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Abstract: This paper is concerned with the passive control problem of neutral
systems with time-varying delays. Time-varying delays are assumed to appear
in both the state and the control input. A state feedback passive controller and
an output feedback passive controller for neutral systems with time-varying
delays in state and control input are presented. Through modifying algebraic
Riccati equation, we can construct controllers which depend on the maximum
value of the time derivative of time-varying delays. A numerical example is
also given to illustrate the effectiveness of the proposed design method.
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1 Introduction

The theory of neutral delay-differential systems, which contain delays both in its state and
in the derivatives of its states, is of both theoretical and practical interest. For example,
functional differential equations of neutral type are the natural models of fluctuations of
voltage and current in problems arising in transmission lines [1]. Also, the neutral systems
often appear in the study of automatic control, population dynamics, and vibrating
masses attached to an elastic bar. Recently, considerable attention has first been focused
on the stability analysis of various neutral differential systems [2-10]. And there are
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authors pay attention to the oscillation of parabolic equations of neutral type [11-13]
and H∞ control of neutral type [14].

The passivity theory intimately related to the circuit analysis methods [15,16] has
received a lot of attention from the control community since the 70s (see [17-23], to cite
only a few). On the other hand, many efforts have been devoted to the study of output
feedback control of uncertain systems [24-26]. However, to the best of our knowledge, few
authors pay attentions to study the output feedback passive control of neutral systems
with time-varying delays.

In this paper, we shall discuss the passive control problem of neutral systems with
time-varying delays. A state feedback passive controller and an output feedback passive
controller which render the closed-loop system to be quadratic stable and passive for
neutral systems with time-varying delays in state and control input are presented.

The layout of this paper is as follows. In Section 2, the problem to be studied is
stated and some preliminaries are presented. The asymptotical stability and passivity of
neutral system condition is derived in Section 3. A state feedback passive controller and
an output feedback passive controller for neutral systems with time-varying delays in
state and control input are proposed in Section 4 and Section 5, respectively. In Section
6, a numerical example is given to demonstrate the effectiveness of the theoretical results.
And finally, conclusions are drawn in Section 7.

Notation and fact. In the sequel, we denote AT and A−1 the transpose and the
inverse of any square matrix A. We use A > 0 (A < 0) to denote a positive- (negative-)
definite matrix A; and I is used to denote the n × n identity matrix. L2[0,∞] is the
space of integrable function vector over [0,∞]. Rn denotes the n-dimensional Euclidean
space. The symbol “⋆” within a matrix represents the symmetric term of the matrix.

Fact 1 (Schur complement). Given constant matrices Ω1, Ω2, Ω3, where Ω1 = ΩT
1

and 0 < Ω2 = ΩT
2 , then Ω1 + ΩT

3 Ω−1
2 Ω3 < 0 if and only if

(

Ω1 ΩT
3

Ω3 −Ω2

)

< 0 or

(

−Ω2 Ω3

ΩT
3 Ω1

)

< 0.

2 System Description and Preliminaries

In this paper, we consider a class of neutral functional differential equation (NFDE)
described as follows:















ẋ(t) = A0x(t) + A1x(t − τ1(t)) + A2ẋ(t − τ2(t)) + B1w(t) + B2u(t − τ3(t)),
z(t) = C1x(t) + D1u(t) + D11w(t),
y(t) = C2x(t) + D2w(t),
x(t) = φ(t), t ≥ 0.

(1)

where x(t) ∈ Rn is the state; u(t) ∈ Rm is the control input with u(t) = 0 for t < 0;
y(t) ∈ Rq is the output measurement; w(t) ∈ Rp is the square-integrable disturbance
input; z(t) ∈ Rp is the controlled output; φ(t) are continuous functions defined on
(−∞, 0]. A0, A1, A2, B1, B2, C1, C2, D1, D2, D11 are given constant matrices with
appropriate dimensions and τ1(t), τ2(t) and τ3(t) are arbitrary differentiable function
satisfying

{

0 ≤ τ1(t) < ∞, 0 ≤ τ2(t) < ∞, 0 ≤ τ3(t) < ∞,

τ̇1(t) ≤ σ1 < 1, τ̇2(t) ≤ σ2 < 1, τ̇3(t) ≤ σ3 < 1.
(2)
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Our problem is to establish the passive control for the system (1) to determine the
conditions. First, we introduce the following definition of passivity.

