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PERSONAGE IN SCIENCE

Professor Myron K. Grammatikopoulos

J.R. Graef, 1, A.A. Martynyuk 2∗ and I.P. Stavroulakis 3

1 Department of Mathematics, The University of Tennessee at Chattanooga
Chattanooga, TN 37403 USA

2 S.P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine,
Nesterov str. 3, 03057, Kiev-57, Ukraine

3 Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece

We dedicate this article to the memory of our friend and colleague Professor M. K.

Grammatikopoulos, in recognition of his outstanding contributions to mathemati-

cs. Myron’s research and teaching contributions spanned qualitative theory of ordi-

nary, functional and partial differential equations with deviating arguments.

M.K. GRAMMATIKOPOULOS was born on November 14, 1938 (after World War
II his official documents passport gives his birthday as November 8, 1935) in the village
of Grebeshok of the Gagra District of Abkhasian ASSR of the Georgian SSSR. He was
a son of the farmhand Kyriakos Grammatikopoulos, a Greek citizen who had fled his
native Pontus sometime between 1918 and 1923.

In 1946, Myron entered elementary school in the city of Gudauta in Abkhasia, and
in 1949, his family, as well as all refugees from Pontus, were forcibly relocated in Central
Asia. There, under strict police surveillance, he continued his education in the village of
Tamerlanovka in the Arys’ area of the District of Chimkent in Southern Kazakhstan.

In 1956, Myron graduated from the 10-grade Amangeldy Imanov High School with
a Silver medal. He received a scholarship and matriculated in the Physics Department
of the N. Krupskaya Pedagogical Institute of Chimkent. In 1959, the Administration
of this Institution discovered that due to his Greek citizenship, he was barred from
entering higher education, and he was expelled. As a result of his protest letters that he
addressed to the Greek Embassy in Moscow and the Ministers of Education and Exterior
Affairs of the former USSR, he was allowed to continue his studies only in the Literature
Department or the Mathematics Department of Chimkent Pedagogical Institute. Myron
opted for Mathematics, and after being successfully examined in seventeen mathematics
courses in forty days (these courses were not included in the first three years of the
Physics Department’s curriculum), he continued his studies in mathematics graduating
finally “with distinction” in 1961. Despite the fact that he had no Graduate Studies,
Mr. Jangildin, Chairman of the State Committee and Undersecretary of Education of
Kazakhstan, made the unusual proposal for Myron to stay on at the Institute as an
Assistant under the condition that he relinquish his Greek citizenship and become a Soviet
citizen. He refused the offer and accepted a position as a teacher of Physics, Mathematics
and Design at his alma mater, the Amangeldy Imanov High School of Tamerlanovka. In
1966, after working there for six years, Myron left and took up permanent residence in
Greece.

∗ Corresponding author: anmart@stability.kiev.ua

c© 2008 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 217



218 J.R. GRAEF, A.A. MARTYNYUK AND I.P. STAVROULAKIS

Myron received his Diploma in Mathematics from the Pedagogical Institute of Chi-
mkent (a branch of the University of Kazakhstan) in 1961, and the University Thessaloni-
ki in 1967. The Ph.D. in Mathematics (first dissertation) was awarded from the University
of Ioannina 1975 and the Docent in Mathematics (second dissertation) from the Universi-
ty of Ioannina in 1981. In 1986, Myron was made a full Professor of Mathematics at the
University of Ioannina.

In 1978, Myron was awarded a NATO Research Grant and he contacted J. R. Graef
at Mississippi State University (MSU) to arrange a three month visit. In the afternoon
of Wednesday, November 1, of that year, Myron arrived at MSU - small in stature, big in
heart, and giant in intellect. The collaboration with Graef and P. W. Spikes at Mississippi
State was fruitful and lasted long after that initial visit. Shortly before he left Ioannina
for Mississippi, Myron’s last son, Petros, was born. Unfortunately, the child had a serious
birth defect and eventually only lived to be ten years old. Over the Christmas holidays in
1978, Myron returned to Greece only to immediately bring his son to New York in hopes
of learning of some new medical technique that might have reversed the inevitable. But
it was not to be. Because Myron essentially spent a month of his scheduled time in the
US trying to help his son, he requested and immediately received a month extension to
his visit.

Myron returned to Greece on April 15, 1979. In those four months, results for several
different papers were outlined, some with more details than others. The collaboration
continued over the next several years, and in 1985, Myron again visited MSU this time
for only one week. The collaboration continued with the last of the more than twenty
joint publications finally appearing in 1993.

Myron also held a Visiting Assistant Professor position in the Department of
Mathematics at the University of Rhode Island in 1984-1985, and he was a Visiting
Professor at the Center of Mathematics of the University of Rousse, Bulgaria, in 1990,
1991, and 1996.

Myron was the author or coauthor of more than 70 research papers. Monographs in
which some of his research is described will be listed below. He received Distinguished
Teaching Awards, Silver Medal in Secondary School USSR in 1956, and the Award in
Higher Education USSR in 1961. He was awarded a Doctor Honoris Causa from the
University of Rousse, Bulgaria, in 1995.

We will now give a brief outline of his results in the area of oscillation theory of
ordinary and functional differential equations with deviating arguments, that is to say,
equations of the form

x(n)(t) = F (t; x(m1)(t − τ1), . . . , x
(ms)(t − τs)), t ≥ t0, (1)

where n and mi are nonnegative integers, τi ∈ R, i = 1, 2, . . . , s, and x, F may be
vectors. Set m = max{mi : i = 1, 2, . . . , s}. Then equation (1) is said to be of the:

— retarded (delay) type, if m < n;

— advanced type, if m > n, and

— neutral type, if m = n.

Moreover, equation (1) has:

— retarded (delay) arguments, if τi ≥ 0, i = 1, 2, . . . , s;

— advanced arguments, if τi ≤ 0, i = 1, 2, . . . , s, and

— mixed arguments, if there is s1 ∈ {1, 2, . . . , s − 1} such that τi ≥ 0 for i =
1, 2, . . . , s1 and τi ≤ 0 for i = s1 + 1, s1 + 2, . . . , s.
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The deviating arguments may depend on time t or may even depend on the solution
of the equation. The type of deviation of the arguments may change depending on time
or on the solution itself. It should be pointed out that deviating arguments, in some
cases, do not affect the oscillatory character of the solutions of differential equations
under consideration, while in some other cases, they can either generate oscillations or
stop them. Consequently, it is interesting to investigate phenomena of this kind in order
to choose the appropriate mathematical model of real world systems whose oscillatory
character depends on differential equations with deviating arguments.

In a number of papers, Myron studied retarded type differential equations, that is,
equations in which the unknown function depends on a continuous function r defined
on an interval [tr,∞). The presence of the function r is justified by the fact that these
equations constitute generalizations of the well known Emden-Fowler and Thomas-Fermi
equations that often arise in applications and contain functions of the type r. Such an
occurrence of the function r, for example, could be a cause for the existence of oscillatory
behavior of the solutions of the differential equations under consideration. The results
obtained are interesting not only from the theoretical aspect, but also from the point
of view of applications. Indeed, the role of these equations, for example, in relativistic
electrodynamics and other natural sciences, is very important.

Another important topic is the problem of oscillatory and asymptotic behavior of
the solutions of neutral differential equations with deviating arguments. This problem
is interesting both from the theoretical and practical aspect. In fact, neutral differential
equations have applications in electric networks containing lossless transmission lines.
Such networks arise, for example, in high speed computers, where the lossless transmi-
ssion lines are used to interconnect switching circuits. Second order neutral differential
equations appear in the study of vibrating masses attached to an elastic bar, and they
also appear as the Euler equations for the minimization of functionals involving a time
delay.

In general, the study of neutral differential equations presents complications that
are not present in non-neutral type equations. Indeed, it has been proved that even
though the characteristic roots of a neutral differential equation may all have negative
real parts, it is still possible for this equation to have unbounded solutions. Furthermore,
the oscillatory character of the solutions of a neutral differential equation is determined
by the roots of the corresponding characteristic equation, which is in contrast to the fact
that the stability character is not determined by those characteristic roots.

Myron developed techniques and methods that have been adopted by a number of
other researchers in this area. Also, it should be pointed out that results obtained for
neutral differential equations with constant coefficients and constant deviations are cruci-
al with respect to drawing conclusions concerning neutral differential equations of the
same form where the coefficients and deviations are not constants but are functions of ti-
me. For this reason, the large number of important references to his work is not a surprise.
Beyond the above areas, Professor Grammatikopoulos was interested in applications of
partial differential equations. The results he obtained in this direction concern boundary
value problems for some special types of partial differential equations (for example, wave
equations); he was interested in the problem of existence and uniqueness of solutions
of this type of equation and the possibility to treat practical problems appearing in
technology, etc.

As a result of an analysis of Myron’s research work, we see that some of the main
topics treated are the following:
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— Establishing criteria (necessary and sufficient conditions) for oscillation (non-
oscillations) of all solutions of differential equations under consideration.

— Establishing criteria for existence of oscillatory (non-oscillatory) solutions of di-
fferential equations with some asymptotic property.

— Obtaining sufficient conditions for oscillation (non-oscillation) of all solutions of
equations in question.

— Finding the relation between oscillation and other qualitative properties such as
boundedness, convergence to zero, etc.

— Investigating the oscillatory and asymptotic properties of the non-oscillatory soluti-
ons of differential equations with forcing or discontinuous terms.

— Investigating the oscillatory phenomena caused by deviating arguments.
— Classification of all solutions of differential equations under consideration with

respect to their behavior at infinity.
— Other topics: boundary value problems for partial differential equations, etc.
Myron made many significant contributions in all of these areas.

MONOGRAPHS in which of M.K. Grammatikopoulos research work is cited:

[1] Koplatadze, R.G. and Chanturia, T.A. On The Oscillatory Properties of Differential Equati-
ons with a Deviating Argument. State University of Tbilisi, Tbilisi, 1977. [Russian].

[2] Shevelo, V.N. Oscillation of Solutions of Differential Equations with a Deviating Argument.
Naukova Dumka, Kiev, 1978. [Russian].

[3] Ladde, G.S., Lakshmikantham, V. and Zhang, B.G. Oscillation Theory of Differential
Equations with Deviating Arguments. Marsel Dekker, New York, 1988.

[4] Kiguradze, I.G. and Chanturia, T.A. Asymptotic Properties of Solutions of Non-Autono-
mous Ordinary Differential Equations. Nauka, Moscow, 1990. [Russian].

[5] Bainov, D.D. and Mishev, D.P. Oscillation Theory for Neutral Differential Equations with
Delay. Adam Hilger, Bristol, 1991.

[6] Gyori, I. and Ladas, G. Oscillation Theory of Delay Differential Equations. Clarendon
Press, Oxford, New York, 1991.

[7] Koplatadze, R. On Oscillatory Properties of Solutions of Functional Differential Equati-
ons. Memoirs on Differential Equations and Mathematical Physics, Vol. 3, A. Razmadze
Mathematical Institute of Georgian Academy of Sciences, Tbilisi, 1994.

[8] Erbe, L.H., Qingkai Kong and Zhang, B.G. Oscillation Theory for Functional Differential
Equations. Marcel Dekker, New York, 1995.

[9] Agarwal, R.P., Grace, S.R. and O’Regan, D. Oscillation Theory for Difference and Functi-
onal Differential Equations. Kluwer Academic Publishers, Dordrecht–Boston–London, 2000.

Besides doing an incredible amount of mathematical work, Myron took time to enjoy
being with his family, his wife Alla, his children (Andreas, Dimitrios, Kyriakos), and his
grandchildren (Eugenia, Ioanna-Hypatia, Philarete). He also enjoyed classical ballet and
history. In particular, he was a connoisseur of dramatic and humorous facts in Greek
and World History. He was like his garden on Corfu, where according to description of
“the island of the Phaeacians” in the Odyssey, Odysseus’ last stop before arriving in
his beloved Ithaca. Myron was always available for discussions concerning teaching or
research problems with anyone who wished to meet with him.

The mathematics community is saddened to announce the unexpected passing of
Myron Grammatikopoulos in Bulgaria on June 21, 2007. He was interred at Kastanoussa,
Serres.

Sto kalo — we will miss you our friend.



Nonlinear Dynamics and Systems Theory, 8(3) (2008) 221–236

Synchronization of Different Hyperchaotic Maps

for Encryption

A.Y. Aguilar–Bustos 1,2, C. Cruz–Hernández 2∗,
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1 Introduction

In modern communication systems, data secury is a requirement of central importance.
As a result, with the rapid development of the different communication systems, there
exits a great demand of cryptography algorithms to protect the confidential information,
see e.g. [1, 2]. In particular, nowadays most communication is through computers and
even real-time communication systems are digital. Recently, by using chaotic dynamics
to address the secure communication problem has received a great interest. In several
articles is reported the extreme relationship between chaotic dynamics and conventional
cryptography, some common properties are:

• a small variation in the input originates a large change at the output,

• the output preserves the same distribution for any input,

• a small variation in the local area originates a large variation in the whole space,

• a simple process has a very high complexity, and

• a deterministic system originates a pseudorandom dynamics.

During last decades, the problem of chaos synchronization has received a lot atten-
tion, see e.g. [3, 4, 5, 6, 7, 8, 9, 37] and references therein. This interest increases by
practical reasons, mainly to design secure communication systems. Chaos synchroniza-
tion can be used in different ways for encryption of confidential information in secure
communication systems, see e.g. [7, 11, 12, 13, 14, 15, 26, 28, 29, 33, 35, 36, 37]. However,
in subsequent works, see e.g. [16, 17] it has been shown that encrypted information by
means of comparatively “simple” chaos with only one positive Lyapunov exponent, does
not ensure a sufficient security level. For higher security purpose, hyperchaotic dynam-
ics characterized by more than one positive Lyapunov exponents are advantageous over
simple chaotic dynamics.

On the basis of these considerations, one way to enhance the level of encryption
security is by applying conventional cryptographic techniques to the information in com-
bination with chaotic encryption schemes [18, 19]. Another way is to encode infor-
mation by using systems generated of high dimensional chaotic attractors, or hyper-
chaotic attractors. In this case, one generally encounters multiple positive Lyapunov
exponents. However, hyperchaos synchronization is a much more difficult problem, see
e.g. [9, 21, 22, 23, 24, 25, 27, 34, 37]. The level of security is also enhanced by using chaos
modeled by delay differential equations, such systems have an infinite-dimensional state
space, and produce hyperchaotic dynamics with an arbitrarily large number of positive
Lyapunov exponents [26, 27, 28, 29].

The aim of this paper is to present a communication scheme to transmit encrypted
audio and image information, which is based on synchronized different hyperchaotic
discrete-time systems; in particular, we use the generalized Rössler and Hénon maps.
This objective is achieved by appealing to nonlinear control theory, in particular, we use
the model-matching approach given in [37]. We enumerate several advantages over the
existing synchronization methods reported in the current literature:
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• It enables synchronization be achieved in a systematic way and clarifies the issue
of deciding on the nature of the coupling signal to be transmitted.

• It can be successfully applied to many chaotic and hyperchaotic systems (in
continuous-time, or discrete-time).

• It can be applied to identical and nonidentical systems in continuous-time [7] and
in discrete-time [37].

• It does not require the computation of any Lyapunov exponent.

• It does not require initial conditions belonging to the same basin of attraction.

In addition, we use output synchronization for encoding, transmission, and decoding
of confidential information.

The organization of the sections of this paper is as follows: In Section 2, the proposed
hyperchaotic encryption scheme is described. In Section 3, a review on output syn-
chronization of hyperchaotic maps via model matching is provided. By using computer
simulations, the approach used is explained by means of the hyperchaotic generalized
Rössler and Hénon maps in Section 4. An application of output synchronization to se-
cure communication systems is illustrated in Section 5. The paper is concluded with
some remarks in Section 6.

2 Hyperchaotic Encryption Scheme

In this section, a cryptosystem based on synchronized hyperchaotic (three-dimensional)
maps is described. The aim is to transmit encrypted information from side A to side B

(the so-called authorized communicating remote parts) as is illustrated in Figure 2.1. A
confidential information m is to be transmitted over an insecure communication chan-
nel. To avoid any unauthorized part (intruder) located at the mentioned channel; m is
encrypted prior to transmission to generate an encrypted information s,

s = f (m, k) ,

by using hyperchaotic dynamics generated by the map f on side A.

The encrypted information s is sent to remote side B, where m is recovered as m̂

from the hyperchaotic decryption. g, as

m̂ = g (s, k) .

If f and g have used the same key k, then at remote side B it is possible to obtain the
recovered information m̂ = m. A secure channel (dashed line) is used for transmission
of the keys. Generally, this secure communication channel is a courier and is too slow
for the transmission of the confidential information m. Our hyperchaotic cryptosystem
is reliable, if it preserves the security of m, i.e. if m′ 6= m for even the best cryptanalytic
function h, given by

m′ = h (s) .

To achieve the proposed hyperchaotic encryption scheme, we appeal to three-
dimensional hyperchaotic generalized Rössler and Hénon maps for encryption/decryption
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Figure 2.1: Secure hyperchaotic cryptosystem.

purposes (f and g, respectively), as will be shown in Section 5. The hyperchaotic Rössler
and Hénon maps have a number of parameters determining their dynamics; such param-
eters and initial conditions are the coding “keys”, k. We expect that it can perform the
objective of the secure communication and the transmitting information can be recov-
ered at the receiver. In order to guarantee the encryption and decryption, the generalized
hyperchaotic Rössler and Hénon maps have to achieve the so-called synchronization on
both remote sides A and B. For such reason, our first problem to solve is to design a
control law u for hyperchaotic synchronization, which will be shown in next sections.

3 Output Synchronization of Different Hyperchaotic Maps

Consider a nonlinear discrete-time system, defined by

P :

{

x (k + 1) = f (x (k) , u (k)) ,

y (k) = h (x (k)) ,
(1)

where the state vector x ∈ X (an open set in R
n), the input u is inside an open set U

in R, and the output y belongs to an open set Y in R. The mappings f : X × U → X

and h : X → Y are analytic. In addition, consider the following nonlinear discrete-time
system, described by

M :

{

xM (k + 1) = fM (xM (k) , uM (k)) ,

yM (k) = hM (xM (k)) ,
(2)

where the state vector xM ∈ XM (an open set in R
nM ), the input uM ∈ UM (an open

set in R), and the output yM belongs to an open set YM in R. Also, the mappings
fM : XM × UM → XM and hM : XM → YM are analytic. Assume that for certain
parameter values, the uncontrolled discrete-time dynamical systems (1) and (2), i.e. for
u (k) = uM (k) = 0, exhibit hyperchaotic behavior ; that is, the dynamical systems have
multiple positive Lyapunov exponents. The synchronization problem addressed here is
defined as follows.

Definition 3.1 (Output Synchronization Problem, OSP) [30] The output y(k)
of the hyperchaotic discrete-time system (1) synchronizes with the output yM (k) of the
hyperchaotic discrete-time system (2), if

lim
k→∞

|y (k) − yM (k)| = 0, (3)
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Figure 3.1: Output synchronization scheme based on model matching approach.

no matter which initial conditions x (0) and xM (0) have, and for suitable input signals
u (k) and uM (k).

Notice that, we are considering partial synchronization between hyperchaotic maps
(1) and (2), which is a substantial difference with other approaches based on complete
synchronization.

Figure 3.1 shows the output synchronization scheme by using model-matching ap-
proach: the master system is the hyperchaotic map M with state xM , input uM , and
output yM . The nonlinear function φM (k) = φM (xM , uM ) is the coupling signal, which
is transmitted through a public channel to the slave system, and is used to synchronize
the master and slave systems to satisfy the condition (3). The slave consists of the
hyperchaotic map P and a compensator C. The compensator C is utilized to con-
trol P with inputs φM and x, and output u. If the compensator C yields properly the
control signal u, then the output error synchronization e (k) = yE (k) = y (k) − yM (k)
asymptotically converges to zero.

For secure communications based on previous output synchronization scheme be-
tween maps (1) and (2): at the hyperchaotic transmitter, the confidential information
is encrypted (by direct modulation, additive masking, or another technique) and sent
to the hyperchaotic receiver via a insecure channel. Finally, the original information is
decrypted at the receiver end by using output synchronization e (k) = yE (k). For this
purpose, we will use a communication scheme based on hyperchaotic encryption, to send
encrypted audio and image information.

3.1 Model-matching problem

Considering the hyperchaotic maps (1) and (2), we assume that P evolves in a neigh-
borhood of an equilibrium point x0; that is, around

(

x0, u0
)

∈ X × U such that

f
(

x0, u0
)

= x0, with
{

u (k) = u0 : k ≥ 0
}

being a (constant) input sequence. For this

sequence there exists another (constant) output sequence
{

y (k) = h
(

x0
)

= y0 : k ≥ 0
}

.
In the same way, let the equilibrium point of model M be denoted by x0

M
around

(

x0
M

, u0
M

)

∈ XM ×UM . According to Figure 3.1 we are interested in to design a control
u for P which, irrespectively of the initial conditions of P and M , makes the output y(k)
of P asymptotically converges to the output yM (k) produced by M under an arbitrary
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input uM (k). This problem is the so-called discrete-time asymptotic model-matching
problem (DAMMP) from nonlinear control theory which coincides with the OSP, see
[7, 37]. Similar to [37] we adopt the following approach: where the DAMMP is reduced
into a problem of decoupling the output of a suitable auxiliary system from the input uM

to the model M . In this way, we define an output error yE (k) = y (k) − yM (k), and we
choose the control law u (k) such that the output yE (k) is decoupled from uM (k) for all
k ≥ 0, and converges asymptotically to zero. The auxiliary system is defined as follows

E :

{

xE (k + 1) = fE (xE (k) , uE (k) , wE (k)) ,

yE (k) = hE (xE (k)) ,
(4)

with auxiliary state xE = (x, xM )
T
∈ R

n+nM , and auxiliary inputs uE = u and wE =
uM , where

fE (xE , uE , wE) =

(

f (x, u)
fM (xM , uM )

)

, hE (xE) = h (x) − hM (xM ) .

Given this system, together with an equilibrium point x0
E

=
(

x0, x0
M

)

it is known that,
if the disturbance-decoupling problem with measurement disturbance wE associated with
the system E has a solution on ΩE

0 , an open and dense subset of X×XM×U×UM , defined
around the equilibrium point

(

x0, x0
M

, u0, u0
M

)

, then there exists an analytic mapping γE

defined on ΩE

0 with the property that the control law

u (k) = γE (xE (k) , wE (k)) = γE (xE (k) , uM (k)) (5)

decouples the output yE of the closed-loop system (4)-(5) from the disturbance wE for
every initial state of xE in an open and dense subset of X × XM contained in ΩE

0 .

The DAMMP is treated in terms of a relative degree associated with the outputs y and
yM . Thus, the following definitions are introduced. Let f0, fM0

, and fE0
be the undriven

state dynamics f (·, 0), fM (·, 0), and fE (·, 0, 0), respectively, and f
j

0 , f
j

M0
, and f

j

E0
the

j -times iterated compositions of f0, fM0
, and fE0

with f0
0 (x) = x, f0

M0
(xM ) = xM , and

f0
E0

(xE) = xE .

Definition 3.2 (Relative degree) [31] The output y of the plant Eq. (1) is said
to have a relative degree d in an open and dense subset O of X × U containing the
equilibrium point

(

x0, u0
)

, if

∂

∂u

[

h ◦ f l

0 (f (x, u))
]

≡ 0

for all 0 ≤ l ≤ d − 1, for all (x, u) ∈ O, and

∂

∂u

[

h ◦ fd

0 (f (x, u))
]

6= 0

for all (x, u) ∈ O.

A similar definition can be given for the relative degree of the model M Eq. (2),
dM , in an open and dense subset OM , of XM × UM containing the equilibrium point
(

x0
M

, u0
M

)

.

