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Abstract: This paper deals with the linear quadratic regulator with constraints
on the state and the input vectors. Such an optimization problem has a wide
applications in industry like chemical and manufacturing industries. Our goal
in this paper consists of developing an efficient numerical algorithm to solve
such problem. Our technique relays on an iterative approach that uses the
solution of the standard linear quadratic regulator as an initial guess for the
optimal solution and then iteratively, the solution is improved by designing a
controller that compensates for the violation of the constraints at each iteration.
A numerical example is given to show the effectiveness of this algorithm.
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1 Introduction

The linear quadratic regulator (LQR) is one of the most studied control problem in the
literature. It will require many pages to cite all the works that were reported in the
literature on the subject. In fact there are many variants. If we restrict ourselves to
the case of LQR with constrained states and inputs, this variant consists of designing a
state feedback controller that drives the state from a nonzero initial condition to zero by
respecting simultaneously the constraints on the state and the control vectors.

This control problem has many applications in industry. In fact to motivate our
study, let us consider a deterministic manufacturing system that produces n-items that
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can be stocked in a storage with finite size for each part and delivered to the market
according to a given demand. Therefore, the inventory control problem can be stated as
a constrained linear quadratic regulator problem.

This type of problem has been tackled by many authors among them we quote the
works [5, 3, 4, 6, 7, 11, 9, 10, 2, 13]. In these references efficient algorithms have been
developed to solve numerically the optimality conditions for the linear quadratic regu-
lator with constraints on the states and/or the inputs. Both versions (continuous-time
and discrete-time) have been tackled. Pytlak [8] presents many numerical methods for
nonlinear optimal control problems with state constraints.

Our goal in this paper consists of solving the linear quadratic regulator with con-
strained states and inputs. To determine the control law, we develop a numerical method
that uses the standard linear regular as an initial guess solution and iteratively, we im-
prove the control law using the error at each iteration. Our idea in this paper, consists
of considering the linear regulator problem as an initial guess. Based on this solution
another optimization problem is formulated in which the state constraints are relaxed
while the control constraints are maintained. Then, an iterative procedure is developed
to solve the problem at hand while satisfying systems constraints.

The rest of this paper is organized as follows. In Section 2, the constrained linear
quadratic regulator problem is stated and some results are recalled to facilitate the un-
derstanding of results. Section 3 contains the main of the paper and presents the steps
of our algorithm. Section 4 provides a numerical example to show the effectiveness of
the developed algorithm.

2 Problem Statement

Let us consider the class of continuous-time linear systems with the following dynamics

ẋ(t) = Ax(t) + Bu(t),

x(0) = x0,
(1)

where x(t) ∈ Rn and u(t) ∈ Rm represent respectively the state and the control of the
system at time t, the matrices A and B are assumed to be known and constant, and x0

is the initial condition.
The standard formulation of the linear quadratic regulator consists of minimizing the

following cost function

J =
1

2

∫ T

0

[
xT(t)Qx(t) + uT(t)Ru(t)

]
dt, (2)

where Q ∈ Rn×n and R ∈ Rm×m are two given matrices such that Q ≥ 0 and R > 0 and
T > 0 is a given finite time.

Under the assumption that the linear system is stabilizable and detectable it can be
shown that the solution of this optimization problem is given by (see [1])

u⋆(t) = Kx(t), (3)

where K = −R−1BTP (t) with P (t) is the solution of the following Riccati equation

−Ṗ = ATP (t) + P (t)A − PBR−1BTP + Q. (4)
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As it was pointed out in the introduction, more often practical systems have con-
straints either on the state or the input or on both of them. Therefore, the previous
formulation doesn’t represent the real case and the constraints either on the state or the
control or on both should be included in the previous formulation. The corresponding
formulation is referred to as constrained linear quadratic regulator. For more details on
this formulation either for the continuous-time or the discrete-time version, we refer the
reader to [3, 4, 6, 7] and the references therein. This formulation is given by:

Pc :






min J =
1

2

∫ T

0

[
xT(t)Qx(t) + uT(t)Ru(t)

]
dt, subject to:

ẋ(t) = Ax(t) + Bu(t), x(0) = x0,

x ≤ x(t) ≤ x̄, u ≤ u(t) ≤ ū,

(5)

where x, x̄, u and ū are known vectors and the other parameters keep the same definitions
as before.

This optimization problem does not have an analytical solution as it is the case for
the previous one and the only way to solve it is to proceed numerically. In the literature,
we can find some numerical methods that solve such problem. For more details on this
subject, we refer the reader to [5, 3, 4, 6, 7, 8] and the references therein. Our goal
in this paper is to solve this problem and to propose a numerical algorithm that solves
efficiently the optimization problem Pc. The next section will provide such algorithm and
in Section 4, a numerical example is provided to show the effectiveness of this algorithm.