Definition 2.1 The dynamical system (1) is called passive if
∫

∞

0

wT (t)z(t)dt > β, ∀w ∈ L2[0,∞), (3)

where β is some constant which depends on the initial condition of the system. In
addition, the system is said to be strictly passive (SP) if it is passive and D11 +DT

11 > 0.

3 Asymptotical Stability and Passivity of Neutral System

Now, we consider a class of neutral system with time-varying delays described by:














ẋ(t) = A0x(t) + A1x(t − τ1(t)) + A2ẋ(t − τ2(t)) + A3x(t − τ3(t)) + B1w(t),
z(t) = C1x(t) + D11w(t),
y(t) = C2x(t) + D2w(t),
x(t) = φ(t), t ≥ 0.

(4)

Our first result establishes the passive control of the time-varying delay system (4).

Theorem 3.1 Consider a state-delay neutral system (4), if there exist positive defi-
nite matrices P and Q which satisfy the following algebraic Riccati inequality (ARI):

AT
0 P + PA0 + 2Q + (1 − σ1)

−1PA1Q
−1AT

1 P + (1 − σ2)
−1PA2Q

−1AT
2 P

+(1 − σ3)
−1PA3Q

−1AT
3 P + (PB1 − CT

1 )(D11 + DT
11)

−1(BT
1 P − C1) + M < 0, (5)

where

M = AT
0 QA0 + AT

0 QA1 + AT
0 QA2 + AT

0 QA3 + AT
0 QB1

+AT
1 QA0 + AT

1 QA1 + AT
1 QA2 + AT

1 QA3 + AT
1 QB1

+AT
2 QA0 + AT

2 QA1 + AT
2 QA2 + AT

2 QA3 + AT
2 QB1

+AT
3 QA0 + AT

3 QA1 + AT
3 QA2 + AT

3 QA3 + AT
3 QB1

+BT
1 QA0 + BT

1 QA1 + BT
1 QA2 + BT

1 QA3 + BT
1 QB1,

or equivalently satisfying the linear matrix inequality (LMI):
















AT
0 P + PA0 + 2Q PA1 PA2

⋆ −(1 − σ1)Q 0
⋆ ⋆ −(1 − σ2)Q
⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

PA3 PB1 − CT
1 AT

0

0 0 AT
1

0 0 AT
2

−(1 − σ3)Q 0 AT
3

⋆ −(D11 + DT
11) BT

1

⋆ ⋆ −Q−1

















< 0. (6)

Then the systems (4) is asymptotically stable and passive for all time-varying state delays
τ1(t), τ2(t) and τ3(t).
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Proof Define a Lyapunov functional V(x(t)) as follows:

V (x(t)) = xT (t)Px(t) +

∫ t

t−τ1(t)

xT (s)Qx(s)ds

+

∫ t

t−τ2(t)

ẋT (s)Qẋ(s)ds +

∫ t

t−τ3(t)

xT (s)Qx(s)ds. (7)

Calculating the derivative of the Lyapunov functional V(x(t)) along the solution of (4),
it follows that

V̇ (x(t)) = ẋT (t)Px(t) + xT (t)P ẋ(t)

+xT (t)Qx(t) − (1 − τ̇1(t))x
T (t − τ1(t))Qx(t − τ1(t))

+ẋT (t)Qẋ(t) − (1 − τ̇2(t))ẋ
T (t − τ2(t))Qẋ(t − τ2(t))

+xT (t)Qx(t) − (1 − τ̇3(t))x
T (t − τ3(t))Qx(t − τ3(t))

≤ ẋT (t)Px(t) + xT (t)P ẋ(t)

+2xT (t)Qx(t) − (1 − σ1)x
T (t − τ1(t))Qx(t − τ1(t))

+ẋT (t)Qẋ(t) − (1 − σ2)ẋ
T (t − τ2(t))Qẋ(t − τ2(t))

