zt ←










zt

wt

wt+1

...
wt+Nw−1










, wt ← wt+Nw
.

With this reference description, one can construct the augmented model as in (12) and
proceed to the MPC synthesis based on the minimization of a cost function weighting the



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 7(4) (2007) 379–398 385

tracking error and the control effort. Following developments will focus on the influence
of the exogenous signal on the feasibility of the overall control scheme.

3.2 Infeasibility within reference tracking

Even if the MPC design is reduced to the classical case, the feasibility requirements must
be fulfilled with respect to the set of initial conditions in the augmented space X̃0 and
not only for X0. In this respect, the terminal set must be based on the model (12) -
x̃N ∈ X̃N and not only xN ∈ XN .

The MPC law will be characterized by a polyhedral set of feasible points in the
augmented state space as in (6):

X̃f = {x̃|Λx̃ ≤ λ} =
{[

zT xT
]T

|Λzz + Λxx ≤ λ
}

. (14)

The evolution of the reference model is independent of the chosen control action at time
t:

zt+1 = Azzt + Bzwt

and thus at time t + 1 the infeasibility phenomenon entails that xt+1 /∈ Xf (zt+1) =
{x|Λxx ≤ λ − Λzzt+1}.

But in the same time the MPC law is designed such that in the absence of exoge-
nous signal (wt = 0), the feasibility is preserved (a necessary condition for the con-
straint fulfilment over the prediction horizon). This means that xt+1 ∈ Xf (ẑt+1) =
{x|Λxx ≤ λ − Λz ẑt+1} with ẑt+1 = Azzt (absence of exogenous signal). Based on this
observation the infeasibility of the MPC tracking scheme at time t can be classified as:

• Bzwt = 0

The MPC law is feasible because ẑt+1 = zt+1.

• Bzwt 6= 0 ∧ D = Xf (zt+1) ∩ Xf (ẑt+1) 6= ∅ (Figure 3.2 left)

If xt+1 ∈ D the MPC law is feasible.

If xt+1 /∈ D the MPC law is infeasible due to the incompatibility between the
current state and the exogenous signal entering the reference model.

• Bzwt 6= 0 ∧ D = Xf (zt+1) ∩ Xf (ẑt+1) = ∅ (Figure 3.2 right)

Infeasibility due to a jump of the reference model state which overwhelms the closed
loop tracking capabilities.

Remark 3.2 The only degree of freedom one can dispose within MPC to diminish
the infeasibility risk is to enlarge the set X̃f . This can be done by augmenting the
prediction horizon. Unfortunately this manoeuvre is increasing the complexity of the
resulting control law. Another limitation towards this augmentation is the fact that X̃f

can never go beyond C̃∞.
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Figure 3.2: Example of feasible set X̃f (center). D = Xf (zt+1) ∩ Xf (ẑt+1) 6= ∅ (left).
D = Xf (zt+1) ∩ Xf (ẑt+1) = ∅ (right).

3.3 Feasible bounds expressed as multiparametric optimization solutions

In the previous discussion the feasible set X̃f has been considered as the extended version
of a parameterized polyhedron Xf (zt) with parameters given by the state of the reference
model. If the goal is to describe the family of feasible references, then a dual approach
has to be considered, with the characterization of the infeasibility by the fact that zt+1 /∈
Zf (xt+1) = {z|Λzz ≤ λ − Λxxt+1}. Using this set, in the SISO case, the feasibility can
be characterized based on the limits of the feasible reference signal rt or of the feasible
exogenous signal wt as in Table 3.1.

rmin
t (xt) ≤ rt ≤ rmax

t (xt) wmin
t (xt, zt) ≤ wt ≤ wmax

t (xt, zt)

rmin
t (xt) = min

z
Hzz

s.t. Λzz ≤ λ − Λxxt

rmax
t (xt) = max

z
Hzz

s.t. Λzz ≤ λ − Λxxt

wmin
t = min

w
w

s.t. ΛzBzw ≤ λ − Λxxt+1 − ΛzAzzt

wmax
t = max

w
w

s.t. ΛzBzw ≤ λ − Λxxt+1 − ΛzAzzt

Table 3.1: Feasibility conditions.

The feasible bounds rmin
t , rmax

t , wmin
t , wmax

t are solutions of linear multiparametric
optimization problems. Their expression provides a hint about the way the feasibility can
be recovered by the adjustment of the reference to the corresponding feasible limitation
once this is violated.