The following theorem gives necessary and sufficient conditions for the local solvability
of the OSP for hyperchaotic maps.
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Theorem 3.1 [37] Consider the hyperchaotic maps P Eq. (1) and M Eq. (2)
around, respectively, their equilibria

(

x0, u0
)

and
(

x0
M

, u0
M

)

. Suppose that the outputs
y of P and yM of M have finite relative degree d and dM , respectively defined on O and
OM . Assume that for all xE = (x, xM )

T
∈ X × XM and uM ∈ UM ,

0 ∈ Im
{

hE ◦ fd

E0
(fE (xE , ·, uM ))

}

,

holds, where Im{ϕ} denotes the image of ϕ. Then the OSP is locally solvable on ΩE

0 if
and only if

d ≤ dM . (6)

If the condition (6) holds, then from definition of relative degrees d and dM we have
that there exists an analytic mapping γE : R

n+nM×R × R → R such that

yE (k + d + 1) = hE ◦ fd

E0
◦ fE

(

xE (k) , γE (xE (k) , uM (k) , v (k))
)

= v (k) ,

with v ∈ R an external control, or equivalently,

S
(

x (k) , γE (xE (k) , uM (k) , v (k))
)

=

v (k) − h ◦ fd

0 ◦ f (x (k)) + hM ◦ f l

M0
◦ fM (xM (k) , uM (k)) .

The analytic mapping γE (xE , uM , v) is the inverse of S (x, ·), that is

γE (xE (k) , uM (k) , v (k)) =

S−1
(

x (k) , v (k) − h ◦ fd

0 ◦ f (x (k)) + hM ◦ f l

M0
◦ fM (xM (k) , uM (k))

)

, (7)

where the external control is given by

v (k) = −

d
∑

l=0

αl

[

h ◦ f l

0 (x (k)) − hM ◦ f l

M0
(xM (k))

]

. (8)

Under the new coordinates

(ζ (xE) , xM ) = φ (xE) = φ (x, xM ) ,

where ζ (xE) = (ζ1 (xE) , ..., ζd+1 (xE))
T

and ζi (xE) = hEi
◦ f i−1

E0
(xE) = ξi (x) − hMi

◦

f i−1
M0

(xM ) for all i = 1, 2, . . . , d + 1. The closed-loop auxiliary system E, by using the

control law u = γE (xE , uM ) Eqs. (7)-(8), takes the form

ζi (k + 1) = ζi+1 (k) , i = 1, ..., d, (9)

ζd+1 (k + 1) = −α0ζ1 (k) − ... − αd ζd+1 (k) = v (k) ,

xM (k + 1) = fM (xM (k) , uM (k)) ,

yE (k) = ζ1 (k) .

From Eq. (9) we see that the output y (k) of the closed-loop slave system P differs
from the output yM of the model M by a signal yE (k) obeying the linear difference
equation

yE (k + d + 1) + αd yE (k + d) + . . . + α1yE(k + 1) + α0 yE (k) = 0,
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where α0, . . . , αd are constant real coefficients. A proper location of the roots of the
polynomial

λd+1 + αdλ
d + . . . + α1λ + α0

entails the desired asymptotic behavior yE (k) = 0, i.e. y (k) converges to yM (k) as
k → ∞, and therefore the output synchronization condition (3) holds. We can identify
two subsystems in the closed-loop system (9), as follows:

1. The subsystem is described by

xM (k + 1) = fM (xM (k), uM (k)),

which represents the dynamics of the model M , and

2. The subsystem is described by

ζ (k + 1) = Aζ (k) ,

where

A =















0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
−α0 −α1 −α2 · · · −αd















,

which represents the dynamics of the signal yE(k).

The dynamics of model M is stable by assumption and, if we choose u Eqs. (7)–
(8) such that the eigenvalues of matrix A have magnitude strictly less than one, then
the closed-loop system (9) will be exponentially stable, and the output synchronization
condition (3) holds.

3.2 Output synchronization procedure

From Eq. (5) we can express the control law u in the following form

u (k) = γE (x (k) , xM (k) , uM (k)) = γE (x (k) , φM (xM (k) , uM (k))) , (10)

where the nonlinear function φM (xM , uM ) is the coupling signal to be transmitted from
the master M to construct the control law u in C, which solves the OSP, see Figure 3.1.
In the context of synchronization, a key observation, provided by the special form of the
control law u in (10), is that the nonlinear function φM (xM , uM ) fixes the coupling signal
to be transmitted to the slave system. We rewrite the following procedure to achieve
output synchronization between hyperchaotic maps P and M proposed in [37]:

Step 1. Given two hyperchaotic maps x (k + 1) = f (x (k)) and xM (k + 1) = fM (x (k))
we write it in the forms P Eq. (1) and M Eq. (2) by adding the control inputs
u (k) and uM (k), respectively.

Step 2. We define properly the outputs y and yM for maps P and M , respectively; such
that the OSP has a solution, that is the condition d ≤ dM holds.

Step 3. We obtain the control law u according to Eqs. (7)-(8).
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Figure 4.1: Hyperchaotic attractors generated by the uncontrolled: (a) Hénon and (b) Rössler
maps.

Step 4. From u = γE (xE , uM ), we proceed to identify the nonlinear coupling signal
φM (xM , uM ).

Step 5. Once the coupling signal φM = φM (xM , uM ) has been decided, then the output
y of slave P can track arbitrary the reference signal yM of model M in the sense
of condition (3).

In next section, we will appeal to the above procedure to synchronize the outputs of
the hyperchaotic generalized Hénon and Rössler maps, which is a necessary condition in
secure communications for encryption and decryption of confidential information.

4 Output Synchronization of Hyperchaotic Hénon and Rössler Maps

Consider the following hyperchaotic generalized Hénon map described by the third
order difference equations [38]:







x1(k + 1) = 1.76 − x2
2(k) − 0.1x3(k),

x2(k + 1) = x1(k),
x3(k + 1) = x2(k),

(11)

In addition, consider the Rössler map defined by [34]:







x1(k + 1) = αx1(k)(1 − x1(k)) − β(x3(k) + γ)(1 − 2x2(k)),
x2(k + 1) = δx2(k)(1 − x2(k)) + ςx3(k),
x3(k + 1) = η((x3(k) + γ)(1 − 2x2(k)) − 1)(1 − θx1(k)),

(12)

for parameter set: α = 3.8, β = 0.05, γ = 0.35, δ = 3.78, ς = 0.2, η = 0.1, and
θ = 1.9; the uncontrolled generalized Hénon and Rössler maps exhibit hyperchaotic
dynamics. Figures 4.1(a) and 4.1(b) show the hyperchaotic attractors projected onto
three-dimensional space generated by the generalized Hénon and Rössler maps, respec-
tively (when we have used 10 000 iterations). Following the Step 1, we add the control
inputs u(k) and uM (k) to Hénon and Rössler maps, respectively. In addition for Step 2,
we define the outputs y(k) = x2(k) and yM (k) = xM2(k) in (11) and (12), respectively.
In this way, we have the generalized Hénon map P for the slave system (in the form of
Eq. (1)), as follows
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P :















x1(k + 1) = 1.76 − x2
2(k) − 0.1x3(k),

x2(k + 1) = x1(k),
x3(k + 1) = x2(k) + u(k),

y(k) = x2(k)

(13)

and the Rössler map M for the master system (in the form of Eq. (2)), described by

M :















xM1(k + 1) = αxM1(k)(1 − xM1(k)) − β(xM3(k) + γ)(1 − 2xM2(k)) + uM (k),
xM2(k + 1) = δxM2(k)(1 − xM2(k)) + ςxM3(k),
xM3(k + 1) = η((xM3(k) + γ)(1 − 2xM2(k)) − 1)(1 − θxM1(k)),

yM (k) = xM2(k),
(14)

the relative degrees are d = dM = 2, with this the OSP has a solution. In order to obtain
the particular solution u (Step 3) to control to P , we define ζ1 = yE = x2 − xM2, in this
way, the auxiliary system in new coordinates is described by

ζ1(k + 1) = ζ2(k),

ζ2(k + 1) = ζ3(k),

ζ3(k + 1) = −α2ζ3(k) − α1ζ2(k) − α0ζ1(k) = v (k) .

The control law u is given by

u (k) = 10
(

1.76 − x2
1 (k) − 0.1x2 (k)

)

− a − φM (xM (k) , uM (k))), (15)

where
a = −α2

(

1.76 − x2
2 (k) − 0.1x3 (k)

)

− α1x1 (k) − α0x2 (k) .

Step 4, from Eq. (15) the coupling function φM (xM , uM ) is given by

φM (xM (k) , uM (k)) = − (−α2ρ1 − α1ρ2 − α0xM2 (k)) + ρ4, (16)

where

ρ1 = δρ2 (1 − ρ2) + ςρ3,

ρ2 = δxM2 (k) (1 − xM2 (k)) + ςxM3 (k) ,

ρ3 = η (((xM3 (k) + γ) (1 − 2xM2 (k))) − 1) (1 − θxM1 (k)) ,

ρ4 = δ (δρ2 (1 − ρ2) + ςρ3) (1 − (δρ2(1 − ρ2) + ςρ3) + ρ5,

ρ5 = ς(η(((ρ3 + γ)(1 − 2ρ2)) − 1)(1 − θρ6),

ρ6 = αxM1 (k) (1 − xM1 (k)) − β (xM3 (k) + γ) (1 − 2xM2 (k)) + uM (k) .

In the following, we carry out some numerical simulations by using the initial conditions
x (0) = (0.3, 0, 0.05) and xM (0) = (0.1, 0.2,−0.1) with the selection αi = 0.1, i = 0, 1, 2.
In this case, we use uM (k) = 0 to keep the master system M Eq. (14) with hyperchaotic
dynamics. With the above selection, Step 5 is achieved.

Figure 4.2 shows the matching between the output signals y (k) = x2 (k) and yM (k) =
xM2

(k) (top of figure); in addition, the output synchronization error e2 (k) = x2 (k) −
xM2 (k) is shown (top of figure). Meanwhile, Figure 4.3 illustrates the synchronization
errors e1 (k) = x1 (k) − xM1 (k) and e3 (k) = x3 (k) − xM3 (k). In this case, notice that
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remaining output synchronization errors e1 (k) and e3 (k) are different from zero; also,
notice that there exist big magnitudes of the synchronization errors e1(k) and e3(k)
which can be estimated by the enormous difference between the hyperchaotic attractors
generated by the hyperchaotic Rössler and Hénon maps, which is depicted in Figure
4.4: hyperchaotic attractors generated by the controlled hyperchaotic Hénon and Rössler
maps, i.e. after we have achieved output synchronization, when we have used 50 000
iterations.

5 Secure Hyperchaotic Encryption

In this section, we show how output synchronization of the hyperchaotic Hénon and
Rössler maps is used in a secure communication scheme to send confidential information.
In particular, we propose a communication scheme to transmit encrypted audio and
image information.

The communication scheme to send confidential information is shown in Figure 5.1.
This cryptosystem uses two transmission channels, in one the complex coupling sequence
φM (k) = φM (xM (k) , uM (k)) is transmitted to achieve output synchronization between
hyperchaotic transmitter and receiver. The signal φM (k) is only used for fast synchro-
nization and does not contain any information of the confidential information m (k).
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Figure 4.4: Hyperchaotic attractors generated by the controlled (after output synchroniza-
tion): (a) Rössler and (b) Hénon maps.

M(k)
xM(k)

uM(k) x(k)

u(k)

yM(k) y(k)

- +

e(k) = yE(k)

Master Slave

M C1 C P

F

Figure 5.1: Secure communication scheme for transmission of encrypted audio and image
information.

While, in the second channel, we send the encrypted confidential information m (k), here
the nonlinear function σ(·, ·) encrypts both the information m (k) and chaotic output
yM (k) in the transmitter. The encrypted message s (k) is transmitted to the receiver
end. The nonlinear function for encryption is proposed as follows

σ (yM , m) = s = g1 (yM ) + g2 (yM ) m,

and the nonlinear function for decryption is given by

λ (y, s) =
−g1 (y)

g2 (y)
+

s

g2 (y)
.

In particular, the encryption function installed in the transmitter computer is given
by

σ (yM , m) = y3
M

+
(

1 + y3
M

)

m = s, (17)

and the decryption function installed into the remote receiver computer is defined by

λ (y, s) =
−y3

1 + y3
+

s

1 + y3
. (18)
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Figure 5.2: Original voice information to be encrypted, m (middle of figure). The transmitted
signal with the hidden information. The recovered information m̂, at the reciver end (bottom
of figure).

5.1 Communicating encrypted audio information signals

Firstly, we use like confidential information m (k) a voice message, the transmitted signal
with the hidden the information is s (k), and at the receiver end, the recovered informa-
tion m̂ (k) is given by Figure 5.2 shows the encrypted transmission and recovery when
the confidential information m (k) (top of figure) is a voice signal, in this case the word
“cuatro” that means four in Spanish. The transmitted hyperchaotic signal s(k) (middle
of figure), and recovered information signal m̂ (bottom of figure). We can see after brief
transient time that information is recovered faithfully.

5.2 Communicating encrypted images

Figure 5.3 shows the transmission and recovering of an image message by using hyper-
chaotic encryption, which is based on output synchronization of Hénon and Rössler maps.
The original image to be encrypted and transmitted is shown in Figure 5.3(a). While
Figure 5.3(b) shows the transmitted encrypted image to the remote receiver via an in-
secure channel. Finally, the recovered image at the receiver end is depicted in Figure
5.3(c).

Remark 5.1 In our cryptosystem, the processes of encryption and synchronization
are completely separated with no interference between them. So, encrypted informa-
tion does not interfere with synchronization, therefore not increasing the sensitivity of
synchronization to external errors. As a result, the hyperchaotic communication scheme
with two transmission channels gives faster synchronization and high security, see [35].

6 Conclusions

In this paper, we have presented a scheme to achieve output synchronization of different
discrete-time hyperchaotic maps via model-matching approach. This method is inspired
from nonlinear control theory. We have showed by computer simulations, that this
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(a) (b) (c)

Figure 5.3: (a) Original jpg image information to be send for thransmitter, (b) hyperchaotic
encrypted image through insecure channel, and (c) recovered jpg information at the receiver
end.

approach is indeed suitable to synchronize hyperchaotic generalized Hénon and Rössler
maps, in a master-slave coupled configuration.

We have applied output synchronization in secure communication based on hyper-
chaos. In particular, we have presented a hyperchaotic communication scheme to trans-
mit encrypted confidential (audio and image) information. As well as, the intrinsic
advantages for the encryption presented by the mentioned schemes (σ and λ function
for exception/decryption, respectively), we have increased the security by using complex
hyperchaotic transmitted signals.
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Y and P50051-Y. And by UABC, México, under Research Grant No. 0465.

References

[1] Schneier, B. Applied cryptography: protocols, algorithms, and source code in C. Wiley &
Sons, Inc., 1996.

[2] Menezes, A.J., van Oorschot, P.C. and Vanstone, S.A. Handbook of Applied Cryptography.
CRC Press, 1997

[3] Pecora, L.M. and Carroll, T.L.. Synchronization in chaotic systems. Phys. Rev. Lett. 64
(1990) 821–824.

[4] Nijmeijer, H. and Mareels, I.M.Y. An observer looks at synchronization. IEEE. Trans. Circ.
Syst. I 44(10) (1997) 882–890.

[5] Cruz-Hernández, C. and Nijmeijer, H. Synchronization through filtering. Int. J. Bifurc.
Chaos 10(4) (2000) 763–775.

[6] Sira-Ramı́rez, H. and Cruz-Hernández, C. Synchronization of chaotic systems: A general-
ized Hamiltonian systems approach. Int. J. Bifurc. Chaos 11(5) (2001) 1381–1395.
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Abstract: In this paper we shall study the approximations of solutions to a
class of second order history-valued delay differential equations in a separa-
ble Hilbert space. Using a pair of associated nonlinear integral equations and
projection operators we consider a pair of approximate nonlinear integral equa-
tions. We first show the existence and uniqueness of solutions to this pair of
approximate integral equations and then establish the convergence of the se-
quences of the approximate solutions to the solution and the pair of associated
integral equations, respectively. Also, we consider the Faedo–Galerkin appro-
ximations of the solution and prove some convergence results. Finally, we give
an example.
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group; Banach fixed point theorem; Faedo-Galerkin approximation.
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1 Introduction

We consider the following second order history-valued abstract delay differential equation
in a separable Hilbert space (H, ‖ · ‖, 〈·, ·〉):

u′′(t) +Av(t) = f(t, u(t), v(t), u(t− τ), v(t− τ)), t ∈ (0, T ],

u(t) = h(t), v(t) = g(t), t ∈ [−τ, 0],
(1)
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where A is a closed linear operator defined on a dense subset of H and v(t) = u′(t)
for all t ∈ [−τ, T ]. We assume that −A is the infinitesimal generator of an analytic
semigroup {e−tA : t ≥ 0} in H and the nonlinear map f is defined from [0, T ]×H4 into
H satisfying certain conditions to be specified later.

Regarding the earlier works on existence, uniqueness, regularity and stability of var-
ious types of solutions to evolutions equations, delay differential equations and neutral
functional differential equations under different conditions, we refer to Bahuguna and
Muslim [1, 2, 3], Bahuguna et al [4], Wei et al [5], Balachandran and Chandrasekaran [6],
Lin and Liu [7], Alaoui [8], Adimy [9], Hernandez and Henriquez [10, 11], Blasio and
Sinestrari [12], Jeong [13], Rhandi [14] and the references cited in these papers.

The related results for the approximation of solutions to the first order evolution equa-
tions with and without delay can be found in Bahuguna and Muslim [1, 2], Henriquez [15]
and Muslim [16].

Initial studies concerning existence, uniqueness and finite-time blow-up of solutions
for the following equation

u′(t) +Au(t) = g(u(t)), t ≥ 0,

u(0) = φ,

have been considered by Segal [17], Murakami [18] and Heinz and Von Wahl [19]. Bazley
[20, 21] has considered the following semilinear wave equation

u′′(t) +Au(t) = g(u(t)), t ≥ 0,

u(0) = φ, u′(0) = ψ,
(2)

and has established the uniform convergence of approximations of solutions to (2) using
the results of Heinz and von Wahl [19]. Goethel [22] has proved the convergence of
approximations of solutions to (2) but assumed g to be defined on the whole of H . Based
on the ideas of Bazley [20, 21], Miletta [23] has proved the existence and convergence of
approximate solutions to (2).

The authors Bahuguna and Muslim [2] have considered the following first order re-
tarded integro-differential equation

u′(t) +Au(t) = Bu(t) + Cu(t− τ) +

∫ 0

−τ

a(θ)Lu(t+ θ) dθ, 0 < t ≤ T <∞, τ > 0,

u(t) = h(t), t ∈ [−τ, 0]
(3)

in a separable Hilbert space and studied the approximation of solution of the above
problem under the conditions when −A is the infinitesimal generator of an analytic
semigroup, B, C and L are nonlinear continuous operators suitably defined on H .

In [23], Miletta has established the convergence of Faedo-Galerkin approximation of
the solution to

u′(t) +Au(t) = M(u(t)), u(0) = φ,

in a separable Hilbert space where A satisfies the same condition as in this paper and M
is a nonlinear map defined on D(Aα), for some α, 0 < α < 1, which satisfies a Lipschitz
condition in a ball in D(Aα).

Despite the widespread use of the Faedo-Galerkin method (in many applications it is
referred to as the method of harmonic balance), the convergence behaviour in many cases
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is not known. Bazely [20, 21] has proved the uniform convergence of the approximation
solution of the nonlinear wave equation

u′′(t) +Au(t) +M(u(t)) = 0, u(0) = φ, u′(0) = ψ,

on any closed subinterval [0, T ] of the existence of the solution.

2 Preliminaries

We note that if −A is the infinitesimal generator of an analytic semigroup then for c > 0
large enough, −(A+ cI) is invertible and generates a bounded analytic semigroup. This
allows us to reduce the general case in which −A is the infinitesimal generator of an
analytic semigroup to the case in which the semigroup is bounded and the generator is
invertible. Hence without loss of generality we suppose that

‖e−tA‖ ≤M for t ≥ 0

and
0 ∈ ρ(−A),

where ρ(−A) is the resolvent set of −A. It follows that for 0 ≤ α ≤ 1, Aα can be defined
as a closed linear invertible operator with domain D(Aα) being dense in X .

In view of the facts mentioned above we have the following Lemma for an analytic
semigroup {e−tA, t ≥ 0} (cf. Pazy [24], pp. 195–196).

Lemma 2.1 Suppose that −A is the infinitesimal generator of an analytic semigroup
{e−tA, t ≥ 0} with ‖e−tA‖ ≤M, for t ≥ 0 and 0 ∈ ρ(−A). Then we have the following

(i) D(Aα) for 0 ≤ α ≤ 1 is a Banach space endowed with the norm ‖ · ‖α,

(ii) For 0 < β ≤ α, the embedding Hα →֒ Hβ is continuous,

(iii) Aα commutes with e−tA and there exists a constant Cα > 0 depending on α such
that

‖Aαe−tA‖ ≤ Cαt
−α, t > 0,

(iv) There exists a constant C such that

‖A−α‖ ≤ C, for 0 ≤ α ≤ 1.

We assume that the linear operator A satisfies the following assumption.

(H1) A is a closed, positive definite, self-adjoint linear operator from the domain
D(A) ⊂ H of A into H such that D(A) is dense in H , A has the pure point spectrum

0 < λ0 ≤ λ1 ≤ λ2 ≤ λ2 . . .

and a corresponding complete orthonormal system of eigenfunctions {φi}, i.e.,

Aφi = λiφi and 〈φi, φj〉 = δij ,

where δij = 1 if i = j and zero otherwise.
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If (H1) is satisfied then −A generates an analytic semigroup {e−tA : t ≥ 0} in H .
Further assume that the maps h, g and f satisfy the following hypotheses.

(H2) The maps h, g ∈ C1
0 are locally Hölder continuous on [−τ, 0].

We define the two new functions h̃ and g̃ given by

h̃(t) =

{

h(t), t ∈ [−τ, 0],

h(0), t ∈ [0, T ]
(4)

and

g̃(t) =

{

g(t), t ∈ [−τ, 0],

g(0), t ∈ [0, T ].
(5)

(H3) The nonlinear map f is defined from [0, T ]×D(A)×D(Aα)×D(A)×D(Aα)
into H and there exists a nondecreasing function Lf from [0,∞) into [0,∞) depending
on some r1 > 0 such that

‖f(t, u1,v1, w1, z1) − f(s, u2, v2, w2, z2)‖

≤ Lf (r1){|t− s|θ + ‖u1 − u2‖1 + ‖v1 − v2‖α + ‖w1 − w2‖1 + ‖z1 − z2‖α},

for all t, s ∈ [0, T ], θ ∈ (0, 1], and (u1, v1), (u2, v2), (w1, z1),(w2, z2) ∈ Br1
(D(A) ×

D(Aα), (h̃(t), g̃(t))) where Br1
(D(A)×D(Aα), (h̃(t), g̃(t))) = {(x1, y1) ∈ D(A)×D(Aα) :

‖x1 − h̃(t)‖1 + ‖y1 − g̃(t)‖α ≤ r1}.

3 Approximate Integral Equations

The existence of solutions to equation (1) is closely associated with the following pair of
integral equations

u(t) =



















h(t), t ∈ [−τ, 0],

h(0) − (e−tA − I)A−1g(0) −
t
∫

0

(e−(t−s)A − I)A−1f(s, u(s), v(s), u(s− τ), v(s − τ)) ds, t ∈ [0, T ],

(6)

v(t) =



















g(t), t ∈ [−τ, 0],

e−tAg(0) +
t
∫

0

e−(t−s)Af(s, u(s), v(s), u(s− τ), v(s− τ)) ds, t ∈ [0, T ].

(7)

By a solution (u, v) to equations (6)–(7) on [−τ, T ], we mean a pair of functions (u, v) ∈
C1

T
× Cα

T
for some 0 < α < 1 satisfying (6)–(7), where C1

T
× Cα

T
is the Banach space

C([−τ, T ], D(A) ×D(Aα)) of all continuous functions from [−τ, T ] into D(A) ×D(Aα)
endowed with the norm

‖(u, v)‖CT,1×CT,α
= ‖u‖T,1 + ‖v‖T,α,

where

‖u‖T,1 = sup
−τ≤t≤T

‖Au(t)‖ = sup
−τ≤t≤T

‖u(t)‖1
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and

‖v‖T,α = sup
−τ≤t≤T

‖Aαv(t)‖ = sup
−τ≤t≤T

‖v(t)‖α.

