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1 Introduction

In modern communication systems, data secury is a requirement of central importance.
As a result, with the rapid development of the different communication systems, there
exits a great demand of cryptography algorithms to protect the confidential information,
see e.g. [1, 2]. In particular, nowadays most communication is through computers and
even real-time communication systems are digital. Recently, by using chaotic dynamics
to address the secure communication problem has received a great interest. In several
articles is reported the extreme relationship between chaotic dynamics and conventional
cryptography, some common properties are:

• a small variation in the input originates a large change at the output,

• the output preserves the same distribution for any input,

• a small variation in the local area originates a large variation in the whole space,

• a simple process has a very high complexity, and

• a deterministic system originates a pseudorandom dynamics.

During last decades, the problem of chaos synchronization has received a lot atten-
tion, see e.g. [3, 4, 5, 6, 7, 8, 9, 37] and references therein. This interest increases by
practical reasons, mainly to design secure communication systems. Chaos synchroniza-
tion can be used in different ways for encryption of confidential information in secure
communication systems, see e.g. [7, 11, 12, 13, 14, 15, 26, 28, 29, 33, 35, 36, 37]. However,
in subsequent works, see e.g. [16, 17] it has been shown that encrypted information by
means of comparatively “simple” chaos with only one positive Lyapunov exponent, does
not ensure a sufficient security level. For higher security purpose, hyperchaotic dynam-
ics characterized by more than one positive Lyapunov exponents are advantageous over
simple chaotic dynamics.

On the basis of these considerations, one way to enhance the level of encryption
security is by applying conventional cryptographic techniques to the information in com-
bination with chaotic encryption schemes [18, 19]. Another way is to encode infor-
mation by using systems generated of high dimensional chaotic attractors, or hyper-
chaotic attractors. In this case, one generally encounters multiple positive Lyapunov
exponents. However, hyperchaos synchronization is a much more difficult problem, see
e.g. [9, 21, 22, 23, 24, 25, 27, 34, 37]. The level of security is also enhanced by using chaos
modeled by delay differential equations, such systems have an infinite-dimensional state
space, and produce hyperchaotic dynamics with an arbitrarily large number of positive
Lyapunov exponents [26, 27, 28, 29].

The aim of this paper is to present a communication scheme to transmit encrypted
audio and image information, which is based on synchronized different hyperchaotic
discrete-time systems; in particular, we use the generalized Rössler and Hénon maps.
This objective is achieved by appealing to nonlinear control theory, in particular, we use
the model-matching approach given in [37]. We enumerate several advantages over the
existing synchronization methods reported in the current literature:
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• It enables synchronization be achieved in a systematic way and clarifies the issue
of deciding on the nature of the coupling signal to be transmitted.

• It can be successfully applied to many chaotic and hyperchaotic systems (in
continuous-time, or discrete-time).

• It can be applied to identical and nonidentical systems in continuous-time [7] and
in discrete-time [37].

• It does not require the computation of any Lyapunov exponent.

• It does not require initial conditions belonging to the same basin of attraction.

In addition, we use output synchronization for encoding, transmission, and decoding
of confidential information.

The organization of the sections of this paper is as follows: In Section 2, the proposed
hyperchaotic encryption scheme is described. In Section 3, a review on output syn-
chronization of hyperchaotic maps via model matching is provided. By using computer
simulations, the approach used is explained by means of the hyperchaotic generalized
Rössler and Hénon maps in Section 4. An application of output synchronization to se-
cure communication systems is illustrated in Section 5. The paper is concluded with
some remarks in Section 6.

2 Hyperchaotic Encryption Scheme

In this section, a cryptosystem based on synchronized hyperchaotic (three-dimensional)
maps is described. The aim is to transmit encrypted information from side A to side B

(the so-called authorized communicating remote parts) as is illustrated in Figure 2.1. A
confidential information m is to be transmitted over an insecure communication chan-
nel. To avoid any unauthorized part (intruder) located at the mentioned channel; m is
encrypted prior to transmission to generate an encrypted information s,

s = f (m, k) ,

by using hyperchaotic dynamics generated by the map f on side A.

