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Abstract: The aim of this paper is to develop a general class of manifolds
on which sliding mode flux observation and control of induction motors are
achieved. For flux-speed tracking, we consider the case where the sliding surface
is formed by the derivative of the output tracking error and a function of this
error. For flux observation, the surface is a function of the estimated error. At
first, we will derive the properties that must be fulfilled by the above class of
manifolds in order to attain the control and observation objective. Then, we
design the control law and the observer gains to make the proposed manifolds
globally attractive and invariant. Simulations results are given to highlight the
performances of the proposed control method.
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1 Introduction

Today, the developments of electrical machine drive grow more and more in order to
follow the increasing need for various fields such as industry, electric cars, actuators,
etc. By means of electrical machine drive, we can get high level of productivity in
industry and product quality enhancement. The induction motor is the motor of choice
in many industrial applications due to its reliability, ruggedness and relatively low cost.
Nevertheless, controlling induction motors has been not easy due to significant nonlinear
characteristics and the imprecise knowledge of its physical parameters.
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The control of induction motors has attracted much attention in the last decades.
The vector control provides decoupling control of torque and flux similar to the control
of separately excited DC motor. However, this decoupling is achieved only if the instan-
taneous rotor flux angle is precisely known [1]. The accuracy of the knowledge of the
field rotor position affects greatly the control performances. Meanwhile, this accuracy is
related to the method chosen for the position field determination.

The direct field oriented control method, where the position field is known by measur-
ing the rotor flux of motor, is robust against parameter variation due to feedback flux [2].
The manufacturers avoid this method because it requires specially prepared machines in
order to install flux sensor that rises the motor cost and decreases its reliability.

In the indirect orientation field control, the position field is deduced from speed rotor
and the q component stator current [8]. The latter method needs the exact machine
parameters. Hence it is very sensitive to parametric variations. Many works found in
the literature over the last decade are devoted to the robust field orientation in order to
overcome or to compensate the increasing resistances or saturation effects [9, 10, 11].

Another way to control induction machine is to apply the nonlinear control theory
that covers many aspects such as nonlinear feedback linearization, passivity approach
and sliding mode control.

The nonlinear feedback linearization allows to make the dynamic of induction machine
fully or partially linearized. Its major drawback comes from the fact that it requires
relatively complicated differential geometry and the precise value of parameters [4, 12,
13, 14].

The passivity theory is developed for AC machines in [15] and experimental results for
induction machines are given in [16]. The main idea behind the passivity based controller
design is to reshape the system natural energy and inject the required damping in such
a way that the control objective is achieved.

The sliding mode theory is widely applied in the field of electrical machine drive.
This success is due to the fact that the design methodology is easy. Moreover, the
technical constraints limits are removed, since the theoretical conditions of the sliding
mode theory are actually best accomplished in practice: the new electronic power devices
allow a high limit of switching frequency, and the high performance DSP ensures a weak
computational time.

Furthermore, the sliding mode control of the induction machine allows obtaining
excellent properties of robustness against the parametric variation [6, 17, 18, 19, 20]. This
advantage is, nevertheless, attained at the expense of large control effort that produces
the well known chattering phenomenon.

Beside, the flux machine is not measured but it is estimated through an observer. The
problem of estimating flux has been tackled from different point of view. The classical
Luenberger observer for flux estimation was first developed in [21, 22]. The extended
Kalman filter is used in [23] to estimate both the flux and the rotor resistance. To cope
with parameter variations, adaptive versions of the above observers are developed in
[24] and [25]. Motivated by the attractive robustness properties of the sliding mode, a
variable structure flux observer is proposed in [6, 20, 3].

In this paper, we consider invariant manifold technique to control flux-speed and
to estimate rotor flux of induction machine. To this end, we develop a wide class of
surfaces and we search the properties that must be fulfilled in order to achieve our control
objective. Then, we design the control law (or the observer gain) to make the developed
surfaces globally attractive and invariant. Conditions that ensure internal stability as
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well as the stability of the coupling between the flux observer and the control law are
given. Some simulation results involving a 3.7Kw induction machine are also proposed.

