
Nonlinear Dynamics and Systems Theory, 7 (4) (2007) 431–438

Generalized Monotone Iterative Technique for

Functional Differential Equations with Retardation

and Anticipation

A.S. Vatsala ∗

University of Louisiana at Lafayette, Department of Mathematics,

Lafayette, Louisiana 70504 USA

Received: July 12, 2006; Revised: June 14, 2007

Abstract: The method of monotone iterative technique together with cou-
pled lower and upper solutions is employed to prove the existence of coupled
extremal solutions when the forcing function is the sum of an increasing and
decreasing functions. This is referred to as generalized monotone method. This
will include the usual monotone method results as special cases. Further us-
ing uniqueness condition uniqueness results for functional differential equations
involving retardation and anticipation are also established.
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1 Introduction

Qualitative and quantitative study of the functional differential equations with retar-
dation and anticipation has very useful applications. Such dynamic systems occur in
chaotic epidemic model and financial models, specifically stock exchange models. A
typical model that arises is of the form

x′(t) = F (t, x(t), y(t+ τ)) − ax(t),

y′(t) = G(x(t − τ) − by(t).
(1)
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See [3, 4, 5] for more details. Some numerical,computational and simulation methods
are suggested for such equations in [3, 4, 5]. One formulation of such models [6] can be
considered as

x′(t) = f(t, x(t), xt, x
t), t ∈ I = [t0, T ],

xt0 = φ0, xT = ψ0, t0 ≥ 0, t0 < T.
(2)

See [6] for other possible formulation. In [6] the authors developed existence theory
for the general functional differential equations which involved with both retardation
and anticipation, indicating other possible formulations. They achieved this by suitably
applying results of [1]. Recently, in [7] the authors developed usual monotone iterative
method by assuming the forcing function to be nondecreasing in the unknown function
and its retardation term and non-increasing nature in the anticipation term. In this paper
we develop the generalized monotone method as in [9, 11] for the functional differential
equation with retardation and anticipation when the forcing function is the sum of a
nondecreasing and non-increasing function in all its components. This yields the results
of the usual monotone method [8, 10] as special cases. Using the method of coupled
upper and lower solutions we develop sequences which converge to coupled minimal and
maximal solutions. Further, using uniqueness condition we can prove that the nonlinear
functional differential equations with retardation and anticipation problem has a unique
solution. For more details on the monotone method and delay differential equations
equations see [2] and the references therein.

2 Main Results

The usual monotone method developed in literature proves the existence of extremal
solutions of

x′(t) = f(t, x(t), xt, x
t), t ∈ I = [t0, T ],

xt0 = φ0, xT = ψ0, t0 ≥ 0, t0 < T,
(3)

when f(t, x, φ, ψ) is either nondecreasing in x, φ, ψ or could be made nondecreasing by
adding appropriate linear terms. This is precisely the onesided Lipschitz condition in
x, φ, ψ. In this paper we develop monotone method for the following functional differential
equation with retardation and anticipation, given by

x′(t) = f(t, x(t), xt, x
t) + g(t, x(t), xt, x

t), t ∈ I = [t0, T ],

xt0 = φ0, xT = ψ0, t0 ≥ 0, t0 < T,
(4)

where C1 = C([−h1, 0], R), C2 = C([0, h2], R), φ0 ∈ C1, ψ0 ∈ C2 and f, g ∈ C(I×R×C1×
C2, R), h1, h2 > 0. Here and in what follows, the symbols xt = xt(s) = x(t + s), −h1 ≤
s ≤ 0, xt = xt(σ) = x(t + σ), 0 ≤ σ ≤ h2, representing retardation and anticipation,
respectively. We plan to employ the generalized monotone iterative technique for proving
the existence of unique solution for (4) utilizing coupled lower and upper solutions for
(4) if of two different types. Through this paper we assume that f is nondecreasing in all
its components or could be made nondecreasing by adding appropriate linear functions
whereas g is non-increasing in all its components. Before we proceed further, we need to
list the following known results relative to linear functional differential inequalities in a
suitable form [10].
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Lemma 2.1 Assume that