The encrypted information s is sent to remote side B, where m is recovered as m̂

from the hyperchaotic decryption. g, as

m̂ = g (s, k) .

If f and g have used the same key k, then at remote side B it is possible to obtain the
recovered information m̂ = m. A secure channel (dashed line) is used for transmission
of the keys. Generally, this secure communication channel is a courier and is too slow
for the transmission of the confidential information m. Our hyperchaotic cryptosystem
is reliable, if it preserves the security of m, i.e. if m′ 6= m for even the best cryptanalytic
function h, given by

m′ = h (s) .

To achieve the proposed hyperchaotic encryption scheme, we appeal to three-
dimensional hyperchaotic generalized Rössler and Hénon maps for encryption/decryption
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Figure 2.1: Secure hyperchaotic cryptosystem.

purposes (f and g, respectively), as will be shown in Section 5. The hyperchaotic Rössler
and Hénon maps have a number of parameters determining their dynamics; such param-
eters and initial conditions are the coding “keys”, k. We expect that it can perform the
objective of the secure communication and the transmitting information can be recov-
ered at the receiver. In order to guarantee the encryption and decryption, the generalized
hyperchaotic Rössler and Hénon maps have to achieve the so-called synchronization on
both remote sides A and B. For such reason, our first problem to solve is to design a
control law u for hyperchaotic synchronization, which will be shown in next sections.

3 Output Synchronization of Different Hyperchaotic Maps

Consider a nonlinear discrete-time system, defined by

P :

{

x (k + 1) = f (x (k) , u (k)) ,

y (k) = h (x (k)) ,
(1)

where the state vector x ∈ X (an open set in R
n), the input u is inside an open set U

in R, and the output y belongs to an open set Y in R. The mappings f : X × U → X

and h : X → Y are analytic. In addition, consider the following nonlinear discrete-time
system, described by

M :

{

xM (k + 1) = fM (xM (k) , uM (k)) ,

yM (k) = hM (xM (k)) ,
(2)

where the state vector xM ∈ XM (an open set in R
nM ), the input uM ∈ UM (an open

set in R), and the output yM belongs to an open set YM in R. Also, the mappings
fM : XM × UM → XM and hM : XM → YM are analytic. Assume that for certain
parameter values, the uncontrolled discrete-time dynamical systems (1) and (2), i.e. for
u (k) = uM (k) = 0, exhibit hyperchaotic behavior ; that is, the dynamical systems have
multiple positive Lyapunov exponents. The synchronization problem addressed here is
defined as follows.

Definition 3.1 (Output Synchronization Problem, OSP) [30] The output y(k)
of the hyperchaotic discrete-time system (1) synchronizes with the output yM (k) of the
hyperchaotic discrete-time system (2), if

lim
k→∞

|y (k) − yM (k)| = 0, (3)
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Figure 3.1: Output synchronization scheme based on model matching approach.

no matter which initial conditions x (0) and xM (0) have, and for suitable input signals
u (k) and uM (k).

Notice that, we are considering partial synchronization between hyperchaotic maps
(1) and (2), which is a substantial difference with other approaches based on complete
synchronization.

Figure 3.1 shows the output synchronization scheme by using model-matching ap-
proach: the master system is the hyperchaotic map M with state xM , input uM , and
output yM . The nonlinear function φM (k) = φM (xM , uM ) is the coupling signal, which
is transmitted through a public channel to the slave system, and is used to synchronize
the master and slave systems to satisfy the condition (3). The slave consists of the
hyperchaotic map P and a compensator C. The compensator C is utilized to con-
trol P with inputs φM and x, and output u. If the compensator C yields properly the
control signal u, then the output error synchronization e (k) = yE (k) = y (k) − yM (k)
asymptotically converges to zero.