2 Problem Formulation

Our problem consists in developing a general class of manifolds, for sliding mode control
to achieve flux-speed tracking and, for flux observation, in the case of induction motor
(the reader is referred to [7] for a general theory on design and control of induction
motors). To do so, we give firstly the induction machine model. In the stator reference
frame, the state space model of voltage fed induction machine is obtained from Park’s
model. The state vector is composed of the stator current components (iα, iβ), rotor
flux components (ϕα, ϕβ) and rotor rotating pulsation ωr, whereas a vector control is
composed of the stator voltage components (vα, vβ ) and the external disturbance is
represented by the load torque Γr. In the sequel, the state vector and the control vector
are given respectively by: x = (iα, iβ, ϕα, ϕβ , ωr)

T , and u = (vα, vβ)T . Using these
notations, the state space model of voltage fed induction machine takes the form:

ẋ1 = f1(x) + d1u1, f1(x) = −a1x1 + b1x3 + c1x4x5,

ẋ2 = f2(x) + d1u2, f2(x) = −a1x2 + b1x4 − c1x3x5,

ẋ3 = f3(x), f3(x) = a3x1 − b3x3 − x4x5,

ẋ4 = f4(x), f4(x) = a3x2 − b3x4 + x3x5,

ẋ5 = f5(x), f5(x) = −a5x5 − b5x1x4 + b5x2x3 − c5Γr.

(1)

The coefficients (a1, . . . , c5 ) are given by a1 =
1

σTs

+
1 − σ

σTr

, b1 =
(1 − σ)

σMTr

, c1 =
(1 − σ)

σM
,

d1 =
1

σLs

, a3 =
M

Tr

, b3 =
1

Tr

, a5 =
kf

J
, b5 =

p2M

JLr

, c5 =
p

J
, σ = 1−

M2

LsLr

where: Tr, Ts

are the stator and rotor electric time constant; σ is the leakage coefficient; Ls, Lr are
the stator inductance, the rotor inductance; M is the mutual inductance between stator
and rotor; kf is the friction coefficient and Γr is the load torque; J is the inertia; p is the
number of poles pairs.

Our objective is to control rotor speed ωr and rotor magnitude flux given by φ =
x2

3
+ x2

4
. In the sequel, the flux dynamic is needed so it is given by:

φ̇ = fφ(x) = −2b3φ + 2a3(x3x1 + x4x2). (2)

Hence, the augmented plant dynamic is as follows:

ė1 = f5(x) − ẇref with e1 = wr − wref ,

ė2 = fφ(x) − φ̇ref with e2 = φ − φref ,

ẋ1 = f1(x) + d1u1,

ẋ2 = f2(x) + d1u2,

ẋ3 = f3(x),

ẋ4 = f4(x),

ẋ5 = f5(x).

(3)

Here φref , wref are the desired flux and the desired speed respectively.
To solve our control problem, we will proceed as follows:
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Step 1: We characterize a class of manifolds on which flux-speed tracking (respectively
flux observation) is achieved.

Step 2: We design the control law u (respectively the observer gains) that makes, the
manifolds introduced in step1, attractive and invariant.

3 Design of the Control Manifold

In this section, our goal is to characterize a class of manifolds on which speed and flux
tracking is achieved. Recall that, the sliding mode control objective consists in designing
a suitable manifold M(x, t) ∈ Rm defined by M = {x ∈ Rn : Ψ(x) = 0}; so that the
state trajectories of the plant restricted to this manifold have a desired behavior such as
tracking, regulation and stability. Then, determine a switching control law, u(x, t), that
is able to drive the state trajectory to this manifold and maintain it on M(x, t), once
intercepted, for all subsequent time. That is, u(x, t) is determined such that the selected
manifold M(x, t) is made attractive and invariant.

Similarly, the basic sliding mode observer design procedure is performed in two steps.
Firstly, design an attractive manifold Sc(y, t) ∈ Rp so that the output estimation error
trajectories restricted to Sc(y, t), have a desired stable dynamics. In the second step,
determine the observer gain, to stabilize the equivalent dynamic on Sc(y, t).

In [26] the authors give a form of this surface which is a Hurwitz polynomial of the
error and its derivative up to r − 1, where r is the relative degree of the output.

