Nonlinear Dynamics and Systems Theory, 9(1)(2009) 11–22

Eigenvalues for Iterative Systems of Nonlinear Boundary Value Problems on Time Scales

M. Benchohra¹, F. Berhoun¹, S. Hamani¹, J. Henderson^{2*}, S.K. Ntouyas³, A. Ouahab¹ and I.K. Purnaras³

¹ Laboratoire de Mathématiques, Université de Sidi Bel Abbès, BP 89, 22000, Sidi Bel Abbès, Algérie

² Department of Mathematics, Baylor University, Waco, Texas 76798-7328 USA

³ Department of Mathematics, University of Ioannina, 451 10 Ioannina, Greece

Received: February 6, 2008; Revised: December 19, 2008

Abstract: Values of $\lambda_1, \ldots, \lambda_n$ are determined for which there exist positive solutions of the iterative system of dynamic equations, $u_i^{\Delta\Delta}(t) + \lambda_i a_i(t) f_i(u_{i+1}(\sigma(t))) = 0$, $1 \leq i \leq n$, $u_{n+1}(t) = u_1(t)$, for $t \in [0, 1]_{\mathbb{T}}$, and satisfying the boundary conditions, $u_i(0) = 0 = u_i(\sigma^2(1))$, $1 \leq i \leq n$, where \mathbb{T} is a time scale. A Guo-Krasnosel'skii fixed point theorem is applied.

Keywords: time scales; boundary value problem; iterative system of dynamic equations; nonlinear; eigenvalue.

Mathematics Subject Classification (2000): 39A10, 34B18.