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Abstract: The method of oriented manifolds is developed to study geometric prop-
erties of the sets of trajectories of nonlinear differential systems with control. This
method is conceptually connected with the classical methods of Lyapunov, Poincaré,
and Levi–Civita and is a natural extension and development of results of the Donetsk
school of mechanics. In terms of the method of oriented manifolds, sufficient condi-
tions for stabilizability of nonlinear control systems are established.

A new method for stability investigation of nonlinear differential systems of per-
turbed motions is created on the basis of the concept of matrix-valued Lyapunov
functions. This method is generalized for the systems with impulse action and after-
effect, differential equations with explosive right-hand sides and hybrid systems.

New conditions of practical stability of motion for nonlinear systems with im-
pulse action are established on the basis of two auxiliary Lyapunov functions and the
condition of exponential stability for linear impulse systems in a Hilbert space.

⋄ Series of works honoured with the State Prize of Ukraine in the Field of Science and Technology
in 2008.
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General theory of the Fredholm boundary-value problems is constructed for sys-
tems of functional-differential equations, a classification of resonance boundary-value
problems is elaborated, efficient coefficient criteria of existence of solutions are ob-
tained and bifurcation and branching conditions for solutions to such problems are
established.

New matrix methods are developed for the analysis of stability, localization of
spectrum and representation of solutions of arbitrary order linear differential and
difference systems. The methods of comparison and robust stability analysis are
worked out for nonlinear dynamic systems in partially ordered space.

The averaging technique and the method of integral manifolds are developed for
nonlinear resonance oscillating systems with slowly varying frequencies. New ex-
act error estimations are established for the averaging technique in the initial and
boundary-value problems for multifrequency systems and systems with impulse ac-
tion.

New statements on stability and instability of linear approach to solutions of evo-

lutionary equations in a Banach space are made. Absolute stability conditions are

established for systems with aftereffect. In particular, a process of aircraft under-

carriage galloping is studied at landing on the ground airfield with constant velocity.

Also, stability conditions are established for the metal cutting process at turning

behind a track with constant angular velocity of spindle rotation.

Keywords: stability; robust stability; practical stability of motion; initial and

boundary-value problems; differential and difference systems; systems with impulse

action and aftereffect; comparison principle; Lyapunov functions; matrix equation;
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1 Introduction

This paper presents a survey of main results of a series of investigations competing for
the State Prize of Ukraine in the Field of Science and Technology in 2008.

First, it should be noted that the fruitful ideas by Lyapunov have enabled his suc-
cessors to develop constructive approaches for the analysis of dynamical behaviour of
nonlinear systems.

Remarkable results of N.M. Krylov and N.N. Bogoliubov, which became a groundwork
for a new direction in the field of mathematical physics, called "nonlinear mechanics",
have become a source of many investigations of systems with small parameter, both of
theoretical and practical importance.

The discovery of the principle of maximum in the mathematical theory of optimal
control made by L.S. Pontryagin proved to be a profound synthesis of the theory of
differential equations and the variational calculus whose development is associated with
the name of outstanding mathematician of the 18-th century L. Euler.

A range of problems whose solutions are proposed in the monographs [1–12] and pa-
pers [13–43] was formed according to the needs of new fields of science and technology
such as exploration of the near-Earth and outer space, automatic control of produc-
tion processes by computers, mathematical biology, etc. A key role in the solution of
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these problems is played by the ideas and methods set out in the remarkable works by
Lyapunov–Bogoliubov–Pontryagin.

Several hundred references in the publications [1–43] give an idea about the directions
of the investigations mentioned in the title of this series of works and bring the reader to
the boundary beyond which new areas for further investigations are opened up in these
challenging scientific directions which constitute the basis for the technological advance
in the beginning of the third millenium.

2 Qualitative Theory of Nonlinear Control Systems

In the papers [1, 2, 13, 14, 16], [19]–[24], qualitative properties of the family of trajectories
of nonlinear systems of differential equations of the type

ẋ = f(x, u), x ∈ D ⊂ R
n, u ∈ U ⊂ R

m, (2.1)

are studied, where x is the state vector and u is the control. The function f(x, u) is
assumed to be continuously differentiable sufficient number of times in D×U . In papers
by A.M. Kovalev [13, 14], the notion of a set oriented with respect to control system
was introduced and the method of oriented manifolds was proposed. This method is
conceptually connected with the method of Lyapunov functions and the Poincaré–Levi–
Civita method of invariant relations.