From the fact that the outputs φ and ωr are of relative degree two and in order to
obtain static feedback we propose the manifolds Ψ = (Ψ1(e1) Ψ2(e2))

T defined in [26]:

Ψ1(e1) = {x ∈ R5 : S1(e1) = ė1 + Λ1(e1) = 0},

Ψ2(e2) = {x ∈ R5 : S2(e2) = ė2 + Λ2(e2) = 0}
(4)

with S = (S1, S2)
T , and where Λ1(·) and Λ2(·) are any given class C1 functions whose

properties will be derived below. One has the following result:

Proposition 3.1 Consider the manifold Ψ defined in (4), and assume that Λ1(·) and
Λ2(·) are continuous functions such that eiΛi(ei) > 0 ∀ ei 6= 0 (i = 1, 2). Then, on the
manifold Ψ the outputs errors e1, e2 converge at least asymptotically to zero.

Proof Due to the form of manifold Ψ(x), one has:

ėi = −Λi(ei), i = 1, 2. (5)

Let us use the Lyapunov function given by V1 = 1

2
e2
1 and V2 = 1

2
e2
2. Their derivatives

are then:
V̇i = −eiΛi(ei), i = 1, 2. (6)

In order to make V̇1 and V̇2 negative definite, it is enough that eiΛi(ei) > 0 ∀ ei 6= 0
(i = 1, 2). Hence the output errors e1 and e2 are bounded and moreover they tend at
least asymptotically to zero. 2

Remark 3.1 For example, the functions Λ1(·) and Λ2(·), can be taken as the two
following functions and their linear combination with positive real coefficients: ek

i with
k odd natural number, and sinh(ei).
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Remark 3.2 From the literature, it is noticed that in [20, 21], the proposed sliding
surface corresponds to the case of: Λi(ei) = kei with k > 0 and we obtain exponential
convergence of the tracking errors ei.

In the sequel, we show how to design the control signal u such that the selected
manifold Ψ is attractive and invariant.

Proposition 3.2 Consider the manifold Ψ = (Ψ1(e1) Ψ2(e2))
T defined in (4) and

let the control signal u be given by

u = ue + ui,

ui = −A−1(x)M sign(S),

ue = −A−1(x)(B(x) + C(x))

(7)

with mi > 0, i = 1, 2, where

A(x) =

(

−b5d1x4 b5d1x3

2a3d1x3 2a3d1x4

)

, B(x) =

(

B1(x)
B2(x)

)

, C(x) =

(

C1(x)
C2(x)

)

,

M =

(

m1 0
0 m2

)

, sign(S) =

(

sign(S1)
sign(S2)

)

,

B1(x) = −a5f5(x) + b5[−x4f1(x) − x1f4(x) + x3f2(x) + x2f3(x)] − ω̈ref ,

B2(x) = −2b3fφ(x) + 2a3[x3f1(x) + x1f3(x) + x4f2(x) + x2f4(x)] − φ̈ref ,

C1(x) = (f5(x) − ω̇ref)
dΛ

1

de1

,

C2(x) = (fφ(x) − φ̇ref )
dΛ2

de2

,

where fi(x) for i = 1, . . . , 5 are given in (1) while fφ(x) is given in (2) and the functions
Λ1(·) and Λ2(·) are characterized in Proposition 3.1. Then, Ψ is globally attractive and
invariant.

Proof Let us consider the following Lyapunov function candidate V = 1

2
ST S, its

time derivative is then

V̇ = ST Ṡ, (8)

where

Ṡ = B(x) + C(x) + A(x)U. (9)

With the control law given by

U = −A−1(x)[B(x) + C(x) + M sign(S)] (10)

the surface dynamic Ṡ can be rewritten in the form

Ṡ = −M sign(S). (11)

With relation (11), the expression (8) takes the form

V̇ = −m1S1 sign(S1) − m2S2 sign(S2). (12)
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In order to make V̇ negative ∀S 6= 0, it is sufficient to take coefficients m1 and m2 as

mi > 0, i = 1, 2. (13)

This condition makes (S = 0), and hence Ψ is globally attractive. Furthermore since
Ṡ = 0, Ψ is invariant. 2

Remark 3.3 The determination of the input vector u is possible only if the matrix
A(x) has an inverse. Its determinant given by 2a3b5d1(x

2

3
+ x2

4
) is not null if the rotor

flux magnitude is different from zero. The latter condition is verified, since the machine
is connected to the supply, and hence the control signal is bounded.