Let 0 < T0 <∞ be an arbitrary fixed real number and

L(R) = (1 +R)2FR(T0), (8)

where

FR(T0) = 2Lf(R)[T θ

0 +R+ ‖h̃‖T,1 + ‖g̃‖T,α] + ‖fn(0, 0, 0, 0, 0)‖. (9)

Let 0 < T ≤ T0 be such that

sup
0≤t≤T

{

‖(e−tA − I)g(0)‖ + ‖(e−tA − I)Aαg(0)‖
}

<
R

3

and

T < min

{

T0,
R

3

[

(M + 1)L(R)
]

−1
,

[

R

3
(1 − α)[L(R)Cα]−1

]
1

1−α

}

.

Let Hn denote the finite dimensional subspace of H spanned by {φ0, φ1, . . . , φn} and
for each n = 0, 1, 2, . . . , Pn : H → Hn be the corresponding projection operators.
For each n we define fn : [0, T0] × D(A) × D(Aα) × D(A) × D(Aα) → H such that
fn(t, u, v, w, z) = f(t, Pnu, Pnv, Pnw,Pnz), where (u, v), (w, z) ∈ D(A) ×D(Aα) and
t ∈ [0, T0].

Let WR = BR(C1
T
× Cα

T
, (h̃, g̃)), where

BR(C1
T
× Cα

T
, (h̃, g̃)) = {(y1, y2) ∈ C1

T
× Cα

T
: ‖y1 − h̃‖T,1 + ‖y2 − g̃‖T,α ≤ R}.

Define a map Sn on WR such that Sn(u, v) = (û, v̂) with

û(t) =











h(t), t ∈ [−τ, 0],

h(0) − (e−tA − I)A−1g(0) −
∫

t

0 (e−(t−s)A − I)A−1fn(s, u(s), v(s), u(s− τ), v(s − τ))ds, t ∈ [0, T ],

(10)

v̂(t) =

{

g(t), t ∈ [−τ, 0],

e−tAg(0) +
∫

t

0 e
−(t−s)Afn(s, u(s), v(s), u(s− τ), v(s − τ))ds, t ∈ [0, T ].

(11)

Theorem 3.1 If all the assumptions (H1)–(H3) are satisfied then there exists a
unique (un, vn) ∈WR such that Sn(un, vn) = (un, vn) for each n = 0, 1, 2, . . . .

Proof We claim that Sn : WR → WR. For this we need to show that the map
t 7→ (Sn(u, v))(t) is continuous from [−τ, T ] into D(A) × D(Aα) with respect to the
norm ‖ · ‖1 + ‖ · ‖α. For t ∈ [−τ, 0] we have

‖û(t2) − û(t1)‖1 + ‖v̂(t2) − v̂(t1)‖α = ‖h(t2) − h(t1)‖1 + ‖g(t2) − g(t1)‖α. (12)
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For t1, t2 ∈ (0, T ] with t1 < t2, we have

[û(t2) − û(t1)] + [v̂(t2) − v̂(t1)] = [(e−t2A − e−t1A)(−A)−1g(0)] + [(e−t2A − e−t1A)g(0)]

+

∫

t2

t1

[e−(t2−s)A − I](−A)−1f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))ds

+

∫

t1

0

[

e−(t2−s)A − e−(t1−s)A
]

× (−A)−1f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))ds

+

∫

t2

t1

e−(t2−s)Af(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))ds

+

∫

t1

0

[(e−(t2−s)A − e−(t1−s)A)]f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))ds.

Hence from the above equation we get

‖û(t2) − û(t1)‖1 + ‖v̂(t2) − v̂(t1)‖α ≤ ‖(e−t2A − e−t1A)g(0)‖ + ‖(e−t2A − e−t1A)g(0)‖α

+

∫

t2

t1

‖e−(t2−s)A − I‖‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

+

∫

t1

0

‖e−(t2−s)A − e−(t1−s)A‖‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

+

∫

t2

t1

‖Aαe−(t2−s)A‖ ‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

+

∫

t1

0

‖Aα(e−(t2−s)A − e−(t1−s)A)‖

× ‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds.

We calculate the above inequality as follows
∫

t2

t1

‖e−(t2−s)A − I‖‖f(s, Pnu(s),Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

≤ (M + 1)L(R)(t2 − t1)

(13)

and
∫

t2

t1

‖e−(t2−s)AAα‖ ‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

≤ L(R)Cα

∫

t2

t1

(t2 − s)−αds = L(R)Cα

(t2 − t1)
1−α

1 − α
.

(14)

Part (d) of Theorem 2.6.13 in Pazy [24] implies that for 0 < ϑ ≤ 1 and x ∈ D(Aϑ), we
have

‖(e−tA − I)x‖ ≤ C′

ϑ
tϑ‖x‖ϑ. (15)

If 0 < ϑ < 1 and 0 < α + ϑ < 1, then Aαy ∈ D(Aϑ) for any y ∈ D(Aα+ϑ).
Therefore, for t ∈ [0, T ] and s ∈ (0, T ], we have

‖(e−tA − I)Aαe−sAx‖ ≤ C′

ϑ
tϑ‖Aαe−sAx‖ϑ = C′

ϑ
tϑ‖Aα+ϑe−sAx‖

≤ C′

ϑ
Cα+ϑt

ϑs−(α+ϑ)‖x‖.
(16)
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Hence from (16) we get

‖(e−(t2−s)A − e−(t1−s)A)Aα‖ = ‖(e−(t2−t1)A − I)Aαe−(t1−s)A‖

≤ C′

ϑ
Cα+ϑ(t2 − t1)

ϑ(t1 − s)−(α+ϑ).

Hence
∫

t1

0

‖(e−(t2−s)A − e−(t1−s)A)Aα‖ ‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

≤ C′

ϑ
Cα+ϑL(R)(t2 − t1)

ϑ

∫

t1

0

(t1 − s)−(α+ϑ)ds

≤ C′

ϑ
Cα+ϑL(R)

T
1−(α+ϑ)
0

1 − (α+ ϑ)
(t2 − t1)

ϑ.

(17)
Also, from (16), we have

‖(e−tA − I)e−sAx‖ ≤ C′

ϑ
tϑ‖e−sAx‖ϑ = C′

ϑ
tϑ‖Aϑe−sAx‖

≤ C′

ϑ
Cϑt

ϑs−ϑ‖x‖.

Therefore

‖e−(t2−s)A − e−(t1−s)A‖ = ‖(e−(t2−t1)A − I)e−(t1−s)A‖

≤ C′

ϑ
Cϑ(t2 − t1)

ϑ(t1 − s)−ϑ.

Hence
∫

t1

0

‖e−(t2−s)A − e−(t1−s)‖‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

≤ C′

ϑ
CϑL(R)(t2 − t1)

ϑ

∫

t1

0

(t1 − s)−ϑds

≤ C′

ϑ
CϑL(R)

T 1−ϑ

0

1 − ϑ
(t2 − t1)

ϑ.

(18)

From inequalities (13), (14), (17) and (18), it follows that Sn(u, v)(t) is continuous
from [−τ, T ] into D(A) ×D(Aα) with respect to the norm ‖ · ‖1 + ‖ · ‖α. Next we want
to show that Sn(u, v) ∈WR i.e., (û, v̂) ∈WR. Now if t ∈ [−τ, 0] then we have

‖û(t) − h̃(t)‖1 + ‖v̂(t) − g̃(t)‖α = 0.

Now, if t ∈ (0, T ], then we have

‖û(t) − h̃(t)‖1 + ‖v̂(t) − g̃(t)‖α ≤ ‖(e−tA − I)g(0)‖ + ‖(e−tA − I)Aαg(0)‖

+

∫

t

0

‖e−(t−s)A − I‖‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

+

∫

t

0

‖e−(t−s)AAα‖‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

≤
R

3
+ (M + 1)L(R))(T0)T + CαL(R)(T0)

∫

t

0

(t− s)−αds

≤
R

3
+ (M + 1)L(R)T + CαL(R)

T 1−α

1 − α
≤ R.
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Taking the supremum over [−τ, T ], we get

‖û− h̃‖T,1 + ‖v̂ − x̃1‖T,α ≤ R,

which implies that Sn(u, v) ∈ WR. Hence, Sn maps WR into WR. Now to complete the
proof of this theorem it only remains to show that Sn is a strict contraction mapping
on WR.

If t ∈ [−τ, 0], and (u1, v1), (u2, v2) ∈ WR, then we have

‖û1(t) − û2(t)‖1 + ‖v̂1(t) − v̂2(t)‖α

≤

∫

t

0

‖e−(t−s)A − I‖ ‖f(s, Pnu1(s), P
nv1(s), P

nu1(s− τ), Pnv1(s− τ))

− f(s, Pnu2(s), P
nv2(s), P

nu2(s− τ), Pnv2(s− τ))‖ds

+

∫

t

0

‖e−(t−s)AAα‖ ‖f(s, Pnu1(s), P
nv1(s), P

nu1(s− τ), Pnv1(s− τ))

− f(s, Pnu2(s), P
nv2(s), P

nu2(s− τ), Pnv2(s− τ))‖ds.

From assumption (H3), we get

‖f(t, Pnu1(t), P
nv1(t), P

nu1(t− τ), Pnv1(t− τ))

− f(t, Pnu2(t), P
nv2(t), P

nu2(t− τ), Pnv2(t− τ))‖

≤ FR(T0)[‖u1(s) − u2(s)‖1 + ‖v1(s) − v2(s)‖α

+ ‖u1(s− τ) − u2(s− τ)‖1 + ‖v1(s− τ) − v2(s− τ)‖α]

≤
2RFR(T0)

R
(‖u1 − u2‖T,1 + ‖v1 − v2‖T,α)).

Therefore

‖f(t, Pnu1(t), P
nv1(t), P

nu1(t− τ), Pnv1(t− τ))

− f(t, Pnu2(t), P
nv2(t), P

nu2(t− τ), Pnv2(t− τ))‖

≤ 2FR(T0)(‖u1 − u2‖T,1 + ‖v1 − v2‖T,α)

≤
L(R)

R
(‖u1 − u2‖T,1 + ‖v1 − v2‖T,α).

Hence

‖û1(t) − û2(t)‖1 + ‖v̂1(t) − v̂2(t)‖α

≤ [(M + 1)2FR(T0)T + 2CαFR(T0)]

∫

t

0

(t− s)−αds (‖u1 − u2‖T,1 + ‖v1 − v2‖Tα)

≤
1

R

[

(M + 1)L(R)T + CαL(R)
T 1−α

1 − α

]

(‖u1 − u2‖T,1 + ‖v1 − v2‖T,α)

≤
2

3
(‖u1 − u2‖T,1 + ‖v1 − v2‖T,α).

Taking the supremum over [−τ, T ], we get

‖û1 − û2‖T,1 + ‖v̂1 − v̂2‖T,α ≤
2

3
(‖u1 − u2‖T,1 + ‖v1 − v2‖T,α).
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Thus Sn is a strict contraction mapping on WR. Hence, there exists a unique pair
(un, vn) ∈WR such that

un(t) =











h(t), t ∈ [−τ, 0],

h(0) − (e−tA − I)A−1g(0) −
∫

t

0 (e−(t−s)A − I)A−1fn(s, un(s), vn(s), un(s− τ), vn(s− τ))ds, t ∈ [0, T ],

(19)
and

vn(t) =

{

g(t), t ∈ [−τ, 0],

e−tAg(0) +
∫

t

0
e−(t−s)Afn(s, un(s), vn(s), un(s− τ), vn(s− τ))ds, t ∈ [0, T ].

(20)
The equations (19)–(20) are known as a pair of approximate solutions related to the
given problem (1). 2

Corollary 3.1 Let all the assumptions (H1)–(H3) hold. If (h(t), g(t)) ∈ D(A) ×
D(A) for all t ∈ [−τ, 0] then (un(t), vn(t)) ∈ D(A) ×D(Aϑ) for all t ∈ [−τ, T ], where
0 ≤ ϑ < 1.

Proof From Theorem 3.1, we have the existence of a unique pair (un, vn) ∈ BR(C1
T
×

Cα

T
, (h̃, g̃)) satisfying (19)–(20). By Theorem (1.2.4) in Pazy [24], we have for x ∈ H ,

∫

t

0 e
−tAxds ∈ D(A) and if x ∈ D(A) then e−tAx ∈ D(A). Thus the result follows from

these facts and the fact that D(A) ⊆ D(Aϑ) for 0 ≤ ϑ ≤ 1. 2

Corollary 3.2 If all the conditions (H1)–(H3) hold then for g(0) ∈ D(A) there
exists a constant V0 independent of n such that

‖vn(t)‖ϑ ≤ V0, where 0 ≤ ϑ < 1, −τ ≤ t ≤ T.

Proof If t ∈ [−τ, 0], then from equation (20), we get the following

‖vn(t)‖ϑ ≤ ‖Aϑg(0)‖.

If t ∈ (0, T ], then we have

‖vn(t)‖ϑ ≤ ‖e−tAAϑg(0)‖

+

∫

t

o

‖e−(t−s)AAϑ‖‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ds

≤M‖g(0)‖ϑ + CϑL(R)
T 1−ϑ

1 − ϑ
≤ V ′

0 .

This completes the proof of the Corollary. 2

Corollary 3.3 If all the conditions (H1)–(H3) are hold then for h(0) ∈ D(A) there
exist a constant V1 independent of n such that

‖un(t)‖1 ≤ V1, for all − τ ≤ t ≤ T.

Proof If t ∈ [−τ, 0], then from equation (19) ‖vn(t)‖1 ≤ ‖Ag(0)‖.
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If t ∈ (0, T ], then we have

‖un(t)‖1 ≤ ‖h(0)‖1 + ‖(e−tA − I)g(0)‖

+

∫

t

o

‖(e−(t−s)A − I)‖‖f(s, Pnu(s), Pnv(s), Pnu(s− τ), Pnv(s− τ))‖ ds

≤ ‖h(0)‖1 + (M + 1)‖g(0)‖+ (M + 1)L(R)T ≤ V ′

1 .

This completes the proof of the Theorem. 2

4 Convergence of Approximate Solutions

In this section we will establish the convergence of the solution (un, vn) ∈ C1
T
× Cα

T
of

approximate integral equations to a unique solution (u, v) of equation (1).

For proving the convergence, we need the following stronger assumption on the non-
linear map f than (H3).

(H3′) The nonlinear map f is defined from [0, T ]×D(A)×D(Aα)×D(A)×D(Aα)
into D(Aβ) for 0 < α < β < 1 and there exists a nondecreasing function L̃f from [0,∞)
into [0,∞) depending on some r1 > 0 such that

‖f(t, u1, v1, w1, z1) − f(s, u2, v2, w2, z2)‖β

≤ L̃f (r1){|t− s|θ + ‖u1 − u2‖1 + ‖v1 − v2‖α + ‖u1 − u2‖1 + ‖v1 − v2‖α}

for all t, s ∈ [0, T ], θ ∈ (0, 1] and (u1, v1), (u2, v2), (w1, z1), (w2, z2) ∈ Br1
(D(A) ×

D(Aα), (h̃(t), g̃(t))), where Br1
(D(A)×D(Aα), (h̃(t), g̃(t))) = {(x1, y1) ∈ D(A)×D(Aα) :

‖x1 − h̃(t)‖1 + ‖y1 − g̃(t)‖α ≤ r1}.

We can easily observe that the conditions (H3′) is stronger than (H3) because the
same condition is satisfied in D(Aβ) rather than in H . Now, we are in a position to state
a theorem.

Theorem 4.1 Let (H1), (H2) and (H3′) be satisfied and (h(0), g(0)) ∈ D(A)×D(A).
Then,

lim
m→∞

sup
{n≥m, −τ≤t≤T}

{‖un − um‖T,1 + ‖vn − vm‖T,α} = 0,

where un and vn are given by (19) and (20) respectively.

Proof For n ≥ m, we have

‖fn(t, un(t), vn(t), un(t− τ), vn(t− τ)) − fm(t, um(t), vm(t), um(t− τ), vm(t− τ))‖

≤ ‖fn(t, un(t), vn(t), un(t− τ), vn(t− τ)) − fn(t, um(t), vm(t), um(t− τ), vm(t− τ))‖

+ ‖fn(t, um(t), vm(t), um(t− τ), vm(t− τ)) − fm(t, um(t), vm(t), um(t− τ), vm(t− τ))‖

≤ Lf (R)[‖Pnun(t) − Pnum(t)‖1 + ‖Pnvn(t) − Pnvm(t)‖α

+ ‖Pnun(t− τ) − Pnum(t− τ)‖1 + ‖Pnvn(t− τ) − Pnvm(t− τ)‖α

+ ‖(Pn − Pm)um(t)‖1 + ‖(Pn − Pm)vm(t)‖α

+ ‖(Pn − Pm)um(t− τ)‖1 + ‖(Pn − Pm)vm(t− τ)‖α].
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Also, we can see that

‖(Pn − Pm)vm(t)‖α = ‖Aα(Pn − Pm)vm(t)‖ = ‖Aα−ϑ(Pn − Pm)Aϑvm(t)‖

≤
1

λϑ−α
m

‖(Pn − Pm)Aϑvm(t)‖ ≤
‖Aϑvm(t)‖

λϑ−α
m

and

‖(Pn − Pm)vm(t− τ)‖α = ‖Aα(Pn − Pm)vm(t− τ)‖ = ‖Aα−ϑ(Pn − Pm)Aϑvm(t− τ)‖

≤
1

λϑ−α
m

‖(Pn − Pm)Aϑvm(t− τ)‖ ≤
‖Aϑvm(t− τ)‖

λϑ−α
m

.

For convenience, we denote

ξm,n(t) = ‖un(t) − um(t)‖1 + ‖vn(t) − vm(t)‖α

and

ξm,n(t− τ) = ‖un(t− τ) − um(t− τ)‖1 + ‖vn(t− τ) − vm(t− τ)‖α.

Thus, we have

‖fn(t, un(t), vn(t), un(t− τ)), vn(t− τ)) − fm(t, um(t), vm(t), um(t− τ), vm(t− τ))‖

≤ Lf (R)[ξm,n(t) + ξm,n(t− τ) + ‖(Pn − Pm)um(t)‖1

+
‖vm(t)‖ϑ

λϑ−α
m

+ ‖(Pn − Pm)um(t− τ)‖1 +
‖vm(t− τ)‖ϑ

λϑ−α
m

]

≤ 2Lf(R)

[

{‖un − um‖t,1 + ‖vn − vm‖t,α} + ‖(Pn − Pm)um‖t,1 +
‖vm‖t,ϑ

λϑ−α
m

]

.

(21)
Now, from the pair of integral equations (19)–(20), for any 0 < t′0 < t < T0, we have

‖un(t) − um(t)‖1 + ‖vn(t) − vm(t)‖α

≤

{∫

t
′

0

0

‖e−(t′
0
−s)A − I‖ +

∫

t

t
′

0

‖e−(t−s)A − I‖

}

×
[

‖fn(s, un(s), vn(s), un(s− τ), vn(s− τ))

− fm(s, um(s), vm(s), um(s− τ), vm(s− τ))‖
]

ds

+

{∫

t
′

0

0

‖e−(t′
0
−s)AAα‖ +

∫

t

t
′

0

‖e−(t−s)AAα‖

}

×
[

‖fn(s, un(s), vn(s), un(s− τ), vn(s− τ))

− fm(s, um(s), vm(s), um(s− τ), vm(s− τ))‖
]

ds.

(22)
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By using the estimate of the inequality (21) in the inequality (22), we get

‖un(t) − um(t)‖1 + ‖vn(t) − vm(t)‖α

≤ A1t
′

0 + L(R)

∫

t

t
′

0

(

(M + 1) +
Cα

(t− s)α

)

ds

(

‖(Pn − Pm)um‖T,1 +
V0

λϑ−α
m

)

+ L(R)

∫

t

t
′

0

(

(M + 1) +
Cα

(t− s)α

)

{‖un − um‖s,1 + ‖vn − vm‖s,α}ds

≤ A1t
′

0 + C(R, T )Bmn +N1

∫

t

t
′

0

1

(t− s)α
{‖un − um‖s,1 + ‖vn − vm‖s,α}ds,

(23)
where

Bmn = B1
mn

+ B2
mn
, B1

mn
= ‖(Pn − Pm)um‖T,1, B2

mn
=

V0

λϑ−α
m

,

C(R, T ) = L(R)

(

(M + 1)T +
CαT

1−α

1 − α

)

,

N1 = L(R)(Tα + 1)max{(M + 1), Cα}

and

A1 = {(M + 1) + Cα(t0 − t′0)
−α}2Lf(R)

[

{‖un − um‖t
′

0
,1 + ‖vn − vm‖t

′

0
,α}

+ ‖(Pn − Pm)um‖t′
0
,1 +

V0

λϑ−α
m

]

t′0.

(24)

Now we replace t by t+ θ in the inequality (23), where θ ∈ [t′0 − t, 0], we get

‖un(t+ θ) − um(t+ θ)‖1 + ‖vn(t+ θ) − vm(t+ θ)‖α ≤ A1t
′

0 + C(R, T )Bmn

+N1

∫

t+θ

t
′

0

(t+ θ − s)−α{‖un − um‖s,1 + ‖vn − vm‖s,α} ds.
(25)

We put s− θ = γ in inequality (25) and get

‖un(t+ θ) − um(t+ θ)‖1 + ‖vn(t+ θ) − vm(t+ θ)‖α

≤ A1t
′

0 + C(R, T )Bmn +N1

∫

t

t
′

0
−θ

(t− γ)−α{‖un − um‖γ,1 + ‖vn − vm‖γ,α}dγ

≤ A1t
′

0 + C(R, T )Bmn +N1

∫

t

t
′

0

(t− γ)−α{‖un − um‖γ,1 + ‖vn − vm‖γ,α}dγ.

(26)
Thus

sup
t
′

0
−t≤θ≤0

{‖un(t+ θ) − um(t+ θ)‖1 + ‖vn(t+ θ) − vm(t+ θ)‖α}

≤ A1t
′

0 + C(R, T )Bmn +N1

∫

t

0

(t− γ)−α{‖un − um‖γ,1 + ‖vn − vm‖γ,α}dγ.

(27)
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We have

sup
−τ−t≤θ≤0

{‖un(t+ θ) − um(t+ θ)‖1 + ‖vn(t+ θ) − vm(t+ θ)‖α}

≤ sup
0≤θ+t≤t

′

0

{‖un(t+ θ) − um(t+ θ)‖1 + ‖vn(t+ θ) − vm(t+ θ)‖α}

+ sup
t
′

0
−t≤θ≤0

{‖un(t+ θ) − um(t+ θ)‖1 + ‖vn(t+ θ) − vm(t+ θ)‖α}.

(28)

By using the inequalities (26) and (27) in the inequality (28), we get

sup
−τ≤t+θ≤t

{‖un(t+ θ) − um(t+ θ)‖1 + ‖vn(t+ θ) − vm(t+ θ)‖α}

≤ 2A1t
′

0 + C(R, T )Bmn +N1

∫

t

0

(t− γ)−α{‖un − um‖γ,1 + ‖vn − vm‖γ,α}dγ.
(29)

Hence, from Gronwall’s Lemma and taking the limit as m → ∞ on both sides, we get
the required result, since Bmn → 0 as m → ∞ provided ‖(Pn − Pm)um‖T,1 → 0 as
m → ∞ for −τ ≤ t ≤ T . Since B2

mn
→ 0 as m → ∞, hence to prove that Bmn → 0, we

only need to prove that for −τ ≤ t ≤ T , ‖(Pn − Pm)um(t)‖1 → 0 as m → ∞. We can
easily check that for every x ∈ H and η < 0

‖Aη(Pn − Pm)x‖ ≤ λη

m
‖(Pn − Pm)x‖ ≤ λη

m
‖x‖. (30)

From the equation (19), for any t ∈ [−τ, 0] we have

‖A(Pn − Pm)um(t)‖ = ‖(Pn − Pm)Ah(0)‖. (31)

For t ∈ (0, T ], we have

‖A(Pn − Pm)um(t)‖ ≤ ‖(Pn − Pm)Ah(0)‖ + (M + 1)‖(Pn − Pm)g(0)‖

+ (M + 1)

∫

t

0

‖(Pn − Pm)fm(s, um(s), vm(s), um(s− τ), vm(s− τ))‖ ds.
(32)

Since Aβfm(s, um(s), vm(s), um(s − τ), vm(t − τ)) ∈ H , hence from inequality (30), we
have

‖(Pn − Pm)fm(s, um(s), vm(s), um(s− τ), vm(s− τ))‖

≤ ‖A−β(Pn − Pm)Aβfm(s, um(s), vm(s), um(s− τ), vm(s− τ))‖‖

≤
1

λ
β

m

‖Aβfm(s, um(s), vm(s), um(s− τ), vm(s− τ))‖

≤
1

λ
β

m

F̃R(T0),

(33)
where

F̃R(T0) = 2L̃f(R)[T θ

0 +R+ ‖h̃‖T,1 + ‖g̃‖T,α] + ‖fn(0, 0, 0, 0, 0)‖. (34)

Using the inequality (33) in the inequality (32), we get

‖(Pn−Pm)um(t)‖1 ≤ ‖(Pn−Pm)Ax0‖+(M+1){‖(Pn−Pm)x1‖+
1

λ
β

m

T (F̃R(T0), (35)

which tend to zero as m → ∞ for 0 ≤ t ≤ T . Hence from (32) and (35) we get the
required result. This completes the proof of the theorem. 2
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Theorem 4.2 If (H1)–(H2) and (H3′) are satisfied and (h(0), g(0)) ∈ D(A)×D(A)
then there exists a pair of functions (u, v) ∈ C1

T
× Cα

T
such that (un, vn) → (u, v) as

n→ ∞ in C1
T
× Cα

T
and (u, v) satisfies (6)–(7) on [−τ, T ].