4 Feasibility recovery

The idea resumed in Table 3.1 is that at each sampling time, the feasibility of the MPC
scheme depends on whether the reference signal is contained in a safe region (Xr):

rt ∈ Xr(xt, zt) ⇔ Hzzt ∈ Xr(xt, zt). (15)

As long as the exogenous signal is given, and the state of the system is supposed to be
known, the only degree of freedom available to force the feasibility of the control law is
the adjustment of the reference, to follow the best feasible approximation of the reference
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Figure 4.1: Reference governor scheme for MPC feasibility.

signal. This technique has already a wide experience, being known in the literature as
the reference governor scheme.

4.1 Reference governor

A reference governor (RG) is based on the idea that for the reference tracking scheme in
(Figure 3.1) a MPC law can be designed such that the closed loop performance, feasibility
and stability requirements are fulfilled for the model-following problem (in the absence
of the exogenous excitation). Once the MPC law description is available, the associate
feasible set X̃f is also available. Based on this assumption, the goal of the RG is to
replace the reference rt by:

r̄t = r̄t(xt, rt) (16)

such that r̄t is the best approximation of rt and the MPC law is well defined. Due to
the fact that rt is the output of the reference model, one can rewrite (16) as r̄t(zt, xt).
The best approximation must be judged with respect to a cost index. According to this
principle the adjusted reference might be:

r̄t = Hz z̄
∗
t ,

z̄∗t (zt, xt) = arg min
z̄t

(Hz z̄t − Hzzt)
T S(Hz z̄t − Hzzt),

such that

[
z̄t

xt

]

∈ X̃f , (17)

where the matrix S weights the deviation of the references. This mathematical formula-
tion of the RG underlines the fact that the information needed for the optimization (17)
is restricted to the current measurements (Figure 4.1).

4.2 Compact MPC law with guarantees of feasibility

An important detail regarding the optimization in (17) is the dependence of the argument
z̄∗t on the set of parameters {zt, xt}. The set of constraints depends exclusively on the
vector xt while the dependence on zt comes exclusively from the cost index. If there
is no other restriction added to (17), then the reference model state can be any value
zt ∈ R

nz . This aspect is decisive from the feasibility point of view because indirectly, all
the constraints on zt represent limitations on the reference or on the exogenous signal.
As a first result, by applying the MPC law uMPC(z̄t, xt) instead of uMPC(z̃t, xt), one
can obtain a predictive law with guarantees of feasibility at each sampling time.

Despite this advantage the cascaded implementation of the reference governor with
the MPC law is quite demanding on-line. A first step is to observe as in [12] that the RG
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Figure 4.2: Explicit description of reference governor and MPC law.

implies in fact a multiparametric quadratic problem (17) for which the explicit solution
does exist as in (4).

z̄t(zt, xt) = Li ∗

[
zt

xt

]

+ li, for

[
zt

xt

]

∈ Ri , (18)

which can be further written componentwise:

z̄t(zt, xt) = Lix
∗ xt + Liz

∗ zt + li. (19)

The union R =
⋃

i Ri represents the domain where the guarantees of feasibility are
accomplished. The number of regions Ri is depending on the freedom allowed for the
family of references. For diminishing the complexity of the explicit formulation (18), only
a part of the cutting R can be retained, the one which is critical for the MPC feasibility.

Regarding the explicit implementation of the MPC law, as already mentioned (5), it
is expressed as a piecewise linear continuous function:

u(z̄t, xt) = Ki ∗

[
z̄t

xt

]

+ κi, for

[
z̄t

xt

]

∈ Di , (20)

or written componentwise:

ut(z̄t, xt) = Kix
∗ xt + Kiz

∗ z̄t + κi. (21)

Using these explicit formulations of the RG and MPC blocks, one can conclude that
the real time implementation of the predictive scheme with guarantees of feasibility
comes to a successive look-up table positioning for the evaluation of the control law at
each sampling time (Figure 4.2).

Given these two piecewise linear (PWA) functions, and the fact that their evaluations
depend on the depth of the binary search tree for each look-up table, the natural question
is whether, the two functions can be compacted in a single control law including both
the MPC and the RG mechanism (MPC-RG) and being ”everywhere” feasible.

Proposition 4.1 Let two piecewise linear and continuous functions:

f : R → D, R =
r⋃

i=1

Ri,

f(x) = Afi
x + bfi

∀x ∈ Ri,

g : D → F, D =
d⋃

j=1

Dj ,

g(x) = Agj
x + bgj

∀x ∈ Dj ,

(22)
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then a composed piecewise affine and continuous function exists such that:

h : R → F, R =
nh⋃

k=1

DRk,

h(x) = Ahk
x + bhk

= g(f(x)), ∀x ∈ DRk,
(23)

with D,R,F,Di, Rj ,DRk convex sets.

