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Abstract: This paper is concerned with the global study of a certain class of
functional differential equation involving causal (abstract Volterra) operators
on a certain function space E(R+, Rn). It is closely related to our previous joint
papers, listed in the References, the difference being motivated by the fact that
we consider new function spaces on the half-axis R+. The approach in this
paper is also somewhat different than in preceding papers, by C. Corduneanu,
the results being also different. A dynamical interpretation is also indicated.
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1 Statement of the Problem

Let us consider the functional differential equation

d

dt

[
dx(t)

dt
− (Lx)(t)

]
= (V x)(t), t ∈ R+, (1)

where x ∈ Rn, n ≥ 1 is an integer, and L, V are causal operators acting on the
function space C(R+, Rn), consisting of all continuous maps from R+ into Rn, the
topology/convergence being defined by the family of semi-norms {|x|k : k ≥ 1}, with
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|xk| = sup{|x(t)| : 0 ≤ t ≤ k}, k ≥ 1. By | · | we denote the Euclidean norm of the space
Rn. As it was mentioned, our approach here is somewhat different than in [4, 5, 6].

It is well known (see, for instance [2, 3]) that the above topology/convergence means
uniform convergence on any bounded interval [0, T ] ⊆ R+.

An initial condition of the form

x(0) = x0 ∈ Rn, ẋ(0) = v0 ∈ Rn, (2)

must be associated with (1), if we expect to get a unique solution to the Cauchy problem
(1), (2).

Unlike our preceding papers, [8, 9, 12, 13], we will be interested here in finding global
solutions to the problem (1), (2), i.e. belonging to the space C(R+, Rn).

The space C(R+, Rn) contains as subspaces (closed or not) many usual spaces ap-
pearing in the theory of differential or integral equations. An example is the space
BC(R+, Rn) consisting of all bounded continuous maps from R+ into Rn with the norm

‖x‖ = sup{|x(t)| : t ∈ R+}, (3)

BC(R+, Rn) is a Banach space. Other function spaces are encountered in the literature,
such as the space Cℓ(R+, Rn), consisting of all maps in BC(R+, Rn) such that limx(t),
as t → ∞, exists in Rn. The space Cℓ(R+, Rn) is a closed subspace of BC(R+, Rn), but
BC(R+, Rn) is not closed in C(R+, Rn).

The main concern of this paper is finding adequate conditions on the data, more
precisely on the operators L and V , such that the existence of solution to the problem
(1), (2) is guaranteed (on the semi-axis R+).

If we succeed to prove the existence of a solution to (1), (2), then we can draw
some conclusions about its asymptotic behavior if we can show that it belongs to one of
the function spaces we have mentioned above (like BC(R+, Rn), Cℓ(R+, Rn), or other
function spaces).

2 An Auxiliary Result

We shall briefly discuss in this section a connection between causal operators on function
spaces and classical/integral operators of Volterra type. For a more detailed discussion
and further references, we send the reader to [1; Ch. 2 and Ch. 4], with more references.

The result we need is simply expressed by the formula

∫ t

0

(V x)(s) ds =

∫ t

0

K(t, s)x(s) ds, t ∈ R+, (4)

where V stands for a linear causal operator on the space C(R+, Rn), and K(t, s) denotes
a matrix kernel of type n × n.

More precisely, the result described by (4), states that for each V , there exists a
measurable kernel K(t, s), rendering the service described by (4). The formula (4) holds
true for every x ∈ C(R+, Rn), and even in the most general case, x ∈ Lloc(R+, Rn). We
notice that K(t, s) must not be continuous. In order to assure the inclusion

∫ t

0

K(t, s)x(s) ds ∈ C(R+, Rn), (5)
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for each x ∈ C(R+, Rn), it suffices to deal with a locally integrable K(t, s), (t, s) ∈ ∆ =
{(t, s) : 0 ≤ s ≤ t} satisfying also the condition

lim
h→0

( ∫
t

0

|K(t + h, s) − K(t, s)| ds +

∫
t+h

t

|K(t + h, s)| ds

)
= 0 (6)

for each t ∈ R+.
Let us notice that condition (6) on K(t, s) is implied by (4), and the fact that V is

a linear operator acting on C(R+, Rn). Hence, it takes continuous maps into continuous
ones.