Definition 2.1 A manifold K ⊂ D is called oriented with respect to system (2.1) in
the domain D if it coincides with its positive (K = Or+K) or negative (K = Or−K)
orbit. Positive orbit Or+K of the set K is a set of points attainable from the set K along
the trajectories of system (2.1) and negative orbit Or−K is a set of points from which
the set K can be attained.

By means of the method of oriented manifolds, a general controllability criterion for
nonlinear systems is proved.

Theorem 2.1 [13] System (2.1) is controllable iff there are no manifolds K with
smooth boundary oriented with respect to this system such that K 6= ∅, D.

As compared with known results in the control theory, Theorem 2.1 does not as-
sume infinite differentiability (or analiticity) of the vector fields of a control system. The
equations of oriented manifolds obtained in [13] are of independent interest. Their rela-
tionship with the Levi–Civita equations of invariant manifolds and Lyapunov equations
for functions ensuring motion instability is established. This relationship was used in
the investigation of the problem on sufficient conditions for stabilizability of nonlinear
controlled systems and the synthesis of a feedback law with respect to all and a part of
variables [22]. To formulate the main result of the paper, we designate the ε-neighborhood
of the point x = 0 by B(0, ε).

Theorem 2.2 [22] Let 0 ∈ intD, 0 ∈ U , f(0, 0) = 0, U be a compact and, for some
ε > 0, each point of the set B(0, ε) \ {0} is a point of local controllability of system
(2.1). Then there exists a feedback control u : B(0, ε) → U ,u(0) = 0 (generally speaking,
discontinuous) which ensures non-asymptotic stability of the solution x = 0 of the closed-
loop system

ẋ = f(x, u(x)). (2.2)

Besides, the solutions of system (2.2) are defined in the sense of A.F. Filippov.
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Examples are constructed which demonstrate that this result can not be refined (i.e.
it is final). For a control affine system, it is proved that the set of discontinuity points of
the feedback is contained in some set whose dimensions are smaller than the dimension
of the state space.

In order to generalize controllability conditions for the case of manifolds with smooth
boundary, properties of attainability domains of linear systems in the presence of joint
restrictions on the control and the initial state were studied in [2, Ch. 1]. A formula for
the gage function of attainability set was obtained which simplifies the further analysis
and allows one to construct the external and internal estimates of the attainability set.
In monographs [1, 2], problems on motion control for a rigid body and systems of bodies
were considered with the application of estimates of attainability sets. New estimates of
attainability sets of a system of differential equations modelling the rotational motion of
a rigid body under the action of a control torque were proposed. A problem in restricted
statement and a case of translational and rotational motion were studied. In particular,
in [13] equations of rigid body motion with respect to a center of masses under the action
of jet force were considered without taking into account mass changes

A1ω̇1 = (A2 −A3)ω2ω3 + e1u,
A2ω̇2 = (A3 −A1)ω1ω3 + e2u,
A3ω̇3 = (A1 −A2)ω1ω2 + e3u,

(2.3)

where A1, A2, A3 are the principal central moments of inertia of the body; ω1, ω2, ω3 are
the projections of the angular velocity vector ω on the main central axes; e = (e1, e2, e3)
is a unit vector of direction of the jet force moment; u is a control characterizing the
magnitude of the jet moment. It is established that system (2.3) is uncontrollable under
any of the conditions

A1(A2 −A3)e
2
3 = A3(A1 −A2)e

2
1, (2.4)

A2(A3 −A1)e
2
1 = A1(A2 −A3)e

2
2, (2.5)

A3(A1 −A2)e
2
2 = A2(A3 −A1)e

2
3. (2.6)

In paper [13], it is shown that if the parameters of system (2.3) do not satisfy condi-
tions (2.4)–(2.6) then system (2.3) is controllable according to Theorem 2.1. As compared
with the previous papers, the application of the method of oriented manifolds enabled
a unified description of controllability conditions for system (2.3) to be obtained in all
cases of dynamically symmetric and asymmetric rigid body.