Proof Theorem 4.1 implies that there exists (u, v) ∈ C1
T
× Cα

T
such that (un, vn)

converges to (u, v) in C1
T
× Cα

T
. Since (un, vn) ∈ WR for each n, (u, v) is also in WR.

Further, we have

‖fn(t, un(t), vn(t), un(t− τ)), vn(t− τ)) − f(t, u(t), v(t), u(t− τ), v(t− τ))‖

≤ ‖f(t, Pnun(t), Pnvn(t), Pnun(t− τ)), Pnvn(t− τ))

− f(t, Pnu(t), Pnv(t), Pnu(t− τ), Pnv(t− τ))‖

+ ‖f(t, Pnu(t), Pnv(t), Pnu(t− τ), Pnv(t− τ))

− f(t, u(t), v(t), u(t− τ), v(t − τ))‖.

Hence from the above inequality, we have

‖fn(t, un(t), vn(t), un(t− τ)), vn(t− τ)) − f(t, u(t), v(t), u(t− τ), v(t − τ))‖

≤ Lf (R)[‖Pnun(t) − Pnu(t)‖1 + ‖Pnvn(t) − Pnv(t)‖α

+ ‖Pnun(t− τ) − Pnu(t− τ)‖1 + ‖Pnvn(t− τ) − Pnv(t− τ)‖α

+ ‖(Pn − I)u(t)‖1 + ‖(Pn − I)v(t)‖α

+ ‖(Pn − I)u(t− τ)‖1 + ‖(Pn − I)v(t− τ)‖α]

≤ Lf (R)[‖un(t) − u(t)‖1 + ‖vn(t) − v(t)‖α

+ ‖un(t− τ) − u(t− τ)‖1 + ‖vn(t− τ) − v(t− τ)‖α

+ ‖(Pn − I)u(t)‖1 + ‖(Pn − I)v(t)‖α

+ ‖(Pn − I)u(t− τ)‖1 + ‖(Pn − I)v(t− τ)‖α].

Thus finally we get

‖fn(t, un(t), vn(t), un(t− τ)), vn(t− τ)) − f(t, u(t), v(t), u(t− τ), v(t − τ))‖

≤ 2Lf (R)[‖un − u‖T,1 + ‖vn − v‖T,α|(P
n − I)u‖T,1 + ‖(Pn − I)v‖T,α].

(36)

Hence, by using the inequality (36) and the bounded convergence theorem we can see
easily that the pair of functions (u, v) must be given by equations (6)–(7). 2

5 Faedo-Galerkin Approximations

From the previous sections we know that for any −τ ≤ T < ∞ we have a unique pair
(u, v) ∈ C1

T
× Cα

T
satisfying the integral equations (6)–(7).

Also we have a unique pair (un, vn) ∈ C1
T
×Cα

T
which is the solution of the approximate

integral equations (19)–(20).

If we project the equations (19)–(20) onto Hn, we get the Faedo-Galerkin approxi-
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mation (ûn(t), v̂n(t)) = (Pnun(t), Pnvn(t)) satisfying

ûn(t) =











Pnh(t), t ∈ [−τ, 0],

Pnh(0) − (e−tA − I)A−1Png(0) −
∫

t

0 (e−(t−s)A − I)A−1 ×

Pnfn(s, un(s), vn(s), un(s− τ), vn(s− τ)) ds, t ∈ [0, T ],

(37)

v̂n(t) =











Png(t), t ∈ [−τ, 0],

e−tAPng(0) +
∫

t

0
e−(t−s)APnfn(s, un(s), vn(s), un(s− τ), vn(s− τ)) ds, t ∈ [0, T ].

(38)

The solution (u, v) of (6)–(7) and (ûn, v̂n) of (37)–(38), have the representations

u(t) =

∞
∑

i=0

αi(t)φi, αi(t) = 〈u(t), φi〉, i = 0, 1, . . . ,

v(t) =

∞
∑

i=0

βi(t)φi, βi(t) = 〈v(t), φi〉, i = 0, 1, . . . ,

(39)

and

ûn(t) =

n
∑

i=0

αn

i
(t)φi, αn

i
(t) = 〈ûn(t), φi〉, i = 0, 1, . . . , n,

v̂n(t) =

n
∑

i=0

βn

i
(t)φi, βn

i
(t) = 〈v̂n(t), φi〉, i = 0, 1, . . . , n.

(40)

Now, we shall show the convergence of (αn

i
, βn

i
) to (αi, βi). It can be easily checked that

A[u(t) − û(t)] =

∞
∑

i=0

λi(αi(t) − αn

i
(t))φi

and

Aα[v(t) − v̂(t)] =

∞
∑

i=0

λα

i
(βi(t) − βn

i
(t))φi.

Thus, we have

‖A[u(t) − û(t)]‖2 ≥

n
∑

i=0

λ2
i
|αi(t) − αn

i
(t)|2

and

‖Aα[v(t) − v̂(t)]‖2 ≥

n
∑

i=0

λ2α

i
|βi(t) − βn

i
(t)|2.

Hence, we have the following convergence theorem.

Theorem 5.1 Let (H1), (H2) and (H3’) be satisfied and (h(0), g(0)) ∈ D(A)×D(A).
Then,

lim
n→∞

sup
−τ≤t≤T

{ n
∑

i=0

λ2
i
|αi(t) − αn

i
(t)|2 +

n
∑

i=0

λ2α

i
|βi(t) − βn

i
(t)|2

}

= 0.
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The assertion of Theorem 5.1 follows from the facts mentioned above and from the
following proposition.

Theorem 5.2 Let (H1), (H2) and (H3’) be satisfied and let T be any number such
that 0 < T <∞, and (h(0), g(0)) ∈ D(A) ×D(A). Then,

lim
m→∞

sup
{n≥m, −τ≤t≤T}

{‖A[ûn(t) − ûm(t)]‖ + ‖Aα[v̂n(t) − v̂m(t)]‖} = 0.

Proof For n ≥ m, we have

‖A(ûn(t) − ûm(t))‖ + ‖Aα(v̂n(t) − v̂m(t))‖

= ‖A(Pnun(t) − Pmum(t))‖ + ‖Aα(Pnvn(t) − Pmvm(t))‖

≤ ‖APn(un(t) − um(t))‖ + ‖A(Pn − Pm)um(t)‖

+ ‖AαPn(vn(t) − vm(t))‖ + ‖Aα(Pn − Pm)vm(t)‖

≤ ‖un(t) − um(t)‖1 + ‖vn(t) − vm(t)‖α+ ‖(Pn − Pm)um(t)‖1+
1

λϑ−α
m

‖Aβvm‖.

Hence, the result follows directly from Theorem 4.1. 2

6 Example

Let H = L2((0, 1); R). Consider the following partial delay differential equations

∂2w

∂t2
(t, x) −

∂2w

∂x2
(t, x)

= F (t, x,
∂2w

∂x2
(t, x),

∂2w

∂x∂t
(t, x),

∂2w

∂x2
(t− τ, x),

∂2w

∂x∂t
(t− τ, x)),

x ∈ (0, 1), t > 0,

w(ξ, x) = h1(ξ, x),
∂w

∂t
(ξ, x) = g1(ξ, x) for all ξ ∈ [−τ, 0], x ∈ (0, 1)

and w(t, 0) = w(t, 1) = 0, t ∈ [0, T ], 0 < T <∞,

(41)

where F is a sufficiently smooth nonlinear function, h1 and g1 are given locally Hölder
continuous functions on [−τ, 0].

We define an operator A as follows,

Au = −u′′ with u ∈ D(A) = H1
0 (0, 1). (42)

Here clearly the operator A is self-adjoint with the compact resolvent and is the infinites-
imal generator of an analytic semigroup S(t). Now we take α = 1/2, D(A1/2) is the
Banach space endowed with the norm

‖x‖1/2 = ‖A1/2x‖, x ∈ D(A1/2),

and we denote this space by H1/2.
The equation (41) can be reformulated as the following abstract equation in H :

d2u

dt2
(t) +A

(

du

dt

)

(t) = f

(

t, u(t),
du

dt
(t), u(t− τ),

du

dt
(t− τ)

)

, t > 0,

u(t) = h(t), u′(t) = g(t) for all t ∈ [−τ, 0],

(43)
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where u(t)(x) = w(t, x), h(t)(x) = h1(t, x), g(t)(x) = g1(t, x), the linear operator A is
given by equation (42) and the function f is defined from [0, T ] × D(A) × D(A1/2) ×
D(A) ×D(A1/2) into H such that

f

(

t, u(t),
du

dt
(t), u(t− τ),

du

dt
(t− τ)

)

(x)

= F

(

t, x,
∂2w

∂x2
(t, x),

∂2w

∂x∂t
(t, x),

∂2w

∂x2
(t− τ, x),

∂2w

∂x∂t
(t− τ, x)

)

.

It can be verified that the assumptions of Theorem 3.1 for (43) are satisfied and hence the
existence of a unique solution of (43) is guaranteed which in turn ensures the existence
of a unique solution to (41).
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Abstract: In this paper we give an extension of the Barbashin-Krasovskii-
LaSalle theorem to a class of time-varying dynamical systems, namely the
class of systems for which the restricted vector field to the zero-set of the time
derivative of the Liapunov function is time invariant and this set includes some
trajectories. Our goal is to improve the sufficient conditions for the case of
uniform asymptotic stability of the equilibrium. We obtain an extension of a
well-known result of linear zero-state detectability to nonlinear systems, as well
as a robust stabilizability result of nonlinear affine control systems.

Keywords: Invariance Principle; Liapunov functions; detectability; robust stabili-
zability.
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1 Introduction and Main Results

Let us consider the following time-varying dynamical system:

ẋ = f(t, x), x ∈ D, t ∈ R, (1)

where D is a domain in Rn containing the origin (0 ∈ D ⊂ Rn). About f we suppose
the following:

1) f(t, 0) = 0, for any t ∈ R;
2) uniformly continuous in t, uniformly in x ∈ D, i.e. ∀ε > 0 ∃δε > 0 such that

∀t1, t2 ∈ R, |t1 − t2| < δε and ∀x ∈ D, ‖ f(t1, x) − f(t2, x) ‖< ε;
3) uniformly local Lipschitz continuous in x for any t ∈ R, i.e. for any compact set

K ⊂ D, there exists a positive constant LK > 0 such that:

‖f(t, x) − f(t, y)‖ ≤ LK‖x − y‖ for any x, y ∈ K and t ∈ R.

∗
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4) bounded in time, that means there exists a continuous function M : D → R such
that:

‖f(t, x)‖ ≤ M(x) for any t ∈ R.

With these hypotheses we know that for any (t0, x0) ∈ R × D there exists a unique
solution of the Cauchy problem:

ẋ = f(t, x), x(t0) = x0, (2)

with the initial data (t0, x0). We denote by x(t; t0, x0) this solution. One can define
this solution for t ∈ (t0 − T, t0 + T ) where T = sup

r>0,Br(x0)⊂D

r

‖f‖
Br(x0)

, the supremum

is taken over all positive radius such that the ball centered around x0, Br(x0) = {x ∈
Rn|‖x−x0‖ < r}, is completely included in D and ‖f‖Br(x0) = sup(t,x)∈R×B̄r(x0) ‖f(t, x)‖
is a supremum norm of f with respect to Br(x0) (where is no confusion we denote
Br = Br(0)). The function γt,t0

(x0) = x(t; t0, x0) is well defined for some bounded open
set S, γt,t0

: S → U ⊂ D (with U open and bounded) and it is Lipschitz continuous
with a Lipschitz constant given by L = exp(LU |t− t0|) (LU being the Lipschitz constant
associated to f , as above, on the compact set Ū). All these results can be found in any
textbook of differential equations (for instance see [6]).

Our concern regards the stability behaviour of the equilibrium point x̄ = 0. First we
recall some definitions about stability (in Liapunov sense).

Definition 1.1 We say the equilibrium point x̄ = 0 for (1) is uniformly stable, if for
any ε > 0 there exists δε > 0 such that for any t0 ∈ R and x0 ∈ R with ‖x0‖ < δε the
solution x(t; t0, x0) is defined for all t ≥ t0 and furthermore ‖x(t; t0, x0)‖ < ε, for every
t > t0.

Definition 1.2 We say that the equilibrium point x̄ = 0 for (1) is uniformly asymp-
totic stable, if it is uniformly stable and there exists a δ > 0 such that for any t0 ∈ R

and x0 ∈ D with ‖x0‖ < δ the solution x(t; t0, x0) is defined for every t ≥ t0 and
limt→∞ x(t; t0, x0) = 0.

If in the definition of uniform stability we interchange ”there exists δε > 0” with
”for any t0 ∈ R” (thus δ will depend on ε and t0, δε,t0

) then the equilibrium is said
(just) stable. If we proceed the same in the second definition we obtain that the equi-
librium is asymptotic stable. For time-invariant systems there is no distinction between
uniform stability and stability, or uniform asymptotic stability and asymptotic stability.
In general case, the uniform (asymptotic) stability implies (asymptotic) stability, but the
converse is not true (see for instance [7]).

We say that the dynamics (1) has a positive invariant set N if for any t0 ∈ R and
x0 ∈ N the solution x(t; t0, x0) ∈ N for all t ≥ t0 for which it is well-defined. Then it
makes sense to consider the dynamics restricted to N , i.e. the function:

X : R+ × R × N → N, X(τ ; t0, x0) = x(τ + t0; t0, x0),

where τ runs up to a maximal value depending on (t0, x0). Moreover, by considering the
case of f from (1) we obtain that X(τ ; t0, 0) = 0, for any τ > 0, t0 ∈ R. Therefore we
may define the corresponding stability properties of the restricted dynamics as above,
where we replace D by N .

The main result of this paper is given by the following theorem:
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Theorem 1.1 Consider the time-varying dynamical system (1) for which f has the
properties 1) − 4). Suppose there exists a function V : D → R of class C1 such that:

H1) V (x) ≥ 0 for every x ∈ D and V (0) = 0;
H2) There exists a continuous function W : D → R such that

dV

dt
(t, x) = ∇V (x) · f(t, x) ≤ W (x) ≤ 0.

H3) Let E = {x ∈ D|W (x) = 0} denote the zero-set (or kernel) of W ; suppose that
f restricted to E is time-invariant (i.e. f(t, x) = f(t0, x), for every t ∈ R and x ∈ E).
Let us denote by N the maximal positive invariant set in E, i.e. for any x0 ∈ N and
t0 ∈ R, x(t; t0, x0) ∈ N , for every t ∈ [t0, t0 + Tx0

) in the maximal interval of definition
of the solution.

Then the dynamics (1) has at x̄ = 0 an uniformly asymptotic stable equilibrium point
if and only if the dynamics restricted to N has an asymptotic stable equilibrium at x̄ = 0.

Even if it has appeared in the literature in a more general setting (I refer to [23]), it
is worth mentioning the form the invariance principle takes in this context:

Theorem 1.2 (Invariance principle) Consider the time-varying dynamical sys-
tem (1) for which f has the properties 1)−4). Suppose there exists a function V : D → R

of class C1 such that:
H1) It is bounded below, i.e. V (x) ≥ V0 for any x ∈ D for some V0 ∈ R;
H2) There exists a continuous function W : D → R such that

dV

dt
(t, x) = ∇V (x) · f(t, x) ≤ W (x) ≤ 0.

H3) Let E = {x ∈ D|W (x) = 0} denote the zero-set (or kernel) of W ; suppose that f

resticted to E is time-invariant (i.e. f(t, x) = f(t0, x), for any t ∈ R and x ∈ E). Let us
denote by N the maximal positive invariant set included in E, i.e. for any x0 ∈ N and
t0 ∈ R, x(t; t0, x0) ∈ N , for any t ∈ [t0, t0 + Tx0

) in the maximal interval of definition of
the solution.

Then any bounded trajectory of (1) tends to N , i.e. if (t0, x0) is the initial data for a
bounded solution included in D then:

lim
t→∞

d(x(t; t0, x0), N) = 0. (3)

Remark 1.1 There are two directions in which Theorem 1.1 generalizes the well-
known Barbashin–Krasovskii–LaSalle’s theorem (see [15], [16] or [14]); firstly it requires
V to be only nonnegative and not strictly positive, secondly it applies to the case of
time-varying dynamical systems. Several extensions were presented in literature dealing
with the stability result.

The first result that I am referring to is Lemma 5 from [5]. In that lemma only
autonomous systems are considered and the restricted dynamics is required to be attrac-
tive in the sense that all trajectories should tend to the origin. I point out that only
the requirement of attractivity is not enough; this can be seen in a trivial case, namely
the 2 dimensional system given by Vinograd (conform [7]), for which the origin is an
attractive equilibrium but not stable, and take V ≡ 0. I need to point out also that, for
the purposes of their paper [5], their Lemma 5 can be replaced by Theorem 3.1 of this
paper without affecting the other results from their paper.
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A second result has appeared in [22] but not in a general and explicit form as here.
In fact in [22] the author is concerned with the stability of the large-scale systems which
are already decomposed in triangular form. Thus, this result solves the problem only
in the case when we can perform the observability decomposition of the dynamics (1)
with respect to the output W (x). This case requires a supplementary condition, namely
the codistribution span by dW, dLfW, . . . , dLn

f
W to be of constant rank on D (see [12]).

Among other requirements, this geometric condition implies also that N is a manifold,
whereas we do not assume here this rather strong assumption.

I acknowledge the existence of a recently published paper that deals with a similar
extension of the Liapunov theorem, yet only for autonomous systems ([10]). However,
we were unaware of this result at the time we were working in this field (i.e. 1993–
1995). More recently, in [11], the authors extended to time-varying systems these previous
results. It is interesting to note, based on this last paper and historical references therein,
the autonomous version of these results were first stated and proved by Boulgakov and
Kalitine in [3]. Compared to [11], here we present a stabilizability result (Theorem 4.1)
tailored specifically for affine nonlinear control systems.

Remark 1.2 Some other papers deal with extensions of the invariance principle for
nonautonomous systems. In two special cases, when the system is either asymptotically
autonomous (in [23]) or asymptotically almost periodic (in [19]), the bounded solution
tends to the largest pseudo-invariant set in E. However they use the classical Liapunov
theorems to obtain the uniform boundedness of the solutions. Thus they require the ex-
istence of a strictly positive definite function playing the rôle of Liapunov function, while
here we require only nonnegativeness of the Liapunov-like function. In other approaches
an additional auxiliary function is assumed and by means of extra conditions the time
in E is controlled (see the results of Salvadori or Matrosov, e.g. in [20]). In a third
approach an extra condition on V̇ is considered without any additional condition on the
vector field; such an approach is considered in [1].

Remark 1.3 The condition that the restricted dynamics to be uniformly asymptot-
ically stable is necessary and sufficient. Thus it is a center-manifold-type result where a
knowledge about a restricted dynamics to some invariant set implies the same property
of the whole dynamics. We point out here that the set N does not need to be a manifold.

Remark 1.4 One could expect that simple stability of the restricted dynamics would
imply uniform stability of the restricted dynamics. But this is not true as we can see
from the following example:

Example 1.1 Consider the following autonomous planar system:

{

ẋ = y2

ẏ = −y3 , (x, y) ∈ R2, (4)

The solution of the system is given by (x, y) →

(

x + ln(1 + y2t), y√
1+y2t

)

. It is obvious

that the equilibrium is not stable but if we take V = y2 we have dV

dt
= −2y4 and on the

set E = N = {(x, 0), x ∈ R} the dynamics is trivial stable ẋ = 0.

The problem is not the nonisolation of the equilibrium, but the existence of some invariant
sets in any neighborhood of the equilibrium;
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Remark 1.5 Theorem 1.2 is the natural generalization of the invariance principle
to the class of systems considered in this paper. The conclusion of this theorem applies
only to bounded trajectories. Thus we have to know apriori which solutions are bounded.
Since they are bounded we can extend them indefinitely in positive time. Thus it makes
sense to take the limit t → ∞ in (3). We mention that a more general invariance principle
can be obtained even under weaker conditions than those from here (see [23]).

The organization of the paper is the following: in the next section we give the proof
of these results. In the third section we consider the autonomous case and we present
the systemic consequences related to the nonlinear Liapunov equation and a special type
of zero-state detectability. In the fourth section we consider a nonlinear Riccati equation
(or Hamilton-Jacobi equation) and we present a result of robust stabilizability by output
feedback. The last section contains the conclusions and is followed by the bibliography.

2 Proof of the Main Results

We prove by contradiction the uniform stability of the equilibrium. For this, we construct
a C1-convergent sequence of solutions that are going away from the origin and whose limit
is a trajectory, thus contradicting the hypothesis.

For the uniform asymptotic stability, we prove first that the ω-limit set of bounded
trajectories is included in N (implicitly proving the invariance principle — Theorem
1.2) and then we adapt a classical trick (used for instance in Theorem 34.2 from [7])
that the convergence of trajectories in ω-limit set will attract the convergence of the
bounded trajectory itself. In both steps we use essentially the time-invariant property of
f restricted to E. In proving the uniform stability we also obtain that the solution can
be defined on the whole positive real set (can be completely extended in future).

Theorem 1.2 (the invariance principle) will follow simply from a lemma that we state
during the proof of uniform attractivity.

First we need a lemma.

Lemma 2.1 Let f be a vector field defined on a domain D and having the properties
1-4 as above. Let (ti)i

be a sequence of real numbers and (wi)i
, wi : [a, b] → D be

a sequence of trajectories for the time-translated vector field f with ti, i.e. ẇi(t) =
f(t + ti, wi(t)).

If the trajectories are uniformly bounded, i.e. there exists M > 0 such that ‖wi‖∞ <

M , for any i, then we can extract a subsequence, denoted also by (wi)i
, uniformly con-

vergent to a function w in C1([a, b]; D), i.e. wi → w and ẇi → ẇ both uniformly in
C0([a, b]; D).

Proof We apply the Ascoli-Arzelà lemma twice: first to extract a subsequence
such that (wi)i

is uniformly convergent and second to extract further another subsequence
such that (ẇi)i

is uniformly convergent. Then we obtain that limi
d

dt
wi = d

dt
limi wi.

1. We verify that (wi)i
are uniformly bounded and equicontinuous. The uniformly

boundedness comes from ‖wi‖∞ < M . The equicontinuity comes from the uniformly
boundedness of the first derivative. Indeed, since ‖wi‖ ≤ M , the closed ball B̄M is
compact and f(t, ·) is continuous on B̄M , there exists a constant A such that ‖f(t, x)‖ ≤
A, for any (t, x) ∈ R × B̄M . Then

‖ẇi(t)‖ = ‖f(t + ti, wi(t))‖ ≤ A, for any i and t ∈ [a, b].
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Thus (wi)i
is relatively compact and we can extract a subsequence, that we denote also

by (wi)i
, which is uniformly convergent to a function w ∈ C0([a, b]; D).

