

A Note on a Generalization of Sturm's Comparison Theorem

J. Tyagi^{*} and V. Raghavendra

Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur - 208016, India

Received: February 25, 2007; Revised: November 30, 2007

Abstract: In this note, an attempt is made to generalize the Sturm's comparison theorem. Let t_1 and t_2 be two consecutive zeros of a solution y of an implicit equation

$$g_1(y''(t)) + r(t)g_2(y(t)) = 0$$

and x be a solution of

$$f_1(x''(t)) + q(t)f_2(x(t)) = 0.$$

Under certain conditions stated on the given functions f_1, f_2, g_1, g_2, q and r, we show that x has a zero between t_1 and t_2 . Sturm's comparison theorem turns out to be a consequence of the established result.

Keywords: Implicit differential equations; comparison theory.

Mathematics Subject Classification (2000): 34C10, 34A09.

1 Introduction

Sturm's comparison theorem plays an important role in the theory of oscillations. In this note an attempt is made to generalize the Sturm's comparison theorem. Let f_1, f_2, g_1 and $g_2 \in C(\Re, \Re)$ and $q, r \in C(\Re^+, \Re)$ be given functions. Let x and y be solutions of the implicit second order equations

$$f_1(x''(t)) + q(t)f_2(x(t)) = 0, (1.1)$$

$$g_1(y''(t)) + r(t)g_2(y(t)) = 0.$$
(1.2)

In this note, we assume the existence of solutions x and y of (1.1) and (1.2) on $J = [0, \alpha]$, $\alpha > 0$. Under certain conditions on f_1 , f_2 , g_1 , g_2 , q and r, we establish that between any two consecutive zeros t_1 , t_2 of y, there is a zero of x, where $[t_1, t_2] \subseteq J$. Hypotheses along with the main result are stated in Section 2. Section 3 is devoted to a few consequences and examples of this result.

© 2008 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 213

^{*} Corresponding author: jagmohan.iitk@gmail.com

2 Main Result

This section deals with the main result. Let f_1, f_2, g_1 and $g_2 \in C(\Re, \Re)$ and $q, r \in C(\Re^+, \Re)$. We need the following hypotheses for further study

$$\begin{split} \mathbf{H_1}: & \min_{0 \neq u \in \Re} \frac{g_1(u)}{u} \geq \max_{0 \neq u \in \Re} \frac{f_1(u)}{u}, \\ \mathbf{H_2}: & \min_{0 \neq u \in \Re} \frac{f_2(u)}{u} \geq \max_{0 \neq u \in \Re} \frac{g_2(u)}{u}, \\ \mathbf{H_3}: & uf_1(u) > 0, \ ug_2(u) > 0, \ \forall \ 0 \neq u \in \Re. \end{split}$$

Theorem 2.1 Let x and y be nontrivial solutions of (2.1) and (2.2) respectively.

$$f_1(x''(t)) + q(t)f_2(x(t)) = 0.$$
(2.1)

$$g_1(y''(t)) + r(t)g_2(y(t)) = 0.$$
(2.2)

Assume that the hypotheses $H_1 - H_3$ hold. Let t_1, t_2 be consecutive zeros of y and q(t) > r(t) > 0 for $t \in I = (t_1, t_2)$. Then, x vanishes at least once on I.

Proof By hypothesis, $y(t_1) = 0 = y(t_2)$ and $y(t) \neq 0$, $\forall t \in I$. Suppose $x(t) \neq 0$, $\forall t \in I$. Suppose if, y''(t) = 0 for some $t \in I$, then from H_1 , H_3 and (2.2), we have $g_2(y(t)) = 0$ as well, but this contradicts the non vanishing of y(t) in I. So $y''(t) \neq 0$, $\forall t \in I$. Similarly $x''(t) \neq 0$, $\forall t \in I$. From H_1-H_3 , we have

$$g_1(y''(t))/y''(t) \ge f_1(x''(t))/x''(t) > 0, \quad \forall t \in I$$

and $f_2(x(t))/x(t) \ge g_2(y(t))/y(t) > 0, \quad \forall t \in I.$

From the above two inequalities and since 1/r(t) > 1/q(t) > 0, for all $t \in I$, we have

$$\frac{y(t)g_1(y''(t))}{g_2(y(t))r(t)y''(t)} > \frac{x(t)f_1(x''(t))}{q(t)f_2(x(t))x''(t)}.$$
(2.3)