The evolution of geometric methods of nonlinear control theory led to the necessity of
constructive description of the class of flat-systems, i.e. the systems which admit exact
linearization by means of an endogenous feedback. The theory of flat-systems, appeared
in the works by M. Fliess, J. Lévine, P. Rouchon, Ph. Martin, is being developed in
the papers [2, 14, 16]. In these works, the method of invariant relations is applied for
solving inverse control problems, observation, identification, convertibility, and functional
controllability problems. General theorem on identifiability of nonlinear systems was
proved. It states the identifiability of any system with respect to the measurements of its
phase vector under a condition of its nonrepresentability by means of a smaller number
of parameters. Conditions of observability and identifiability of nonlinear systems with
respect to a part of variables are established [2, Ch. 5]. For general type systems, a
functional controllability criterion is proposed, a property of invertibility is studied, a
notion of inverse system is introduced, and an algorithm of its construction is presented
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[14]. A generalized flat-algorithm proposed in [16] allows a considerable extension of
the class of nonlinear control systems which admit explicit solution of motion planning
problems. The concept of a generalized flat-system on the trajectory set is applied to
study the problems of observation and identification of phase coordinates and parameters
of motion equation of a rigid body in the force field. Observability conditions are used
to substantiate the choice of output functions which are measured at probe navigation.
In this direction, a class of problems on the determination of the mass center motion
and rigid body orientation is solved [2, Ch. 6]. The results obtained in the field of
identification of nonlinear systems are used to investigate problems of determining the
moments of inertia and aerodynamical characteristics of a rigid body by the available
information about motion.

A method of transforming the dynamical system with impulse control to the system
with jumps realized on some surfaces in a phase space is proposed in [19], and new
notions of impulses of high degrees and orders are introduced which are necessary for the
investigation of systems nonlinear with respect to control. By employing impulse effects, a
series of control and stabilization problems are solved and numerical methods are justified
which can be used for an approximate construction of solutions to impulse systems. The
results are applied for the problems on controlled stabilization of mechanical systems.
In particular, a solution for the problem on stabilization of the Brockett integrator is
obtained. An algorithm is proposed for constructing control system for nonholonomic
models with independent quasivelocities as a control.

The notion of a control Lyapunov function with respect to a part of variables is
introduced in [20]. These functions are employed in the proof of the theorem on partial
stabilizability of nonlinear nonautonomous system. For control affine systems, an efficient
method of constructing a stabilizing feedback is proposed. This result extends a theorem
of Z. Artstein for the case of partial stabilization. The apparatus of control Lyapunov
functions allowed one to solve a series of model problems on partial stabilization of a
rigid body orientation. In particular, a model problem is considered for the motion of a
satellite as an absolutely rigid body around its center of mass in the restricted statement
under the action of jet control moments. Also, the case is studied when the control
moments are implemented by means of a pair of flywheels [21]. In [23], control and
stabilization algorithms are developed for motion of a satellite with elastic antennas and
rods. The proposed control technique incorporates the mathematical model of a hybrid
mechanical system in the form of differential Euler–Lagrange equations with infinite
number of degrees of freedom. For a preassigned arbitrary number of elastic modes, an
approximated finite-dimensional nonlinear system is constructed for which a stabilizing
control with feedback is found. The above-mentioned control ensures asymptotic stability
of the equilibrium state with respect to the combinations of elastic coordinates and body
orientation. Besides, stability in the sense of Lyapunov is reached with respect to all
phase coordinates. Observability of a model of hybrid system is proved with respect
to the measurements of sensors of elastic element deformations. This allows one to
substantiate the possibility of technical implementation of the proposed control laws.

A new approach is proposed in [24] for the investigation of stabilizability conditions
for nonlinear controlled system by means of critical Hamiltonians. New stabilizability
conditions are obtained for nonlinear affine control system defined by two homogeneous
vector fields.
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3 Rigid Body Dynamics and Motion Stability of Mechanical Systems

In [18] the author stated and solved a problem on the inclusion of given invariant manifold
into the family of integral manifolds for a system of ordinary differential equations of the
type

ẋ = ϕ(x), x ∈ D ⊂ R
n. (3.1)

Assume that for every x0 ∈ D system (3.1) has a unique solution x(t;x0), t ≥ 0 satisfying
the initial condition x(0;x0) = x0. We shall introduce necessary definition.

Definition 3.1 A manifoldM ⊂ D is called invariant for system (3.1) if x(t;x0) ∈M
for all t ≥ 0 and x0 ∈ M . If Fi(x), i = 1, 2, ..., k are independent integrals of system
(3.1), the set N = {x : Fi(x) = ci, i = 1, 2, ..., k} is called the integral manifold of system
(3.1).

Now we shall formulate the main result on the inclusion of an invariant manifold into
the family of integral manifolds.

Theorem 3.1 [18] Any integral manifold M of dimension n − k in a neighborhood
of a nonsingular point of system (3.1) is contained in some k-parametric set of integral
manifolds.

It is proved that such an inclusion is locally possible only if the invariant manifold
under consideration is not a (n− 1)-dimensional manifold consisting of singular points.