2. We prove that (ẇi)i
is relatively compact. We have already proved the uniform

boundedness ‖ẇi‖∞ ≤ A. For the equicontinuity we use both the uniform continuity in
t and uniform local Lipschitz continuity in x, of f . Let LM be the uniform Lipschitz
constant corresponding to the compact set B̄M . Then

‖ẇi(t1) − ẇi(t2)‖ = ‖f(ti + t1, wi(t1)) − f(ti + t2, wi(t2))‖ ≤

‖f(ti + t1, wi(t1)) − f(ti + t2, wi(t1))‖ + ‖f(ti + t2, wi(t1)) − f(ti + t2, wi(t2))‖.

Let ε > 0 be arbitrarily. Then we choose δ1 such that ‖f(s1, x) − f(s2, x)‖ <
ε

2 , for any |s1 − s2| < δ1 and x ∈ B̄M . On the other hand: ‖f(ti + t2, wi(t1)) − t(ti +
t2, wi(t2))‖ ≤ LM‖wi(t1)−wi(t2)‖ ≤ LMA|t1 − t2|. Then we choose δ = min(δ1,

ε

2LM A
).

Then the left-hand side from the above inequality is also bounded by ε

2 for any t1, t2 with
|t1− t2| < δ. Thus ‖ẇi(t1)− ẇi(t2)‖ < ε

2 + ε

2 = ε, for any i and t1, t2 ∈ [a, b], |t1− t2| < δ.

We can now extract a second subsequence from (wi)i
such that (ẇi)i

is also uniformly
convergent and this ends the proof of lemma. 2

Proof of uniform stability in Theorem 1.1.

Let us assume that the equilibrium is not uniformly stable. Then there exists ε0 > 0
such that for any δ, 0 < δ < ε0 there are x0, t and ∆ > 0 such that ‖x0‖ < δ and
‖x(t + ∆; t, x0)‖ = ε0, ‖x(t + τ ; t, x0)‖ < ε0, for 0 ≤ τ < ∆. We choose ε0 (eventually
by shrinking it) such that B̄ε0

∩N is included in the attraction domain of the origin (for
the restricted dynamics).

By choosing a sequence (δi)i
converging to zero we obtain sequences (x0i)i

, (ti)i
and

(∆i)i
such that: ‖x0i‖ → 0 and ‖x(ti + ∆i; ti, x0i)‖ = ε0.

Let δ < ε0 be such that for any z0 ∈ Bδ ∩ N we have
‖x(t; 0, z0)‖ < ε0

2 for any t > 0 (such a choice for δ is possible since the dynam-
ics restricted to N is stable). Let i0 be such that δi < δ, for i > i0. We denote by
(ui)i>i0

the time moments such that ‖x(ti + ui; ti, x0i)‖ = δ and ‖x(t; ti, x0i)‖ > δ for
t > ti + ui. Since the spheres S̄ε0

and S̄δ are compact we can extract a subsequence
(indexed also by i) such that both xi = x(ti + ∆i; ti, x0i) and yi = x(ti + ui; ti, x0i)
are convergent to x∗, respectively to y∗; xi → x∗, yi → y∗, ‖x∗‖ = ε0, ‖y∗‖ = δ.
Since V is continuously nonincreasing on trajectories and limi V (x0i) = 0, we get
V (x∗) = V (y∗) = 0. Therefore x∗, y∗ ∈ N .

Suppose ‖f(x, t)‖ ≤ A on B̄ε0
, for some A > 0. Then one can easily prove that

∆i − ui ≥
ε0−δ

A
= T1, for any i > i0 (i.e. the flight time between two spheres of radius δ

and ε0 has a lower bound).

Define now the time-translated vector fields fi(t, x) = f(t + ti + ui, x) and denote
by wi : [0, T1] → B̄ε0

the time-translated solutions wi(t) = x(t + ti + ui; ti, x0i). Then:
ẇi(t) = fi(t, wi(t)), 0 ≤ t ≤ T1. By applying Lemma 2.1 we get a subsequence uniformly
convergent to a trajectory w1 : [0, T1] → B̄ε0

∩N , such that w1(0) = limi wi(0) = y∗ and

‖w1(t)‖ > δ, for 0 < t ≤ T1. If ‖w1(T1)‖ < ε0 we obtain that ∆i −ui −T1 >
ε0−‖w

1(T1)‖
A

,

for some i ≥ i1 > i0. Then, we denote T2 = T1 + ε0−‖w
1(T1)‖

A
and we repeat the

scheme. We obtain another sequence which is uniformly convergent to a trajectory
w2 : [0, T2] → B̄ε0

∩N such that w2(0) = y∗, ‖w2(t)‖ > δ, 0 < t ≤ T2 and w2(t) = w1(t),
for 0 ≤ t ≤ T1.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 8(3) (2008) 255–268 261

Thus we extend each trajectory wk : [0, Tk] → B̄ε0
∩ N to a trajectory wk+1 :

[0, Tk+1] → B̄ε0
∩ N such that Tk+1 ≥ Tk, wk+1(t) = wk(t) for 0 ≤ t ≤ Tk and

‖wk+1(t)‖ > δ, for 0 < t ≤ Tk+1.

We end this sequence of extensions in two cases:

1) limk Tk = T ∗ < +∞ (the limit may be reached in a finite number of steps), in
which case we have limk ‖w

k(Tk)‖ = ε0 and thus limk wk(Tk) = x∗; or:

2) limk Tk = +∞.

In the first case we obtain a trajectory w∗ : [0, T ∗] → B̄ε0
∩ N such that w∗(0) = y∗,

w∗(T ∗) = x∗ with ‖w∗(0)‖ = δ and ‖w∗(T ∗)‖ = ε0. But this is a contradiction with the
choice of δ (and of stability of the restricted dynamics).

In the second case we obtain a trajectory w∗ : [0,∞) → B̄ε0
∩N such that ‖w∗(0)‖ =

δ < ε0 and ‖w∗(t)‖ > δ for t > 0. Thus limt→∞ w∗(t) 6= 0 contradicting the assumption
that B̄ε0

∩N is included in the attraction domain of the origin. Now the proof is complete.
2.

For the proof of uniformly attractivity we recall a few definitions and results.

Definition 2.1 A point x∗ is called ω-limit point for the trajectory x(t; t0, x0) if there
exists a sequence (tk)

k
such that limk→∞ tk = ∞, x(t; t0, x0) is defined for all t > t0 and

limk x(tk; t0, x0) = x∗. The set of all ω-limit points is called the ω-limit set and is denoted
by Ω(t0, x0). It characterizes the trajectory x(t; t0, x0) and it depends on the initial data
(t0, x0).

Theorem 2.1 (Birkoff’s limit set theorem, see [4]) A bounded trajectory ap-
proaches its ω-limit set, i.e. limt→∞ d(x(t; t0, x0), Ω(t0, x0)) = 0, where d(p, S) =
infx∈S ‖p − x‖ is the distance between the point p and the set S.

There is also a very useful result about uniformly continuous functions.

Lemma 2.2 (Barbălat’s lemma, see [2]) If g : [t0,∞) → ∞ is a uniformly con-

tinuous function such that the following limit exists and is finite, limt→∞

∫

t

t0
g(τ)dτ , then

limt→∞ g(t) = 0.

Proof of uniform attractivity in Theorem 1.1

We already know that x̄ = 0 is uniformly stable. What we have to prove is the
uniform attractivity.

Let ε0 > 0 be chosen with the following properties: for any t0 and x0 ∈ D ∩ B̄ε0

the positive trajectory x(t; t0, x0) is bounded by ε1 (i.e. x(t; t0, x0) ∈ Bε1
); for any t1

and x1 ∈ D ∩ Bε1
the trajectory x(t; t1, x1), t > t1, is bounded by some M ; and for any

x2 ∈ N ∩ Bε1
the trajectory x(t; t0, x2) tends to the origin limt→∞ x(t; t0, x2) = 0. We

are going to prove that limt→∞ x(t; t0, x0) = 0.

Let us consider the ω-limit set Ω(t0, x0). It is enough to prove that Ω(t0, x0) = {0},
because of Birkoff’s limit set theorem.

Let x∗ ∈ Ω(t0, x0) and suppose x∗ 6= 0. Let us denote by x(t) = x(t; t0, x0) and
g(t) = ∇V (x(t)) · f(t, x(t)). Since the solution is continuous and bounded, so is g(t). On
the other hand

V (x(t)) = V (x0) +

∫

t

t0

g(τ)dτ.
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Since ẋ(t) = f(t, x(t)) and x(t) is bounded we obtain that it is also uniformly contin-
uous. Thus g(t) is also uniformly continuous (recall we have assumed f(·, x) is uni-
formly continuous in t). Let (tk)

k
be a sequence that renders x∗ a ω-limit point. Then

limk V (x(tk)) = V (limk x(tk)) = V (x∗). Since V (x(t)) is a decreasing function bounded
below, there exists the limit: limt→∞ V (x(t)) = V (x∗). Now, applying Barbălat’s lemma
we obtain limt→∞ g(t) = 0 or W (x∗) = 0. Thus Ω(t0, x0) ⊂ E, the kernel of W .

In this point we need a result about the behaviour of solutions starting at x∗. We
mention that the following lemma is a consequence of Theorem 3 from [23]. But, since
we are under stronger conditions, we have found a simpler proof that we are going to
present here (our conditions are stronger because we need to obtain uniform stability
and consequently boundedness of the solutions when Liapunov function is only positive
semidefinite, which overall means a weaker condition).

Lemma 2.3 The positive trajectory starting at x∗ is included in E and thus the
Ω-limit set is a positive invariant set included in N .

Proof Let τ > 0 be an arbitrary time interval. Let (tk)k be the sequence that
renders x∗ a ω-limit point for the trajectory x(t) = x(t; t0, x0). Then, if we denote by
xk = x(tk) we have limk xk = x∗. Consider the following sequence of functions: wk :
[0, τ ] → D, wk(t) = x(t + tk; tk, x∗). We have chosen x0, t0 such that all these functions
are bounded by M , i.e. ‖wk‖∞ < M . We have wk(0) = x∗ and V (wk(t)) ≤ V (x∗). Let
us denote by yt

k
= x(t+ tk), for any 0 ≤ t ≤ τ , and let LM be the Lipschitz constant of f

on the compact B̄M . Then: ‖yt

k
−wk(t)‖ ≤ eLmt‖xk−x∗‖ and, since limk xk = x∗ we get

limk ‖y
t

k
−wk(t)‖ = 0. On a hand, since V (x∗) = limt→∞ V (x(t)) and V is nonincreasing

on trajectories we have V (yt

k
) > V (x∗) and also limk V (yt

k
) = V (x∗) = limk V (wk(t)). On

the other hand, since (wk)k are uniformly bounded we apply Lemma 2.1 and we obtain
a subsequence uniformly convergent to a function w ∈ C1([0, τ ]; D ∪ B̄M ). Obviously
V (w(t)) = V (x∗) for any 0 ≤ t ≤ τ . Thus W (w(t)) = 0 and w(t) ∈ E. On the other
hand, since f is continuous in (t, x) we obtain that w is an integral curve of f , i.e.
ẇ(t) = f(t∗, w(t)), for 0 ≤ t ≤ τ and any t∗. In particular, for t∗ = tk we get w(t) is
a solution of the same equation as wk(t) and w(0) = wk(0) = x∗. By the uniqueness of
the solution they must coincide. Then x(t + tk; tk, x∗) ∈ E for 0 ≤ t ≤ τ . But τ was
arbitrarily; thus x(t; t0, x

∗) ∈ E for any t and then x∗ ∈ N . 2

Since the trajectory starting at x∗ is included in N , it should converge to the origin

(the equilibrium point). Let us denote by ε = ‖x
∗

‖

2 . From uniform stability there exists
a δ > 0 such that for any x̃ ∈ D, ‖x̃‖ < δ implies ‖x(t2; t1, x̃)‖ < ε, for any t2 > t1.
Let ∆t be a time interval such that ‖x(t; 0, x∗)‖ < δ

2 for any t > ∆t. We consider the

compact set C, the δ

2 -neighborhood of the compact curve Γ = {x(t; 0, x∗)|0 ≤ t ≤ ∆t}:

C = {x ∈ D|d(x, Γ) ≤
δ

2
} =

⋃

t∈[0,∆t]

¯Bδ/2(x(t; 0, x∗))

which is the union of the closed balls centered at x(t; 0, x∗) and of radius δ

2 . We set

δ1 = δ

2exp(−LC∆t) where LC is the uniform Lipschitz constant of f on the compact
set C. Since the solution is uniformly Lipschitz with respect to the initial point x0 we
have that for any t1 ∈ R and x1 such that ‖x1 − x∗‖ < δ1 we get: ‖x(t1 + ∆t; t1, x1) −
x(∆t; 0, x∗)‖ < δ

2 and then ‖x(t1 + ∆t; t1, x1)‖ < δ. Furthermore, from the choice of δ

we obtain that ‖x(t1 + τ ; t1, x1)‖ < ε, for any τ > ∆t or ‖x(t1 + τ ; t1, x1) − x∗‖ > ε, for
any τ > ∆t.
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Now we pick a tn such that ‖x(tn; t0, x0) − x∗‖ < δ1. Then, from the previous
discussion ‖x(tn + τ ; t0, x0) − x∗‖ > ε, for any τ > ∆t which contradicts the limit
limk x(tk; t0, x0) = x∗. This contradiction comes from the hypothesis that x∗ 6= 0. Thus
Ω(t0, x0) = {0} and now the proof is complete. 2

Proof of Theorem 1.2 (The invariance principle)

If x(t; t0, x0) is a bounded trajectory then, from Birkoff’s limit set theorem it ap-
proaches its ω-limit set. On the one hand we can use Barbălat’s lemma and prove that
W vanishes on ω-limit set of bounded trajectories. On the other hand, as we have
proved in Lemma 2.3, the ω-limit set is invariant and included in N . Thus the bounded
trajectory approaches the set N . 2

3 The Autonomous Case: Consequences in Nonlinear Control Theory

Consider the following inputless nonlinear control system:

S

{

ẋ = f(x)
y = h(x)

, x ∈ D ⊂ Rn, y ∈ Rp, (5)

such that f(0) = 0, h(0) = 0 and D a neighborhood of the origin. Suppose f is local
Lipschitz continuous and h continuous on D. Then denote by x(t, x0) the flow generated
by f on D (i.e. the solution of ẋ = f(x), x(0) = x0), by E = ker h = {x ∈ D|h(x) = 0},
the kernel of h and by N the maximal positive invariant set included in E, i.e. the set
N = {x̃ ∈ D|h(x(t, x̃)) = 0 for any t ≥ 0 such that x(t, x̃) has sense}.

We present two concepts of detectability for (5). The first one has been used by many
authors (see for instance [13]).

Definition 3.1 The pair (h, f) is called zero-state detectable (or z.s.d.) if x̄ = 0 is
an attractive point for the dynamics restricted to N , i.e. there exists an ε0 > 0 such that
for any x0 ∈ N , ‖x0‖ < ε0, limt→∞ x(t, x0) = 0.

Definition 3.2 The pair (h, f) is called strong zero-state detectable (or strong z.s.d.)
if x̄ = 0 is an asymptotical stable equilibrium point for the dynamics restricted to N ,
i.e. it is zero-state detectable and for some ε0 and for any x0 ∈ N with ‖x0‖ < ε0,
limt→∞ x(t, x0) = 0.

We see that strong z.s.d. implies z.s.d., but obviously the converse is not true.
In this framework, as a consequence of the main result we can state the following

theorem.

Theorem 3.1 For the inputless nonlinear control system (5) with f local Lipschitz
continuous and h continuous, consider the following nonlinear Liapunov equation:

∇V · f + ‖h‖q = 0 (6)

or the following nonlinear Liapunov inequality:

∇V · f + ‖h‖q ≤ 0 (7)

for some q > 0. Suppose there exists a positive semidefinite solution of (6) or (7) of class
C1 defined on D such that V (0) = 0.

Then the pair (h, f) is strong zero-state detectable if and only if x̄ = 0 is an asymp-
toticaly stable equilibrium for the dynamics (5).
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Below we give an example.

Example 3.1 Consider the dynamics:

ẋ1 = −x3
1 + Ψ(x2)

ẋ2 = −x3
2

, (x1, x2) ∈ R2, (8)

where Ψ : R → R is local Lipschitz continuous, Ψ(0) = 0 and there exist constants a > 0,
b ≥ 1 such that:

|Ψ(x)| ≤ a|x|b, ∀x2.

If we choose as output function h(x) = x2
2 we see that the pair (h, f) is strong zero-state

detectable; indeed, the set E = {x ∈ R2|h(x) = 0} = {(x1, 0)|x1 ∈ R} and the dynamics
restricted to E is ẋ1 = −x3

1 which is asymptotically stable.

Now, if we choose V (x) =
x
2

2

2 we have V̇ = −x4
2 and thus V is a solution of the

Liapunov equation (6) with q = 2. Then, the equilibrium is asymptotically stable, as a
consequence of the Theorem 3.1.

On the other hand we can explicitely solve for x2: x2(t) = x20√
2(1+x

2

20
t)

and then we

have: |Ψ(x2(t))| ≤ C(1 + Bt)−1/2 for some B, C > 0 and any t ≥ 0. Now the asymptotic
stability follows as a consequence of Theorem 68.2 from [7] (stability under perturbation).

4 An Application to Robust Stabilizability

We present here, as an application, a robust stabilizability result for a nonlinear affine
control system. In fact it is an absolute stability result about a particular situation. More
general results about absolute stability for nonlinear affine control system will appear in
a forthcoming paper. We base our approach on the existence of a positive semidefinite
solution of some Hamilton-Jacobi equation or inequality. Discussions about solutions of
this type of equation may be found in [21].

Consider the following single input–single output control system:
{

ẋ = f(x) + g(x)u
y = h(x)

, x ∈ D ⊂ Rn, u, y ∈ R, (9)

where f and g are local Lipschitz continuous vector fields on a domain D including the
origin, h is a local Lipschitz real-valued function on D, and f(0) = 0, h(0) = 0. Consider
also a local Lipschitz output feedback:

ϕ : R → R, ϕ(0) = 0. (10)

We define now two classes of perturbations associated to this feedback. Let a > 0 be a
positive real number. The first class contains time-invariant perturbations:

P1 = {p : R → R , p is local Lipschitz, p(0) = 0 and |p(y)| < a|ϕ(y)| , ∀y 6= 0}

while the second class is composed by time-varying perturbations:

P2 = {p : R×R → R , p(y, t) is local Lipschitz in y for t fixed and uniformly continuous in t

for any y fixed , p(0, t) ≡ 0 and there exists ε > 0 such that |p(y, t)| < (a−ε)|ϕ(y)| , ∀y 6= 0, t}

Now we can define more precisely the concept of robust stability.
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Definition 4.1 We say the feedback (10) robustly stabilizes the system (9) with re-
spect to the class P1 ∪ P2 if for any perturbation p ∈ P1 ∪ P2 the closed-loop with the
perturbed feedback ϕ + p has an asymptotically stable equilibrium at the origin.

In other words, we require that the origin to be asymptotically stable for the dynamics:

ẋ = f(x) + g(x)(ϕ(h(x)) + p(h(x), t)) (11)

for any p ∈ P1 ∪ P2. Since the null function belongs to P1, the feedback ϕ itself must
stabilize the closed-loop too.

With these preparations we can state the result.

Theorem 4.1 Consider the nonlinear affine control system (9) and the feedback (10).
Suppose the pair (h, f) is strong zero-state detectable and suppose the following Hamilton-
Jacobi equation:

∇V · f + (
1

2
∇V · g + ϕ ◦ h)2 − (1 − a2)(ϕ ◦ h)2 = 0, V (0) = 0 (12)

or inequality:

∇V · f + (
1

2
∇V · g + ϕ ◦ h)2 − (1 − a2)(ϕ ◦ h)2 ≤ 0, V (0) = 0 (13)

has a positive semidefinite solution V of class C1 on D.
Then the feedback ϕ robustly stabilizes the system (9) with respect to the class P1∪P2.

Proof Let us consider a perturbation p ∈ P1∪P2. Then, the closed-loop dynamics
is given by (11). We compute the time derivative of the solution V of (12) with respect
to this dynamics:

dV

dt
= ∇V · f(x) + ∇V · g(x)(ϕ(h(x)) + p(h(x), t)).

After a few algebraic manipulations we get:

dV

dt
≤ −(

1

2
∇V · g − p ◦ h)2 + (p ◦ h)2 − a2(ϕ ◦ h)2.

Now, for p ∈ P1,
dV

dt
is time-independent and we may take for instance:

W (x) = (p(h(x)))2 − a2(ϕ(h(x)))2 ≤ 0.

For p ∈ P2,
dV

dt
is time-dependent and we define:

W (x) = −(2aε− ε2)(ϕ(h(x)))2 ≤ 0.

Either a case or the other, we obtain (recall the definitions of P1 and P2):

dV

dt
≤ W (x) ≤ 0.

The kernel-set of W is given by:

E = {x ∈ D| W (x) = 0} = {x ∈ D| h(x) = 0}.



266 R. BALAN

We see that the closed-loop dynamics (11) restricted to E is simply given by ẋ = f(x)
and is time-independent. Moreover, since we have supposed (h, f) is strong zero-state
detectable, it follows that the restricted dynamics to the maximal positive invariant set
in E has an asymptotically stable equilibrium at the origin. Now, applying Theorem 1.1,
the result follows. 2

Let us consider now an example.

Example 4.1 Consider the following planar nonlinear control system:







ẋ1 = −x3
1 + u,

ẋ2 = −x3
2,

y = x3
2.

(14)

We are interested to find how robust the feedback ϕ(y) = y is, i.e. how large we can
choose a such that ϕ robustly stabilizes the system (14) with respect to the class P1∪P2.

The Hamilton-Jacobi equation (12) takes the form:

−x3
1

∂V

∂x1
− x3

2

∂V

∂x2
+ (

1

2

∂V

∂x1
+ x3

2)
2 − (1 − a2)x6

2 = 0

or:

−x3
1

∂V

∂x1
− x3

2

∂V

∂x2
+

1

4
(
∂V

∂x1
)2 + x2

∂V

∂x1
+ a2x6

2 = 0.

A solution of this equation is:

V (x1, x2) =
a2

4
x4

2.

For any a > 0 it is positive semidefinite and the system (14) is strong zero-state de-
tectable. Thus, as a consequence of Theorem 4.1, we can choose a arbitrary large such
that ϕ robustly stabilizes the system (14) with respect to the class P1 ∪ P2.

On the other hand, for any feedback Φ, local Lipschitz and:

|Φ(y)| ≤ a|y| for some a > 0,

we have seen in the previous example that the closed-loop has an asymptotically stable
equilibrium at the origin.

5 Conclusions

In this paper we study an extension of Barbashin-Krasovskii-LaSalle and Invariance
Principle to a class of time-varying dynamical systems. We impose two type of conditions
on the vector field: one is regularity (we require uniformly continuity with respect to t

and uniformly local Lipschitz continuoity and boundedness with respect to x); the other
condition requires the vector field to be time-invariant on the zero-set E of an auxiliary
function. In this setting we find that the asymptotic behaviour of the dynamics restricted
to the largest positive invariant set in E determines the asymptotic stability character
of the full dynamics.

Then we study two applications in control theory. The first application concerns
the notion of detectability. We give another definition for this notion, called strong zero-
state detectability and we show how the existence of a positive semidefinite solution of the
Liapunov equation or inequation is related to the asymptotic stability of the equilibrium.
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We obtain a nonlinear equivalent of the linear well-known result: if the pair (C, A) is
detectable and there exists a positive solution P ≥ 0 of the Liapunov algebraic equation
AT P + PA + CT C = 0, then the matrix A has all eigenvalues with negative real part.

The second application is on the problem of robust stabilizability. We give sufficient
conditions such that a given feedback robustly stabilizes the closed-loop with respect
to two sector classes of perturbations (time-invariant and time-varying). The condition
is formulated in term of the existence of a positive solution of some Hamilton-Jacobi
equation or inequality.

Interesting open questions are to find extensions of the results presented here to the
class of switched linear systems (see [8] for an excellent starting point), and to the class
of large scale systems (see [18] for a novel approach).
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[3] Boulgakov, N.G. and Kalitine, B. La généralisation de la deuxieme methode de Liapunov.
I. Theory. Izvestiya Akademii Nauk BSSR (3) (1978) 32–36. [Russian]
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Abstract: The paper discusses a direct torque control (DTC) strategy based
on a fuzzy logic for double star synchronous machine (DSSM). The DSSM
is built with two symmetrical 3-phase armature winding systems, electrically
shifted by 30. A suitable transformation matrix is used to develop a simple
dynamic model in view of control. The analysis of the torque in the stator
flux linkage reference frame shows that the concept of DTC can be applied in
DSSM. A set of voltage vectors corresponding to the switching mode are chosen
to offer a maximum voltage and keep the harmonics at a minimum. Further,
a switching table specific for DSSM is proposed. Simulations results are given
to show the effectiveness and the robustness of our approach.