−(1 − τ̇3(t))x
T (t − τ3(t))Qx(t − τ3(t))

= xT (t)
(

AT
0 P + PA0 + 2Q

)

x(t)

+2xT (t)PA1x(t − τ1(t)) + 2xT (t)PA2ẋ(t − τ2(t))

+2xT (t)PA3x(t − τ3(t)) + 2xT (t)PB1w(t)

−(1 − σ1)x
T (t − τ1(t))Qx(t − τ1(t))

+ẋT (t)Qẋ(t) − (1 − σ2)ẋ
T (t − τ2(t))Qẋ(t − τ2(t))

−(1 − σ3)x
T (t − τ3(t))Qx(t − τ3(t)).

So we can obtain that

V̇ (x(t)) − 2zT (t)w(t) = xT (t)(AT
0 P + PA0 + 2Q)x(t)

+2xT (t)PA1x(t − τ1(t)) + 2xT (t)PA2ẋ(t − τ2(t))

+2xT (t)PA3x(t − τ3(t)) + 2xT (t)(PB1 − CT
1 )w(t)

−wT (t)(D11 + DT
11)w(t) + ẋT (t)Qẋ(t)

−(1 − σ1)x
T (t − τ1(t))Qx(t − τ1(t))

−(1 − σ2)ẋ
T (t − τ2(t))Qẋ(t − τ2(t))

−(1 − σ3)x
T (t − τ3(t))Qx(t − τ3(t))

= ηT (t)Ωη(t), (8)

where

η(t) =
[

x(t) x(t − τ1(t)) ẋ(t − τ2(t)) x(t − τ3(t)) w(t)
]T

,

Ω =













AT
0 P + PA0 + 2Q PA1 PA2

⋆ −(1 − σ1)Q 0
⋆ ⋆ −(1 − σ2)Q
⋆ ⋆ ⋆

⋆ ⋆ ⋆
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PA3 PB1 − CT
1

0 0
0 0

−(1 − σ3)Q 0
⋆ −(D11 + DT

11)













+













A0

AT
1

AT
2

AT
3

BT
1













Q
(

A0 A1 A2 A3 B1

)

.

From Schur complement, it easily follows that (5) and (6) hold. Hence,

V̇ (x(t)) ≤ 2zT (t)w(t). (9)

Integrating (9) from t0 to t1, we have

∫ t1

t0

zT (t)w(t)dt >
1

2

[

V (x(t1)) − V (x(t0))
]

.

Since V (x(t)) > 0 for x 6= 0 and V (x(t)) = 0 for x = 0 , it follows that as t0 = 0 and
t1 → ∞ that the system (4) with w = 0 is asymptotically stable and passive. 2

Remark 3.1 In this section, we provide a method of solving the synthesis problem for
neutral systems with time-varying delays. In Section 4 and Section 5, a state feedback
passive controller and an output feedback passive controller for neutral systems with
time-varying delays in state and control input are proposed.

4 State-Feedback Passive Controller

On the basis of Theorem 1, we now want to construct the state feedback controller

u(t) = Kx(t), (10)

such that the input-state-delay neutral system (1) is asymptotically stable and passive.
Then the transformed systems become














ẋ(t) = A0x(t) + A1x(t − τ1(t)) + A2ẋ(t − τ2(t)) + B1w(t) + B2Kx(t − τ3(t)),
z(t) = (C1 + D1K)x(t) + D11w(t),
y(t) = C2x(t) + D2w(t),
x(t) = φ(t), t ≥ 0.

(11)

Theorem 4.1 Consider a state-delay neutral system (11), if there exist positive def-
inite matrices P which satisfy the following inequality:

















AT
0 P + PA0 + 2Q PA1 PA2

⋆ −(1 − σ1)Q 0
⋆ ⋆ −(1 − σ2)Q
⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

PB2K PB1 − (C1 + D1K)T AT
0

0 0 AT
1

0 0 AT
2

−(1 − σ3)Q 0 AT
3

⋆ −(D11 + DT
11) BT

1

⋆ ⋆ −Q−1

















< 0, (12)
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and
D1K = BT

1 P − C1, (13)

then the system (11) is passive by the state-feedback passive controller (10).