By means of the Levi–Civita equations of integral manifolds assertions describing the
structure of the including family are proved. The results obtained are applied in the
investigation of motion equations of the Hess gyroscope in special coordinate axes [18]

ẋ = −b1zx,
ẏ = (a− a∗)zx+ b1yz − ν3Γ,
ż = −(a− a∗)yx+ b1(x

2 + y2) + ν2Γ,
ν̇1 = a∗zν2 − (a∗y + b1x)ν3,
ν̇2 = (ax+ b1y)ν3 − a∗zν1,
ν̇3 = (a∗y + b1x)ν1 − (ax+ b1y)ν2,

(3.2)

where x, y, z are components of the kinetic moment vector in special coordinate axes;
ν1, ν2, ν3 are coordinates of the unit vector colinear to the direction of force field; a, a∗,
b1 are components of gyration tensor; the constant Γ characterizes intensity of the force
field (action of gravity force). The following three integrals of the Euler-Poisson system
of differential equations (3.2) are known

ax2 + a∗(y
2 + z2) + 2b1yx− 2ν1Γ = 2h;

xν1 + yν2 + zν3 = k;

ν2
1 + ν2

2 + ν2
3 = 1.

Besides, system (3.2) possesses the invariant Hess manifold x = 0.

Theorem 3.2 [18] System of differential equations (3.2) possesses an additional in-
tegral of the form I = xV , where V is a solution of the differential equation LϕV = b1zV .
Partial cases of this integral are the Euler and Lagrange integrals and the Hess and Dok-
shevich solutions.
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In the above theorem Lϕ means the operator of function differentiation along the
trajectories of system (3.2). In the paper cited first approximation of the integral I
is also obtained in the neighborhood of the uniform rotations curve belonging to the
invariant Hess manifold.

In [17] the author developed the results by V.V. Kozlov and V.N. Koshlyakov on
the application of the Rodrigues–Hamilton parameters in the motion investigation of a
rigid body possessing a fixed point. By introducing in a special way a fixed system of
coordinates a new form was obtained for motion equations of a rigid body which have a
symmetric form and are quadratic in main variables. By means of these equations linear
and nonlinear vibrations of a rigid body are studied in the Rodrigues–Hamilton parame-
ters. To study stability of stationary motions of the Hamiltonian systems reducible to the
two-dimensional ones a theorem generalizing the known Arnold–Moser result on stability
of the equilibrium state of two-dimensional Hamiltonian system was proved. Application
of this theorem to stability investigation of uniform rotations of a heavy rigid body with
a fixed point allowed closing with this classical problem which has attracted the attention
of investigators since the beginning of the 20-th century [15].

4 Stability, Control, and Stabilization of Infinite-Dimensional Systems

To study the motion of distributed parameter mechanical systems, the property of asymp-
totic stability with respect to a continuous functional is analyzed in [27] for generalized
dynamical systems on a metric space. In particular, dynamical systems whose evolution
is described by differential equations in some Banach space E are considered. Let X
be a closed subset of E containing a sphere BR = {x ∈ E | ‖x‖ ≤ R}, R > 0, and let
F : D(F ) → E be a nonlinear closed operator with dense in X domain of definition
D(F ). For initial conditions x0 ∈ X , we consider the abstract Cauchy problem

dx(t)

dt
= Fx(t), t ∈ R+ = [0,+∞), x(0) = x0. (4.1)

We assume that the operator F is the infinitesimal generator of a continuous semi-
group of nonlinear operators {S(t)}t≥0 in X , therefore the Cauchy problem (4.1) is
well-posed and its mild solutions are written in the form x(t) = S(t)x0.

Definition 4.1 Let y : X → R+ be a continuous functional, F (0) = 0. The singular
point x = 0 of differential equation (4.1) is called asymptotically stable with respect to
y if

(i) for arbitrary given ε > 0, there exists δ(ε) > 0 such that ‖x0‖ < δ implies
y(S(t)x0) < ε for all t ∈ R+;

(ii) there exists ∆ > 0 such that ‖x0‖ < ∆ implies

lim
t→∞

y(S(t)x0) = 0. (4.2)

The above definition of partial stability is associated with the development of abstract
approach to the definition of stability in two metrics. The absence of the condition
of positive definiteness of the functional y enables one to consider Definition 4.1 as a
generalization of the notion of asymptotic stability with respect to a part of variables in
the sense of Lyapunov and Rumyantzev for the case of infinite-dimensional systems.
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Let V : E → R be a Fréchet differentiable functional. Then the time derivative of V
along the trajectories of (4.1) can be written as

V̇ (x(t)) = (Fx(t),∇x(t)V ), (4.3)

where (·, ·) : E × E∗ → R denotes the duality pairing of E and E∗, i.e. (ξ,∇xV ) is the
value of linear functional ∇xV ∈ E∗ at the point ξ ∈ E.