The kernel K(t, s) from (4) automatically verifies other properties, if it does satisfy
extra conditions. For instance, one frequently encountered property is

sup

{∫
t

0

|K(t, s)| ds : t ∈ R+

}
< ∞, (7)

is implied by the requirement that the subspace BC(R+, Rn) must be left invariant by
the operator V .

In general, the connection between the operator V , and the properties of the kernel
K(t, s), is not always easy to be established. The problem of clarifying such connections
is of great significance for applications.

For instance, an open problem is to establish the conditions on V , such that the
associated kernel K(t, s) admits a resolvent kernel K̃(t, s). See [3] for some discussion in
this regard.

We shall formulate conditions for V , by means of the relationship (4). In other words,
by imposing the adequate conditions on the associated kernel K(t, s). In special situa-
tions, when V is chosen in a classical form, the connection may appear more transparent.

3 Equation (1) and Its Equivalent Forms

Let us return to equation (1) and make a few remarks that will help simplifying the
coming considerations.

First, it is obvious that an additive constant to the operator L, i.e. a constant n-
vector, does not change the equation (1). Hence, without loss of generality, we can
assume

(Lx)(0) = θ ∈ Rn, (8)

for any x in the space C(R+, Rn). This property imposed on the causal operator L has
been called by L. Neustadt [15], the “fixed initial value” property, and its significance in
dealing with existence problems for (1) has been illustrated.

In case of classical Volterra operator

(V x)(t) = f(t) +

∫ t

0

K(t, s, x(s)) ds,

one obtains (V x)(0) = f(0) = const, for any x ∈ C(R+, Rn), or in another underlying
space.

As mentioned above we can substitute θ in (8) by any constant c ∈ Rn without
changing the equation.
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By integrating both sides of (1) from 0 to t > 0 we obtain the functional differential
equation

ẋ(t) − (Lx)(t) = v0 +

∫ t

0

(V x)(s) ds, (9)

if we take into account (2) and (8).
The following equation is related to the equation (9),

ẋ(t) − (Lx)(t) = f(t), t ∈ R+. (10)

As we know from [3, 7], the Cauchy problem for (10) with x(0) = x0 ∈ Rn can be repre-
sented in case of linear and continuous operator L on C(R+, Rn), by an integral formula,
involving the Cauchy operator associated to L. It is sort of variation of parameters
formula (Lagrange), and it looks

x(t) = X(t, 0)x0 +

∫
t

0

X(t, s) f(s) ds, t ∈ R+, (11)

for any f ∈ C(R+, Rn). The Cauchy function (or kernel) X(t, s) is defined by the formula

X(t, s) = I +

∫ t

s

K̃0(t, u) du, (12)

for each (t, s) ∈ ∆,
∆ = {(t, s) : 0 ≤ s ≤ t}, (13)

where K̃0(t, s) is the resolvent kernel corresponding to K0(t, s), (t, s) ∈ ∆, from the
representation ∫ t

0

(Lx)(s) ds =

∫ t

0

K0(t, s)x(s) ds, t ∈ R+. (14)

In (14), K0(t, s) is measurable only, but the existence of K̃0(t, s) is assured, for
instance, if we accept the condition

K0(t, s) ∈ L∞
loc

(∆, L(Rn, Rn)). (15)

Let us apply formula (11) to the equation (9). We are led to the functional equation

x(t) = X(t, 0)x0 +

∫
t

0

X(t, s) v0ds +

∫
t

0

X(t, s)

∫
s

0

(V x)(u) du ds. (16)

Since we already assumed L to be linear, there results that (16), which is an equivalent
equation to the problem (1), (2), is also linear when V is linear. Otherwise, it is a
nonlinear functional equation for x(t).

In case V is a linear operator acting on C(R+, Rn), we can use the representation
(4), and (16) leads to another equivalent form of the problem (1), (2):

x(t) = X(t, 0)x0 +

∫
t

0

X(t, s)v0 ds +

∫
t

0

X(t, s)

∫
s

0

K(s, u)x(u) du ds.