Remark 3.4 The convergence of the output tracking error ei (i = 1, 2) to zero does
not imply that the state vector x = (x1, x2, x3, x4, x5)

T of the induction motor remains
bounded. However, since e1 = x5−ωref and e2 = x2

3
+x2

4
−φref are asymptotically stable

with wref and φref bounded, one concludes that the states x5, x3 and x4 are bounded.
Let ξ = (x1, x2)

T and η = (x3, x4, x5)
T . We have proven that the state η is bounded and

we want to prove that ξ remains bounded. From the dynamic equation (1) we can see
that, since the coefficient a1 is positive, the origin of the subsystem ξ̇ = f(ξ, ηd) is stable
for any fixed value ηd of the vector η. One concludes that the state ξ is bounded.

4 Flux Observer Design

In this section, the purpose is to design a current-flux sliding observer based on a general
class of manifold Sc. The basic sliding mode observer design procedure is performed
in two steps. Firstly, design an attractive manifold Sc(y, t) ∈ Rp so that the output
estimation error trajectories restricted to Sc(y, t), have a desired stable dynamics. In the
second step, determine the observer gain, to stabilize the equivalent dynamic on Sc(y, t).

The (x1, x2) component current, the rotor speed ωr and the control input (u1, u2) are
assumed to be available by measurement. Furthermore, the dynamic of rotor speed ωr

is assumed to be slower than the current and flux dynamics. The observer is considered
as a copy of the induction machine electric equations where the speed ωr is taken as a
time varying parameter. In the sequel, (x̂1, x̂2) denote the observed currents, (x̂3, x̂4)
is the observed flux, (er1, er2) is the current observation error and (er3, er4) is the flux
observation error. Further, we assume that the real flux is bounded as follows: |x3| < ρ3,
|x4| < ρ4.

We propose an observer constituted by two subsystems, the first one concerns with
the stator current observation and is given by:

(

˙̂x1

˙̂x2

)

= −a1

(

x̂1

x̂2

)

+ A0

(

x̂3

x̂4

)

+ d1

(

u1

u2

)

+ ∆

(

sign(Sc1)
sign(Sc2)

)

, (14)

and the second subsystem concerns with the flux observation and is of the form:

(

˙̂x3

˙̂x4

)

= a3

(

x̂1

x̂2

)

+ B0

(

x̂3

x̂4

)

+ K

(

sign(Sc1)
sign(Sc2)

)

, (15)

where the matrices A0 and B0 are given by

A0 =

(

b1 c1ωr

−c1ωr b1

)

, B0 =

(

−b3 −ωr

ωr −b3

)

, (16)
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and the gain matrices ∆ and K are taken as:

∆ =

(

δ1 0
0 δ2

)

, K =

(

k1 k2

k3 k4

)

. (17)

Consider the sliding surfaces error Sc = (Sc1, Sc2)
T defined by:

{

Sc1 = Θ1(er1) with er1 = x1 − x̂1,

Sc2 = Θ2(er2) with er2 = x2 − x̂2.
(18)

Here Θ1(x) and Θ2(x) are class C1 functions characterized by some properties, which
will be derived later.

Proposition 4.1 For the first subsystem (14), if the following conditions are fulfilled:

(i) Θ1(x) and Θ2(x) are strictly increasing function satisfying: Θi(x) = 0 if and only
if x = 0 for i = 1, 2;

(ii) the coefficients δ1 and δ2 satisfy

δ1 > a1|er1| + b1(|x̂3| + ρ3) + c1ωr(|x̂4| + ρ4),

δ2 > a1|er2| + c1ωr(|x̂3| + ρ3) + b1(|x̂4| + ρ4).
(19)

Then, the manifold Ψc = {x ∈ R5 : Sc = 0} is made globally attractive and invariant,
moreover the observation errors er1 and er2 converge at least asymptotically to zero value.

Proof On the manifold Ψc one has:

Sci = 0 or Θi(eri) = 0, i = 1, 2, (20)

when Θ1(x) and Θ2(x) are chosen among functions that take zero value only at the origin
x = 0, the condition (20) leads to er1 = er2 = 0.