In order to formulate partial stability conditions, we use the class of Hahn functions
K consisting of all continuous strictly increasing functions α : R

+ → R
+ possessing the

property α(0) = 0.

Theorem 4.1 [27] Let F be the infinitesimal generator of a continuous semigroup
{S(t)} of nonlinear operators in X, F (0) = 0, and let y : X → R+ be a continuous
functional. We assume that there exists a Frechet differentiable functional V : E → R

satisfying the following conditions:
1) For some functions α1(·), α2(·) ∈ K, the inequality

α1(y(x)) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ X.

is satisfied.
2) V̇ (x) ≤ 0 for all x ∈ D(F ).
3)There exists a ∆ > 0 such that, for any ‖x0‖ < ∆, the corresponding set

⋃

t≥0

{S(t)x0}

is precompact in X.
4) The set Ker y = {x ∈ X | y(x) = 0} is invariant for (4.1), i.e. if y(S(τ)x0) = 0,

τ ≥ 0 then y(S(t)x0) = 0 for all t ∈ R+.
5) The set

M = {x ∈ D(F ) | V̇ (x) = 0} \ Ker y

does not contain any semitrajectory of system (4.1) defined for t ∈ R+.
Then the singular point x = 0 of differential equation (4.1) is asymptotically stable

with respect to y.

This theorem generalizes results by C. Risito and V.V. Rumyantzev for the case of
partial stability of infinite-dimensional system. Theorem 4.1 is used for the synthesis of
control functionals for mathematical models of hybrid mechanical systems. Such mechan-
ical systems consisting of rigid and elastic bodies are widely applied in space industry
and robot technology. In[26, 28], the author considered models of rotational motion
of a satellite with an arbitrary number of elastic elements, i.e. antennas in the form
of the Euler–Bernoulli beams. If all the beams have the same mechanical parameters,
the system under investigation is not asymptotically stable and, under these conditions,
the stabilization problem with respect to the norm of some projection operator onto an
infinite-dimensional subspace of the state space was solved in [26]. In the case of beams
with nonresonant parameters, the approximate controllability was proved and a control
functional was proposed which ensures strong asymptotic stability of the equilibrium
state [28]. From the mechanical point of view, such a control implements the stabiliza-
tion of the body-carrier orientation with simultaneous damping of beams vibrations. In
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[25], equations of the spatial motion of an elastic robot-manipulator were studied with
allowance for the telescopic displacement of its links under the effect of control forces.
The Euler-Bernoulli and Timoshenko beams with mixed boundary conditions were con-
sidered as models of link deformations. A scheme of stabilization with the help of an
observer in the feedback chain was proposed for the model equilibrium state. It is proved
that this approach ensures asymptotic stability of the unperturbed solution of the sys-
tem for an arbitrary number of generalized coordinates corresponding to the elastic beam
vibrations.

5 The Method of Matrix-Valued Lyapunov Functions and the Analysis of
Dynamic Properties of Nonlinear Systems

Stability analysis of zero solution of nonlinear system in the normal form

dx

dt
= X(t, x), x(t0) = x0, (5.1)

where x ∈ R
n, X ∈ C(R+ × R

n,Rn), X(t, 0) = 0 for all t ≥ t0, is a challenging task if
the dimension of the vector x is large enough. One of the approaches to solution of this
problem is the decomposition of system (5.1) to the form

dxi
dt

= fi(t, xi) + gi(t, x1, ..., xm), i = 1, 2, ...,m, (5.2)

where xi ∈ R
ni , fi : R+ × R

ni → R
ni , gi : R+ × R

n1 × ...× R
nm → R

ni ,
m∑
i=1

ni = n.

The monographs [3, 4] and Chapter 5 of the monograph [5] presented the results of
development of the direct Lyapunov method in terms of auxiliary matrix-valued function

V (t, x) = [vij(t, x)], i, j = 1, 2, ...,m, (5.3)

which is considered to be a suitable medium for construction of both scalar and vector
Lyapunov functions solving the problem on stability of the state xi = 0 of system (5.2).