Interchanging the order of integration in the double integral, we obtain the functional
differential equation

x(t) = X(t, 0)x0 +

∫
t

0

X(t, s)v0 ds +

∫
t

0

(∫
t

u

X(t, s)K(s, u) ds

)
x(u) du,
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which can be rewritten as

x(t) = f(t) +

∫
t

0

K1(t, u)x(u) du, t ∈ R+, (17)

with

f(t) = X(t, 0)x0 +

∫ t

0

X(t, s)v0 ds, t ∈ R+, (18)

and

K1(t, u) =

∫
t

u

X(t, s)K(s, u) du, 0 ≤ u ≤ t. (19)

The equation (17) will be discussed in detail in the next section, and the existence
result will be applied to the problem (1), (2).

Another case will be considered, when the operator V is not necessarily linear, but it
is Lipschitz continuous.

4 The Linear Case: Equation (17)

We have to examine the function (18) and the kernel K1(t, u) to see if we can construct
a solution in C(R+, Rn).

First, the function f(t) from (18) is the solution of the functional differential equation
ẋ(t) − (Lx)(t) = v0, with the initial condition x(0) = x0. Hence, f(t) is a continuously
differentiable function on R+, with values in Rn.

Second, the kernel K1(t, u) given by (19) is a locally bounded function on ∆. More
precisely, we can infer

K1(t, s) ∈ L∞
loc

(∆, L(Rn, Rn)). (20)

Indeed, we shall admit that K(t, s) belongs to L∞
loc

, as mentioned above. Furthermore,
formula (12) shows us that X(t, s) is also locally bounded on ∆. This fact is a consequence
of property that states: any kernel K(t, s), which is locally bounded on ∆, admits a

resolvent K̃(t, s), which is also locally bounded on ∆.
Therefore, the integral equation (17), whose kernel K1(t, s) satisfies (20), admits a

resolvent kernel K̃1(t, s), locally bounded on ∆, while its unique solution is represented
by the resolvent formula

x(t) = f(t) +

∫ t

0

K̃1(t, s) f(s) ds, t ∈ R+, (21)

for any function f ∈ L∞
loc

(R+, Rn). In particular, (21) holds true when f(t) is given by
the formula (18).

In summarizing the discussion carried out above, we can state the following existence
result for the problem (1), (2).

Theorem 4.1 Consider the neutral functional differential equation (1), with the ini-
tial conditions (2). Assume the following conditions are satisfied:

(i) the operators L and V are linear, continuous and causal, acting on the space
C(R+, Rn);
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(ii) the kernels K(t, s) and K0(t, s), occuring in the representations (4) and (14) are
locally bounded on ∆, defined by (13).

Then, there exists a unique solution x(t), t ∈ R+, of the problem (1), (2), for arbitrary
initial data x0, v0 ∈ Rn. This solution is continuously differentiable on R+.

The proof is immediate if we rely on the discussion preceding the statement of The-
orem 1, the equivalence of (1), (2) with the equation (17) being the key ingredient.

Remark 4.1 The condition (6) is not the only condition that can be derived from
the fact that V is acting on C(R+, Rn).

Indeed, from (6) we read

∫
t

0

K(t, s)x(s) ds ∈ ACloc(R+, Rn), (22)

for every x ∈ C(R+, Rn). The space ACloc in (22) is a subspace of C(R+, Rn), and the
inclusion ∫

t

0

K(t, s)x(s) ds ∈ C(R+, Rn), t ∈ R+, (23)

tells us less than (22). Nevertheless, we prefer to use (23) instead of (22) for simplicity.
For example, (23) implies

lim
h→0

∫
t

0

|K(t + h, s) − K(t, s)|ds = 0 t ∈ R+. (24)

Remark 4.2 Considering the resolvent formula (21) for the solution of equation (17),
we can obtain more information about the solution of (1), (2), making extra assumptions

on the kernel K̃1(t, s). This kernel is determined, as shown by (19), by the properties of
the operators L and V .

