

Oscillation Criteria for Half-Linear Delay Dynamic Equations on Time Scales

Lynn Erbe¹, Taher S. Hassan^{1,2}, Allan Peterson^{1*} and Samir H. Saker²

 ¹ Department of Mathematics, University of Nebraska-Lincoln Lincoln, NE 68588-0130, USA
² Department of Mathematics, Faculty of Science, Mansoura University Mansoura, 35516, Egypt

Received: December 6, 2007; Revised: December 19, 2008

Abstract: This paper is concerned with oscillation of the second-order halflinear delay dynamic equation

$$(r(t)(x^{\Delta})^{\gamma})^{\Delta} + p(t)x^{\gamma}(\tau(t)) = 0,$$

on a time scale \mathbb{T} , where $\gamma \geq 1$ is the quotient of odd positive integers, p(t), and $\tau : \mathbb{T} \to \mathbb{T}$ are positive rd-continuous functions on \mathbb{T} , r(t) is positive and (delta) differentiable, $\tau(t) \leq t$, and $\lim_{t\to\infty} \tau(t) = \infty$. We establish some new sufficient conditions which ensure that every solution oscillates or converges to zero. Our results in the special cases when $\mathbb{T} = \mathbb{R}$ and $\mathbb{T} = \mathbb{N}$ involve and improve some oscillation results for second-order differential and difference equations; and when $\mathbb{T} = h\mathbb{N}$, $\mathbb{T} = q^{\mathbb{N}_0}$ and $\mathbb{T} = \mathbb{N}^2$ our oscillation results are essentially new. Some examples illustrating the importance of our results are also included.

Keywords: oscillation; delay half-linear dynamic equations; time scales.

Mathematics Subject Classification (2000): 34K11, 39A10, 39A99.

^{*} Corresponding author: apeterson1@math.unl.edu

^{© 2009} InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 51