For secure communications based on previous output synchronization scheme be-
tween maps (1) and (2): at the hyperchaotic transmitter, the confidential information
is encrypted (by direct modulation, additive masking, or another technique) and sent
to the hyperchaotic receiver via a insecure channel. Finally, the original information is
decrypted at the receiver end by using output synchronization e (k) = yE (k). For this
purpose, we will use a communication scheme based on hyperchaotic encryption, to send
encrypted audio and image information.

3.1 Model-matching problem

Considering the hyperchaotic maps (1) and (2), we assume that P evolves in a neigh-
borhood of an equilibrium point x0; that is, around

(

x0, u0
)

∈ X × U such that

f
(

x0, u0
)

= x0, with
{

u (k) = u0 : k ≥ 0
}

being a (constant) input sequence. For this

sequence there exists another (constant) output sequence
{

y (k) = h
(

x0
)

= y0 : k ≥ 0
}

.
In the same way, let the equilibrium point of model M be denoted by x0

M around
(

x0
M , u0

M

)

∈ XM ×UM . According to Figure 3.1 we are interested in to design a control
u for P which, irrespectively of the initial conditions of P and M , makes the output y(k)
of P asymptotically converges to the output yM (k) produced by M under an arbitrary
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input uM (k). This problem is the so-called discrete-time asymptotic model-matching
problem (DAMMP) from nonlinear control theory which coincides with the OSP, see
[7, 37]. Similar to [37] we adopt the following approach: where the DAMMP is reduced
into a problem of decoupling the output of a suitable auxiliary system from the input uM

to the model M . In this way, we define an output error yE (k) = y (k) − yM (k), and we
choose the control law u (k) such that the output yE (k) is decoupled from uM (k) for all
k ≥ 0, and converges asymptotically to zero. The auxiliary system is defined as follows

E :

{

xE (k + 1) = fE (xE (k) , uE (k) , wE (k)) ,

yE (k) = hE (xE (k)) ,
(4)

with auxiliary state xE = (x, xM )
T
∈ R

n+nM , and auxiliary inputs uE = u and wE =
uM , where

fE (xE , uE , wE) =

(

f (x, u)
fM (xM , uM )

)

, hE (xE) = h (x) − hM (xM ) .

Given this system, together with an equilibrium point x0
E =

(

x0, x0
M

)

it is known that,
if the disturbance-decoupling problem with measurement disturbance wE associated with
the system E has a solution on ΩE

0 , an open and dense subset of X×XM×U×UM , defined
around the equilibrium point

(

x0, x0
M , u0, u0

M

)

, then there exists an analytic mapping γE

defined on ΩE
0 with the property that the control law

u (k) = γE (xE (k) , wE (k)) = γE (xE (k) , uM (k)) (5)

decouples the output yE of the closed-loop system (4)-(5) from the disturbance wE for
every initial state of xE in an open and dense subset of X × XM contained in ΩE

0 .

The DAMMP is treated in terms of a relative degree associated with the outputs y and
yM . Thus, the following definitions are introduced. Let f0, fM0

, and fE0
be the undriven

state dynamics f (·, 0), fM (·, 0), and fE (·, 0, 0), respectively, and f
j
0 , f

j
M0

, and f
j
E0

the

j -times iterated compositions of f0, fM0
, and fE0

with f0
0 (x) = x, f0

M0
(xM ) = xM , and

f0
E0

(xE) = xE .

Definition 3.2 (Relative degree) [31] The output y of the plant Eq. (1) is said
to have a relative degree d in an open and dense subset O of X × U containing the
equilibrium point

(

x0, u0
)

, if

∂

∂u

[

h ◦ f l
0 (f (x, u))

]

≡ 0

for all 0 ≤ l ≤ d − 1, for all (x, u) ∈ O, and

∂

∂u

[

h ◦ fd
0 (f (x, u))

]

6= 0

for all (x, u) ∈ O.