Proof For the existence of the cutting R =
nh⋃

i=1

DRi it is sufficient to construct

for each Ri, i = 1, .., r the subsets:

DRij = {x|x ∈ Ri and f(x) ∈ Dj} , j = 1, .., d. (24)

From hypothesis f(Ri) ⊂ D and by retaining only the nonempty subsets of this con-
struction on can obtain:

Ri =

DRij 6=∅
⋃

j

DRij . (25)

Now, by associating for each DRij :

Ahij
← Agj

Afi
, bhij

← Agj
bfi

+ bgj
(26)

a finite nh is obtained such that:

h : R → F, R =
nh⋃

k=1

DRk ≡
DRij 6=∅⋃

i,j

DRij ,

h(x) = Ahk
x + bhk

= g(f(x)) ∀x ∈ DRk. 2

(27)

Remark 4.1 For the resulting function h(.), the number of subsets in the definition
domain will satisfy hh ≤ d ∗ r and due to the fact that the evaluation mechanism for
f(.), g(.), h(.) is logarithmic in the number of partitions [23], it follows that the complexity
of evaluation for h(.) is inferior to the sequential evaluation of f(.) and g(.).

The previous result assures the existence of a compact law (MPC-RG), which inherits
the qualities of the RG mechanism and the MPC performances (Figure 4.3). It can be
noticed that the intermediary adjusted reference r̄k and the associated governed reference
model state z̄k needs no evaluation, all this process being nested in the MPC-RG law
(Figure 4.4).

Certainly, the on-line evaluation of the control action is optimized by this formula-
tion but one may wonder about the price to be paid. As it was already observed in
the literature related to the explicit formulations, the on-line computational gains are
obtained by increasing the memory needs. Is the case also for the MPC-RG law which
needs to store a much more complex look-up table than the original MPC law. On the
contrary, the RG explicit formulation stores the entire explicit solution (19) and not only
the first component as it is the case for the MPC. This fact burdens in some extent the
complexity of the sequential scheme. The compact MPC-RG law does not suffer from
this point of view and thus memory storage disadvantages are mitigated.

The following algorithm resumes the MPC-RG design.
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Figure 4.3: MPC with guarantees of feasibility.

Algorithm:

1. Find the explicit MPC for the model-following problem.

u = Ki
xx + Ki

z z̄ + ki, for
[

xT z̄T
]T

∈ Di, i = 1, .., d.

2. Determine the MPC feasible set X̃f =
d⋃

i=1

Di.

3. Construct the explicit form of the RG:

z̄ = Li
xx + Li

zz + λi, for
[

xT zT
]T

∈ Ri, i = 1, .., r.

4. Build the compact MPC-RG law:
For all i = 1, .., r

For all j = 1, .., d
Compute DRij = {x|x ∈ Ri et f(x) ∈ Dj}
If DRij is nondegenerate store it together with:

u = (Ki
x + Ki

zL
j
x)

︸ ︷︷ ︸

Kij
x

x + Ki
zL

j
z

︸ ︷︷ ︸

Kij
z

z + (ki + Ki
zλ

j)
︸ ︷︷ ︸

kij

end
end 2

Proposition 4.2 The compact MPC-RG law enjoys the following properties:
i) MPC-RG is a piecewise linear and continuous function of the extended state x̃t =

[
zT
t xT

t

]T
.

ii) If x̃t ∈ X̃f then the MPC and MPC-RG are equivalent.
iii) yk → r̂ if rk → r where r̂ is the best feasible approximation of r with respect to

the criterium in (17).
iv) If the original MPC law was designed for zero steady error for constant references

r, the MPC-RG law has a finite settling time to the best feasible approximation r̂.

Proof The property i) is a consequence of the fact that the composition of two
piecewise linear and continuous functions inherits the same properties.
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Figure 4.4: Compact MPC law with guarantees of feasibility.

For ii) it is sufficient to see that if the condition x̃t ∈ X̃f is verified then (17) becomes
an unconstrained optimization problem and thus z̄t = zt implying the equivalence of the
MPC law with the MPC-RG version.