Define m(t) = x(t)y'(t) - x'(t)y(t), $t \in I$. Then, m'(t) = x(t)y''(t) - x''(t)y(t). Case 1. x(t) > 0, y(t) > 0 on I.

In this case, $m(t_1) > 0$, $m(t_2) < 0$. This implies that

$$m(t_2) - m(t_1) < 0. (2.4)$$

From (2.1) we have,

$$f_1(x''(t)) < 0, \quad t \in I$$

The sector condition H_3 on f_1 now implies x''(t) < 0 for all $t \in I$. Similarly y''(t) < 0 for all $t \in I$. We notice that

$$m'(t) = -\frac{x(t)f_1(x''(t))y''(t)}{q(t)f_2(x(t))} + \frac{y(t)g_1(y''(t))x''(t)}{g_2(y(t))r(t)} \quad \forall t \in I.$$
(2.5)

By (2.3), we have $m'(t) > 0, t \in I$,

$$m(t_2) - m(t_1) > 0. (2.6)$$

Inequalities (2.4) and (2.6) lead to a contradiction. Thus, x vanishes at least once between t_1 and t_2 . The cases when x(t) > 0, y(t) < 0; x(t) < 0, y(t) > 0; x(t) < 0, y(t) < 0 are similarly dealt. These proofs are omitted for brevity. \Box

Remark 2.1 When f_1 , f_2 , g_1 and g_2 are identity functions, the celebrated Sturm's comparison theorem is a particular case of Theorem 2.1, see [3, 4]. Theorem 2.1 can also be viewed as a nonlinear version of the Sturm's comparison theorem.

3 A Few Consequences

This section primarily deals with consequences concerning Theorem 2.1. We observe that the hypotheses H_1 and H_2 can be relaxed. Let $S_1 = \{x(t): t \in I\}$, $S_2 = \{y(t): t \in I\}$ and $S \supseteq S_1 \cup S_2$. Then the condition in H_1 and H_2 , we can replace $u \in \Re$ by $u \in S$. In practice it is hard to figure out what S is? For nonlinear equations these conditions could be impracticable unless we have a prior bounds on the solutions. Secondly, none of the condition have monotonicity criteria, see [1, 2] but sector condition is a part and parcel of it. Thirdly, we can derive results by comparing the implicit equations with an explicit equation for nonoscillation also, as shown below,

Proposition 3.1 Let y be any nontrivial solution of

$$y''(t) + f(y''(t)) + \frac{1}{5t^2}y(t) = 0, \quad t > 0,$$
(3.1)

where, $f : \Re \to \Re$ be any continuous function satisfying $uf(u) > 0, \forall 0 \neq u \in \Re$. Then (3.1) is non oscillatory.

 ${\it Proof}$ Consider the differential equation

$$x''(t) + \frac{1}{4t^2}x(t) = 0.$$
(3.2)

(3.1) and (3.2) can be identified as (2.2) and (2.1) respectively, with $f_1(u) = u = f_2(u) = u$, $q(t) = \frac{1}{4t^2}$, $g_1(u) = u + f(u)$, uf(u) > 0, $\forall \ 0 \neq u \in \Re$, $g_2(u) = u$, $r(t) = \frac{1}{5t^2}$. Equation (3.2) is nonoscillatory, as $y(t) = t^{\frac{1}{2}}$ is a solution of (3.2). It is easy to see that f_1, f_2, g_1 and g_2 satisfy the hypotheses $H_1 - H_3$. So, Theorem 2.1 implies that (3.1) is nonoscillatory.