(i) p ∈ C([t0 − h1, T + h2], R), p is continuously differentiable on I = [t0, T ] and

p′(t) ≤ −Mp(t) −N

∫ 0

−h1

pt(s) ds, t ∈ I;

(ii) pt0(s) ≤ 0, −h1 ≤ s ≤ 0, p ∈ C1([t0 − h1, t0], R), p′(s) ≤
λ

T + h1
where

min[t0−h1,t0] p(s) = −λ, λ ≥ 0 and [M +Nh1] (T + h1) ≤ 1.

Then p(t) ≤ 0 on t0 ≤ t ≤ T .

This lemma is the suitable part of Lemma 2.1 in [10].

Lemma 2.2 Suppose that p ∈ C([t0 − h1, T + h2], R), p′(s) exists and is continuous
on I and

p′(t) ≤ −Lp(t) +N1

∫ 0

−h1

pt(s) ds+N2

∫ h2

0

pt(σ) dσ, t ∈ I,

where L,N1, N2 > 0 satisfying N1h1 +N2h2 < L. Then pt0 ≤ 0, pT ≤ 0 implies p(t) ≤ 0
on I.

Proof If the conclusion is false, there exists a t1 ∈ (t0, T ) and an ǫ > 0 such that
p(t1) = ǫ, p(t) ≤ ǫ on I. It then follows that

0 = p′(t0) ≤ −Lǫ+N1ǫh1 +N2ǫh2 < 0,

by assumptions proving p(t) ≤ 0 on I. 2

Let us list the following assumptions relative to (4) for convenience.
We call α0, β0 as type I or of type II coupled lower and upper solutions of (4) respec-

tively if (i) or (ii) below are satisfied.

(i) α0, β0 ∈ C1(I, R) satisfies

α′

0(t) ≤ f(t, α0(t), α0t, α
t
0) + g(t, β0(t), β0t, β

t
0), α0t0 = φ1, αT

0 = ψ1,

β′

0(t) ≥ f(t, β0(t), β0t, β
t
0) + g(t, α0(t), α0t, α

t
0), β0t0 = φ2, βT

0 = ψ2,

such that φ1 ≤ φ0 ≤ φ2, ψ1 ≤ ψ0 ≤ ψ2, α0(t) ≤ β0(t) on I and φ1, φ2 ∈ C1,
ψ1, ψ2 ∈ C2.

(ii) α0, β0 ∈ C1(I, R) satisfies

α′

0(t) ≤ f(t, β0(t), β0t, β
t
0) + g(t, α0(t), α0t, α

t
0), α0t0 = φ1, αT

0 = ψ1,

β′

0(t) ≥ f(t, α0(t), α0t, α
t
0) + g(t, β0(t), β0t, β

t
0), β0t0 = φ2, βT

0 = ψ2,

such that φ1 ≤ φ0 ≤ φ2, ψ1 ≤ ψ0 ≤ ψ2, α0(t) ≤ β0(t) on I and φ1, φ2 ∈ C1,
ψ1, ψ2 ∈ C2.



434 A.S. VATSALA

(iii)

f(t, x, φ, ψ) = F (t, x, φ, ψ) −M1x−N1

∫ 0

−h1

φ(s) ds,

where f(t, x, φ, ψ) is nondecreasing in (x, φ, ψ) for each t,

g(t, x, φ, ψ) = G(t, x, φ, ψ) −M2x−N2

∫ 0

−h1

φ(s) ds,

where G(t, x, φ, ψ) is non-increasing in (x, φ, ψ) for each t, whenever α0(t) ≤ x ≤
β0(t), α0t ≤ φ ≤ β0t, ξ ∈ C2 such that M1, N1,M2, N2 ≥ 0. Also M1 +M2 > 0 and
N1 +N2 > 0.

(iv) α0t0 − φ0, φ0 − β0t0 satisfying the assumptions (ii) of Lemma 2.1.

