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A Robust Detector for a Class of Uncertain Systems

Maher Hammami
1∗

and Ines Ellouze
2
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Abstract: This paper studies the problem of output feedback stabilization of
a class of uncertain systems. We construct a robust detector which provides
an approximation of the state of the system. The state trajectory control by
state observation for a class of uncertain systems based on output feedback is
treated, where the nominal system is linear and the uncertainties are bounded.
This work is based on Lyapunov techniques. Furthermore, a numerical example
is given to illustrate the applicability of our main result.
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1 Introduction

The problem of state trajectory control for nonlinear systems by output feedback is ad-
dressed by several authors ([1]–[10]) using several basic methods of studying the stability
and constructing stabilizing output controllers.

In this paper, we treat this problem for a class of uncertain systems. The perturbation
term could result from errors in modeling the nonlinear system, aging of parameters or
uncertainties. In a typical situation, we do not know the uncertainties but we know some
information about it. We can no longer study stability of the origin as an equilibrium
point, nor should we expect the solution of the uncertain systems to approach the origin
as t tends to infinity. The best we can hope that, if the uncertainties are bounded by a
small term in some sense, then the solution will be ultimately bounded by a small bound
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for sufficiently large t. Under some conditions we construct a robust detector (dynamical
system which is expected to produce an estimation of the state on the hole space except
on a small neighborhood of the origin) as the one introduced by Vidyasager [11]. We
study the state trajectory control for non-linear system by output feedback. We obtain
Global Uniform Ultimate Boundedness (GUUB) trajectory (see [12]) for the state of the
error equation.

Consider the state space model

{

ẋ = A(·)x + B(·)u,

y = C(·)x,
(1)

where x ∈ R
n, u ∈ R

q, y ∈ R
p, A(·), B(·) and C(·) depend on some parameter and

(n × n), (n × q) and (p × n) matrices respectively. We shall assume that the dimension
of the state model is finite. We consider throughout this paper specifically perturbations
of the state space from of the plant dynamics (i.e., perturbations of the A(·), B(·) and
C(·) matrices). Let A0, B0 and C0 be the linearized nominal model of the plant. The
matrices A(·), B(·) and C(·) can be factored as follows

A(·) = A0 + ∆A,

B(·) = B0 + ∆B,

C(·) = C0 + ∆C.

We suppose here the exact knowledge of the state space matrices (A0, B0, C0). The
elements of the matrix A0 are {aij} while the elements of the matrix A(·) are {aij + δij}.
In the absence of nonlinearities, the problem is reduced to the linear one.

{

ẋ = A0x + B0u,

y = C0x.
(2)

Uncertain systems are an important class of nonlinear systems, several authors are
interested to study this kind of systems. In [13] and [14], the authors studied this class
of system when the nonlinear part is of the form Ew + σ, the noise w is described in a
general state space form and it also includes the case of state dependent noise. The Ew

factor may represent a stochastic parameter variation of the system matrix A while σ

represents an external additive perturbation.

2 System and Definitions

Let consider the system (1) which can be described by the following state equations

{

ẋ = A0x + B0u + ∆Ax + ∆Bu,

y = C0x + ∆Cx,
(3)

and the following detector

˙̂x = A0x̂ + B0u − L(C0x̂ − y) + ∆Ax̂ + ∆Bu.

Let e = x̂ − x. The error equation is given locally by

ė = (A0 − LC0)e + o(e).



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 8(4) (2008) 349–358 351

Since the terms ‖∆Ax‖, ‖∆Bu‖ and ‖∆Cx‖ are locally bounded, then these dynamics
are locally exponentially stable provided that the pair (A0, C0) is detectable. In [15],
[16] the authors studied this class of systems and constructed a global detector in the
presence of nonlinear perturbation.