A similar definition can be given for the relative degree of the model M Eq. (2),
dM , in an open and dense subset OM , of XM × UM containing the equilibrium point
(

x0
M , u0

M

)

.

The following theorem gives necessary and sufficient conditions for the local solvability
of the OSP for hyperchaotic maps.
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Theorem 3.1 [37] Consider the hyperchaotic maps P Eq. (1) and M Eq. (2)
around, respectively, their equilibria

(

x0, u0
)

and
(

x0
M , u0

M

)

. Suppose that the outputs
y of P and yM of M have finite relative degree d and dM , respectively defined on O and
OM . Assume that for all xE = (x, xM )

T
∈ X × XM and uM ∈ UM ,

0 ∈ Im
{

hE ◦ fd
E0

(fE (xE , ·, uM ))
}

,

holds, where Im{ϕ} denotes the image of ϕ. Then the OSP is locally solvable on ΩE
0 if

and only if
d ≤ dM . (6)

If the condition (6) holds, then from definition of relative degrees d and dM we have
that there exists an analytic mapping γE : R

n+nM×R × R → R such that

yE (k + d + 1) = hE ◦ fd
E0

◦ fE

(

xE (k) , γE (xE (k) , uM (k) , v (k))
)

= v (k) ,

with v ∈ R an external control, or equivalently,

S
(

x (k) , γE (xE (k) , uM (k) , v (k))
)

=

v (k) − h ◦ fd
0 ◦ f (x (k)) + hM ◦ f l

M0
◦ fM (xM (k) , uM (k)) .

The analytic mapping γE (xE , uM , v) is the inverse of S (x, ·), that is

γE (xE (k) , uM (k) , v (k)) =

S−1
(

x (k) , v (k) − h ◦ fd
0 ◦ f (x (k)) + hM ◦ f l

M0
◦ fM (xM (k) , uM (k))

)

, (7)

where the external control is given by

v (k) = −

d
∑

l=0

αl

[

h ◦ f l
0 (x (k)) − hM ◦ f l

M0
(xM (k))

]

. (8)

Under the new coordinates

(ζ (xE) , xM ) = φ (xE) = φ (x, xM ) ,

where ζ (xE) = (ζ1 (xE) , ..., ζd+1 (xE))
T

and ζi (xE) = hEi
◦ f i−1

E0
(xE) = ξi (x) − hMi

◦

f i−1

M0
(xM ) for all i = 1, 2, . . . , d + 1. The closed-loop auxiliary system E, by using the

control law u = γE (xE , uM ) Eqs. (7)-(8), takes the form

ζi (k + 1) = ζi+1 (k) , i = 1, ..., d, (9)

ζd+1 (k + 1) = −α0ζ1 (k) − ... − αd ζd+1 (k) = v (k) ,

xM (k + 1) = fM (xM (k) , uM (k)) ,

yE (k) = ζ1 (k) .

From Eq. (9) we see that the output y (k) of the closed-loop slave system P differs
from the output yM of the model M by a signal yE (k) obeying the linear difference
equation

yE (k + d + 1) + αd yE (k + d) + . . . + α1yE(k + 1) + α0 yE (k) = 0,
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where α0, . . . , αd are constant real coefficients. A proper location of the roots of the
polynomial

λd+1 + αdλ
d + . . . + α1λ + α0

entails the desired asymptotic behavior yE (k) = 0, i.e. y (k) converges to yM (k) as
k → ∞, and therefore the output synchronization condition (3) holds. We can identify
two subsystems in the closed-loop system (9), as follows:

1. The subsystem is described by

xM (k + 1) = fM (xM (k), uM (k)),

which represents the dynamics of the model M , and

2. The subsystem is described by

ζ (k + 1) = Aζ (k) ,

where

A =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−α0 −α1 −α2 · · · −αd















,

which represents the dynamics of the signal yE(k).

The dynamics of model M is stable by assumption and, if we choose u Eqs. (7)–
(8) such that the eigenvalues of matrix A have magnitude strictly less than one, then
the closed-loop system (9) will be exponentially stable, and the output synchronization
condition (3) holds.