Keywords: Double star synchronous machine (DSSM); direct torque control (DTC);
fuzzy control; robustness; resistance stator estimator.
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1 Introduction

AC machines with variable speed drives are widely employed in high power applications.
In addition to the multilevel inverter fed electric machine drive systems ([4, 5]), one
approach in achieving high power with rating limited power electronic devices is the
multiphase inverter system. In a multiphase inverter fed machine, the windings of more
than three phases are connected in the same stator of the machine, consequently the
current per phase in machine is reduced [7, 19].

∗
Corresponding author: mohamed.djemai@ensea.fr

c© 2008 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 269



270 D. BOUDANA, L. NEZLI, A. TLEMÇANI, M.O. MAHMOUDI AND M. DJEMÄI

Multiphase machine possess several advantages over conventional three phase machi-
ne. These include increasing the inverter output power, reducing the amplitude of torque
ripple and lowering the dc link current harmonics. Multiphase drive system improves
the reliability, the motor can start and run since the loss of one or many phase [9].
For high power, the use of the synchronous machine specially finds its application in
the motorisation at variable speed of the embedded systems [16]. But when they are
supplied by thyristor current source inverter, torque ripples of high amplitude appear
[23, 15]. Increasing the number of triple armature windings, witch is supplied in relation
to each other one, lowers the rate of the torque ripples. Especially, the first harmonic of
double star synchronous machine is twelve times the operating frequency of the machine
[22].

During the last years, the modeling and control of double star synchronous machine
has been the subject of investigations [20, 17, 21, 18, 1]. However the difficulty to
control the DSSM supplied by two voltage source inverters (VSIs) is related to the fact
that the model in Park frame is high order, multivariable and non linear. In [20] a
monovariable approach in view of control of DSSM is proposed. This approach needs
precise information about the parameters and rotor position of DSSM. A vector control
method has been proposed to achieve a decoupling of rotor flux linkage and torque of
DSSM in [16]. The proposed scheme used a rotor position and the torque was controlled
via a stator current. One possible alternative to the vector control is the use of direct
torque control strategies with several advantages based on possible control directly the
stator flux linkage and the torque by selecting appropriate switching voltage vectors of
the inverter. The method has been developed for electrical machines and first applied to
induction motor drives and now, due to the availability of high-performance DSP process
has resulted in the wide application of this technique in AC motor drives. The principle
of a DTC consists to select stator voltage vectors according to the differences between the
references of stator flux linkage and torque and their actual values. The DTC technique
possesses advantages such as less parameter dependency, fast torque response and simple
control scheme.

In this paper, we develop a DTC strategy based on a fuzzy logic ([6]) for double star
synchronous machine to increase the system performances. A suitable transformation
matrix is used to develop a simple dynamic model in view of control. A space vector
decomposition control of VSIs fed DSSM is elaborated and DTC strategy is applied to
get decoupled control of the flux and torque. In order to improve the static and dynamic
control performance of the DSSM, the hysteresis controllers used in conventional DTC
is replaced by a fuzzy controller. The main limitation of the DTC is the use the stator
resistance for the estimation of stator flux. The variation of the stator resistance due to
the temperature and frequency degrades the DTC controller performance especially at
low speed. The DTC controller at low speed can be more reliable if the stator resistance
is estimated on line and use it in the stator flux estimation algorithm. Several control
schemes have been proposed to overcome this problem [8, 10, 14, 11]. To estimate the
stator resistance we use a stator current error with PI estimator. The advantages of the
proposed control system are shown by simulation involving 5kw DSSM.

2 Formulation Problem

The decoupled control scheme for double star synchronous machine supplied by two
inverters is shown in Figure 2.1. The decoupled control bloc is based on DTC control
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Figure 2.1: Decoupled control scheme for DSSM.

witch control the stator flux linkage and the torque directly, not via controlling the stator
current.

2.1 Machine model

The studied system is a DSSM supplied by two VSIs (Figure 2.2). The DSSM is built
with two symmetrical 3-phase armature winding systems, electrically shifted by 30◦ and
its rotor is excited by constant current source (Figure 2.3).

In order to obtain a model of double star synchronous machine, we adopt the usual
assumptions i.e.: the MMF in air-gap have a sinusoidal repartition and the saturation of
the iron in machine is neglected [20, 1]. The stator voltage equation for six-phase can be
written as:

[vs] = [Rs] [is] +
d

dt
([Lss] [is] + [Msr] if ) (1)

with
[vs] = [va1 va2 vb1 vb2 vc1 vc2]

T
, [is] = [ia1 ia2 ib1 ib2 ic1 ic2]

T
.

The original six dimensional system of the machine can be decomposed into three
orthogonal subspaces (α, β), (Z1, Z2) and (Z3, Z4) [1, 24]:

[Fα Fβ FZ1 FZ2 FZ3 FZ4]
T

= [Ts] [Fs] , (2)

where Fs can be voltage, courant or flux,
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Figure 2.2: Electrical drive system.
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From (1) and (2) the dynamic model describing the machine in α, β, Z1, Z2, Z3, Z4

vector space can be given by

















vα

vβ

vZ1

vZ2

vZ3

vZ4

















= Rs

















iα
iβ
iZ1

iZ2

iZ3

iZ4

















+
d

dt

















lfs + 3Mss 0 0 0 0 0
0 lfs + 3Mss 0 0 0 0
0 0 lfs 0 0 0
0 0 0 lfs 0 0
0 0 0 0 lfs 0
0 0 0 0 0 lfs

































iα
iβ
iZ1

iZ2

iZ3

iZ4

















+Msfm

d

dt

















3 cos (2θ) 3 sin (2θ) 0 0 0 0
3 sin (2θ) −3 cos (2θ) 0 0 0 0

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

































iα
iβ
iZ1

iZ2

iZ3

iZ4

















+
√

3Msf

d

dt

















cos (θ)
sin (θ)

0
0
0
0

















if .

It is observed from the above equations that all the electromechanical energy conver-
sion related variable components are mapped into the α-β plane and the non electrome-
chanical energy conversion related variable components are transformed to the Z1, Z2

and Z3, Z4 planes. Hence, the dynamic equations of the machine are totally decoupled.
To express the stator and rotor equations in the same stationary reference frame, the
following rotation transformation is appropriate

[P ] =

[

cos (θ) − sin (θ)
sin (θ) cos (θ)

]

.

With this transformation, the components of the α-β plane can be expressed in the d-q
plan as

[

vd

vq

]

=

[

Rs + pLd −ωLq

ωLd Rs + pLq

] [

id
iq

]

+ Mdω

[

0
1

if

]

.

The electromagnetic torque of DSSM is expressed as

Te = P (ϕdiq − ϕqid)

with ϕd = Ldid + Mfd if ; ϕq = Lqiq; Ld = lsf + 3Mss + 3Msfm; Lq = lsf + 3Mss −
3Msfm; Md =

√
3Msf .

By applying the following rotation transformation, witch transforms variable in the
rotor flux reference frame (d − q) to the stator flux reference frame x − y (Figure 2.4):

[

cos (δ) − sin (δ)
sin (δ) cos (δ)

]

.

The stator flux linkage and electromagnetic torque equations in x− y reference frame
are as follows [26]:

[

ϕx

ϕy

]

=

[

Ld cos2 δ + Lq sin2 δ −Ld cos δ sin δ + Lq sin δ cos δ

−Ld cos δ sin δ + Lq sin δ cos δ Ld sin2 δ + Lq cos2 δ

] [

ix
iy

]

+Md

[

cos δ

sin δ

]

, (4)
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Te = P |ϕs| iy.

The torque equation in terms of the stator flux linkage and load angle can be obtained
by solving for iy from the system equation (4) with ϕy = 0 and ϕx = ϕs, since the stator
flux is along the x-axis [26]:

iy =
1

2LdLq

[2Mdif Lq sin δ − |ϕs| (Lq − Ld) sin 2δ] .

The torque equation is as follows:

Te =
P |ϕs|

2LdLq

[2Mdif Lq sin δ − |ϕs| (Lq − Ld) sin 2δ] . (5)

2.2 Modeling of the inverters

The DSSM is supplied by two VSIs. Each inverter can be controlled independently.
However if we consider the two inverters as a six-phase voltage source inverter we obtain
a total of 64 switching modes. By using the transformation matrix (3) the 64 voltage
vectors corresponding to the switching modes are projected on three planes. From 64
vectors there are only 12 voltage vectors that offer a maximum voltage on the α-β plane
and keep the harmonics on the Z1, Z2 plane at a minimum [24, 13].

The chosen switching modes are indicated in Table 2.1. The primary volt-
age va1, vb1, vc1, va2, vb2 and vc2 are determined by the status of the six switches
Sa1, Sb1, Sc1, Sa2, Sb2, Sc2. The non-zero voltage vectors are 30◦ a part from each other
as in Figure 2.5.

U [Sa1Sb1Sc1Sa2Sb2Sc2] [va1vb1vc1va2vb2vc2].3/Uc [vα vβ ].1/Uc

u1[1 0 0 1 0 0] [2 -1 -1 2 -1 -1] [1.077 0.288]
u2[1 1 0 1 0 0] [1 1 -2 2 -1 -1] [0.7887 0.7887]
u3[1 1 0 1 1 0] [1 1 -2 1 1 -2] [0.2887 1.0774]
u4[0 1 0 1 1 0] [-1 2 -1 1 1 -2] [-0.288 1.077]
u5[0 1 0 0 1 0] [-1 2 -1 -1 2 -1] [-0.788 0.288]
u6[0 1 1 0 1 0] [-2 1 1 -1 2 -1] [-1.077 0.2887]
u7[0 1 1 0 1 1] [-2 1 1 -2 1 1] [-1.077 -0.288]
u8[0 0 1 0 1 1] [-1 -1 2 -2 1 1] [-0.788 -0.788]
u9[0 0 1 0 0 1] [-1 -1 2 -1 -1 2] [-0.288 -1.077]
u10[1 0 1 0 0 1] [1 -2 1 -1 -1 2] [0.288 -1.077]
u11[1 0 1 1 0 1] [1 -2 1 1 -2 1] [0.788 -0.788]
u12[1 0 0 1 0 1] [2 -1 -1 1 -2 1] [1.077 -0.288]

Table 2.1: Chosen switching mode and primary voltage.

3 Direct Torque Control of DSSM

The main goal of DTC is to control the stator flux linkage and the torque directly, not
via controlling the stator current. The change of torque can be controlled by keeping the
amplitude of the stator flux linkage and by controlling the rotating speed of the stator
flux linkage as fast as possible according to the equation (5).
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Figure 3.1: The control of stator flux linkage.

The stator flux linkage vector of DSSM in stationary reference frame is as follows:

ϕs (t) =

∫

t

0

(vs − Rsis) dt + ϕs (0) . (6)

During the switching interval [0 T], vs is constant and equation (6) became:

ϕs (T ) = vsT − Rs

∫

T

0

isdt + ϕs (0) .

It can be seen from the formula that the end of stator flux linkage vector ϕs will move
along the direction of voltage vector applied if the stator resistance is neglected as shown
in Figure 3.1.

The basic principle of the DTC is to select proper voltage vectors using a pre-defined
switching table. The selection is based on the hysteresis control of the stator flux linkage
and the torque [25, 3]. For example, in region Θ1, as shown in Figure 2.5, selection of
vectors u2, u3 increases the amplitude of the stator flux linkage and increases torque.
The selection of vectors u4, u5, u6 decreases the amplitude of the stator flux linkage and
increases torque. The selection of vectors u8, u9 decreases the amplitude of the stator
flux linkage and decreases torque. The selection of vectors u10, u11, u12 increases the
amplitude of the stator flux linkage and decreases torque. We have ten voltage vectors to
control the amplitude of the stator flux linkage and torque, but with hysteresis controller
we need only four voltage vectors to control the amplitude of the stator flux linkage and
torque. The voltage vector plane is divided into twelve sectors so that each voltage vector
divides each region into two equal parts as shown in Figure 2.5. In each sector, four of the
twelve voltage vectors may be used. All possibilities can be tabulated into a switching
table. The switching table used in this work is indicated in Table 3.1. The output of the
flux hysteresis comparator is denoted as Φ, the output of the torque hysteresis comparator
is denoted as τ . The flux hysteresis comparator is a two valued comparator. Φ=1 means
that the actual value of the amplitude of the flux linkage is below the reference value and
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Φ τ \ Θ Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 Θ7 Θ8 Θ9 Θ10 Θ11 Θ12

Φ = 1 τ = 1 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u1 u2

Φ = 1 τ = 0 u11 u12 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

Φ = 0 τ = 1 u5 u6 u7 u8 u9 u10 u11 u12 u1 u2 u3 u4

Φ = 0 τ = 0 u9 u10 u11 u12 u1 u2 u3 u4 u5 u6 u7 u8

Table 3.1: The switching states for inverters.
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Figure 3.2: Direct torque control scheme for DSSM.

Φ=0 means that the actual value is above the reference value. The same is true for the
torque. Θi denote the region numbers for the stator linkage positions.

The used control system is depicted in Figure 3.2, ET and Eϕ are the torque and the
flux errors.

The stator flux linkage and the torque are estimated with

ϕα (t) =

∫

t

0

(vα − Rsiα) dt + ϕα (0) , ϕβ (t) =

∫

t

0

(vβ − Rsiβ) dt + ϕβ (0) ,

|ϕs| =
√

ϕ2
α

+ ϕ2
β
, tgθs =

ϕβ (t)

ϕα (t)
, Te = P (ϕαiβ − ϕβiα) .

The simulation results in Figure 3.3 show that basic DTC regulates the torque and
stator flux well. We can see that, this control approach ensure good decoupling between
stator flux linkage and torque. However, in this approach we have used only four voltage
vectors to control flux and torque. In order to improve the performance of DSSM, we
propose a DTC based on fuzzy logic to control flux and torque. In the proposed approach
we used ten voltage vectors to control flux and torque.

4 The Proposed DTC Based on Fuzzy Logic for DSSM

In DTC scheme proposed in Section 3 a hysteresis controller is used. The output of
hysteresis controller has only two states, which naturally leads to tacking the same action
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Figure 3.3: Performance of conventional DSSM DTC.
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Figure 4.1: Direct torque control scheme based on fuzzy control for DSSM.

for the big torque error and small one. As consequence, a poor performances in response
to step changes and large torque ripple. To improve the performances of DSSM, a DTC
method based on a fuzzy control is used. The hysteresis controller is replaced by two
input fuzzy controller and the vector output of the fuzzy controller is led to a switching
table to decide which vector should be applied. This method has the advantage of
fuzzy classification and has the advantage of simplicity and easy to implement [12]. The
diagram of DTC incorporated with a fuzzy logic controller is shown in Figure 4.1. S
denotes the vector output of the fuzzy controller.

4.1 Fuzzy controller

The fuzzy logic controller is comprised of fuzzification part, fuzzy inference part and
defuzzification part.

A. Fuzzification.
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Figure 4.2: Membership function of fuzzy control.

The fuzzification is the process of a mapping from measured or estimated input to
corresponding fuzzy set in the universe of discourse. As shown in Figure 4.1 there are
two inputs Eϕ and ET . The member ship functions of the two fuzzy input variables
are shown in Figure 4.2. The output variable can be classified into ten types, which are
fuzzified as ten singleton fuzzy sets.

B. Fuzzy inference.

The fuzzy reasoning used is Mamdani’s method. The fuzzy control rule-base is shown
in Table 4.1.

ET �Eϕs P Z N
PB 1 2 3
PS 4 2 5
NZ - - -
NS 6 7 8
NB 9 7 10

Table 4.1: Fuzzy rule-bases.

Where 1,2,...,10 denote the specified states of the vector output of the fuzzy controller.
Note that the above strategy was used in [12] for synchronous machine with four states
of the vector output of the fuzzy controller.

C. Defuzzification.
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The maximum criterion method is used for defuzzification. By this method, the value
of fuzzy output which has the maximum possibility distribution is used as control output.

4.2 Selection of voltage vectors

The voltage vector, for controlling both the amplitude and rotating direction of ϕs, are
indicated in Table 4.2.

S�Θ Θ1 Θ2 Θ3 Θ4 Θ5 Θ6 Θ7 Θ8 Θ9 Θ10 Θ11 Θ12

S = 1 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u1 u2

S = 2 u4 u5 u6 u7 u8 u9 u10 u11 u12 u1 u2 u3

S = 3 u5 u6 u7 u8 u9 u10 u11 u12 u1 u2 u3 u4

S = 4 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u1

S = 5 u6 u7 u8 u9 u10 u11 u12 u1 u2 u3 u4 u5

S = 6 u12 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11

S = 7 u10 u11 u12 u1 u2 u3 u4 u5 u6 u7 u8 u9

S = 8 u8 u10 u11 u12 u1 u2 u3 u4 u5 u6 u7 u8

S = 9 u11 u12 u1 u2 u3 u4 u5 u6 u7 u8 u9 u10

S = 10 u9 u10 u11 u12 u1 u2 u3 u4 u5 u6 u7 u8

Table 4.2: The switching states for inverters.

5 Comparative Study

In this section, we aim to compare the DTC based on fuzzy logic for DSSM to the
conventional DTC for DSSM. We consider two situations:

Situation 1: Step change in torque. For the DTC based on fuzzy logic for DSSM
we have simulated a step variation on the torque applied at t=0.2 ms. The obtained
results are given in Figure 5.2, for the conventional DTC, see Figure 3.3. We can see
that, both control approaches ensure good decoupling between stator flux linkage and
torque. However the DTC based on fuzzy logic for DSSM decrease considerably the
torque ripple and have faster torque response.

Situation 2: Stator resistance variation. For both DTC control schemes we have
simulated variation on stator resistance as shown in Figure 5.5. The obtained results,
shown in Figures 5.3 and 5.4, shows that the torque and flux are oscillating when stator
resistance is increased. Thus incorrect resistance stator can causing instability. Several
control scheme have been proposed to overcome this problem [8, 10, 14, 11]. The stator
resistance estimator used in this paper is shown in Figure 5.1. The error in the stator
current is used as an input to the PI estimator. The output of the PI estimator is
continuously added to the previously estimated stator resistance.

îs the estimated stator current Figures 5.5, 5.6 and 5.7 shows the actual and estimated
stator resistance and their error. We can see that the estimation error is approximately
0.02 % . In Figures 5.8 and 5.9 we have inserted the estimated stator resistance in control
scheme. The obtained results are very satisfactory.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 8(3) (2008) 269–286 281
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DRs

sî
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Figure 5.1: Block diagram of the stator resistance estimator.

Torque ripple Response time Stator resistance
variation

DTC based on fuzzy logic 0.4 % 4.5 ms Unstable
Conventional DTC 2.4 % 10 ms Unstable

Table 5.1: Comparative study between DTC based on fuzzy logic and conventional
DTC for DSSM.

Table 5.1 summarizes the results of the comparative study. From the above table we
can conclude that for the DSSM, the DTC based on fuzzy logic is more advantageous
than the conventional DTC.

6 Conclusion

In this paper, we have developed a DTC for DSSM. First we have developed a conven-
tional DTC for DSSM. In this approach we have used only four vectors voltage to control
both torque and stator flux linkage. Secondly, in order to improve the performance of
DSSM we have used ten vectors voltage to control torque and stator flux linkage. The
proposed approach consist to replace the hysteresis controllers by two input fuzzy con-
troller and the vector output of the fuzzy controller is led to a switching table to decide
which vector should be applied. Thirdly, a comparative study demonstrates that the
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Figure 5.2: Performance of DSSM based on fuzzy control for situation 1.
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Figure 5.3: Performance of DSSM based on fuzzy control for situation 2.
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Figure 5.4: Performance of conventional DSSM DTC for situation 2.
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Figure 5.5: Actual stator resistance variation.
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Figure 5.6: Estimated stator resistance.
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Figure 5.7: Estimation error.
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Figure 5.8: Performance of DSSM based on fuzzy control with estimated stator
resistance.



284 D. BOUDANA, L. NEZLI, A. TLEMÇANI, M.O. MAHMOUDI AND M. DJEMÄI
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Figure 5.9: Performance of conventional DSSM DTC with estimated stator resis-
tance.

DTC based on fuzzy logic for DSSM decrease the torque ripple and has a better dynamic
and static performance. Nevertheless the variations of the stator resistance cause the
DTC drive system to become unstable. So a PI stator resistance estimator is designed
and applied to eliminate the effect of the stator resistance variation. It is shown that the
stator flux and torque response is very satisfactory.

7 Appendix 1: List of Principal Symbols

va1, vb1, vc1 : simple voltage of stator three phase first winding.
va2, vb2, vc2 : simple voltage of stator three phase second winding.
ia1, ib1, ic1: stator current a, b, c phase of first winding.
ia2, ib2, ic2 : stator current a, b, c phase of second winding.
is, ı̂s: stator current vector, estimated stator current vector.
vs : stator voltage vector.
vd, vq : stator voltages d-q axis.
vα, vβ : stator voltages α-β axis.
vx, vy : stator voltages x-y axis.
[Lss] : stator inductance matrix.
[Msr]: stator-rotor mutual inductance matrix.
[Rs] : diag (Rs Rs Rs Rs Rs Rs).
Rs: stator resistance.
Ld, Lq : d-q inductances.
Rf : rotor resistance.
Te, T

∗

e
: electromagnetic torque, reference torque.

ϕs, ϕ
∗

s
: stator flux vector, reference flux vector.

ϕd, ϕq : stator flux d-q axis.
ϕα, ϕβ : stator flux α-β axis.
ϕx, ϕy : stator flux x-y axis.
w : stator voltages synchronous pulsation.
Φ: output of the flux hysteresis comparator.
τ : output of the torque hysteresis comparator.
δ: angle between rotor and stator flux linkage.
θs: angle of stator flux linkage.
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Θi : the region numbers for the stator linkage positions.
ET : torque error.
Eϕ : flux error.
J : friction coefficient.
fr : moment of inertia.
P : pole pairs number.

7.1 Appendix 2: DSSM Parameters

Pn = 5 kW, Uc = 232 V, if = 1 A, Rs = 2.35 Ω, Rf = 30.3 , Ld = 0.3811 H, Lq = 0.211
H, Lf = 15 H, Md = 2.146 H, J = 0.05 Nms2/rd, fr = 0.001Nms/rd, P = 1.
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tension en vue de la commande RIGE 6 (5-6) (2003) 579–608.

[2] Bojoi, R., Farina, F., Griva, G., Profumo, F. and Tenconi, A. Direct Torque Control for
Dual-Three Phase Induction Motor Drives IEEE Transactions on Industry Applications 41
(6) (2005) 1627–1636.

[3] Buja, G.S. and Kazmierkowski, M.P. Direct torque control of PWM inverter-fed AC motors-
a survey IEEE Transaction on Industrial Electronics 51 (4) (2004) 744–757.
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Abstract: In this paper, some sufficient conditions for the existence and ex-
ponential stability of almost periodic solutions for Cohen–Grossberg neural
networks with variable delays are obtained by applying Banach fixed point
theory and differential inequality techniques. Some previous results are im-
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1 Introduction

Recently, the behavior of dynamical systems has been widely investigated [1, 2, 3, 4].
Cohen–Grossberg neural networks, which were first proposed by Cohen and Grossberg
in [5] are typical dynamical systems and have received increasing interesting due to their
promising potential applications in many fields such as optimization, associative memory,
pattern recognition, signal and image processing. The stability of Cohen–Grossberg
neural network with or without delays has been widely studied by many researchers
[6, 7, 8, 9]. Moreover, many sufficient conditions on the stability of equilibrium point for
Cohen–Grossberg neural networks with constant coefficients have been available [10, 11,
12].
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As is well known, the investigation on the neural dynamical systems not only involves
a discussion of stability, but also involves many other dynamical behavior such as periodic
oscillatory behavior, almost periodic oscillatory properties, chaos and so on. There exist
some results on the existence of periodic solutions of Cohen–Grossberg neural networks
with variable coefficients [13, 14, 15, 16]. In practice, almost periodic oscillatory is more
accordant. Some authors have researched almost periodic solutions for neural networks,
and obtained several interesting results [17, 18, 19, 20]. However, To the best of our
knowledge, few authors discuss almost periodic solutions for Cohen–Grossberg neural
networks with variable coefficients [21].