In the general case, we consider the perturbed system (3) which can be described by
the following state equations

{

ẋ = F (t, x, u) = A0x + B0u + ∆f(t, x, u),
y = h(t, x) = C0x + ∆h(t, x),

(4)

where x ∈ R
n, u ∈ R

q, y ∈ R
p, A0, B0 and C0 are known (n × n), (n × q), (p × n)

constant matrices respectively and ∆f(t, x, u), ∆h(t, x) are locally Lipschitz continuous
represents of the uncertainties in the plant. For our case, in the presence of uncertainties,
we give a definition of detectability, where we introduce the notion of a global detector
and we will study the state observation law for a class of uncertain systems in the GUUB
trajectory sense.

Consider the system
{

ẋ = f(t, x),
y = h(t, x),

(5)

where t ∈ R
+, x ∈ R

n is the state, u ∈ R
q is the control and y ∈ R

p is the output of
the system. The functions f : [0, +∞[×R

n → R
n respectively h : [0, +∞[×R

n → R
p are

pieceswise continuous in t and globally Lipschitz in x on [0, +∞[×R
n.

We now introduce the notions of uniform boundedness and uniform ultimate boun-
dedness of a trajectory of (5) (see [12]).

Definition 2.1 The system (5) is uniformly bounded when

• for all R1 > 0, there exists a R2 = R2(R1) > 0 such that for all x0 ∈ R
n, for all t0

and for all t ≥ t0
‖x0‖ ≤ R1 =⇒ ‖x(t)‖ ≤ R2.

Definition 2.2 The system (5) is uniformly ultimately bounded when

• there exists a R > 0 such that for all R1 > 0, there exists a T = T (R1) > 0 such
that for all x0 ∈ ℜn, for all t0 and for all t ≥ t0 + T

‖x0‖ ≤ R1 =⇒ ‖x(t)‖ ≤ R.

The above definition means that we have the ultimately bound of the trajectory uniformly
on t0. The classical theorem of Lyapunov proves uniform asymptotic stability of the
equilibrium point x = 0 of a dynamical system ẋ(t) = f(x(t), t) when there exists a
positive definite and decrescent Lyapunov function V (x, t) whose derivative V̇ (x, t) along
the solutions of the system is negative definite. When there exists a RV > 0 such that the
derivative V̇ (x, t) along the solutions of the system is negative for x with ‖x‖ > RV > 0.

Definition 2.3 The system (5) is GUUB solution if V̇ satisfies the following estima-
tion:

V̇ (x(t)) ≤ −ηV (x(t)) + r (6)

with η > 0 and r > 0.
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Remark 2.1 If equation (6) holds then the state of (3) satisfies:

‖ x(t) ‖ ≤ ‖ x(t0) ‖ e−η(t−t0) +
r

η
, ∀ t ≥ t0.

The problem is to design a continuous detector with input y(t) such that the estimates
denoted by x̂(t) converge to x(t) in the ultimate bounded sense (as in the Definition 2.3).

Definition 2.4 (Robust detector). A system

˙̂x = G (t, x̂, y, u)

is called a robust detector for (3) if for all input signals u,

∀ ‖x̂(t0) − x(t0)‖ ∈ ℜn\B(0,
r

η
)

one has
‖x̂(t) − x(t)‖ ≤ λ1‖x̂(t0) − x(t0)‖e

−η(t−t0) +
r

η
, ∀ t ≥ t0.

B(0, r
η
) denotes the ball of radius r

η
> 0 with λ1 > 0, r > 0 and η > 0. Note that the

state of the error equation converges to the ball B(0, r
η
) when t goes to infinity.

3 Robust Detector

We now highlight the major assumptions, with regard to the system given by (3) that
are used in the observer stability proof.

(A1) The pair (A0, C0) is observable, then there exists a matrix L such that the eigenval-
ues of (A0 −LC0) are in the open left-half plane [17]. For all definite positive symmetric
matrix Q there exists a definite positive symmetric matrix P such that:

(A0 − LC0)
T P + P (A0 − LC0) = −Q.

(A2) There exists a function φ where φ(., ., .) : R
+ × R

n × R
q → R

p, such that

P∆f(t, x, u) = CT
0 φ(t, x, u),

where P is the unique positive definite solution to the Lyapunov equation which is given
in (A1).

(A3) There exits a positive scalar function δ1(t) such that

‖φ(t, x, u)‖ ≤ δ1(t),

where ‖.‖ denotes the Euclidean norm on R
n.