Proof The closed form of (11) is similar to (4). Therefore, by Theorem 3.1, given
positive definite matrix Q, if there exits positive definite symmetric matrix P which
satisfies the following inequality

















AT
0 P + PA0 + 2Q PA1 PA2

⋆ −(1 − σ1)Q 0
⋆ ⋆ −(1 − σ2)Q
⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

PB2K PB1 − (C1 + D1K)T AT
0

0 0 AT
1

0 0 AT
2

−(1 − σ3)Q 0 AT
3

⋆ −(D11 + DT
11) BT

1

⋆ ⋆ −Q−1

















< 0. (14)

Since there are two unknown matrices P, K to be solved in (14), we can let the matrices
P, K in (14) satisfy the following two conditions at the same time

















AT
0 P + PA0 + 2Q PA1 PA2

⋆ −(1 − σ1)Q 0
⋆ ⋆ −(1 − σ2)Q
⋆ ⋆ ⋆

⋆ ⋆ ⋆

⋆ ⋆ ⋆

PB2K PB1 AT
0

0 0 AT
1

0 0 AT
2

−(1 − σ3)Q 0 KT BT
2

⋆ −(D11 + DT
11) BT

1

⋆ ⋆ −Q−1

















< 0, (15)

−PB1(D11 + DT
11)

−1(C1 + D1K) − (C1 + D1K)T )(D11 + DT
11)

−1BT
1 P

+(C1 + D1K)T (D11 + DT
11)

−1(C1 + D1K) < 0. (16)

Then the controller (10) can make system (11) be asymptotically stable and passive.
From (16), we observe that if we choose

D1K = BT
1 P − C1, (17)

then the inequality (16) is satisfied. In order to satisfied (15), we let

AT
0 P + PA0 + 2Q + (1 − σ1)

−1PA1Q
−1AT

1 P + (1 − σ2)
−1PA2Q

−1AT
2 P
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+(1 − σ3)
−1PA3Q

−1AT
3 P + (PB1 − CT

1 )(D11 + DT
11)

−1(BT
1 P − C1) + M = −Q. (18)

Therefore, we can say that the P in (15) is the solution satisfying the following modified
algebraic Riccati equation shown as follows:

AT
0 P + PA0 + 3Q + (1 − σ1)

−1PA1Q
−1AT

1 P + (1 − σ2)
−1PA2Q

−1AT
2 P

+(1 − σ3)
−1PA3Q

−1AT
3 P + (PB1 − CT

1 )(D11 + DT
11)

−1(BT
1 P − C1) + M = 0. (19)

The existence of solution K in (17) can be seen in the following:

(i) If D1 is square matrix and det(D1) 6= 0, the unique solution K = D−1
1 (BT

1 P −C1)
is presented.

(ii) Suppose the size of D1 is n × m (n > m) and rank[D1 BT
1 P − C1] = r. Then

if r = m, the unique solution K in (17) exists; if r < m, there are many solutions; if
r > m and det(DT

1 D1) 6= 0, a least square approximation solution of K in (17) is shown
as follows:

K = (DT
1 D1)

−1DT
1 (BT

1 P − C1). (20)

2

5 Output Feedback Passive Controller

When state variable are not available for the feedback, it is necessary to construct a
output feedback passive controller. If the state in (1) is not available, we propose the
following dynamic output feedback controller in order to stabilize system (1):

{

η̇(t) = Gη(t) + Ly(t),
u(t) = Kη(t), η(0) = 0,

(21)

where η(t) ∈ Rn is the controller state vector, and G, L, K are gain matrices with ap-
propriate dimensions to be determined later. Applying this controller (21) to system (1)
results in the closed-loop system

{

ẋ(t) = A0x(t) + A1x(t − τ1(t)) + A2ẋ(t − τ2(t)) + A3x(t − τ3(t)) + B1w(t),

z(t) = C1x(t) + D11w(t),
(22)

where

x(t) =

(

x(t)
η(t)

)

, A0 =

(

A0 0
LC2 G

)

, A1 =

(

A1 0
0 0

)

