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Abstract: We define and study topological pressure for the non-autonomous
discrete dynamical systems given by a sequence {fi}

∞
i=1 of continuous self-maps

of a compact metric space. In this paper, we obtain the basic properties and
the invariant with respect to equiconjugacy of topological pressure for the non-
autonomous discrete dynamical systems.
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1 Introduction

Entropies are fundamental to our current understanding of dynamical systems. The
notion of topological entropy was introduced by Adler, Konheim and Mcandrew as an
invariant of topological conjugacy. Topological entropy provides a numerical measure for
the complexity of an endomorphism of a compact topological space [1]. Later Bowen and
Dinaburg gave a new, but equivalent, definition in the case when the space under con-
sideration is metrizable [2]. S. Kolyada and L. Snoha studied topological entropy for the
non-autonomous discrete dynamical systems given by a sequence {fi}

∞
i=1 of continuous
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self-maps of a compact topological space [3]. Topological pressure is a generalization to
topological entropy for a dynamical system [4].

Our purpose is to introduce and study the notion of topological pressure for the
non-autonomous discrete dynamical systems given by a sequence {fi}

∞
i=1 of continuous

self-maps of a compact topological space.
First, some notation and definitions are established.
Throughout the paper, (X, d) will be a compact metric space and C(X, X) be the set

of continuous maps from (X, d) into itself, C(X, R) be the functional space containing
all continuous, real-valued functions on X .

Let f1,∞ = {fi}
∞
i=1 be a sequence of continuous maps from X to X . The identity

map on X will be denoted by idX or shortly by id. Let N, R, Z be the set of all positive
integers, real and integers, respectively. For any i ∈ N let f0

i = f−0
i = idX and for any

i, n ∈ N set fn
i = fi+(n−1) ◦· · · fi+1 ◦fi (first apply fi) and f−n

i = f−1
i ◦f−1

i+1◦· · · f
−1
i+(n−1)

(the last notations will be applied to sets, we do not assume that the maps fi are
invertible). Finally, denote by fn

1,∞ the sequence of maps {fn
in+1}

∞
i=0 and by f−1

1,∞ the

sequence {f−1
i }∞i=0.

Now we are going to describe the main results of the paper and how it is organized.
For the precise statements of the results and for the definitions used see corresponding
sections.

Let f1,∞ ∈ C(X, X) and ϕ ∈ C(X, R). In this paper we will define and study the
topological pressure P (f1,∞, ϕ) of non-autonomous discrete dynamical systems given by
a sequence {fi}

∞
i=1 with respect to ϕ.

In Section 1, we give the basic definition of topological pressure for the non-
autonomous discrete dynamical systems given by a sequence {fi}

∞
i=1 of continuous self-

maps of a compact metric space. In Section 2, we study the basic properties of topological
pressure for the non-autonomous discrete dynamical systems.

2 Topological Pressure of a Sequence of Maps on a Compact Metric Space

We are going to define the topological pressure of a non-autonomous dynamical system
(X ; {fi}

∞
i=1) analogously to the topological pressure of a autonomous dynamical system

(X ; f) ([4]). Of course, for f1 =2= · · · = f we get the classical definition.
For each n ≥ 1 there is a positive integer. Define the metric in X by dn(x, y) =

max0≤j≤n−1 d(f j
1 (x), f j

1 (y)). A subset E of the space X is called (n, ε)–separated if for
any two distinct points x, y ∈ E, dn(x, y) > ε. Let C(X, R) be the space of real-valued

continuous functions of X . For ϕ ∈ C(X, R) and n ∈ N we denote
n−1
∑

i=0

ϕ(f i
1(x)) by

(Snϕ)(x). For ε > 0, x ∈ X , we put

Pn(f1,∞, ϕ, ε) := sup

{

∑

x∈E

e(Snϕ)(x) | E is a ( n, ε) separated set for X

}

.