(A4) There exists a function γ where γ(., .) : R
+ × R

n → R
p, such that

PL∆h(t, x) = CT
0 γ(t, x),

where P is the unique positive definite solution to the Lyapunov equation which is given
in (A1).

(A5) There exists a positive scalar function δ2(t) such that

‖γ(t, x)‖ ≤ δ2(t),

where ‖.‖ denotes the Euclidean norm on R
n.
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Theorem 3.1 If the assumption (A1), (A2), (A3), (A4) and (A5) hold, then the
system

˙̂x = A0x̂ + B0u + ϕ(t, x̂, y, u) − L(C0x̂ − y),

where

ϕ(t, x̂, y, u) = −
P−1CT

0 (C0x̂ − y)δ(t)2

‖C0e‖δ(t) + r0
(7)

with r0 > 0 and δ(t) = δ1(t) + δ2(t), is a robust detector for the system (4).

Proof Let consider the following Lyapunov function V (e) = eT Pe as in the (A1).
The derivative of this function along the trajectory of the closed-loop system by the
output feedback y, or just along the error equation and using equation (4) and (7)

ė = (A0 − LC0)e − ∆f(t, x, u) + ϕ(t, x̂, y, u) + L∆h(t, x)

is given by

V̇ (e) = −eT Qe − 2eT P∆f(t, x, u) + 2eT Pϕ(t, x̂, y, u) + 2eT PL∆h(t, x)

and using equation (7), (A2) and (A4)

V̇ (e) = −eT Qe − 2eT CT
0 φ(t, x, u) − 2eT P

P−1CT
0 (C0x̂ − y)δ(t)2

‖C0e‖δ(t) + r0

+2eT CT
0 γ(t, x)

= −eT Qe − 2eT CT
0 φ(t, x, u) − 2

eT CT
0 C0eδ(t)

2

‖ C0e ‖ δ(t) + r0
+ 2

eT CT
0 ∆h(t, x)δ(t)2

‖ C0e ‖ δ(t) + r0

+2eT CT
0 γ(t, x).

Since

λmin(Q) ‖ e ‖2 ≤ eT Qe ≤ λmax(Q) ‖ e ‖2, (8)

where λmin(A) and λmax(A) denote the minimum and maximum eigenvalues of the
matrix A and using (A3) and (A5), one gets

V̇ (e) ≤ −λmin(Q)‖e‖2 + 2‖C0e‖δ1(t) − 2
‖C0e‖

2δ(t)2

‖C0e‖δ(t) + r0
+ 2

‖C0e‖‖∆h(t, x)‖δ(t)2

‖C0e‖δ(t) + r0

+2‖C0e‖δ2(t)

with δ(t) = δ1(t) + δ2(t),

V̇ (e) ≤ −λmin(Q)‖e‖2 + 2‖C0e‖δ(t) − 2
‖C0e‖

2δ(t)2

‖C0e‖δ(t) + r0
+ 2

‖C0e‖‖∆h(t, x)‖δ(t)2

‖C0e‖δ(t) + r0

≤ −λmin(Q)‖e‖2 + 2r0
‖C0e‖δ(t)

‖C0e‖δ(t) + r0
+ 2δ(t)‖∆h(t, x)‖

‖C0e‖δ(t)

‖C0e‖δ(t) + r0

≤ −λmin(Q)‖e‖2 + (2r0 + 2δ(t)‖∆h(t, x)‖)
‖C0e‖δ(t)

‖C0e‖δ(t) + r0
.
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Since,

‖C0e‖δ(t)

‖C0e‖δ(t) + r0
< 1, ‖∆h(t, x)‖ <

‖C0‖δ2(t)

‖PL‖
,

we obtain

V̇ (e) ≤ −λmin(Q)‖e‖2 + 2r0 + 2
‖C0‖δ2(t)

‖PL‖
δ(t)

V̇ (e) ≤ −
λmin(Q)

λmax(P )
V (e) + r

with

r = 2r0 + 2
‖C0‖δ2(t)

‖PL‖
δ(t).