It is proposed to take the elements vij(t, x) of matrix-valued function (5.3) such that
to satisfy the estimates

γ
ij
ψij(‖xi‖)ψji(‖xj‖) ≤ vij(t, x) ≤ γijψij(‖xi‖)ψji(‖xj‖),

where γ
ii
, γ

ij
> 0, γij , γij are constants for i 6= j, (ψij , ψji) ∈ K(KR)-Hahn class for

all i, j = 1, 2, ...,m. If conditions (5.4) are satisfied, then for the function

V (t, x, y) = yTU(t, x)y, y ∈ R
m
+ , (5.5)

the bilateral estimate

ψT1 (‖x‖)Y TGY ψ1(‖x‖) ≤ V (t, x, y) ≤ ψT2 (‖x‖)Y TGY ψ2(‖x‖), (5.6)

is valid, where
ψ1(‖x‖) = (ψ11(‖x1‖), . . . , ψ1m(‖xm‖))T , ψ2(‖x‖) = (ψ21(‖x1‖), . . . , ψ2m(‖xm‖))T ,
Y = diag(y1, . . . , ym), G = [γ

ij
], G = [γij ], i, j = 1, 2, . . . ,m.
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For function (5.5) the total derivative

D+V (t, x, y) = yTD+U(t, x)y, (5.7)

is considered, where D+U(t, x) = [D+vij(t, x)], i, j = 1, 2, ...,m, and D+vij(t, x) =
lim sup{[vij(t+ θ, x+ θ(fi(t, xi) + gi(t, x1, ..., xm))]θ−1 : θ → 0+}.

For certain restrictions on function (5.5) and its total derivative (5.7) by virtue of
system (5.2) sufficient conditions are established for various types of stability of zero
solution to system (5.2)((5.1) respectively).

Theorem 5.1 Let the vector-function X in system (5.1) be continuous on R × N
(N ⊂ R

n) and admit decomposition of system (5.1) to the form (5.2).
If for function (5.5) estimates (5.6) are valid and

D+V (t, x, y) ≤ ψT3 (‖x‖)A3(y)ψ(‖x‖), (5.8)

for all (t, x) ∈ R+ ×N , where A3(y) is an m× n-constant matrix then:
(1) the state x = 0 of system (5.1) is stable if the matrices A1 = Y TGY и A2 =

Y TGY are positive definite and the matrix A3(y) is negative definite;
(2) the state x = 0 of system (5.1) is uniformly stable if the matrices A1, A2 are

positive and the matrix A3 is negative semidefinite.

Similarly to Theorem 5.1 the results on asymptotic stability, exponential stability and
instability of the state x = 0 of system (5.1) are formulated and proved.

For polystability analysis of the state x = 0 of system (5.2) it is proposed to apply
the vector function

L(t, x, b) = AU(t, x)b, (5.9)

where A is a constant m × m-matrix, b ∈ R
m
+ , U ∈ C(R+ × R

n,Rm×m), and its total
derivative

D+L(t, x, b) = AD+U(t, x)b (5.10)

by virtue of system (5.2). A detailed polystability analysis for system (5.2) was carried
out in the cases m = 2, 3, 4, and sufficient conditions were established for various types
of polystability of the state x = 0 of system (5.2).

Solution of the problem of constructing a suitable matrix-valued function (5.3) is
considered in the following cases:

Case 1. The elements vi(t, xi), i = 1, 2, ...,m are put in correspondence with the
independent subsystems

dxi
dt

= fi(t, xi), i = 1, 2, ...,m, (5.11)

of system (5.2) and the elements vij(t, xi, xj), i 6= j, i, j = 1, 2, ...,m are put in corre-
spondence with the (i, j)-pairs of the independent subsystems

dxi
dt

= qi(t, xi, xj),

dxj
dt

= qj(t, xi, xj), (i 6= j) ∈ [1,m],

where xi ∈ R
ni , xj ∈ R

nj , qi ∈ (R+ × R
ni × R

nj ,Rnj ).
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Case 2. Subsystems (5.11) are decomposed into Mi second level subsystems

dxij
dt

= fij(t, xij) + hij(t, xi), j = 1, 2, ...,mi (5.12)

where xij ∈ R
nij , fij ∈ C(R × R

nij ,Rnij ), hij ∈ C(R × R
ni ,Rnij ), i = 1, 2, ...,m,

j = 1, 2, ..., ni. The elements vii(t, xi) are put in correspondence with the free subsystems
of the second level of decomposition

dxij
dt

= fij(t, xij), j = 1, 2, ...,m, (5.13)

and the elements vij(t, x), (i 6= j) ∈ [1,m], are constructed with allowance for the
interconnection functions hij(t, xi) in system (5.12).