Then we put

P (f1,∞, ϕ, ε) = lim sup
n→∞

1

n
log Pn(f1,∞, ϕ, ε)

and we define the topological pressure of f1,∞ with respect to ϕ as

P (f1,∞, ϕ) = lim
ε→0

P (f1,∞, ϕ, ε).
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It is clear that P (f1,∞, 0) = h(f1,∞).
A set F ⊂ X (n, ε) − spans another set K ⊂ X provided that for each x ∈ K there

is y ∈ F for which dn(x, y) ≤ ε. For ε > 0, x ∈ X , we put

Qn(f1,∞, ϕ, ε) := inf{
∑

x∈E

e(Snϕ)(x) | E is a ( n, ε) spanning set for X}.

Remark 2.1 Qn(f1,∞, ϕ, ε) ≤ Pn(f1,∞, ϕ, ε).

Proof It follows from the fact that e(Snϕ)(x) > 0 and a (n, ε) separated set which
cannot be enlarge to a (n, ε) separated set must be a (n, ε) spanning set of X . 2

Remark 2.2 If δ > 0 is such that d(x, y) < ε
2 implies that | ϕ(x) − ϕ(y) |< δ then

Pn(f1,∞, ϕ, ε) ≤ enδQn(f1,∞, ϕ, ε).

Proof Let E be a (n, ε) separated set and F is a (n, ε
2 ) spanning set. Define

φ : E → F by choosing, for each x ∈ E, some point φ(x) ∈ F with dn(x, φ(x)) ≤ ε
2 .

Then φ is injective and

∑

y∈F

e(Snϕ)(y) ≥
∑

y∈φ(E)

e(Snϕ)(y) ≥
(

min
x∈E

e(Snϕ)(φ(x))−(Snϕ)(x)
)

∑

x∈E

e(Snϕ)(x)

≥ e−nδ
∑

x∈E

e(Snϕ)(x).

Therefore Qn(f1,∞, ϕ, ε) ≤ e−nδPn(f1,∞, ϕ, ε). 2

Remark 2.3 By (1) and (2), if we put

P (f1,∞, ϕ, ε) := lim sup
n→∞

1

n
log Qn(f1,∞, ϕ, ε)

we will have
P (f1,∞, ϕ) = lim

ε→0
Q(f1,∞, ϕ, ε).

Let α be an open cover of X . For x ∈ X , we put

qn(f1,∞, ϕ, α) := inf

{

∑

B∈β

inf
x∈B

e(Snϕ)(x) | β is a finite subcover of
n−1
∨

i=0

f−i
1 α

}

and put

pn(f1,∞, ϕ, α) := inf

{

∑

B∈β

sup
x∈B

e(Snϕ)(x) | β is a finite subcover of

n−1
∨

i=0

f−i
1 α

}

.

Clearly qn(f1,∞, ϕ, α) ≤ pn(f1,∞, ϕ, α). In addition similar to the case of the autonomous
systems we have the following Proposition.

Proposition 2.1 Let f1,∞ ∈ C(X, X) and ϕ ∈ C(X, R).

(1) If α is an open cover of X with Lebesgue δ then qn(f1,∞, ϕ, α) ≤ Qn(f1,∞, ϕ, ε).



46 XIANJIU HUANG, XI WEN AND FANPING ZENG

(2) If ε > 0 and γ is an open cover with diam (γ) ≤ ε then Pn(f1,∞, ϕ, ε) ≤
pn(f1,∞, ϕ, γ).

(3) If α is an open cover of X, then

lim
n→∞

1

n
log pn(f1,∞, ϕ, α)

exists and equals to infn
1
n

log pn(f1,∞, ϕ, α).

(4) If α, γ are open covers of X and α ≺ γ (i.e. for each C ∈ γ, there is an A ∈ α

such that C ⊂ A), then qn(f1,∞, ϕ, α) ≤ qn(f1,∞, ϕ, γ).

(5) If d(x, y) < diam (α) implies | f(x) − f(y) |≤ δ then pn(f1,∞, ϕ, α) ≤
enδqn(f1,∞, ϕ, γ).