So

V̇ (e) ≤ −ηV (e) + r

with

η =
λmin(Q)

λmax(P )
. (9)

From the above Remark 2.1 one obtains the following estimation

‖ V (e(t)) ‖ ≤ ‖ V (e(t0)) ‖ e−η(t−t0) +
r

η

so,

λmin(P )‖e(t)‖2 ≤ λmax(P )‖e(t0)‖
2e−η(t−t0) +

r

η
.

Hence,

‖e(t)‖ ≤

√

λmax(P )

λmin(P )
‖e(t0)‖e

−
η

2
(t−t0) +

√

r

λmin(P )η
.

Therefore, e(t) converges to the ball B(0,
√

r
λmin(P )η

) in the ultimate bounded sense.2

Remark 3.1 Note that, if we take r0 = r0(t) with r0(t) going to zero when t tends
to infinity and δ −→ 0 when t → +∞, the trajectory tends to the origin exponentially
when t → +∞.

Next, we consider the system (4) under the condition that the uncertainties are
bounded. When the states are not available the usual technique is to build an observer
which gives an approximation of the state. Many authors studied the problem of the
conception of the observer. For the concept of observer, we aim at simplifying the design
of this system by exploiting the linear form of the nominal system. We first introduce
the following definition as in [18] and [19].



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 8(4) (2008) 349–358 355

Definition 3.1 A practical exponential observer for (4) is a dynamical system which
has the following form:

˙̂x = F (t, x̂, u) − L(Cx̂ − y), (10)

where L is the gain matrix and the origin of the error equation with e = x̂ − x, which is
given by

ė = F (t, x̂, u) − F (t, x, u) − LCe + L∆h(t, x) (11)

is globally practically exponentially stable, it means that it is globally uniformly practi-
cally asymptotically stable and the following estimation holds:

‖e(t)‖ ≤ λ1(‖e(t0)‖) e−λ2(t−t0) + r, ∀ t ≥ t0

with λ1, λ2, r > 0.

Note that, the origin x = 0 may not be an equilibrium point of the system (4). We
can no longer study stability of the origin as an equilibrium point nor should we expect
the solution of the system to approach the origin as t −→ ∞. The inequality given in
Remark 2.1 implies that x(t) will be ultimately bounded by a small bound r > 0, that is,
‖x(t)‖ will be small for sufficiently large t. If r can be replaced by a smooth map r(t) as a
function of t which tends to zero as t tends to +∞, the ultimate bound approaches zero.
This can be viewed as a robustness property of convergence to the origin provided that
F satisfies F (t, 0, 0) = 0, ∀ t ≥ 0, which is supposed in such a way the origin becomes
an equilibrium point.

We consider the system (4) satisfying the assumption (A1) and the following one

(A6) There exist positive constants M1 and M2, such that for all t ≥ 0

‖∆f(t, x)‖ ≤ M1,

and
‖∆h(t, x)‖ ≤ M2.

(12)

To design an observer, we shall consider the dynamical system

˙̂x = Ax̂ + Bu + ∆f(t, x̂) − L(Cx̂ − y), (13)

where L is the gain matrix, x̂ ∈ R
n is the state estimate of x(t) in the sense that

e(t) = x̂(t) − x(t) satisfies the following estimation,

‖e(t)‖ ≤ ‖e(t0)‖e
−λ(t−t0) + r, ∀ t ≥ t0.

Proposition. Under assumptions (A1) and (A6) the system (13) is a practical ex-
ponential observer for the system (4).