In order to demonstrate iii) the continuity of the RG must be taken into account to
generate a sequence of references leading to a steady set-point Hz z̃k → r̂. Further due
to the stabilization properties of the MPC law this position will be regulated yk → r̂. If
the obtained steady output r̂ is not corresponding to the best approximation then the
optimality of the RG is denied leading to a contradiction.

The point iv) is a special case of the former problem. 2

5 Example

Consider the discrete version of the double integrator:

xk+1 =

[
1 1
0 1

]

xk +

[
1

0.5

]

uk,

yk =
[

1 0
]
xk.

(28)

For the exemplification of the feasibility analysis, an autonomous reference model is
considered at the beginning:

zk+1 = 0.99zk,
rk = zk.

(29)

The system has to obey a set of constraints:

−1 ≤ uk ≤ 1,

xk ∈

{[
x1

x2

]

| − 10 ≤ x1, x2 ≤ 10

}

.
(30)

One can construct based on (28-30) the extended model and develop the MPC law for
the regulation case. The first step is to find the optimal control law in the unconstraint
case for a infinite cost index as in (2) with Q = 1, R = 10:

uk =
[

0.23335 0.67756
]
xk − 0.22664zk
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Figure 5.1: The maximal admissible set O∞.

Figure 5.2: a) X̃f for N = 1, b) X̃f for N = 4.
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Figure 5.3: Intersection of X̃f with the set of initial conditions. a) N = 4 and −5 ≤ z ≤ 5 b)
N = 4 and −10 ≤ z ≤ 10 c) N = 5 and −10 ≤ z ≤ 10.

and further find the maximal admissible set O∞(Figure 5.1).

The predictive law can be synthesized using it as a terminal invariant set. As men-
tioned in Section 3, the prediction horizon has a decisive influence on the shape of the
feasible set for the MPC law. In Figure 5.2, it is presented the feasible set X̃f for the
MPC laws with prediction horizon N = 1 (Figure 5.2a) and N = 4 (Figure 5.2b).

The feasibility guarantee has to be given with respect to a set of initial conditions.
Choosing:

z0 ∈ Z0 = {z ∈ R| − 5 ≤ z ≤ 5} ,

x0 ∈ X0 =

{[
x1

x2

]∣
∣
∣
∣
− 4 ≤ x1 ≤ 4;−1 ≤ x2 ≤ 1

}

a MPC law with N = 4 is guaranteed to be feasible (Figure 5.3a). If the set of initial
conditions for the reference model is changed to:

z0 ∈ Z0 = {z ∈ R| − 10 ≤ z ≤ 10} ,

the infeasibility is no longer guaranteed (Figure 5.3b). By augmenting the prediction
horizon to N = 5, the feasibility is retrieved (Figure 5.3c).
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Figure 5.4: a) Time-domain simulation wmin
k ≤ wk ≤ wmax

k (dotted line — rk); b) The explicit
description of the reference limitations.

Figure 5.5: Feasible points along a given trajectory: a) N = 1, b) N = 4.

For the trajectory tracking problem, the following reference model is considered:

zk+1 = 0.85zk + 0.15wk,
rk = zk.

(31)

The MPC law can be synthesized with respect to the set of constraints:

−1 ≤ uk ≤ 1,

xk ∈

{[
x1

x2

]

| − 10 ≤ x1, x2 ≤ 10

}

,

−10 ≤ rk ≤ 10.

(32)

The exogenous signal will affect the evolution and using the formulations in Table
3.1, one can obtain a time domain simulation of the feasible limitations of wk (Figure
5.4a) or the explicit solution for rmin

k (xk), rmax
k (xk) (Figure 5.4b).

The prediction horizon plays a decisive role in the feasibility limitations as it can be
seen in Figure 5.5.

If the feasible set available is not satisfying the feasibility demands for the tracking
problem, then an avoiding redundancy mechanism can be synthesized in terms of a
reference governor (RG). In order to give a slight idea about the complexity of the explicit
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N NZMPC NZRG Combinations to be explored NZMPC−RG

1 5 37 185 79
2 23 154 3542 597
3 99 627 62073 3979
4 421 2373 999033 25114

Table 5.1: Explicit formulations.

STRG+MPC STMPC−RG

N Nodes Depth Memory(bytes) Nodes Depth Memory(bytes)
1 176+6 8+4 27616+1136 228 8 25402
2 1479+71 11+6 173928 + 8408 1756 12 212963

Table 5.2: Optimal search tree complexity.

solution, one can find in Table 5.1 the number of zones NZ∗ for prediction horizons going
from 1 to 4.