3.2 Output synchronization procedure

From Eq. (5) we can express the control law u in the following form

u (k) = γE (x (k) , xM (k) , uM (k)) = γE (x (k) , φM (xM (k) , uM (k))) , (10)

where the nonlinear function φM (xM , uM ) is the coupling signal to be transmitted from
the master M to construct the control law u in C, which solves the OSP, see Figure 3.1.
In the context of synchronization, a key observation, provided by the special form of the
control law u in (10), is that the nonlinear function φM (xM , uM ) fixes the coupling signal
to be transmitted to the slave system. We rewrite the following procedure to achieve
output synchronization between hyperchaotic maps P and M proposed in [37]:

Step 1. Given two hyperchaotic maps x (k + 1) = f (x (k)) and xM (k + 1) = fM (x (k))
we write it in the forms P Eq. (1) and M Eq. (2) by adding the control inputs
u (k) and uM (k), respectively.

Step 2. We define properly the outputs y and yM for maps P and M , respectively; such
that the OSP has a solution, that is the condition d ≤ dM holds.

Step 3. We obtain the control law u according to Eqs. (7)-(8).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 8(3) (2008) 221–236 229

−2
−1

0
1

2

−2

−1

0

1

2

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x
1

x
2

(a)

x 3

0
0.2

0.4
0.6

0.8
1

0

0.5

1

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

 

x
1

(b)

x
2

 

x 3

Figure 4.1: Hyperchaotic attractors generated by the uncontrolled: (a) Hénon and (b) Rössler
maps.

Step 4. From u = γE (xE , uM ), we proceed to identify the nonlinear coupling signal
φM (xM , uM ).

Step 5. Once the coupling signal φM = φM (xM , uM ) has been decided, then the output
y of slave P can track arbitrary the reference signal yM of model M in the sense
of condition (3).

In next section, we will appeal to the above procedure to synchronize the outputs of
the hyperchaotic generalized Hénon and Rössler maps, which is a necessary condition in
secure communications for encryption and decryption of confidential information.

4 Output Synchronization of Hyperchaotic Hénon and Rössler Maps

Consider the following hyperchaotic generalized Hénon map described by the third
order difference equations [38]:







x1(k + 1) = 1.76 − x2
2(k) − 0.1x3(k),

x2(k + 1) = x1(k),
x3(k + 1) = x2(k),

(11)

In addition, consider the Rössler map defined by [34]:







x1(k + 1) = αx1(k)(1 − x1(k)) − β(x3(k) + γ)(1 − 2x2(k)),
x2(k + 1) = δx2(k)(1 − x2(k)) + ςx3(k),
x3(k + 1) = η((x3(k) + γ)(1 − 2x2(k)) − 1)(1 − θx1(k)),

(12)

for parameter set: α = 3.8, β = 0.05, γ = 0.35, δ = 3.78, ς = 0.2, η = 0.1, and
θ = 1.9; the uncontrolled generalized Hénon and Rössler maps exhibit hyperchaotic
dynamics. Figures 4.1(a) and 4.1(b) show the hyperchaotic attractors projected onto
three-dimensional space generated by the generalized Hénon and Rössler maps, respec-
tively (when we have used 10 000 iterations). Following the Step 1, we add the control
inputs u(k) and uM (k) to Hénon and Rössler maps, respectively. In addition for Step 2,
we define the outputs y(k) = x2(k) and yM (k) = xM2(k) in (11) and (12), respectively.
In this way, we have the generalized Hénon map P for the slave system (in the form of
Eq. (1)), as follows
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P :















x1(k + 1) = 1.76 − x2
2(k) − 0.1x3(k),

x2(k + 1) = x1(k),
x3(k + 1) = x2(k) + u(k),

y(k) = x2(k)

(13)

and the Rössler map M for the master system (in the form of Eq. (2)), described by