Indeed, we consider the error equation with e = x̂ − x

ė = ˙̂x − ẋ = (A0 − LC0)e + ∆f(t, x̂) − ∆f(t, x) + L∆h(t, x) (14)

and the quadratic Lyapunov function candidate V (e) = eT Pe as in the proof of the
theorem. Taking into account (A6), the derivative of W along the trajectories of system
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(2) is given by

Ẇ (t, e) = ėT Pe + eT P ė

= eT
[

(A0 − LC0)
T P + P (A0 − LC0)

]

e + 2eT P (∆f(t, x̂) − ∆f(t, x))

+ 2eT PL∆h(t, x)

= −eT Qe + 2eT P (∆f(t, x̂) − ∆f(t, x)) + 2eT PL∆h(t, x)

≤ −eT Qe + 2‖eT P‖ · ‖∆f(t, x̂) − ∆f(t, x)‖ + 2‖eT PL‖ · ‖∆h(t, x)‖

≤ −eT Qe + 2‖P‖ (‖∆f(t, x̂)‖ + ‖∆f(t, x)‖) ‖e‖ + 2‖P‖ · ‖L‖ · ‖∆h(t, x)‖ · ‖e‖

≤ −eT Qe + 4‖P‖ · M1 · ‖e‖ + 2‖P‖ · ‖L‖ · M2 · ‖e‖

≤ −eT Qe + (4‖P‖M1 + 2‖P‖ · ‖L‖ · M2) ‖e‖

≤ −λmin(Q)‖e‖2 + M‖e‖

with

M = (4‖P‖M1 + 2‖P‖ · ‖L‖ · M2) .

Using (8), we get

V̇ (e) ≤ −
λmin(Q)

λmax(P )
V (e) + M‖e‖

and using (9)

V̇ (e) ≤ −ηV (e) + M‖e‖.

Therefore,

V̇ (e) ≤ −ηV (e) +
M

√

λmin(P )

√

V (e). (15)

Let W (t) =
√

V (t). The derivative with respect time yields

Ẇ (t) =
V̇ (t)

2W (t)
.

So,

Ẇ (t) ≤ −
1

2
ηW (t) +

1

2

M
√

λmin(P )
.

Using remark 2.1, one gets

‖W (t)‖ ≤ ‖W (t0)‖e
−

1

2
η(t−t0) +

M

η
√

λmin(P )
.

Since W (t) =
√

eT (t)Pe(t), it follows that

‖e(t)‖ ≤

√

λmax(P )

λmin(P )
· ‖e(t0)‖e

−
η

2
(t−t0) +

M

ηλmin(P )
.
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We get an estimation as in (7). The origin of (14) satisfies an estimation as in
Definition 3.1. Hence, we conclude that, the origin of system (10) is a practical expo-

nential observer for the system (4). The solution converges to the ball B(0, M
ηλmin(P )

). 2

Note that ‖e(t)‖ can be small for sufficiently large t, if we take M = M(t) such that

lim
t→∞

M(t) = 0.

4 Numerical Example

Consider the system






ẋ1 = x1 + x2 + e−t sin x1, t ≥ 0,

ẋ2 = −3x2 + 2u,

y = x1 + x2,

(16)

with x = (x1, x2)
T ∈ R

2,

A0 =

(

1 1
0 −3

)

, B0 =

(

0,

2

)

,

C0 =
(

1 1
)

, ∆f(t, x) = e−t sin x1.

(17)

This system is observable with

L =

(

L1

L2

)

=

(

2401
−2283

)

.

We get the following system

˙̂x =

(

−2400 −2400
2283 2280

)

x̂ +

(

0
2

)

u +

(

2401
−2283

)

y + e−t sin x̂1 (18)

with

Q =

[

1 0
0 1

]

, λmin(Q) = λmax(Q) = 1,

and P is given in (A1):

P =

[

6, 3458 −6, 3456
−6, 3456 6, 3538

]

, λmin(P ) = 0, 0042, λmax(P ) = 12, 6954.

Let ‖P‖ = λmax(P ) = 12, 6954. Hence η = 0, 0788 and ∆f(t, x) ≤ 1, ∀ t, x. Here
M1 = 1, M2 = 0 and M = 4 · ‖P‖ · M1 = 50, 7816.

Therefore, system (18) is an observer which can be considered as a robust detector as
the definition 2.4 and the trajectory of the error equation converges to the ball B(0, r)
with r ≃ 153498.

Conclusion

This paper deals with the problem of the output stabilisation for a class of uncertains
systems. It is shown that an output controller can be constructed under some sufficient
conditions and a robust detector can be designed which provides an estimation of the
state. A numerical example in the plane is given to illustrate our main result.
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