Case 3. For the class of systems of (5.2) type [30]

dxi
dt

= fi(xi) + gi(t, x1, ..., xm),

fi ∈ R
ni → R

ni , fi(0) = 0, i = 1, 2, ...,m, the elements vii(xi) are put in correspondence
with the independent subsystems

dxi
dt

= fi(xi), i = 1, 2, ...,m, (5.14)

and the elements vij(t, xi, xj) are found by the equations

Dtvij(t, xi, xj) + (Dxi
vij(t, xi, xj))

T fi(xi) + (Dxj
vij(t, xi, xj))

T fj(xj)+

+
yi
2yj

(Dxi
vii(xi))

T gij(t, xi, xj) +
yj
2yi

(Dxj
vjj(xj))

T gji(t, xi, xj) = 0, (i 6= j) ∈ [1,m],

where gij(t, xi, xj) = gi(t, 0, ..., xi, ..., xj , ..., 0), i 6= j, i, j = 1, 2, ...,m.
In all the above cases new conditions are established for various types of stability of

the state x = 0 of system (5.1), without assuming on exponential stability of the state
x = 0 of subsystems (5.11), (5.13) or (5.14). As is known this condition is necessary for
the application of the vector Lyapunov function and appropriate comparison system.

Also, the method of matrix-valued Lyapunov functions was developed for:
— time discrete systems in terms of semidefinite positive functions (5.3), whose ele-

ments are linear forms, and hierarchical matrix Lyapunov functions;
— large-scale impulse systems of the form

dxj
dt

= fj(t, xj) + f∗
j (t, x), t 6= τk(x), j = 1, 2, ...,m,

∆xj = Ikj(xj) + I∗kj(x), t = τk(x), k = 1, 2, ...

in terms of auxiliary functions satisfying conditions (5.4), and also in terms of hierarchical
matrix Lyapunov functions whose method of construction is indicated;

— systems with random parameters in the Ito form and Katz–Krasovsky form in
terms of stochastic matrix-valued function;

— singularly perturbed systems of the form

dx

dt
= f(t, x, y, µ),

µ
dy

dt
= g(t, x, y, µ),

(5.15)
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where (xT , yT )T is a state vector of system (5.15), x ∈ R
n, y ∈ R

m, f ∈ C(R+×R
n×R

n×
M,Rn), g ∈ C(R+ × R

n × R
m ×M,Rm), µ ∈ [0, 1] = M , in terms of the matrix-valued

function

V (t, x, y, µ) =

(
v11(t, x) v12(t, x, y, µ)

v21(t, x, y, µ) v22(t, y, µ)

)
.

Stability conditions of the state x = y = 0 of system (5.15), and large-scale system
of Lurie–Postnikov type are obtained in terms of sign-definiteness of special matrices.
Moreover, the upper bound µ∗ of the values of parameter µ is calculated for which an
appropriate type of stability of slow variables and boundary layer takes place.

The developed technique is illustrated by numerous examples and applications to the
problems of mechanics, electric power industry, population biology, etc.

6 Generalization of the Direct Lyapunov Method and Comparison Method
for Non-classical Stability Theories

The classical stability theory developed by A.M. Lyapunov is based on three fundamental
concepts:

(1) deviations of perturbed motion from the nominal one should be infinitely small;
(2) in the course of motion perturbing forces are absent;
(3) motion is considered on unbounded interval.
We refer all other stability theories which are based on other concepts to the non-

classical ones. One of such theories is the theory of practical stability based on the
following concepts:

(1) initial and further deviations of perturbing motion from the nominal one are final;
(2) system motion is performed under persistent perturbations;
(3) interval of system functioning is unbounded.
In the monograph [6] general theory of practical stability of motion is presented with

the applications in mechanics. The system of perturbed motion equations

dx

dt
= X(t, x) +R(t, x), (6.1)

is considered, where x ∈ R
n; X : R × R

n → R
n; R : R × R

n → R
n and it is not assumed

that R(t, 0) 6= 0, i.e. x = 0 is not a solution of system (6.1), but it is a solution of the
system

dx

dt
= X(t, x). (6.2)

For given estimates of the domains (S0(t), S(t), Π(t), R+) unperturbed motion of system
(6.2) is practically stable under persistent perturbations if for t0 ∈ R+ and any

x(t0) ∈ S0(t0), R(t, x) ∈ Π(t),

the solution x(t, t0, x0) of system (6.1) remains inside the domain S(t), i.e. x(t) ∈ intS(t)
for all t ≥ t0.