The type I and II of coupled lower and upper solutions assumed in (i)and (ii) in the
assumption are utilized in [8, 9, 11] fruitfully. We are now in a position to state and
prove our main result relative to coupled lower and upper solutions of type I.

Theorem 2.1 Suppose that assumptions (i) to (iv) except (ii) are satisfied. Then
there exist monotone sequences {αn(t)}, {βn(t)} such that αn(t) → ρ(t), βn(t) → r(t)
uniformly as n→ ∞ on [t0−h1, T+h2] and that (ρ, r) are coupled minimal and maximal
solutions of (4). That is ρ(t), r(t) satisfies

ρ′ = f(t, ρ, ρt, ρ
t) +G(t, r, rt, r

t) −M2ρ(t) −N2

∫ 0

−h1

ρt(s) ds, (5)

r′ = f(t, r, rt, r
t) +G(t, ρ, ρt, ρ

t) −M2r(t) −N2

∫ 0

−h1

rt(s) ds. (6)

If, in addition,

(v) f(t, x, φ1, ψ1) − f(t, y, φ2, ψ2)

≤ −L1(x− y) +N11

∫ 0

−h1

(φ1 − φ2)(s) ds+N12

∫ h2

0

(ψ1 − ψ2)(σ) dσ

and

G(t, y, φ2, ψ2) −G(t, x, φ1, ψ1)

≤ −L2(x − y) +N21

∫ 0

−h1

(φ1 − φ2)(s)ds+N22

∫ h2

0

(ψ1 − ψ2)(σ) dσ

where L1, L2, N11, N12, N21, N22 ≥ 0, such that (L1 + L2) > 0, (N11 + N21) > 0 (N12 +
N22) > 0 for α0(t) ≤ y ≤ x ≤ β0(t), α0t ≤ φ2 ≤ φ1 ≤ β0t, α

T
0 ≤ ψ1 ≤ ψ2 ≤ βT

0 and
(N11 +N21 −N2)h1 + (N21 +N22)h2 < L1 + L2 +M2, holds, then ρ(t) = r(t) = x(t) is
the unique solution of (4) on I.

Proof Consider the following linear problem for each n = 1, 2, 3, . . .

α′

n+1 = F (t, αn, αnt, α
t
n) −M1αn+1(t) −N1

∫ 0

−h1

(α(n+1),t(s) ds

+G(t, βn, βnt, β
t
n) −M2αn+1(t) −N2

∫ 0

−h1

α(n+1),t(s) ds

(7)
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β′

n+1 = F (t, βn, βnt, β
t
n) −M1βn+1(t) −N1

∫ 0

−h1

β(n+1),t(s) ds

+G(t, αn, αnt, α
t
n) −M2βn+1(t) −N2

∫ 0

−h1

β(n+1),t(s) ds

(8)

with α(n+1)t0 = φ0, β(n+1)t0 = φ0 and αT
n+1, β

T
n+1 are chosen such that

αT
0 ≤ αT

n ≤ αT
n+1 ≤ ψ0 ≤ βT

n+1 ≤ βT
n ≤ βT

0 (9)

and αT
n , βT

n converge uniformly to ψ0 on [0, h2] (see Remark 2.1).
Clearly each linear problem has a unique solution on [t0 − h1, T + h2]. We wish to

show that

α0 ≤ α1 ≤ α2 ≤ . . . ≤ αn ≤ βn ≤ . . . ≤ β2 ≤ β1 ≤ β0 on I. (10)

We claim first that α0 ≤ α1 on I. Since α0(t) ≤ β0(t) on I and using (iv) we get

α′

0(t) ≤ f(t, α0(t), α0t, α
t
0) + g(t, β0(t), β0t, β

t
0)

≤ F (t, α0(t), α0t, α
t
0) −M1α0(t) −N1

∫ 0

−h1

α0t(s) ds

+G(t, β0(t), β0t, β
t
0) −M2α0(t) −N2

∫ 0

−h1

α0t(s) ds.