,

A2 =

(

A2 0
0 0

)

, A3 =

(

0 B2K

0 0

)

, B1 =

(

B1

LD2

)

, C1 =
(

C1 D1K
)

.
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Theorem 5.1 For a given symmetric positive Q, if there exist positive definite ma-
trices P and gain matrices G, L, K such that the following linear matrix inequality (LMI):





































AT
0 P + PA0 + 2Q CT

2 LT PA1 0 PA2 0
LC2 GT + G + 2Q 0 0 0 0
⋆ ⋆ (σ1 − 1)Q 0 0 0
⋆ ⋆ ⋆ (σ1 − 1)Q 0 0
⋆ ⋆ ⋆ ⋆ (σ2 − 1)Q 0
⋆ ⋆ ⋆ ⋆ ⋆ (σ2 − 1)Q
⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

⋆ ⋆ ⋆ ⋆ ⋆ ⋆

0 PB2K PB1 − CT AT
0 CT

2 LT

0 0 LD2 − KT DT
1 0 GT

0 0 0 AT
1 0

0 0 0 0 0
0 0 0 AT

2 0
0 0 0 0 0

(σ3 − 1)Q 0 0 0 0
⋆ (σ3 − 1)Q 0 KT BT

2 0
⋆ ⋆ −(D11 + DT

11) BT
1 DT

2 LT

⋆ ⋆ ⋆ −Q−1 0
⋆ ⋆ ⋆ 0 −Q−1





































< 0, (23)

then the time-varying input-state-delay neutral system (1) is passive by the output feed-
back passive controller (21).

Proof Define positive symmetric matrices P > 0 and Q > 0 by

P =

(

P 0
0 I

)

, Q =

(

Q 0
0 Q

)

.

Similar to the proof of Theorem 1, we can easily get that if the following LMI





















A
T

0 P + PA0 + 2Q PA1 PA2 PA3 PB1 − C
T

1 A
T

0

⋆ (σ1 − 1)Q 0 0 0 A
T

1

⋆ ⋆ (σ2 − 1)Q 0 0 A
T

2

⋆ ⋆ ⋆ (σ3 − 1)Q 0 A
T

3

⋆ ⋆ ⋆ ⋆ −D11 − DT
11 B

T

1

⋆ ⋆ ⋆ ⋆ ⋆ −Q
−1





















< 0,

(24)
holds, then the time-varying input-state-delay neutral system (1) is passive by the output
feedback passive controller (21).

Now, substitute the expressions of A0, A1, A2, A3, B1, C1, P , Q into (24), it easily
follows that (23) holds. This completes the proof. 2
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6 An Illustrative Example

In this section, the expanded theoretical results are illustrated through a numerical
example. Consider the differential system of neutral type (1) under supposing

A0 =

(

0 1
−1 −2

)

, A1 =

(

0 0
0.2 0.1

)

, A2 =

(

0 0
0.3 0.2

)

, B1 =

(

0
0.1

)

,

B2 =

(

0
1

)

, C1 =
(

1 1
)

, C2 =
(

1 1
)

, D1 = 1, D2 = 1, D11 = 1,

τ1(t) = 2.0 + 0.3 sin(t), τ2(t) = 3.5 + 0.4 cos(t), τ3(t) = 4.0 + 0.2 sin(t).

Hence we have σ1 = 0.3, σ2 = 0.4, σ3 = 0.2. In order to solve the solution simply, we

select Q =

(

0.2 0
0 0.2

)

. So using MATLAB LMI Toolbox we solve the condition (12)

and (13) and obtain that

K =
(

−0.9427 −0.8289
)

, P =

(

1.4530 0.5734
0.5734 1.7115

)

> 0.

Hence, the system (1) is passive by the state-feedback passive controller (10).

7 Conclusions

In this paper, the passivity analysis and passive controllers’ designs for the neutral sys-
tems with time-varying delays in state and control input are investigated by the Lyapunov
functional method. The results are presented in terms of LMIs or Riccati equation, which
can be solved easily by using the effective interior-point algorithm [24]. A numerical ex-
ample is worked through to illustrate the effectiveness of results.
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