In this paper, our objective is to study further Cohen–Grossberg neural networks with
variable delays. By applying Banach fixed point theory, differential inequality techniques,
we get some sufficient conditions ensuring the existence and exponential stability of
almost periodic solutions for Cohen–Grossberg neural networks with variable delays.
These conditions obtained are easy to check and in practice. Moreover, in this paper,
the assumptions of boundedness, monotonicity, and differentiability for the activation
functions are not available.

The rest of the paper is organized as follows. In Section 2, some notations, defini-
tions and model description are given. The existence and uniqueness of almost periodic
solutions is established in Section 3. In Section 4, we derive some sufficient conditions
on exponential stability of almost periodic solutions. Finally, an example is given to
demonstrate the validity of our results in Section 5.

2 Model Description and Preliminaries

Consider the Cohen–Grossberg neural networks with variable delays as follows:

ẋi(t) = −ai(xi(t))

[

bi(xi(t))−

n
∑

j=1

cij(t)fj(xj(t))−

n
∑

j=1

dij(t)fj(xj(t−τj(t)))+Ii(t)

]

, (1)

where t ≥ 0, i = 1, 2, . . . , n; n is the number of neurons, xi(t) is the state of neuron i

at the time t; ai(xi(t)) and bi(xi(t)) represent an amplification function and an appro-
priately behaved function at the time t, respectively; fj(xj) is the activation function of
the j-th unit; cij(t) and dij(t) denote the neural connection at the time t; Ii(t) is the
external inputs at the time t, τj(t) > 0 is transmission delay.

The initial conditions of system (1) are of the form xi(t) = ϕi(t), t ∈ [−τ, 0], τ =
max1≤i≤n τj(t), ϕi ∈ C (C , C[[−τ, 0], Rn]), and ϕi is assumed to be bounded and
continuous on [−τ, 0].

Definition 2.1 [22, 23] Let x(t) : R → Rn be continuous in t. x(t) is said to be
almost periodic on R if, for any ε > 0, it is possible to find a real number l = l(ε) > 0
such that, for any interval with length l(ε), there is a number δ = δ(ε) in this interval
such that |x(t + δ) − x(t)| < δl, for any t ∈ R.

Throughout this paper, we assume that cij(t), dij(t), Ii(t), ϕi(t) are continuous almost
periodic functions. For an arbitrary continuous function f(t) : R → R, we define

f = sup
t∈R

|f(t)|, f = inf
t∈R

|f(t)|.

We list some assumptions which will be used in this paper as follows:
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(H1) ai(t) is continuous and 0 < a
i
≤ ai(t) ≤ ai for all t ∈ R, i = 1, 2, . . . , n.

(H2) There are positive constants ki such that ḃi(·) ≥ ki, ḃi(·) denotes the derivative of
bi(·), and bi(0) = 0, i = 1, 2, . . . , n.

(H3) There are constants αj > 0 such that |fj(x)− fj(y)| ≤ αj |x− y| for any x, y ∈ R,
and fj(0) = 0, j = 1, . . . , n.

Definition 2.2 The almost periodic solutions x∗(t) of system (1) is said to be global
exponentially stable, if there exist constants ε > 0 and M ≥ 1 such that

|xi(t) − x∗| ≤ M‖ϕ − ϕ∗‖e−εt, t > 0, i = 1, 2, . . . , n,

where ϕ∗ is the initial value of x∗, ‖ϕ − ϕ∗‖ = sup
−∞≤s≤0

max
1≤i≤n

|ϕi(s) − ϕ∗

i
(s)|.

Definition 2.3 [21] Let y ∈ Rn and P (t, y) be a n × n continuous matrix defined
on R × Rn. For any continuous function v(t) : R → Rn, the following system

ẏ(t) = P (t, v(t))y(t)

is said to be an exponential dichotomy on R if there exist constants k, l > 0, projection
S and the fundamental matrix Yv(t) satisfying

‖Yv(t)SY −1
v

(s)‖ ≤ ke−l(t−s) for t ≥ s,

‖Yv(t)(I − S)Y −1
v

(s)‖ ≤ ke−l(t−s) for t ≤ s.

Lemma 2.1 [21] If the linear system ẏ(t) = P (t, v(t))y(t) has an exponential di-
chotomy, then almost periodic system

ẏ(t) = P (t, v(t))y(t) + g(t, v(t))

has a unique almost periodic solution y(t) which can be expressed as follows:

y(t) =

∫

t

−∞

Yv(t)SY −1
v

(s)g(s, v(s)) ds −

∫

∞

t

Yv(t)(I − S)Y −1
v

(s)g(s, v(s)) ds.

Lemma 2.2 [22, 23] Assume that ei(t) is an almost periodic function and

lim
T→+∞

1

T

∫

t+T

t

ei(s) ds > 0, i = 1, 2, . . . , n.

Then the linear system ẏ(t) = e(t)y(t) admits an exponential dichotomy, where e(t) =
diag{ei(t)}.

Definition 2.4 [24, 25] A real n×n matrix W = (wij)n×n is said to be an M -matrix
if wij ≤ 0, i, j = 1, 2, . . . , n, i 6= j, and W−1 ≥ 0, where W−1 denotes the inverse of W .

Lemma 2.3 [24, 25] Let W = (wij)n×n with wij ≤ 0, i, j = 1, 2, . . . , n, i 6= j.
Then the following statements are equivalent:

(1) W is an M -matrix;
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(2) there exists a vector η = (η1, η2, . . . , ηn) > (0, 0, . . . , 0) such that ηW > 0;

(3) there exists a vector ξ = (ξ1, ξ2, . . . , ξn)T > (0, 0, . . . , 0)T such that Wξ > 0.

Lemma 2.4 [24, 25] Let A ≥ 0 be an n×n matrix and ρ(A) < 1, the (En−A)−1 ≥ 0,
where ρ(A) denotes the spectral radius of A.

From (H1), the antiderivative of 1
ai(xi)

exists. We choose an antiderivative gi(xi) of
1

ai(xi)
that satisfies gi(0) = 0. Obviously, ġi(xi) = 1

ai(xi)
. By ai(xi) > 0, we obtain

that gi(xi) is increasing with respect to xi, and the inverse function g−1
i

(xi) of gi(xi) is
existential, continuous, and differentiable. So, ġi

−1(xi) = ai(xi), where ġi
−1(xi) is the

derivative of g−1
i

(xi) with respect to xi, and composition function bi(g
−1
i

(z)) is differen-

tiable. Denote ui(t) = gi(xi(t)). It is easy to see that u̇i(t) = ġi(xi)ẋi(t) = ẋi(t)
ai(xi)(t)

and

xi(t) = g−1
i

(ui). Substituting these equalities into system (1) gives that

u̇i(t) = −bi(g
−1
i

(ui(t))) +

n
∑

j=1

cij(t)fj(g
−1
j

(uj(t)))

+

n
∑

j=1

dij(t)fj(g
−1
j

(uj(t − τj(t)))) − Ii(t), t ≥ 0

ui(t) = gi(ϕi(t)) , φi(t), −τ ≤ t ≤ 0.

(2)

Considering bi(g
−1
i

(ui(t))) = ḃi(g
−1
i

(ui(t)))|z=εi
· ui(t), system (2) can be written as

the following system:

u̇i(t) = −ei(ui(t))ui(t) +

n
∑

j=1

cij(t)fj(g
−1
j

(uj(t)))

+
n
∑

j=1

dij(t)fj(g
−1
j

(uj(t − τj(t)))) − Ii(t), t ≥ 0,

ui(t) = φi(t), −τ ≤ t ≤ 0,

(3)

where ei(ui)(t) , ḃi(g
−1
i

(ui(t)))|z=εi
, ḃi(g

−1
i

(ui(t)))|z=εi
denotes the derivative of

bi(g
−1
i

(z)) at point z = εi, z ∈ R, εi is between 0 and ui(t).

Let ei(ui)(t) be an almost periodic function, the system (1) has a unique almost
periodic solution which is globally exponentially stable if and only if system (3) has a
unique almost periodic solution which is globally exponentially stable.

It is easy to see that |g−1
i

(u)− g−1
i

(v)| = |ġ−1
i

(µ)(u − v)| = |ai(µ)||u− v| ≤ ai|u− v|,
where µ is between u and v.

For convenience, we introduce some notations. We will use x = (x1, x2, . . . , xn)T ∈ Rn

to denote a column vector, in which the symbol (T) denotes the transpose of a vector.
For matrix A = (aij)n×n, AT denotes the transpose of A, and En denotes the identity
matrix of size n. A matrix or vector A ≥ 0 means that all entries of A are greater than or
equal to zero. A > 0 can be defined similarly. For matrices or vectors A and B, A ≥ B

(rep. A > B) means that A − B ≥ 0 (rep. A − B > 0).
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3 Existence and Uniqueness of Almost Periodic Solutions

In this section, we shall discuss the existence and uniqueness of the almost periodic
solution of system (3).

Theorem 3.1 Suppose that (H1)–(H3) are satisfied, and ρ(A−1(C + D)) < 1, where
C = (cijαjaj)n×n, D = (dijαjaj)n×n, A = diag(k1a1, k2a2, . . . , kna

n
). Then, there

exists exactly one almost periodic solution of system (3).

Proof Set the vector û(t) = (û1(t), û2(t), . . . , ûn(t))T, for ∀x ∈ Rn, we define
the norm: ‖û(t)‖ = max1≤i≤n |ûi(t)|. Let Λ = {û(t) = col{ûi(t) | û(t) : R → Rn, is
continuous almost periodic function}. For any û ∈ Λ, we define its induced model as
follows:

‖û‖ = sup
t∈R

‖û(t)‖ = sup
t∈R

max
1≤i≤n

|ûi(t)|.

Obviously, (Λ, ‖ · ‖) is a Banach space. For any {ûi(t)} ∈ Λ, consider the following
system:

u̇i(t) = −ei(ûi(t))ui(t) +

n
∑

j=1

cij(t)fj(g
−1
j

(ûj(t)))

+

n
∑

j=1

dij(t)fj(g
−1
j

(ûj(t − τj(t)))) − Ii(t),

(4)

where i = 1, 2, . . . , n. From H(1) and H(2), we get ei(ui(t)) ≥ kiai
> 0 and

lim
T→+∞

1

T

∫

t+T

t

ei(ui(s)) ds ≥ lim
T→+∞

kiai
> 0.

Similar to the analysis of [21], we know that following system:

U̇(t) = Q(û(t))U(t)

has an exponential dichotomy on R, where

Q(û)(t)) = diag(e1(û1(t)), e2(û2(t)), . . . , en(ûn(t))).

Thus by Lemma 2.1 and Lemma 2.2, system (4) has a unique almost periodic solution
uû(t) which can be expressed as follows:

uû(t) = col

{∫

t

−∞

e−
∫

t

s
ei(û(σ))dσ

[ n
∑

j=1

cij(s)fj(g
−1
j

(ûj(s)))

+

n
∑

j=1

dij(s)fj

(

g−1
j

(ûj(s − τij(s)))
)

− Ii(s)

]

ds

}

.

(5)

Now define a mapping T : Λ → Λ by setting

Tx̂(t) = xx̂(t), ∀ x̂ ∈ Λ.

Next, we prove that T is a contraction mapping. For any ∀ x̂, x∗ ∈ Λ, from (H3) we have

|T (û(t)) − T (u∗(t))|
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=

(

∣

∣

∣

∣

∫

t

−∞

e−
∫

t

s
e1(û(σ))dσ

[ n
∑

j=1

c1j(s)
(

fj(g
−1
j

(ûj(s))) − fj(g
−1
j

(u∗

j
(s)))

)

+

n
∑

j=1

d1j(s)
(

fj(g
−1
j

(ûj(s − τ1j(s)))) − fj(g
−1
j

(u∗

j
(s − τ1j(s))))

)

]

ds

∣

∣

∣

∣

, . . . ,

∣

∣

∣

∣

∫

t

−∞

e−
∫

t

s
en(û(σ))dσ

[ n
∑

j=1

cnj(s)
(

fj(g
−1
j

(ûj(s)) − fjg
−1
j

(u∗

j
(s))))

)

+

n
∑

j=1

dnj(s)
(

fj(g
−1
j

(ûj(s − τnj(s)))) − fj(g
−1
j

(u∗

j
(s − τnj(s))))

)

]

ds

∣

∣

∣

∣

)T

≤

(

∫

t

−∞

e−k1a
1
(t−s)

[ n
∑

j=1

c1jα1a1|ûj(s) − u∗

j
(s)| (6)

+

n
∑

j=1

d1jα1a1|ûj(s − τ1j(s)) − x∗

j
(s − τ1j(s))|

]

ds, . . . ,

∫

t

−∞

e−kna
n
(t−s)

[ n
∑

j=1

cnjαnan|ûj(s) − u∗

j
(s)|

+

n
∑

j=1

dnjαnan|ûj(s − τnj(s)) − u∗

j
(s − τnj(s))|

]

ds

)T

≤

(

n
∑

j=1

(k1a1)
−1(c1j + d1j)α1a1 sup

t∈R

|ûj(t) − u∗

j
(t)|, . . . ,

n
∑

j=1

(kna
n
)−1(cnj + dnj)αnan sup

t∈R

|ûj(t) − u∗

j
(t)|

)T

,

which implies that

(

sup
t∈R

|(T (û(t)) − T (u∗(t)))1|, . . . , sup
t∈R

|(T (û(t)) − T (u∗(t)))n|
)T

≤

( n
∑

j=1

(k1a1)
−1(c1j + d1j)α1a1 sup

t∈R

|ûj(t) − u∗

j
(t)|, . . . ,

n
∑

j=1

(kna
n
)−1(cnj + dnj)αnan sup

t∈R

|ûj(t) − u∗

j
(t)|

)T

(7)

≤ F

(

sup
t∈R

|û1(t) − u∗

1(t)|, . . . , sup
t∈R

|ûn(t) − u∗

n
(t)|

)T

where F = A−1(C + D). Let m be a positive integer. Then, from (7), we get

(

sup
t∈R

|(T m(û(t)) − T m(u∗(t)))1|, . . . , sup
t∈R

|(T m(û(t)) − T m(u∗(t)))n|
)T

=
(

sup
t∈R

|(T (T m−1(û(t)) − T m(u∗(t))))1|, . . . , sup
t∈R

|(T (T m−1(û(t)) − T m(u∗(t))))n|
)T
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≤ F

(

sup
t∈R

|(T m−1(û(t)) − T m−1(u∗(t)))1|, . . . , sup
t∈R

|(T m−1(û(t)) − T m−1(u∗(t)))n|
)T

≤ Fm

(

sup
t∈R

|(T (û(t)) − T (u∗(t)))1|, . . . , sup
t∈R

|(T (û(t)) − T (u∗(t)))n|
)T

≤ Fm

(

sup
t∈R

|û1(t) − u∗

1(t)|, . . . , sup
t∈R

|ûn(t) − u∗

n
(t)|
)T

. (8)

Since ρ(F ) < 1, we obtain limn→+∞ Fm = 0, which implies that there exists a
positive integer N and a positive integer β < 1 such that

FN = (A−1(C + D))N = (hij)n×n, and
n
∑

j=1

hij ≤ β, i = 1, 2, . . . , n. (9)

In view of (8) and (9), we have

|(T N(û(t)) − T N(u∗(t)))i| ≤ sup
t∈R

|(T N (û(t)) − T N(u∗(t)))i|

≤
n
∑

j=1

hij sup
t∈R

|ûj(t) − u∗

j
(t)|

≤
(

sup
t∈R

max
1≤i≤n

|ûj(t) − u∗

j
(t)|
)

n
∑

j=1

hij ≤ β‖û(t) − u∗(t)‖,

for all t ∈ R, i = 1, 2, . . . , n. It follows that

‖T N(û(t)) − T N(u∗(t))‖ = sup
t∈R

max
1≤i≤n

|(T N (û(t)) − T N(u∗(t)))i| ≤ β‖û(t) − u∗(t)‖.

This implies that the mapping T N : Λ → Λ is a contraction mapping.
By Banach fixed point theorem, there exists a unique fixed point u∗ ∈ Λ∗ such that

Tu∗ = u∗. From (4) and (5), we know that u∗ satisfies system (3), therefore, it is the
unique almost periodic solution of system (3). We complete the proof. 2

4 Exponential Stability of Almost Periodic Solutions

In this section, we shall discuss the global exponential stability of the almost periodic
solution of system (3).

Theorem 4.1 Suppose that (H1)–(H3) are satisfied, and the condition in Theorem
3.1 holds, then there exists exactly one almost periodic solution of system (3) which is
exponentially stable, i.e. all other solutions of system (3) converge to this almost periodic
solution exponentially.

Proof By Theorem 3.1, we have known that system (3) has a unique almost periodic
solution, then we shall prove the exponential stability of almost periodic solution.

Let u(t) = (u1(t), u2(t), . . . , un(t))T be an arbitrary solution and u∗(t) =
(u∗

1(t), u
∗

2(t), . . . , u
∗

n
(t))T be an almost periodic solution of system (3) with initial val-

ues φ(t) = (φ1(t), φ2(t), . . . , φn(t))T and φ∗(t) = (φ∗

1(t), φ
∗

2(t), . . . , φ
∗

n
(t))T, respectively.

Set
yi(t) = ui(t) − (u∗

i
(t), Fj(yj(t)) = fj(yj(t) + (u∗

j
(t)) − fj(u

∗

j
(t)),
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where i, j = 1, 2, . . . , n. It is easy to see that system (3) can be reduced to the following
system:

ẏi(t) = −ei(ui(t))yi(t) +

n
∑

j=1

cij(t)Fj(yj(t)) +

n
∑

j=1

dij(t)Fj(yj(t − τij(t))). (10)

Since ρ(F ) = ρ(A−1(C +D)) < 1, it follows from Lemma 2.4 that En−A−1(C+D) is an
M -matrix. In view of Lemma 2.3, there exists a constant vector ξ = (ξ1, ξ2, . . . , ξn

)T >

(0, 0, . . . , 0)T such that

(En − A−1(C + D))ξ > (0, 0, . . . , 0)T.

That is,

−kiai
ξ

i
+

n
∑

j=1

ξ
j
(cij + dij)αiai < 0, i = 1, 2, . . . , n.

Therefore, we can choose a constant d > 1 such that

ξ = dξ > sup
τ≤t≤0

|yi(t)|, i = 1, 2, . . . , n,

and

−kiai
ξi +

n
∑

j=1

ξj(cij + dij)αiai =

[

− kiai
ξ

i
+

n
∑

j=1

ξ
j
(cij + dij)αiai

]

d < 0,

where i = 1, 2, . . . , n. Set

Mi(ε) = εξi − kiai
ξi +

n
∑

j=1

ξj(cij + dije
ετ )αiai, i = 1, 2, . . . , n.

Clearly, Mi(ε), i = 1, 2, . . . , n, are continuous functions on [0, ω0]. Since

Mi(0) = −kiai
ξi +

n
∑

j=1

ξj(cij + dij)αiai < 0, i = 1, 2, . . . , n,

we can choose a positive constant ω ∈ [0, ω0] such that

Mi(ω) = (ω − kiai
)ξi +

n
∑

j=1

ξj(cij + dije
ωτ )αiai < 0, i = 1, 2, . . . , n. (11)

We consider the Lyapunov functional

Vi(t) = |yi(t)|e
ωt, i = 1, 2, . . . , n. (12)

Obviously, for any yi(t) 6= 0, Vi(t) > 0. Calculating the upper right derivative of Vi(t)
along the solution y(t) = (y1(t), y2(t), . . . , yn(t))T of system (10) with the initial value
φ = φ − φ∗, we have

D+(Vi(t)) ≤ −kiai
|yi(t)|e

ωt +
n
∑

j=1

cij |yi(t)|e
ωt +

n
∑

j=1

dij |yi(t − τij(t))|e
ωt + ω|yi(t)|e

ωt

=

[

(ω − kiai
)|yi(t)| +

n
∑

j=1

cij |yi(t)|αiai +

n
∑

j=1

dij |yi(t − τij(t))|αiai

]

eωt

(13)
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where i = 1, 2, . . . , n. We claim that

Vi(t) = |yi(t)|e
ωt < ξi, for all t > 0, i = 1, 2, . . . , n. (14)

Contrarily, there must exist i ∈ {i = 1, 2, . . . , n} and ti > 0 such that

Vi(ti) = ξi and Vj(t) < ξj , ∀ t ∈ (−∞, ti), j = 1, 2, . . . , n, (15)

which implies that

Vi(ti) − ξi = 0 and Vj(t) − ξj < 0, ∀ t ∈ (−∞, ti), j = 1, 2, . . . , n. (16)

Together with (13) and (16), we obtain

0 ≤ D+(Vi(ti) − ξi) = D+Vi(ti)

≤

[

(ω − kiai
)|yi(t)| +

n
∑

j=1

cij |yi(t)|αiai +

n
∑

j=1

dij |yi(t − τij(t))|αiai

]

eωt

= (ω − kiai
)ξi + αiai

( n
∑

j=1

cij |yi(ti)|e
ωti +

n
∑

j=1

dij |yi(ti − τij(ti))|e
ω(ti−τij(ti))eωτij(ti)

)

≤ (ω − kiai
)ξi +

n
∑

j=1

ξj(cij + dije
ωτ )αiai.

(17)
Thus

0 ≤ (ω − kiai
)ξi +

n
∑

j=1

ξj(cij + dije
ωτ )αiai

which contradicts (11). Hence, (14) holds. It follows that

|yi(t)| < max
1≤i≤n

{ξi}e
−ωt. (18)

Letting ‖φ‖ = ‖φ−φ∗‖ > 0, it follows from (18) that we can choose a constant M > 1
such that

|xi(t) − x∗

i
(t)| = |yi(t)| ≤ max

1≤i≤n

{ξi}e
−ωt ≤ M‖φ − φ∗‖e−ωt, (19)

where i = 1, 2, . . . , n, t > 0. Thus, the almost periodic solution of system (3) is globally
exponentially stable.

We complete the proof. 2

Corollary 4.1 Suppose that (H1)–(H3) are satisfied, and En − A−1(C + D) is an
M -matrix, then there exists exactly an almost periodic solution of system (3) which is
exponentially stable, i.e. all other solutions of system (3) converge to this almost periodic
solution exponentially.

Proof Notice that En −A
−1(C + D) is an M -matrix, it follows that there exists a

vector η = (η1, η2, . . . , ηn)T > (0, 0, . . . , 0)T such that

(En − A−1(C + D))η > (0, 0, . . . , 0)T.
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That is,

−kiai
η +

n
∑

j=1

(cij + dij)αiaiη < 0, i = 1, 2, . . . , n.

Therefore, Corollary 4.1 follows immediately from Theorem 4.1. 2

Remark 4.1 In Theorem 4.1 and Corollary 4.1, we do not need the assumptions
on boundedness, monotonicity, and differentiability for the activation functions. Clearly,
the proposed results are different from those in [5, 6, 14] and the references cited therein.
Therefore, our results are new and they complement previously known results.

5 An Example

In this section, we give an example to illustrate that our results are feasible.

Example 5.1 Consider the following system with continuously distributed delays:

ẋi(t) = −ai(xi(t))

[

bi(xi(t)) −

2
∑

j=1

cij(t)fj(xj(t)) −

2
∑

j=1

dij(t)fj(xj(t − τj(t))) + Ii(t)

]

,

(20)
where i = 1, 2. Let fj(x) = 1

2 (|x + 1| − |x − 1|), we have αj = 1 (j = 1, 2).
Taking

(a1(x1(t)), a2(x2(t)))
T =

(

2 −
1

10π
arctanx1(t), 2 +

1

10π
arctanx2(t)

)T

,

(b1(x1(t)), b2(x2(t)))
T = (x1, x2)

T, I1(t) =
9

5
sin t, I2(t) =

9

5
cos t,

thus we obtain a1 = a2 = 1, a1 = a2 = 3, b1 = b2 = b1 = b2 = 1, I1 = I1 = 9
5 ,

k1 = k2 = 1. Let

(

c11(t) c12(t)
c21(t) c22(t)

)

=







1

13
sin t

1

13
sin 2t

1

13
sin 3t

1

13
sin 4t






,

(

d11(t) d12(t)
d21(t) d22(t)

)

=







1

13
cos t

1

13
cos 2t

1

13
cos 3t

1

13
cos 4t






.