Now set p = α0 − α1 so that it follows from (7), (9) and condition (i),

p′ = α′

0 − α′

1 ≤ F (t, α0, α0t, α
t
0) − F (t, α0, α0t, α

t
0) +G(t, β0, β0t, β

t
0) −G(t, β0, β0t, β

t
0)

+ (M1 +M2)(α1 − α0) + (N1 +N2)

∫ 0

−h1

(α1t − α0t)(s) ds

≤ −(M1 +M2)p− (N1 +N2)

∫ 0

−h1

pt(s) ds, t ∈ I

and

pt0 = α0t0 − α1t0 ≤ 0.

By Lemma 2.1, in view of assumption (iii), this implies α0 ≤ α1 on I. Similarly, we
can show that β1 ≤ β0 on I.

Next we prove that α1 ≤ β1 on I. Setting p = α1 − β1, we obtain in view of (7), (8),
for t ∈ I,

p′ = α′

1 − β′

1 = F (t, α0, α0t, α
t
0) − F (t, β0, β0t, β

t
0) +G(t, β0, β0t, β

t
0) −G(t, α0, α0t, α

t
0)

− (M1 +M2)(α1 − β1) − (N1 +N2)

∫ 0

−h1

(α1t − β1t)(s) ds.

Since F (t, x, φ, ψ) and G(t, x, φ, ψ) is nondecreasing and non-increasing in (x, φ, ψ) re-
spectively for each t, we get

p′ = α′

1 − β′

1 ≤ −(M1 +M2)(p(t)) − (N1 +N2)

∫ 0

−h1

pt(s) ds
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and from Lemma 2.1 it follows that p(t) ≤ 0 which proves that α1(t) ≤ β1(t) on I. As a
result, it follows that

α0 ≤ α1 ≤ β1 ≤ β0 on I. (11)

Now suppose that for some k > 1, we have

αk−1 ≤ αk ≤ βk ≤ βk−1 on I. (12)

We shall show that
αk ≤ αk+1 ≤ βk+1 ≤ βk on I. (13)

To do this, let p = αk − αk+1 so that pt0 = 0 and

p′ = α′

k − α′

k+1 = F (t, α(k−1), α(k−1)t, α
t
(k−1)) −M1(αk) −N1

∫ 0

−h1

αkt(s) ds

+G(t, β(k − 1), β(k−1)t, β
t
(k − 1)) −M2αk(t) −N2

∫ 0

−h1

α(k),t(s) ds

− (F (t, αk, αkt, α
t
k) −M1αk+1(t) −N1

∫ 0

−h1

α(k+1),t(s)ds)

− (G(t, βn, βnt, β
t
k) −M2αk+1(t) −N2

∫ 0

−h1

α(k+1),t(s)ds).

Substituting for F in terms of f and using the monotone nature of f , G and simplifying
we get

p′ ≤ (M1 +M2)(αk − α(k+1) + (N1 +N2)

∫ 0

−h

(αkt − αk+1t)(s) ds and pt0 = 0.

This implies by Lemma 2.1 that αk ≤ αk+1 on I. Similarly, we can show that βk+1 ≤ βk

on I. To prove αk+1 ≤ βk+1 on I, consider p = αk+1 − βk+1 so that pt0 = 0 and arguing
as before, one can show that

p′ ≤ −(M1 +M2)p− (N1 +N2)

∫ 0

−h1

pt(s) ds,

and pt0 = 0, which yields αk+1 ≤ βk+1, on I. Thus we have (13) and therefore by
induction, we see that (10)is valid on I. This together with (9) follows that (10) is also
true on [t0, T + h2].

Since the sequences {αn}, {βn} are bounded by (10), employing the standard argu-
ments [8, 9] namely Ascoli-Arzela and Dini theorems, one can conclude that {αn}, {βn}
converge uniformly on [t0, T ], that is, αn → ρ, βn → r uniformly on [t0, T ].