3 Main Results

To solve the optimization problem Pc some attempts have been proposed in the literature
for more details on this topics we refer the reader to [3, 4, 6, 7] and the references therein.
Here we will propose a new way that solves the problem Pc iteratively starting from an
initial solution that we can get from the unconstrained optimization problem. Then,
subsequently by correcting the error between desired trajectory and the one at iteration
k, we can design a controller that compensates for this error which will be added to the
one at iteration k. At the end of the algorithm we end up with the desired control and
the trajectory that satisfy all the system constraints.

Let us denote by x̂(t) and û(t) the optimal trajectory and the optimal control for the
unconstrained linear quadratic control problem. The link between the optimal control
and the optimal trajectory is given by:

˙̂x(t) = Ax̂(t) + Bû(t), x̂(0) = x0, (6)

where û(t) = −R−1BTP (t)x̂(t) with P (t) is the solution of the Riccati equation (4).
It is obvious that this solution is not the optimal one and some corrections are needed

to be done to make it closer to the optimal solution. For this purpose by denoting by x⋆(t)
and u⋆(t) respectively the optimal trajectory and the optimal control of the constrained
linear quadratic regulator, we have:

ẋ⋆(t) = Ax⋆(t) + Bu⋆(t), x⋆(0) = x0,

u⋆(t) = û(t) + ∆u⋆(t),

with ∆u⋆(t) is a control law that we have to determine that will correct the trajectory
of the system and then reduces the error.
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Notice that x(t) and u(t) are linked to the optimal solution of the standard linear
quadratic regular by the following expressions:

x(t) = x̂(t) + e(t), u(t) = û(t) + ∆u(t).

Using now these expressions, the cost function and the previous constraints become
respectively:

min J =
1

2

∫ T

0

[
x̂T(t)Qx̂(t) + ûT(t)Rû(t)

]
dt

+

∫ T

0

[
x̂T(t)Qe(t) +

1

2
eT(t)Qe(t) + ûT(t)R∆u(t) +

1

2
∆uT(t)R∆u(t)

]
dt

subject to:
˙̂x(t) + ė(t) = Ax̂(t) + Ae(t) + Bû(t) + B∆u(t)

and

x ≤ x̂(t) + e(t) ≤ x̄, u ≤ û(t) + ∆u(t) ≤ ū.

Assume that we are now at the first iteration, i.e.: k = 1, in which xk(t) = x̂(t)
and uk(t) = û(t) are known. From the constraints on the states and the knowledge
of xk(t), we can determine precisely the maximum and minimum values as well as the
corresponding time instant as which xk(t) trajectories violate these constraints. Let us
now denote by tkij , j = 1, . . . , pp (where pi is a finite positive integer) the corresponding

instants at which the maximum or the minimum violations occur and by e⋆k
i (tkij) the

value of the i-th component of the maximum and the minimum error at time tkij that we
should compensate. This imposes the following constraints which have to be satisfied in
our optimization problem:

ek
i (tkij) = e⋆k

i (tkij), j = 1, . . . , pi, i = 1, . . . , n.

Therefore, our original problem can be transformed to the following one that has
only inequality constraints on the input (for simplicity, the iteration number k will be
dropped while deriving the necessary conditions for optimality)

min ∆J =

∫ T

0

[
x̂T(t)Qe(t) +

1

2
eT(t)Qe(t) + ûT(t)R∆u(t) +

1

2
∆uT(t)R∆u(t)

]
dt

subject to

ė(t) = Ae(t) + B∆u(t), e(0) = 0,

ei(tij) = e⋆
i (tij), j = 1, . . . , pi, i = 1, . . . , n,

∆u(t) ≤ ∆u(t) ≤ ∆u(t),

with ∆u(t) = u − û(t), ∆u(t) = ū − û(t).

To solve this problem, let us write the corresponding Hamiltonian:

H(e, ∆u, t) = x̂T(t)Qe(t) +
1

2
eT(t)Qe(t) + ûT(t)R∆u(t) +

1

2
∆uT(t)R∆u(t)

+ λT [Ae + B∆u] +

n∑

i=1

p∑

j=1

πij [ei(t) − e⋆
i (t)] δ(t − tij),
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where λ is the costate vector, πij is the Lagrange multiplier and δ(t) is the Dirac delta
function defined as follows:

δ(t − tij) =

{
1, if t = tij ,

0, elsewhere.

Based on optimization theory, the necessary conditions of optimality give

∂H

∂∆u
= 0

which implies
Rû + R∆u + BTλ = 0

that gives in turn
∆u = −û − R−1BTλ.

The feasible control law, ∆u+ û that minimizes the Hamiltonian while satisfying the
previous constraints on control is given by [12]:

∆u + û =






u, if −R−1BTλ < u ,

−R−1BTλ, if u ≤ ∆u(t) ≤ u,

u, if −R−1BTλ > u .