M :















xM1(k + 1) = αxM1(k)(1 − xM1(k)) − β(xM3(k) + γ)(1 − 2xM2(k)) + uM (k),
xM2(k + 1) = δxM2(k)(1 − xM2(k)) + ςxM3(k),
xM3(k + 1) = η((xM3(k) + γ)(1 − 2xM2(k)) − 1)(1 − θxM1(k)),

yM (k) = xM2(k),
(14)

the relative degrees are d = dM = 2, with this the OSP has a solution. In order to obtain
the particular solution u (Step 3) to control to P , we define ζ1 = yE = x2 − xM2, in this
way, the auxiliary system in new coordinates is described by

ζ1(k + 1) = ζ2(k),

ζ2(k + 1) = ζ3(k),

ζ3(k + 1) = −α2ζ3(k) − α1ζ2(k) − α0ζ1(k) = v (k) .

The control law u is given by

u (k) = 10
(

1.76 − x2
1 (k) − 0.1x2 (k)

)

− a − φM (xM (k) , uM (k))), (15)

where
a = −α2

(

1.76 − x2
2 (k) − 0.1x3 (k)

)

− α1x1 (k) − α0x2 (k) .

Step 4, from Eq. (15) the coupling function φM (xM , uM ) is given by

φM (xM (k) , uM (k)) = − (−α2ρ1 − α1ρ2 − α0xM2 (k)) + ρ4, (16)

where

ρ1 = δρ2 (1 − ρ2) + ςρ3,

ρ2 = δxM2 (k) (1 − xM2 (k)) + ςxM3 (k) ,

ρ3 = η (((xM3 (k) + γ) (1 − 2xM2 (k))) − 1) (1 − θxM1 (k)) ,

ρ4 = δ (δρ2 (1 − ρ2) + ςρ3) (1 − (δρ2(1 − ρ2) + ςρ3) + ρ5,

ρ5 = ς(η(((ρ3 + γ)(1 − 2ρ2)) − 1)(1 − θρ6),

ρ6 = αxM1 (k) (1 − xM1 (k)) − β (xM3 (k) + γ) (1 − 2xM2 (k)) + uM (k) .

In the following, we carry out some numerical simulations by using the initial conditions
x (0) = (0.3, 0, 0.05) and xM (0) = (0.1, 0.2,−0.1) with the selection αi = 0.1, i = 0, 1, 2.
In this case, we use uM (k) = 0 to keep the master system M Eq. (14) with hyperchaotic
dynamics. With the above selection, Step 5 is achieved.

Figure 4.2 shows the matching between the output signals y (k) = x2 (k) and yM (k) =
xM2

(k) (top of figure); in addition, the output synchronization error e2 (k) = x2 (k) −
xM2 (k) is shown (top of figure). Meanwhile, Figure 4.3 illustrates the synchronization
errors e1 (k) = x1 (k) − xM1 (k) and e3 (k) = x3 (k) − xM3 (k). In this case, notice that
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Figure 4.2: Matching between output signals y (k) = x2 (k) and yM (k) = xM2
(k) (top of

figure). Output synchronization error e2 (k) = x2 (k) − xM2 (k) (bottom of figure).
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Figure 4.3: Output synchronization errors e1 (k) = x1 (k) − xM1 (k) and e3 (k) = x3 (k) −
xM3 (k).

remaining output synchronization errors e1 (k) and e3 (k) are different from zero; also,
notice that there exist big magnitudes of the synchronization errors e1(k) and e3(k)
which can be estimated by the enormous difference between the hyperchaotic attractors
generated by the hyperchaotic Rössler and Hénon maps, which is depicted in Figure
4.4: hyperchaotic attractors generated by the controlled hyperchaotic Hénon and Rössler
maps, i.e. after we have achieved output synchronization, when we have used 50 000
iterations.

5 Secure Hyperchaotic Encryption

In this section, we show how output synchronization of the hyperchaotic Hénon and
Rössler maps is used in a secure communication scheme to send confidential information.
In particular, we propose a communication scheme to transmit encrypted audio and
image information.