Proposition 3.2 Let x be any nontrivial solution of

$$x''(t) + 2(k^2 x(t) + f(x(t))) = 0, (3.3)$$

where, $f: \Re \to \Re$ be any continuous function satisfying uf(u) > 0 for all $0 \neq u \in \Re$, k > 0. Then (3.3) is oscillatory.

Proof Consider the differential equation

$$y''(t) + \frac{k^2}{4}y(t) = 0.$$
(3.4)

With $f_1(u) = u$, $f_2(u) = k^2u + f(u)$, uf(u) > 0, $\forall 0 \neq u \in \Re$, $g_1(u) = u$, $g_2(u) = \frac{k^2}{4}u$, q(t) = 2, r(t) = 1 (3.3) and (3.4) can be identified as (2.1) and (2.2). It is easy to see that f_1, f_2, g_1 and g_2 satisfy the hypotheses H_1 - H_3 . So, Theorem 2.1 implies that x vanishes between any two consecutive zeros of $y(t) = \sin \frac{k}{2}t$. Since (3.4) is oscillatory. So, by Theorem 2.1, (3.3) is oscillatory. \Box

Remark 3.1 In proving (3.3) is oscillatory, we are using conditions different from what has been used in [1, Remark 1] and [2].

Example 3.1 Consider the differential equations

$$f_1(x''(t)) + q(t)f_2(x(t)) = 0, (3.5)$$

$$g_1(y''(t)) + r(t)g_2(y(t)) = 0, (3.6)$$

where, $f_1(u) = ue^{-|u|}$, $f_2(u) = u$, $q(t) = e^{-|\sin t|}$, $g_1(u) = u = g_2(u)$, $r(t) = e^{-1}$. Then, $x(t) = \sin t$ satisfies (3.5). Compare this with the equation

$$y''(t) + r(t)y(t) = 0,$$

with the solution $y(t) = \sin(t/\sqrt{e})$ on $[0, \pi\sqrt{e}]$. It is trivial to check that f_1, f_2, g_1 and g_2 satisfy the hypotheses $H_1 - H_3$. Also q(t) > r(t) > 0. Theorem 2.1 implies that not only must $\sin t$ vanish in $[0, \pi\sqrt{e}]$, which is clear, but also so must every other nontrivial solution of (3.5).

Example 3.2 Consider the differential equations

$$f_1(x''(t)) + q(t)f_2(x(t)) = 0, (3.7)$$

$$g_1(y''(t)) + r(t)g_2(y(t)) = 0, (3.8)$$

where $f_1(u) = u$, $f_2(u) = ue^{|u|}$, q(t) = 2, $g_1(u) = u = g_2(u)$, r(t) = 1. Here f_1 , f_2 , g_1 and g_2 satisfy the hypotheses H_1-H_3 . Also q(t) > r(t) > 0. Let x be a nontrivial solution of (3.7). Then, Theorem 2.1 implies that x vanishes at least once between any two consecutive zeros of $y(t) = \sin t$. Since (3.8) is oscillatory, so (3.7) is oscillatory.

Acknowledgement

The first author is thankful to Council of the Scientific and Industrial Research, India, for providing him financial assistance to pursue his research.

References

- Man Kam Kwong and Wong, J.S.W. An application of integral inequality to second order nonlinear oscillation. J. Diff. Eqns 46 (1982) 63–77.
- [2] Wong, P.J.Y. and Agarwal, R.P. Oscillatory behavior of solution of certain second order nonlinear differential equations. J. Math. Anal. Appl. 198 (1996) 337–354.
- [3] Lakshmikantham, V., Deo, S.G. and Raghavendra, V. Ordinary Differential Equations. TMH, India, 1997.
- [4] Simmons, G.F. Differential Equations with Applications and Historical Notes. TMH, 1974.