Let us take the Lyapunov function Vc = 1

2
ST

c Sc with Sc = (Sc1, Sc2)
T and its deriva-

tive is
V̇c = ST

c Ṡc, (21)

where

Ṡc =

(

Θ̇1(er1)

Θ̇2(er2)

)

=







ėr1

dΘ1(er1)

de1

ėr2

dΘ2(er2)

de2






. (22)

From the fact that the current error dynamics (ėr1, ėr2) is given by

(

ėr1

ėr2

)

= −a1

(

er1

er2

)

+ A0

(

er3

er4

)

− ∆

(

sign(Sc1)
sign(Sc2)

)

(23)

the sliding surface dynamic (Ṡc1, Ṡc2) becomes

Ṡc1 = P1(Sc1)
dΘ1(er1)

der1

, (24)

Ṡc2 = P2(Sc2)
dΘ2(er2)

der2

, (25)
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where

P1(Sc1) = [−a1er1 + b1er3 + c1ωrer4 − δ1 sign(Sc1)],

P2(Sc2) = [−a1er2 − c1ωrer3 + b1er4 − δ2 sign(Sc2)],

and hence V̇ can take the form

V̇c = P1(Sc1)Θ1(er1)
dΘ1(er1)

der1

+ P2(Sc2)Θ2(er2)
dΘ2(er2)

der2

. (26)

The latter can be written as

V̇c = P1(Θ1)Θ1(er1)
dΘ1(er1)

der1

+ P2(Θ2)Θ2(er2)
dΘ2(er2)

der2

. (27)

In order to make V̇c negative ∀Sc 6= 0, it is sufficient that the terms
dΘ1

der1

and
dΘ2

der2

must

be positive ∀ ei 6= 0 (i = 1, 2) and the gains δ1 and δ2 are taken as

δ1 > Max{| − a1er1 + b1er3 + c1ωrer4|} = a1|er1| + b1(|x̂3| + ρ3) + c1ωr(|x̂4| + ρ4),
(28)

δ2 > Max{| − a1er2 − c1ωrer3 + b1er4|} = a1|er2| + b1(|x̂4| + ρ4) + c1ωr(|x̂3| + ρ3)
(29)

Hence, the manifold Ψc is globally attractive and the observation errors er1 and er2

converge at least asymptotically to zero value. 2

Remark 4.1 For example, the function Θi (i = 1, 2) can be taken as the two follow-
ing functions and their linear combination with positive real coefficients: ek

i with k odd
natural number, and sinh(eri);

Remark 4.2 From the literature, it is noticed that in [20, 21], the proposed sliding
surface corresponds to the case of: Θi = eri with i = (1, 2) > 0.

When the first subsystem is in sliding mode, the gain matrix K is determined in order
to make the flux observation errors converge exponentially to zero. One has

Proposition 4.2 If the first subsystem (14) satisfies Proposition 4.1 and with the
gain matrix K chosen as

K =

[

B0 +

(

q1 0
0 q2

)] [

(A0)
−1

(

δ1 0
0 δ2

)]

(30)

with q1 > 0 and q2 > 0 then, the flux observation errors (er3, er4) are uniformly expo-
nentially stable.

Proof When the first subsystem (14) is in sliding mode (Sc ≡ Ṡc ≡ 0), then
er1 = er2 = ėr1 = ėr2 = 0, and the terms sign(Sc1), sign(Sc2) are equivalent to:

(

sign(Sc1)
sign(Sc2)

)

≡

(

δ1 0
0 δ2

)

−1

A0

(

er3

er4

)

. (31)
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As consequence, the second subsystem dynamic (15) is reduced to

(

ėr3

ėr4

)

=

[

B0 − K

(

δ1 0
0 δ2

)

−1

A0

]

(

er3

er4

)

(32)

with the gain matrix K given by

K =

[

B0 +

(

q1 0
0 q2

)] [

(A0)
−1

(

δ1 0
0 δ2

)]

. (33)

The observation error dynamic er3 and er4 become

(

ėr3

ėr4

)

= −

(

q1 0
0 q2

) (

er3

er4

)

. (34)

From expression (34) it appears clearly that the flux observation errors er3 and er4

converge uniformly exponentially to zero. 2

As the flux components are not available by measure, we must use the observed
flux in the implementation of the control law (7). Besides, the convergence of the flux
observation errors (er3, er4) and the controlled output errors (e1, e2), defined in (3), to
zero does not imply that these variables will tend to zero when the observed flux is
used instead of the real flux in the control law (7). This is so, because the separation
principle is no longer valid for nonlinear systems. However, since the flux observation
errors are uniformly exponentially stable, a sufficient condition for the global stability
of the overall system resulting from the association of the control law (7) with the flux
observer is given in [27]. This condition is that functions Λ1(·) and Λ2(·) must be chosen
such that the control law (7) ensures global exponential stability of the controlled output
errors (e1, e2). One possible choice of such functions is Λi(ei) = kei with i = 1, 2.