For instance, if we assume that K̃1(t, s) satisfies the condition

∫ t

0

|K̃1(t, s)| ds ≤ M < ∞, t ∈ R+, (25)

and also

|X(t, 0)| +

∫ t

0

|X(t, s)| ds ≤ N < ∞, t ∈ R+, (26)

then the solution of the problem (1), (2) will verify the inclusion

x(t) ∈ L∞(R+, Rn), x0, v0 ∈ Rn. (27)

The Proof follows immediately from the formulas (18) and (21).
Further properties of the solution can be obtained by imposing various types of esti-

mates on the kernels K1(t, s) or K̃1(t, s), as well as on f(t).
The main problem is to establish the connection between the properties of the oper-

ators L and V , and the kernels occurring in the representations (4) and (14). This will
be discussed in forthcoming papers.
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5 A Nonlinear Case: Equation (16)

We shall rewrite equation (16) in the form

x(t) = f(t) +

∫ t

0

X(t, s)

∫ s

0

(V x)(u) du ds, t ∈ R+, (28)

where f(t) is given by (18). Equation (28), with f(t) defined by (18), is equivalent to
our problem (1), (2). This is a functional integral equation and we shall treat it by the
classical method of iteration/successive approximations. This approach will lead to an
existence and uniqueness result in the space C(R+, Rn). Of course, the operator V is
assumed to be acting on this space.

In order to simplify somewhat the procedure, we shall adopt a hypothesis which is
part of the assumption (25) above. This hypothesis concerns only the linear operator L,
which fully determines the Cauchy kernel X(t, s), 0 ≤ s ≤ t.

Namely, we assume in this section that

∫ t

0

|X(t, s)| ds ≤ M < ∞, (t, s) ∈ ∆, (29)

and we shall limit our consideration in regard to equation (28), only to those operators
L for which (29) is satisfied.

Concerning the operator V , acting on the same space C(R+, Rn), we shall assume it
verifies the Lipschitz type condition

|(V x)(t) − (V y)(t)| ≤ λ(t) |x(t) − y(t)|, t ∈ R+, (30)

for any x, y ∈ C(R+, Rn). We also assume that λ(t) is a nonnegative nondecreasing map
from R+ into itself.

In order to prove the existence and uniqueness of a solution to (28), we construct the
sequence of successive approximations {xk(t) : k ≥ 0}, by letting x0(t) = f(t), and

xk+1(t) = f(t) +

∫ t

0

X(t, s)

∫ s

0

(V xk(u)) du ds, (31)

for k ≥ 1, t ∈ R+.
We shall prove now that the sequence of successive approximations converges in

C(R+, Rn). This means that the sequence converges uniformly on each bounded interval
[0, T ] ⊆ R+. The limit of this sequence

x(t) = lim
k→∞

xk(t), t ∈ R+, (32)

will constitute the solution of our problem. As usual, if we subtract side by side the
relationship (31) and the one corresponding to k instead of k + 1, we find the following
recurrent relation, valid for k ≥ 1 and t ∈ R+:

xk+1 − xk(t) =

∫
t

0

X(t, s)

∫
s

0

[(V xk)(u) − (V xk−1)(u)] du ds. (33)

Taking into account (29) and (30), we obtain from (33) the following recurrent inequality:

|xk+1(t) − xk(t)| ≤ M sup
0≤s≤t

∫
s

0

λ(u)|xk(u) − xk−1(u)| du.
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The above inequality leads immediately to

|xk+1(t) − xk(t)| ≤ M

∫
t

0

λ(s) sup
0≤u≤s

|xk(u) − xk−1(u)| du. (34)

Let us denote

yk(t) = sup
0≤s≤t

|xk(s) − xk−1(s)|, (35)

and rewrite (34) in the form

yk(t) ≤ M

∫ t

0

λ(s)yk(s) ds, k ≥ 1. (36)

We had to keep in mind the fact that sup{|xk(t)− xk−1(t)| : t ∈ [0, T ]} is nondecreasing
in T .

Now by induction, the recurrent inequality (36) leads to, if one assumes y1(t) ≤ A on
the interval [0, T ], T > 0 arbitrary,

yk+1(t) ≤ A
Mk

k!

(∫
t

0

λ(u) du

)k

, t ∈ [0, T ]. (37)

The inequality (37) obviously implies the uniform convergence of the sequence of succes-
sive approximations, on any finite interval of R+. Therefore, we have

lim
k→∞

xk(t) = x(t) ∈ C(R+, Rn). (38)

The function x(t) defined by (38) is a solution of equation (17), and this equation is
equivalent to the problem (1), (2). While (38) shows that x(t) is a continuous solution,
it has actually better regularity properties, as stipulated in section 3.