Noting that c11 = c12 = c21 = c22 = d11 = d12 = d21 = d22 =
1

13
, we get

A−1(C + D) =







6

13

6

13
6

13

6

13






.

So, we have

ρ(A−1(C + D)) =
12

13
< 1.

Thus, it follows from Theorem 3.1 and Theorem 4.1 that system (20) has exactly a unique
almost periodic solution, which is globally exponentially stable.
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Remark 5.1 System (20) is a simple form of Cohen-Grossberg neural networks with
variable delays. In this system, La

1 = La

2 = 1
30 , Lab

1 = Lab

2 = 1. If we apply Corollary
4.1 in [15, 16], and choose η = (η1, η2) = (1, 1), we obtain δ = 26

5 , ρ(K) = 1800
1781 > 1,

this doesn’t satisfy the conditions in Corollary 4.1 in [15, 16]. So, the results in [15, 16]
cannot be applicable to this system. This implies that our results are essentially new.

Remark 5.2 Since f1(x) = f2(x) = 1
2 (|x + 1| − |x − 1|), we can easily verify that

the assumptions of boundedness, monotonicity, and differentiability for the activation
functions are not available. So, the proposed results in [5, 6, 14] and the references cited
therein can not be applicable to system (20).

6 Conclusion

In this paper, the existence and exponential stability of almost periodic solutions for
Cohen-Grossberg neural networks with variable delays are considered. Some new suf-
ficient conditions are obtained by applying Banach fixed point theory and differential
inequality techniques. Some previous results are improved and extended.
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1 Introduction

The development of mathematical models is a major problem for the application of ad-
vanced techniques for analysis, prediction, control, optimization, automatic fault detec-
tion and diagnostic in the industrial processes. Hence, there is a potential for improved
quality and flexibility of final product if the cost of the model development can be re-
duced. Consequently, a strong demand for advanced modeling and identification methods
arises. The multimodel approach is an efficient and a powerful way to resolve problem of
modeling and control of complex, non-linear and/or ill-defined processes. This approach
is based on a ”divide and conquer” strategy [23]. A complex modeling problem is divided
into a number of smaller sub-problems, which are solved independently by identifying
simple models (generally linear). The obtained group of models forms the so-called mod-
els base. Afterwards, it is necessary to compute coefficients called validities of models.
The simple models are, thereafter, combined, according to their estimated validities, to-
gether to obtain the global model. The past few years have shown an increase in the
use of the multimodel representation [16]. This concept includes a number of approaches
such as: Takagi and Sugeno Fuzzy Inference Systems [29], local model networks [16],
gain-scheduled control, statistical mixture models, Smooth Threshold Auto-Regressive
(STAR) models of Tong [30] and the state dependent models of Priestley [20]. For the
majority of these approaches, the model parameters are obtained from prior knowledge,
linearization of physical model or identified from measured data [21]. In many cases, the
local models can be quite simple, such as linear or affine models. Besides, the multimodel
concept coincides with engineering design in which the division of problems into man-
ageable parts is the major design methodology [23]. The multimodel approaches were
succeeded in different domains such as academic, biomedical, process industries, etc.
However, they remain so confronted with several difficulties such as the determination of
the models base. To resolve this problem, a modeling framework based on an operating
decomposition of the system’s operating range has interested Johansen in [10]. Indeed,
he has proposed an algorithm that able to identify decomposition into operating regimes
and local models on the base of empirical data. However, this algorithm requires that the
regime must be d-dimensional boxes with orthogonal edges. Besides, the introduction of
this last complex description of the regime limits will increase the number of parameters
necessary to represent theses boundaries or local model validity functions. This leads,
consequently, to a more complex identification problem [11]. Murray-Smith in [16] pro-
poses to use learning systems able to model unknown nonlinear dynamic processes from
their observed input-output behaviour. Local model networks use a number of simple
and locally accurate models to represent a globally complex process. A major difficulty
with local model nets is the optimization of the model structure. Heikki [8] has proposed
an evolutionary self-organizing map capable of creating an organized model bank from
a data set. However, the proposed algorithm is very complex and requires a very large
knowledge such as genetic algorithm, self-organizing card, etc. Besides, the computing
of one map is relatively very long. In 1995, Gawthrop considered the approximation of
the continuous-time non-linear system in the vicinity of the equilibrium operating points
by a continuous-time local model network [7]. One global inconvenience of most of these
last strategies, is that the determination of these local models needs to a certain extend
a priori knowledge of the system and its structure [3, 5, 1, 6, 2, 21, 19, 23]. Besides,
we cannot found a systematic method for local models determination; which supposes
several preliminary tests before its choice. Recently, it is proposed in [13] an approach
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of models base determination for the uncertain processes, which limit the number of
base models to four or five models. This method is inspired from the algebric stability
approach suggested by Kharitonov [13]. The models base is obtained by determining the
four extreme models, and the average model, determined as an average of the boundary
models. Mezghani in [17] proposed the extension of this last approach for discrete case
using the d operator. These last approaches require the knowledge of the variation do-
mains parameters of the uncertain process. But, this last information is always not still
possible. Another inconvenience is that the last models base will contain models with the
same structure. We propose, in this paper, a new systematic determination approach of
a models base for the representation of uncertain discrete linear systems. This approach
does not require the limits knowledge of the parameters. Besides, this method allows to
generate automatically the number, the structures and the parameters of the elaborated
models. Indeed, the proposed method requires three principle steps [25, 27, 28]. The
first step consists in classifying numerical data by using a Self-adapting artificial Kohonen
neural network. The second step is a structural and parametric estimations step in order
to determine the base models. Also, to resolve the problem of validities computation we
propose a new technique, based on the minimization of a quadratic criterion [26, 28].
This criterion exploits the centers of clusters obtained in the models base determination
step. By comparison with the residues approaches, used by many researchers, we have
demonstrated the efficiency and the precision of the suggested technique. In order to
highlight the good performance in precision and the robustness under particularly severe
conditions of the two suggested approaches, the theoretical study is, then, validated by
numerical simulation and by experiments. This paper is organized as follows: in the
section two, a principle of classification by using a Kohonen card is introduced. The
new systematic approach determination of a models base is developed with details in the
third section. The validities computation represents the subject of the fourth section.
The principle of computation of multimodel’output is given in section five. A numerical
example is presented in the section six. In section seven, an experimental validation,
carried out on an olive oil esterification reactor, is considered. We finish the present
work by a conclusion.

2 Classification of the Numerical Data by Using the Kohonen Card

The self-organizing Kohonen map is a well-known unsupervised algorithm used frequently
for classification of data. The standard card can find the cluster centers and gives a
visual interpretation of the distribution and clusters of the data. This classification
strategy consists in applying the rule of Kohonen [18, 8, 22]. This rule is characterized
by an unsupervised competitive learning. Where, a competition takes place before the
modification of the network-weights. Only the neuron, which gained the competition,
has the right to change their weight. The Kohonen rule has the property of self-adapting,
which allows him to group together a set of data, presented to the corresponding network,
around a certain number of representative centroides of these data clusters. The used
neural network is formed by one input layer of p neurons and by one output layer of n
neurons corresponding to the Kohonen card [18, 22]. The architecture of this network
is given by (2.1) [25]. Each neuron of the Kohonen card receives p signals coming from
the input layer. The weight wpn is relative to the connection between the input neuron
p and the card neuron n. The weight vector Wi associated to neuron i is then composed
of p elements. The Kohonen rule works as follows [18, 22]:
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1. The network receives a data set Y .

2. Each card neuron calculates the Euclidean distance between the weight vector Wi

and the input vector Y .

3. The competition between card neurons starts. This competition is based on the
winner-takes-all strategy. The neuron having the nearest weight vector Wi to the
input Y wins the competition. The winner neuron output zi is putting at 1 and
the other ones are putting then at 0.

4. The different weights are modified according to the following relation:

Wnew

i
= W old

i
+ α

(

Y − W old

i

)

zi (1)

where α is a constant such that 0 < α < 1.

At the end of the training, the Kohonen network generates the representative vectors
of different clusters and their centers.

Figure 2.1: The retained architecture for the generation of different observations vectors for
modeling.

3 A Systematic Determination Approach of a Models Base

The application of this approach requires firstly the determination of the clusters num-
ber. The classification of numerical data is the second stage. Then, there is a stage of
structural and parametric estimation.

3.1 Determination of the clusters number

To classify the numerical data, it is necessary to pass throught the step of determination of
the adequate clusters number and as consequence, the number of base models. To resolve
the problem, we propose to consider a two-dimensional Kohonen card with a neurons
number n in the output-layer which is relatively important. At the end of training, if the
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network gives badly repartition clusters, it will remove the cluster i having an elements
number NCi verifying:

NCi <
1

2

NH

n
, (2)

where NH is the observations’number. Also, we increase the network structure and we
restart the training.

3.2 Classification of the numerical data by exploiting the Kohonen card

After determining the suitable number of classes, consequently the base models number,
it is the question of classifying the measurements. These last are related to the output of
an uncertain or ill-defined discrete linear system using the proposed method described in
Section 2. Therefore, we exploit a Kohonen network, which has neurons number in the
output-layer equal to the clusters number, determined by the method described in the last
section. This network is able of looking into the output of a set of representative vectors
of different clusters with their respective centers. These vectors are, then, exploited for
the structural and parametric identification of the elaborated base models.

3.3 Structural and parametric estimation

The order estimation method of the retained models is called instrumental determinants’
ratio-test [4, 25, 15]. This method consists in building an information matrix Qm, con-
taining the input-output measurements couples given by:

Qm =
1

NH

NH
∑

k=1















u(k)
u(k + 1)

...
u(k − m + 1)

u(k + m)





























y(k + 1)
u(k + 1)

...
y(k + m)
u(k + m)















T

. (3)

The instrumental determinants’ratio RDI(m) is given by the following relation:

RDI(m) =
∣

∣

∣

det(Qm)

det(Qm+1

∣

∣

∣. (4)

For every value of m, the order determination procedure computes Qm and Qm+1

matrices and estimates the ratio RDI, the retained order m is the value for which the
ratio RDI(m) quickly increases for the first time. Indeed, Qm+1 matrix becomes singular
when m becomes identified with the exact order.

The retained parametric estimation method is the Recursive Least Squares’ method
RLS [4].

4 A New Approach for Validities’ Computation

Several validities computation methods was proposed in the literature [5, 6, 12, 13, 16,
17, 19]. All these methods are based on the residues computation and they are based
on measuring the distance between the current state of the process and the considered
model Mi. The geometric distance can be calculated by several methods; the simplest
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one is the distance ri(k) between the process output y(k) and the base models outputs
yi(k):

ri(k) = |y(k) − yi(k)|. (5)

Frequently, we choose the validities such as all the time their sum is equal to the unity.
For example,

vi(k) =
|1 − r′

i
(k)|

C − 1
. (6)

C represents the retained number of base models and is a normalized distance given by

r′
i
(k) =

ri(k)
∑

C

i=1 ri(k)
. (7)

The proposed method of validities computation is inspired from the fuzzy version of
the ”k-means” algorithm[18]. This method is based on the minimization of the following
criterion:

J =

C
∑

i=1

NH
∑

k=1

v2
i
(k)‖y(k) − ci‖

2 (8)

with
C

∑

i=1

vi(k) = 1, (9)

where vi(k) represent the degree of validity of the model i at the instant k, ci is the
center of the class i.

It is a first order problem of optimization with equality constraint g(vi(k)). The
resolution of this type of problem requires the determination of the Lagrange’s equation.
In fact, so that vi(k) is a local extremum of the criterion J , it is necessary that there is
a real λ such that the Lagrangian L of the problem can be written as follows:

L(vi(k), λ) = J + λg(vi(k)) (10)

is stationary with regard to vi(k) and λ. This leads to

{

∂(L(vi(k),λ)
∂(vi(k)) = 0,

∂(L(vi(k),λ))
∂(λ) = 0,

(11)

where λ is the Lagrange’s multiplier associated to the constraint. The relations (11) lead
to the following system



















































2v1(k) ‖y(k) − c1‖
2
+ λ = 0,

2v2(k) ‖y(k) − c2‖
2
+ λ = 0,

...

2vi(k) ‖y(k) − ci‖
2

+ λ = 0,
...

2vC(k) ‖y(k) − cC‖
2

+ λ = 0,

v1(k) + v2(k) + . . . + vi(k) + · · · + vC(k) = 1.

(12)
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This problem becomes

{
{

vi(k), ‖y(k) − ci‖
2

+ λ = 0, i ∈ [1, C]
}

,
∑

C

l=1 vl(k) = 1.
(13)

The relations (13) give

vi(k) =
−λ

2 ‖y(k) − ci‖
2 . (14)

This relation becomes
C

∑

l=1

−λ

2 ‖y(k) − cl‖
2 = 1. (15)

Then λ is given from the relation (15) and replaced in the equation (14). Finally, we can
conclude that the expression of validity degree for a model Mi can be written as follows:

vi(k) =
1

∑

C

l=1(A
2
i
(k)/A2

l
(k)

, (16)

where A2
i
(k) = ‖y(k) − ci‖

2 (see (4.1)).

Figure 4.1: Euclidean distance illustrated by the new technique of validity computation.

5 Computation of Multimodel Output

The multimodel output is obtained by fusion of the local models pondered by their
respective validities. The next relation (17) gives the expression of the final multimodel
output:

yMM (k) =

C
∑

i=1

yi(k)vi(k). (17)
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6 Simulation Example in Stochastic Case

The object of this section is to demonstrate the interest and the robustness of both pro-
posed methods: the multimodel representation and the validities computation technique.
Let us consider a stochastic linear process with time varying parameters, described by
the following equation [25, 15]:

y(k) = −a1(k)y(k − 1) − a2(k)y(k − 2) + b1(k)u(k − 1) + b2(k)u(k − 2) + e(k), (18)

where e(k) is a white noise (0, σ2) with covariance σ equal to 0.2. The variation laws of
different parameters of the process are given by the Figure 6.1. The retained excitation
signal u(k) is a Pseudo Aleatory Binary Sequence.

Figure 6.1: The variation laws of the considered process parameters.

6.1 Classification of the numerical data by exploiting the Kohonen card

The suggested approach for the systematic determination of the models base has been
implemented. Indeed, the numerical noisy identification data obtained by exciting the
system (18) by a Pseudo Aleatory Binary Sequence are presented to a Kohonen card
formed by one input layer of two neurons and by one output layer of three neurons. The
Figure 6.2 shows that three data sets relative to the various clusters are obtained at the
end of learning of the neuronal network.

6.2 Structural and parametric estimation

From each of the data relative to the three clusters, we could determine the orders and
the parameters of the transfer functions H1(q

−1), H2(q
−1) and H3(q

−1) relative to the
base models. Figure 6.3 shows the evolutions of the Instrumental Determinants’ Ratio
RDIi(m)(i = 1, 2 or 3) for the three obtained clusters. We observe, clearly, that the
orders of the three models are equal to 2.
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Figure 6.2: Three sets of numerical data relative to the different base models.

Figure 6.3: Evolutions of the RDI for the three obtained clusters.
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After the parametric identification step, the obtained transfer functions
H1(q

−1), H2(q
−1) and H3(q

−1) can be written:

H1(q
−1) =

0.48765q−1 + 0.26243q−2

1 − 0.62912q−1 + 0.022475q−2
, (19)

H2(q
−1) =

0.49611q−1 + 0.22886q−2

1 − 0.70327q−1 + 0.019325q−2
, (20)

H3(q
−1) =

0.49987q−1 + 0.24861q−2

1 − 0.7443q−1 + 0.040774q−2
. (21)

6.3 Validation phase

The application of the following input sequence is the subject of validation step:

u(k) = 2 + sin k/20. (22)

The proposed approach for validities computation uses the clusters centers obtained in
the stage of determination of a models base. The coordinates of the three obtained centers
c1, c2, c3 are: c1(−0.412;−0.4020); c2(−0.0151; 0.0041); c3(0.4738; 0.4687). The results of
validation are given in the Figure 6.4. This figure shows that the multimodel output
yfn(k) obtained by fusion of base models outputs pondered by the new technique validi-
ties, follows the real output yr(k) of the stochastic uncertain process with a relatively
negligible error. In the case of modeling classical approach, we have exploited the same

Figure 6.4: Evolutions of the real and multimodel outputs (New technique).

numerical noisy identification data used for the multimodel representation. By recourse
to the instrumental determinants’ ratio for the structural estimation and to the recursive
least squares method for the parametric identification, the transfer function H(q−1) of
the global model ”M” can be written as follows:

H(q−1) =
0.49457q−1 + 0.28186q−2

1 − 0.60115q−1 + 0.043232q−2
. (23)
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The Figure 6.5 represents the evolutions of the relative errors between the real output and
the global model ”M” and the multimodel ”MMn”. This figure demonstrates that the
multimodel representation offers a very satisfactory precision and robustness relatively
to the case in which classical modeling, based on one global model ”M”, is considered.
The evolutions of different validities of models are given by the Figure 6.6. This figure

Figure 6.5: Evolutions of relative errors.

shows the complementarities of the different models in the different operation areas. It
shows, also, that it is possible that one model can describe correctly the system (validity
equal to the unity), the validities of the others models are equal to zero. This last result
is not possible when the residues approach is applied. Indeed, in the Figure 6.7, we have
presented the evolution of the three validities calculated by the residues approach in the
same conditions. This figure shows that these validities cannot exceed 0, 5. This can be
justified by the presence of term ′C − 1′ in the denominator of the validities expression
(6). As consequent, the residues approach cannot evaluate correctly the contribution of
every model of the base in the global behaviour of the system.

Figure 6.8 presents the evolutions of the prediction errors er1(k) and er2(k) of the two
multimodel outputs respectively yfc(k) (residues approach) and yfn(k) (new technique)
with regard to the real output. This figure shows the performance in precision and
in robustness of the new technique of validities computation by comparison with the
residues approach.

7 Experimental Validation: Olive Oil Esterification-Reactor

In order to show the contribution in precision and robustness of the suggested modeling
strategy, we have implemented it practically in the case of modeling of an olive oil
esterification-reactor. This discontinuous reactor carries out, by an alcohol, a chemical
reaction of vegetable olive oil esterification. This type of reaction is given by the following
scheme: Acid+Alcohol ⇋ Ester +Water. The obtained product is an ester with a very
high benefit used mainly in the manufacture of cosmetic products. In previous work,
the dynamic behaviour of this reactor has been modeled by a set of complex differential
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Figure 6.6: Evolutions of the validities (new technique).

Figure 6.7: Evolutions of the validities (Residues approach).
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Figure 6.8: Evolution of the relative prediction errors.

equations. The static characteristic of the reactor is non-linear and, consequently, the
classical modeling, based on one global model cannot lead to satisfactory results. To
improve these results, we propose, in the next section, to use the suggested multimodel
representation.

7.1 A modeling phase

In Figure 7.1, we have presented the input-output measurements picked out experi-
mentally of the reactor for the identification step. By exploiting the last input-output

Figure 7.1: Evolutions of the input-output measurements u(k) and y(k).

measurements’ file, the suggested approach for the determination of the models base has
been implemented. Indeed, the experimental data are presented to a Kohonen network
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having two inputs and one-dimensional card with 3 neurons in the output layer. Figure
7.2 shows that three sets of data relative to the different clusters are obtained at the end
of the neural network training. From each of the data relative to a cluster c(c = 1, .., 3),

Figure 7.2: Three sets of the experimental data relative to the different base-models.

we could determine the transfer functions (H1(q
−1), H2(q

−1) and H3(q
−1)) relative to

the base-models. Figure 7.3 presents the evolutions of the Instrumental Determinants’
Ratio RDIi(m) (i=1, 2 or 3) for the three obtained clusters. This figure shows that the
adequate estimated orders of the three models are equal to 2. Finally, we have obtained

Figure 7.3: Evolutions of the RDI for the three obtained clusters.

the base formed by the models described by the following transfer functions:

H1(q
−1) =

0.0018269q−1 + 0.00043866q−2

1 − 1.3052q−1 + 0.32917q−2
, (24)
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H2(q
−1) =

0.0018804q−1 + 4.2569.10−5q−2

1 − 1.216q−1 + 0.24209q−2
, (25)

H3(q
−1) =

0.0011144q−1 + 0.00046594q−2

1 − 1.1185q−1 + 0.12743q−2
. (26)

In the case of modeling classical approach, the process is considered linear around an
operation point. The non-linearity is consequently interpreted, under these conditions,
as a parametric disturbance. By recourse to the instrumental determinants ratio test for
the structural estimation, and to the recursive least squares method for the paramet-
ric identification, the transfer function H(q−1)of the global model ”M”, worked out by
the exploitation of an input-output measurements’file experimentally picked out on the
reactor, can be written as follows:

H(q−1) =
−0.00010162q−1 + 0.0012255q−2

1 − 1.0425q−1 + 0.058094q−2
. (27)

7.2 Evaluation of the modeling results

To validate the obtained models, we have considered a new input-output measure-
ments’file picked out for the real system. The effective output yMM (k) of the multimodel
”MM” is calculated by fusion of the three base outputs pondered by their respective va-
lidities. Figure 7.4 represents the evolutions of the real, the global model ”M” and the
multimodel ”MM” outputs. This figure shows that the ”MM” approach, using the elab-
orated base, offers a very satisfactory precision relatively to the case in which classical
modeling, based on one global model ”M”, is considered. Indeed, the relative error be-
tween the real output and the model ”M” and the multimodel ”MM” outputs confirms
this last conclusion (Figure 7.5). The evolutions of the different validities relative to
the different models of the base are given on Figure 7.6. It gives information about the
complementarities of the different models in the operation area of the reactor which can
be divided into three zones of heating, reaction and cooling.

Figure 7.4: Experimental validation of the models (classical and multimodel approaches).
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Figure 7.5: Evolutions of relative errors.

Figure 7.6: Evolutions of different models validities of the elaborate base.
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8 Conclusion

In this paper, we have presented firstly a new systematic determination approach of
models base for multimodel approach. This approach does not require a priori knowledge
about the studied system and can generate automatically the number, the structures and
the parameters of base models. Indeed, it can be applied on three steps. The primary step
consists in determining the suitable number of base models. The second one consists in an
off-line classification of identification data. The structural and parametric estimations of
the base models from the obtained vectors in the classification step, form the third step.
Secondly, a new technique of validities computation is developed. This last technique
consists in minimizing a quadratic criterion exploiting the clusters centers obtained in
the stage of determination of the models base. The application of these contributions
is carried out, first, on a simulation example, then on a real process corresponding to
a semi-batch chemical reactor. These applications showed the efficiency and the very
good performances of the two proposed methods, with regard to the classical modeling
method based on unique model and to the residues approach.
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National School of Engineers of Tunis, Tunisia, 2005.

[16] Murry-Smith, R. and Johansen, T. A. (Eds). Multiple model approaches to modelling and
control. Taylor and Francis, London, 1997.

[17] Mezghani, S., Elkamel, A. and Borne, P. Multimodel control of discrete systems with
uncertainties. The Electronic International Journal of Advance Modilling and Optimization
3 (2) (2001) 7–17.

[18] Nells, O. Nonlinear system identification. Springer, Germany, 2001.

[19] Narendra, K. S. and Balakrishnan, J. Adaptative Control Using Multiple Models. IEEE
Transactions on Automatic Control 42(2) (1997) 171–187.

[20] Preistley, M. B Non-linear and non-stationary time series analysis. Academic Press, Lon-
don, 1988.

[21] Schorten, R., Marry-Smith, R., Bjorgan, R. and Gollee, H. On the interpretation of local
models in blended multiple model structures. Int. J. Control 72(7/8) (1999) 620–628.

[22] Shigeo A. Neural networks and fuzzy systems theory and applications. Kluwer Academic
Publishers, USA, 1997.

[23] Slupphaug, O. and Foss, B. A. Constrained quadratic stabilization of discrete-time uncer-
tain non-linear multi-model systems using piecewise affine state feedback. Int. J. Control
72(7/8) (1999) 686–701.

[24] Talmoudi, S., Ben Abdennour, R., Abderrahim, K. and Ksouri, M. Multi-modèle et multi-
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