(7)

The second necessary optimality condition for our problem is

∂H

∂λ
= ė = Ae + B∆u (8)

with e(0) = 0.
The third necessary optimality condition for our problem is

∂H

∂e
= −λ̇,

which implies that
λ̇ = −Qx̂ − Qe− ATλ − π(t) (9)

with λ(T ) = 0, π(t) = [π1(t)δ(t − t1j), . . . , πp(t)δ(t − tpnj
)].

The last necessary optimality condition gives:

∂H

∂πij

= ei(tij) − e⋆
i (tij), i = 1, . . . , n, j = 1, . . . , pi.

The error ei(tij)−e⋆
i (tij) at iteration m is used to update πij employing the following

expression:
πm+1

ij = πm
ij + α [em

i (tij) − e⋆
i (tij)] , (10)

where α can be chosen following the well know optimization techniques.
To solve our optimization we need to determine λ(t) that comes from (9) that its

self depends on π(t) that we should estimate, and e(t) that be can obtained from (8)
that in turn depends on ∆u(t) that we should determine once we know λ(t). All the
equations are coupled and one way of obtaining a solution to this problem is numerically
solve the problem. Once the optimization problem is solved, we update the trajectories,
xk(t), uk(t) by ek(t) and ∆uk(t) to get the new trajectories xk+1(t) = xk(t) + ek(t) and
uk+1(t) = uk(t) + ∆uk(t) and then repeat the whole process till the supij e⋆

i (t
k
ij) is less

than a specified given value. The steps of our algorithm are summarized by:
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Algorithm 3.1

1. Initialization: Choose ǭx > 0, ǭλ > 0, ǭπ > 0, and let k = 1, l = 1, and m = 1
(the numbers of iterations for x(t), λ(t) and π(t)), and solve the standard LQR to
get x̂ = xk and û = uk.

2. Identify the values of e⋆
i (t

k
ij) and the corresponding instants tkij at the iteration k

for each trajectory.

3. Guess πkm
ij (t).

4. Guess λklm(t).

5. Compute ∆uklm using (7), and solve ( 8) to determine eklm(t).

6. Solve (9) to get the trajectory λk(l+1)m at the iteration k and m.

7. Compute the error on λ as follows

ελ =

√∫ T

0

‖λklm(t) − λk(l+1)m(t)‖2 dt.

Test: If ελ > ǭλ, use the computed λ(t) at this iteration as a guess for λ(t), put
l = l + 1 and go to Step 5, otherwise continue.

8. Update πkl
ij (t) using for example

π
kl(m+1)
ij = πklm

ij + α
(
eklm

i (tkij) − e⋆
i (t

k
ij)

)
,

where α can be chosen following one of the well known optimization techniques;
and compute the error as:

επ =

√√√√
n∑

i=1

pi∑

j=1

‖eklm
i (tkij) − e⋆

i (t
k
ij)‖

2.

Test: If επ > ǭπ, put l = 1 and m = m + 1 and solve (9) to get new trajectory for
λ and go to Step 5, otherwise continue.

9. Calculate the new trajectory x(t) and u(t) at the iteration k+1 using the following:

xk+1 = xk + ek, uk+1 = uk + ∆uk.

10. Identify the values of e⋆
i (tij) and the corresponding instants tij at the iteration

k + 1 for each trajectory and compute the error using the following

εx = sup
ij

{e⋆
i (tij)} for the e⋆

i (tij) computed at this step.

11. Test: If εx > ǭx, increase k by 1, put l = 1, m = 1 and go to Step 3, else record
the trajectories and the controls and stop.

In the next section a numerical example with lower bounds on the states and the
control is provided to show the validness of our approach. Our algorithm has been
programmed using Fortran language on Pentium PC. The computation time is very
acceptable and for the one we are presenting is less than one second.
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4 Numerical Example

To show the effectiveness of our algorithm, let us consider a linear system with the
following data:

A =




0 1 0
0 0 1

−2.36 −13.6 −12.8



 , B =




0 0
0 0

−1.79 2.68



 , Q =




1 0 0
0 1 0
0 0 1



 ,

R =

[
5 0
0 5

]
, x =




−1
−1
−1



 , u =




−0.2
−0.2
−0.2



 .
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Figure 4.1: Behavior of the state variables x1, x2 and x3.

0 2 4 6 8 10 12 14 16 18 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time in sec.

C
on

tr
ol

s 
u1

 a
nd

 u
2

Figure 4.2: Behavior of the control variables u1 and u2.

As it can be seen in Figures 1 and 2, the obtained suboptimal states and control
trajectories satisfy all the required system constraints.
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5 Conclusion

This paper dealt with the constrained linear quadratic regulator for the class of linear
continuous-time. The constraints are on both the control and the state vectors. A
procedure is developed in which the original problem is converted to another one which
has only constraints on control. By solving this new problem iteratively, it is possible to
get the solution of the original one. The illustrative example shows the applicability of
the developed technique.
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