(6) P (f1,∞, ϕ) = lim
k→∞

[ lim
n→∞

1
n

log pn(f1,∞, ϕ, αk)] = lim
k→∞

[lim sup
n→∞

1
n

log qn(f1,∞, ϕ, αk)]

if αk is a sequence of open covers with diam(αk) → 0.

(7) P (f1,∞, ϕ) = lim
ε→0

lim inf
n→∞

1
n

log Pn(f1,∞, ϕ, ε).

(8) P (f1,∞, ϕ) = lim
ε→0

lim inf
n→∞

1
n

log Qn(f1,∞, ϕ, ε).

The proof of Proposition 2.1 is similar to the case of the autonomous systems (for
detailed proof see [4]), we omitted it.

3 Properties of Pressure of a Sequence of Maps on a Compact Metric Space

We now study the properties of P (f1,∞·) : C(X, X) → R ∪∞. In particular we see that
either P (f1,∞·) never takes the value ∞ or is identical to ∞.

Theorem 3.1 Let f1,∞ : X → X be a continuous maps of a compact met-
ric space X and ϕ ∈ C(X, R), ε > 0. Then P (fk

1,∞, Skϕ) ≤ kP (f1,∞, ϕ) (here

(Skϕ)(x) =
k−1
∑

i=0

ϕ(f i
1(x))) for any k ≥ 1.

Proof If F is (nk, ε) spanning for f1,∞ then F is (n, ε) spanning for fk
1,∞. Here

Qn(fk
1,∞, Skϕ, ε) ≤ Qnk(f1,∞, ϕ, ε) so that P (fk

1,∞, Skϕ) ≤ kP (f1,∞, ϕ). 2

Remark 3.1 In general we cannot claim that P (fk
1,∞, Skϕ) = kP (f1,∞, ϕ) for any

k ≥ 1.

Example 3.1 Indeed, on X = I = [0, 1] take the standard tent map g(x) = 1−|2x−
1|, ϕ = 0 and

f1,∞ =

{

g,
1

2
idS1 , g2,

1

4
idS1 , . . . , gn,

1

2n
idS1 , . . .

}

.

Since f2n−1
1 = gn for every n, we have s(f1,∞, 2n, ε) = s(g, n, ε) and there-

fore P (f1,∞, ϕ) = h(f1,∞) ≥ 1
2h(g) = 1

2 log 2. On the other hand, f2
1,∞ =

{f2
1 , f2

3 , · · · , f2
2n−1, · · · }, where for any n ∈ N and for any x ∈ I, f2

2n−1(x) ≤ 1
2n

. There-
fore lim sup

n→∞

1
n

log s(f2
1,∞, n, ε) = 0 for every ε > 0 and so P (f2

1,∞, S2ϕ) = h(f2
1,∞) = 0.

Thus h(f2
1,∞) < 2h(f1,∞), i.e. P (f2

1,∞, S2ϕ) < 2P (f1,∞, ϕ).
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So if we wish to have the equality instead of the inequality in Theorem 3.1, we need
additional assumptions. We present here one result of this kind, we restrict ourselves to
compact metric spaces and sequences of equicontinuous maps.

Theorem 3.2 Let f1,∞ : X → X be a sequence of equicontinuous self-maps of the

compact metric space X. P (fk
1,∞, Skϕ) = kP (f1,∞, ϕ) (here (Skϕ)(x) =

k−1
∑

i=0

ϕ(f i
1(x)))

for any k ≥ 1.

Proof For k = 1 this is trivial. Take any k ≥ 2. In view of Theorem 3.1 it suffices
to prove that P (fk

1,∞, Skϕ) ≥ kP (f1,∞, ϕ). To this end, for every ε > 0 take δ(ε) ≥ ε such
that δ(ε) → 0 if ε → 0 and d(fm

i (x), fm
i (y)) ≤ δ(ε) whenever i ≥ 1, m ∈ {1, 2, · · · , k− 1}

and d(x, y) ≤ ε. Take any positive integer n, then any (nk, δ(ε))-separated set for f1,∞

is (n, ε)-separated set for fk
1,∞ and so Pn(fk

1,∞, Skϕ, δ(ε)) ≥ Pnk(f1,∞, ϕ, ε). Therefore

P (fk
1,∞, Skϕ) ≥ kP (f1,∞, ϕ). 2

In the sequel, let us consider the following situation: (X, d) and (Y, ρ) are compact
metric spaces, f1,∞ is a sequence of continuous maps from X into itself and g1,∞ is a
sequence of continuous maps from Y into itself.