5 Simulation Results

The three phase induction machine under test is characterized by P =
3.7 Kw, 220/380, 8.54/14.8A, M = 0.048 H, Ls = 0.17 H, Lr = 0.015 H, Ts = 0.151 s,
T r = 0.136 s, J = 0.135 mN/rds−2, Kf = 0.0018 mN/rds−1. The chattering effect, due
to sliding terms contained in input control, is largely attenuated using the function sign
designed by the following relation:











sign(s) = s/ε if |s| ≤ ε,

sign(s) = 1 if s > ε,

sign(s) = −1 if s < ε.

With a view to illustrate the method, we use the following surfaces:

(i) For flux-speed tracking: Λ1(e1) = sinh(e1) and Λ2(e2) = sinh(e2).

(ii) For flux observation Θ1(er1) = λ1er1 + sinh(er1) and Θ2(er2) = λ2er2 + sinh(er2).

Figures 5.1 and 5.2 give the machine responses in tracking regime (for both ωref > 0
and ωref < 0). It appears clearly that the flux machine and speed track their references
with a good accuracy. Moreover, the initial stator peak currents are attenuated by
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Figure 5.1: Induction machine responses in tracking regime for positive reference speed with
the disturbances applied during only 0.1 s respectively at time t=0.6 s, 0.95 and 1.65 s (solid
line for outputs; dashed line for references).
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Figure 5.2: Induction machine responses in tracking regime for negative reference speed with
the disturbances applied during only 0.1 s respectively at time t=0.6 s, 0.95 and 1.65 s (solid
line for outputs; dashed line for references).
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reducing the control inputs only in the beginning of the transient stage (for time t ≤ 0.1s).
This reduction affects the tracking speed during this interval of time. An appreciable
flux tracking error (around 2%) is obtained due to an important threshold value used
in function sign. In order to maintain the voltage in admissible range when the speed
reference ωref grows up to nominal value n = 300 rd/s, the reference flux φref is reduced
down to the nominal flux φn as: φref = φnωn/ωref .

The machine flux tracks the desired value with a good accuracy in all speed range.
Moreover, the estimated flux provided by the observer is sensibly the same as the flux
machine (the error flux is around 0.001) independently of the speed value.

Further, it is noted that the speed and flux tracking and the estimated flux reveal a
good robustness against disturbances represented by parametric variations and nominal
load torque occurring at the same time. These disturbances are applied during 0.1s re-
spectively at the time t = 0.85 s, 1.35 s and t = 2.6 s. The robustness tests are performed
for the parameter variations around nominal values as the all rotor resistances increase
by an amount of 100% and, all inductances decrease by an amount of 50%. In spite of
the occurring disturbances, the voltage phase value remains admissible.

6 Conclusion

In this paper, a general class of manifolds for sliding mode observation and control of
induction machine, is developed. Firstly, the properties of sliding surfaces, ensuring the
tracking flux-speed and observation flux, are derived. In the case of flux-speed tracking,
we have studied the case when the derivative of the error control and a function of this
error form the sliding surface. It has been demonstrated that this function must be odd
and its derivative must be even function vanishing only at the origin. In the case of
flux observation, this surface is a function of the estimated error. In later case, it has
been proved that this function must be odd and it takes zero value at the origin and
its derivative must be continuous even for the function taking zero value only at the
origin. The simulation results have allowed obtaining the flux-speed tracking and flux
observation with good accuracy. Moreover, the behavior of tracking against disturbances
represented by the application of the nominal load torque in the presence of increasing
rotor resistances (by an amount of 100%) and decreasing inductances (by an amount of
50%) reveals the high robustness level.
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