Also, it is easy to show that (ρ, r) satisfy (5) and (5) respectively with ρ ≤ r on I

and ρT = rT . To show that (ρ, r) are coupled minimal and maximal solutions of (4),
let x(t) be any solution of (4) with xt0 = φ0, x

T = ψ0 such that α0 ≤ x ≤ β0 on I.
Then it is enough to show that ρ ≤ x ≤ r since by definition of (ρ, r) we already have
ρT = xT = rT . Setting p = α1 − x so that pt0 = 0 and

p′ = α′

1 − x′ = F (t, α0, α0t, α
t
0) −M1α1 −N1

∫ 0

−h1

α1t(s) ds− f(t, x, xt, x
t)

+G(t, β0, β0t, β
t
0) −M2α1 −N2

∫ 0

−h1

α1t(s) ds− g(t, x, xt, x
t).
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Since α0 ≤ x(t) ≤ β0, substituting for (F, g) in terms of (f,G) from (iii) and using the
nondecreasing and non-increasing nature of f, G the above equation simplifies to the

p′ ≤ −((M1 +M2)(α1 − x) − (N1 +N2)

∫ 0

−h1

(α1t − xt)(s) ds.

Thus we get from Lemma 2.1, α1 ≤ x on I. Similarly, x ≤ β1 on I. By proceeding
similarly and by induction, it is easy to show that αn+1 ≤ x ≤ βn+1 on I for all n. Hence
(ρ, r) are coupled minimal and maximal solutions of (4).

If, in addition, condition (v) holds, since ρ ≤ r, we let p = r−ρ and find using ρt ≤ rt

and (v),

p′ = r′ − ρ′ = f(t, r, rt, r
t) − f(t, ρ, ρt, ρ

t) +G(t, ρ, ρt, ρ
t) −M2r −N2

∫ 0

h1

rt(s) ds

−

{

G(t, r, rt, r
t) −M2ρ−N2

∫ 0

h1

ρt(s)ds

}

.

Using (v) this simplifies to

p′ ≤ −L1(r − ρ) +N11

∫ 0

−h1

(rt − ρt)(s)ds+N12

∫ h2

0

(rt − ρt(σ)dσ

+ (−L2 −M2)(r − ρ) + (N21 −N2)

∫ 0

−h1

(rt − ρt)(s)ds+N22

∫ h2

0

(rt − ρt(σ) dσ

≤ −(L1 + L2 +M2)(p) + (N11 +N21 −N2)

∫ 0

−h1

(pt)(s)ds+ (N12 +N22)

∫ h2

0

pt(σ) dσ

and
pt0 = 0, pT = 0.

This implies by Lemma 2.2, p(t) ≤ 0 on I, which means ρ = r on I. This proves that
x = ρ = r is the unique solution of (4) with xt0 = φ0, and xT = ψ0. The proof is
therefore complete. 2

Here we recall the remark of [7] for completion of our Theorem 2.1.

Remark 2.1 A simple choice of (9) would be to take for αT
n , βT

n , suitable translates
of ψ0 such that αT

n = ψ0 − ǫn, βT
n = ψ0 + ηn, with αn(T ) = ψ0(T ) −ǫn, βn(T ) = ψ0(T )

+ηn, for each n, where ǫn, ηn > 0 are monotone sequences tending to zero as n → ∞.
To make life simpler still, one can assume that αT

0 = βT
0 = ψ0. Note also that given any

φ0 with α0t0 ≤ φ0 ≤ β0t0 , ψ0 need to satisfy the inequality α1(T ) ≤ ψ0(T ) ≤ β1(T ) so
that the choice (9) is possible.

Remark 2.2 If g ≡ 0 then the results of [7] related to (3) can be obtained as a
special case of Theorem 2.1.

Recall that the method of lower and upper solutions provides existence results in
the closed set generated by lower and upper solutions. In general coupled upper and
lower solutions of type II can be easily constructed. See [9, 11] for details. Generalized
monotone method using coupled upper and lower solutions of type II will be discussed
elsewhere.
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