Let us now formulate the main result of this section, related to our basic problem (1),
(2).

Theorem 5.1 Consider the initial value problem (1), (2), or equivalently the func-
tional integral equation (17), under the following assumptions:

(i) The operator L is a linear continuous operator on the space C(R+, Rn).

(ii) The operator V is also acting on the space C(R+, Rn), and verifies the Lipschitz
condition (30), with λ(t) nondecreasing on R+.

Then, there exists a unique solution x(t) ∈ C(R+, Rn), of (1), (2), or (17), and it is
continuously differentiable on R+, as well as ẋ(t) − (Lx)(t).

Remark 5.1 The uniqueness is proven in the same way we have shown the conver-
gence of the successive approximations, and using estimates like (37).

Remark 5.2 The function f(t) given by (18) is continuously differentiable. It would
suffice to be just continuous.
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Once we know the solution of our problem does exist, we can think of obtaining
further properties, of asymptotic nature.

Namely, we shall drop the assumption (25) on the resolvent kernel K̃1(t, s), and
impose other conditions that can be verified more directly, on the operator V . These
conditions are

(V θ)(t) ≡ 0, λ(t) ∈ L1(R+, R), (39)

and they will help us to recognize the property of boundedness for the solution x(t) ∈
BC(R+, Rn).

Indeed, we see that the conditions of Theorem 5.1 are verified if we accept (39) and
the Lipschitz condition with λ(t) instead of the Lipschitz constant. But if we define
λ̃(t) = sup{λ(s) : 0 ≤ s ≤ t}, we find a function providing as λ(t) does. Obviously,
(39) implies |(V x)(t)| ≤ λ(t)|x(t)| ≤ λ̃(t)|x(t)|. Hence, on behalf of Theorem 5.1 we have
assured the existence and uniqueness of the solution.

We shall prove that the solution is actually in BC(R+, Rn), if we make the extra
assumption (26) on X(t, s).

From (26), (28) and (29), we obtain the integral inequality

|x(t)| ≤ N + M

∫ t

0

|(V x)(s)| ds, t ∈ R+, (40)

x(t) being the solution in C(R+, Rn) for our problem. The inequality (40) and Lipschitz
condition imply

|x(t)| ≤ N + M

∫
t

0

λ(s) |x(s)| ds, t ∈ R+. (41)

The inequality (41) is of Gronwall type, and yields

|x(t)| ≤ M exp

(
M

∫ ∞

0

λ(s) ds

)
, t ∈ R+,

which shows that x(t) ∈ BC(R+, Rn), as it follows from second condition (39).

6 Some Final Remarks

As seen above, the existence of the resolvent kernel is very helpful. Besides the case
K0(t, s) ∈ L∞

loc
(∆, L(Rn, Rn)), the resolvent kernel does exist in other cases. For in-

stance, when K0(t, s) ∈ L2
loc

(∆, L(Rn, Rn)). A parallel investigation of problem (1), (2)
could be conducted in this case. For the general framework see [16].

Several problems of asymptotic behavior of solutions can be treated, with extra as-
sumptions, in the framework used in this paper. For instance, looking for solutions in
the space Cℓ(R+, Rn).

We shall close these remarks with a dynamical interpretation of equation (28), which
is equivalent to our problem (1), (2), when the function f(t) is chosen in the form (18).

Equation (17) describes the working of a feedback dynamical system, in which the
linear plant is described by the equation

x(t) = f(t) +

∫ t

0

X(t, u)c(u) du, (42)
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where c(u) represents the input, c(u) ∈ E(R+, Rn), while the feedback action is given by

c(t) =

∫ t

0

(V x)(s) ds, t ∈ R+. (43)

The information about the asymptotic behavior of the solution of (28) can be directly
related to the motion of the dynamical system. The mathematical and engineering
literatures are providing numerous applications of such systems. Some examples and
further discussion, with ample references to literature, can be found in [1, 2, 10, 11, 14].
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