The communication scheme to send confidential information is shown in Figure 5.1.
This cryptosystem uses two transmission channels, in one the complex coupling sequence
φM (k) = φM (xM (k) , uM (k)) is transmitted to achieve output synchronization between
hyperchaotic transmitter and receiver. The signal φM (k) is only used for fast synchro-
nization and does not contain any information of the confidential information m (k).
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Figure 4.4: Hyperchaotic attractors generated by the controlled (after output synchroniza-
tion): (a) Rössler and (b) Hénon maps.
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Figure 5.1: Secure communication scheme for transmission of encrypted audio and image
information.

While, in the second channel, we send the encrypted confidential information m (k), here
the nonlinear function σ(·, ·) encrypts both the information m (k) and chaotic output
yM (k) in the transmitter. The encrypted message s (k) is transmitted to the receiver
end. The nonlinear function for encryption is proposed as follows

σ (yM , m) = s = g1 (yM ) + g2 (yM ) m,

and the nonlinear function for decryption is given by

λ (y, s) =
−g1 (y)

g2 (y)
+

s

g2 (y)
.

In particular, the encryption function installed in the transmitter computer is given
by

σ (yM , m) = y3
M +

(

1 + y3
M

)

m = s, (17)

and the decryption function installed into the remote receiver computer is defined by

λ (y, s) =
−y3

1 + y3
+

s

1 + y3
. (18)
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Figure 5.2: Original voice information to be encrypted, m (middle of figure). The transmitted
signal with the hidden information. The recovered information m̂, at the reciver end (bottom
of figure).

5.1 Communicating encrypted audio information signals

Firstly, we use like confidential information m (k) a voice message, the transmitted signal
with the hidden the information is s (k), and at the receiver end, the recovered informa-
tion m̂ (k) is given by Figure 5.2 shows the encrypted transmission and recovery when
the confidential information m (k) (top of figure) is a voice signal, in this case the word
“cuatro” that means four in Spanish. The transmitted hyperchaotic signal s(k) (middle
of figure), and recovered information signal m̂ (bottom of figure). We can see after brief
transient time that information is recovered faithfully.

5.2 Communicating encrypted images

Figure 5.3 shows the transmission and recovering of an image message by using hyper-
chaotic encryption, which is based on output synchronization of Hénon and Rössler maps.
The original image to be encrypted and transmitted is shown in Figure 5.3(a). While
Figure 5.3(b) shows the transmitted encrypted image to the remote receiver via an in-
secure channel. Finally, the recovered image at the receiver end is depicted in Figure
5.3(c).

Remark 5.1 In our cryptosystem, the processes of encryption and synchronization
are completely separated with no interference between them. So, encrypted informa-
tion does not interfere with synchronization, therefore not increasing the sensitivity of
synchronization to external errors. As a result, the hyperchaotic communication scheme
with two transmission channels gives faster synchronization and high security, see [35].

6 Conclusions

In this paper, we have presented a scheme to achieve output synchronization of different
discrete-time hyperchaotic maps via model-matching approach. This method is inspired
from nonlinear control theory. We have showed by computer simulations, that this
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(a) (b) (c)

Figure 5.3: (a) Original jpg image information to be send for thransmitter, (b) hyperchaotic
encrypted image through insecure channel, and (c) recovered jpg information at the receiver
end.

approach is indeed suitable to synchronize hyperchaotic generalized Hénon and Rössler
maps, in a master-slave coupled configuration.

We have applied output synchronization in secure communication based on hyper-
chaos. In particular, we have presented a hyperchaotic communication scheme to trans-
mit encrypted confidential (audio and image) information. As well as, the intrinsic
advantages for the encryption presented by the mentioned schemes (σ and λ function
for exception/decryption, respectively), we have increased the security by using complex
hyperchaotic transmitted signals.

Acknowledgments

This work was supported by the CONACYT, México under Research Grants No. J49593-
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