The column NZMPC contains the number of domains for the predictive control ex-
plicit solution. Their union will form X̃f which is further the base for the RG scheme.
The column NZRG presents the number of zones exclusively for the reference avoidance
scheme. If these two blocks function independently, then the number of combinations
to be explored are represented by the product NZMPC ∗ NZRG which is reported in
the fourth column of the table. It can be observed that for large prediction horizon
this indicator becomes very large and the natural question is whether all of them are
representing valid combinations of the extended (reference model + system) state. The
answer is given by the compact MPC law with guarantees of feasibility, constructed by
the composition of the MPC and RG descriptions. The fifth column in Table 5.1 contains
the number of zones NZMPC−RG for its explicit formulation.

One conclusion appears: the compact MPC−RG scheme is avoiding the exploration
of useless combinations but in the same time its number of zones is larger than the
number of zones needed for the sequential implementation:

NZMPC + NZRG ≤ NZMPC−RG ≤ NZMPC ∗ NZRG.

From the point of view of the on-line evaluation, the second inequality is relevant. From
the point of view of the memory needed to store the explicit solution, the first inequal-
ity mainly who reflects the comparison between the sequential implementation or the
compact implementation.

In order to get a better insight on the on-line evaluation vs. memory used compro-
mise, the search tree for the explicit solutions can be constructed and their complexity
compared (Table 5.2).

Unfortunately, due to the huge number of zones to be explored, only the N = 1 and
N = 2 are obtainable in reasonable time. However, the results are insightful, and for
example for N = 1 one can observe that the depth of the search tree for the compact
formulation is equivalent with the depth of the RG. This means that in the worst case
the RG evaluation is equivalent with MPC-RG evaluation which on its turn is far less
expensive that the sequential evaluation of MPC and RG (composed depth of the search
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Figure 5.6: Simulation of the evolution under the MPC-RG law. In the upper part, the
exogenous signal w, the effective reference signal r and the system output y (dotted). In the
lower part the input signal.

tree 12). The price to be paid as already mentioned is transparent in the memory needs.
But due to the fact that the RG scheme needs the storage of the complete explicit solution,
for N = 1 this disadvantage is mitigated and it can be noticed that the sequential scheme
is much memory involved that the compact scheme. For N = 2 the evaluation mechanism
has to deal with a 12vs.17 depth search tree. The memory used for the compact scheme
is still comparable with the sequential case. For larger prediction horizons the differences
from the memory point of view become more evident. As a conclusion the choice between
the compact or the sequential scheme are dependent on the aspiration towards a small
on-line evaluation time on one hand and the memory available on the other hand.

x1
t x1

t zt wt wt+1 wt+2 wt+3

-9.843 0.078 -10 -10 10 10 10
-8.76 0.578 -10 10 10 10 10
-7.18 1.07 -7.14 10 10 10 10
9.842 -0.078 10 10 -10 -10 -10
8.763 -0.578 10 -10 -10 -10 -10
7.18 -1.07 7.14 -10 -10 -10 -10

Table 5.3: Infeasible combinations for Figure 5.6.

The fact that the infeasibility avoidance scheme is effective can be illustrated by a
time domain simulation as the one in Figure 5.6.

The reference is adjusted for the combinations corresponding to the jumps on the
reference like the ones enumerated in Table 5.3.

The compact MPC scheme with guarantees of feasibility can prove to be versatile
even for extreme reference signals which are outside the operating zone of the constrained
system. For example, in Figure 5.7, the reference is bringing the MPC law to infeasibility
at almost every sample time. The RG can adjust it to the best admissible value proving
the good convergence properties of the scheme.
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Figure 5.7: Simulation of the evolution under the MPC-RG law. In the upper part, the
exogenous signal w, the effective reference signal r and the system output y (dotted). In the
lower part the input signal.

6 Conclusions

The feasibility problem within the model predictive control framework was treated with
a special attention to the tracking problems. Based on the feasibility results existing for
the regulation case, the limitations of the feasible trajectories are established and the
infeasible behavior classified.

In order to avoid the infeasibility, a reference adjustment mechanism based on the
idea of a ”reference governor” was used. Based on the fact that both the MPC and
the RG are in fact formulated as multiparametric optimization problems, their explicit
formulation in terms of piecewise affine functions was proposed.

The independent implementation of the RG in conjunction MPC law was shown to be
not optimal from the point of view of the evaluation mechanism. A compact predictive
law with guarantees of feasibility was constructed, optimal from this point of view. Its
application might be considered if the memory demands are not overwhelming.
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