Kolyada and Snoha proved the topological entropy of sequence of continuous maps
is invariant with equiconjugacy [3]. Now we mainly show the topological pressure of
sequence of continuous maps is invariant with equiconjugacy.

Suppose that π1,∞ is a sequence of continuous maps from X into Y such that πi+1 ◦
fi = gi◦πi for every i ≥ 1. There are two special cases when we can compare the pressure
of f1,∞ and g1,∞. They are the following.

(i) When π1,∞ is a sequence of equicontinuous surjective (i.e., onto) maps from X

onto Y . In this case we say that π1,∞ topologically equisemiconjuates f1,∞ with g1,∞,
π1,∞is a topological equisemiconjugacy between f1,∞ and g1,∞ and the dynamical sys-
tems (X, f1,∞) is topologically equisemiconjugate with (Y, g1,∞). The system (Y, g1,∞)
is an equifactor of (X, f1,∞).

(ii) When π1,∞ is an equicontinuous sequence of homeomorphisms such that the
sequence π−1

1,∞ = {π−1
i }∞i=1 of inverse homeomorphisms is also equicontinuous. In this

case we say that π1,∞ topologically equiconjugates f1,∞ with g1,∞, π1,∞ is a topological
equiconjugacy between f1,∞ and g1,∞ and the dynamical systems (X, f1,∞) is topologi-
cally equiconjugate with (Y, g1,∞).

Theorem 3.3 Let (X, d) and (Y, ρ) be compact metric spaces, f1,∞ be a sequence
of continuous maps from X into itself and g1,∞ be a sequence of continuous maps from
Y into itself. If the system (X, f1,∞) is topologically equisemiconjugate with (Y, g1,∞)
(denote the equisemiconjugacy by π1,∞) then

P (g1,∞, ϕ) ≤ P (f1,∞, ϕ ◦ π1,∞),

for any ϕ ∈ C(Y, R).

Proof Since π1,∞ is a sequence of equicontinuous maps from X to Y , given ε > 0
there exists ε > δ(ε) > 0 such that if ρ(πi(x), πi(y)) > ε for some i ≥ 1, then d(x, y) >

δ(ε). Let F ⊂ Y be a (n, ε, g1,∞, ρ)-separated set, then π−1
1 (F ) is an (n, δ(ε), f1,∞, d)-

separated set. Thus
∑

x∈F

eϕ(x)+ϕ(g1(x))+···+ϕ(gn−1

1
(x)) =

∑

y∈π−1

1
(F )

eϕ(π1(y))+ϕ(π1f1(y))+···+ϕ(π1fn−1

1
(y)).
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Therefore P (g1,∞, ϕ, ε) ≤ P (f1,∞, ϕ ◦ π1,∞, δ(ε)). It follows that

P (g1,∞, ϕ) ≤ P (f1,∞, ϕ ◦ π1,∞).

2

Corollary 3.1 Let (X, d) and (Y, ρ) be compact metric spaces, f1,∞ be a sequence of
continuous maps from X into itself and g1,∞ is a sequence of continuous maps from Y

into itself. If the system (X, f1,∞) is topologically equiconjugate with (Y, g1,∞) then

P (g1,∞, ϕ) = P (f1,∞, ϕ ◦ π1,∞).

Proof Denote the conjugacy by π1,∞. We have P (g1,∞, ϕ) ≤ P (f1,∞, ϕ ◦ π1,∞)
since π1,∞ is a semiequiconjugacy between f1,∞ and g1,∞ and P (g1,∞, ϕ) ≥ P (f1,∞, ϕ ◦
π1,∞) since π−1

1,∞ is a semiequiconjugacy between g1,∞ and f1,∞. 2
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