Practical stability of unperturbed motion of system (6.2) is determined as a motion
property opposite to practical stability.

To solve the problem on practical stability of systems of (6.1), (6,2) type or their
partial form three approaches were developed in the monograph [6]:

Approach 1 is based on the representation of general solution to system (6.2) as series
of special form.
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Approach 2 is based on the application of the direct Lyapunov method and locally
large auxiliary function.

Approach 3 is based on the reduction of system (6.1) or (6.2) to the other one called
a comparison system with further analysis of its solutions. Here both scalar and vector
Lyapunov functions are applied as a nonlinear transformation of the initial system.

In the framework of Approach 1 practical stability conditions are established for
system (6.2) with uniformly bounded and uniformly analytiс right-hand side and for a
system with integrable approximation of the form

dx

dt
= A(t)x + g(t, x), (6.3)

where x ∈ R
n; A(t) is an n × n-continuous and bounded matrix, g(t, x) satisfies the

estimate

‖g(t, x)‖ ≤ b(t)‖x‖α, α > 0, for all (t, x) ∈ R+ × S(t).

These conditions are based on representation of solution to system (6.2) by series of
the form

x(t) = x0 +

∞∑

m=1

Cm(x0)ψ
m,

where ψ = {exp[λ(t − t0)] − 1}{exp[λ(t − t0)] + 1}−1, λ is a positive number, with
further application of the Schur theorem on convergence of series (6.4). Practical stability
conditions for the state x = 0 of system (6.3) are based on the estimates associated with
nonlinear integral inequality.

The results obtained are employed for the analysis of dynamics of large scale systems
with integrable approximation.

In the framework of Approach 2 the direct Lyapunov method is applied with necessary
modifications. For locally large function V (t, x) the quantitative estimates

V ŜM (t) = sup(V (t, x) for x ∈ ∂S(t)),

V Ŝ0

m (t) = inf(V (t, x) for x ∈ ∂S0(t)),

are introduced, where S0(t) ⊂ S(t) and ∂S1 ∩ ∂S0 = ∅ for all t ∈ R+.

Theorem 6.1 Assume that
(1) V (t, x) ∈ C(R+ × S(t),R+), V (t, x) is locally large and locally Lipschitz in x;
(2) D+V (t, x) < D+η(t) for (t, x) ∈ R+ × S(t), where η ∈ C(R+, (0,∞)) and η(t) is

nondecreasing in t ∈ R+;
(3) for some t0 ∈ R+ the estimate η(t0) ≤ V S0

M (t0) is valid and η(t) ≤ V ∂Sm (t) for all
t ≥ t0.

Then the unperturbed motion of system (6.2) is practically stable with respect to the
domains (S0(t), S(t)).

Similar theorems are proved for various types of practical stability and instability of
solutions for systems (6.1) and (6.2) with respect to different domains S0(t), S(t).

In the realization of Approach 3 scalar (vector) comparison equations are incorporated
which satisfy quasimonotonicity condition. Practical stability conditions are expressed
in the form of quantitative restrictions on variation of solutions to comparison equation.
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Moreover, alongside systems (6.1) and (6.2) the systems with first integrals are consid-
ered. General concept of practical stability is formulated in terms of extended system
(6.1) and stability with respect to a part of variables.

With regard to practical stability the problems of stabilization of controlled systems
are solved for some classes of linear and nonlinear systems on the basis of the principle
of comparison with mixed monotonicity of comparison system. For the axiomatically de-
termined system of processes conditions of practical stability are established with respect
to two vector measures whose components may take negative values.

In [31, 32] practical stability of some classes of hybrid systems consisting of time-
continuous and discrete components is studied. In [32] a nonlinear system of differential
equations of perturbed motion with impulsive effect

dx

dt
= f(t, x), t 6= τk,

∆x = Ik(x), t = τk,
(6.4)

is considered, where x ∈ R
n, f ∈ C(R+ × R

n,Rn), f(t, 0) = 0 for all t ∈ R+, Ik ∈
C(Rn,Rn), Ik(0) = 0, k = 1, 2, . . . , 0 < τ1 < τ2 < · · · < τk < · · · → +∞ for k → ∞. It
is assumed that the solution x(t) = x(t; t0, x0) of the Cauchy problem (1) exists and is
unique and the length of the maximal interval [t0, t0 + J(t0, x0)) of existence of solution
to the Cauchy problem for system of equations (6.4) when the impulse effect is absent
satisfies the inequality J(t0, x0) > θ2 for all (t0, x0) ∈ R+ × R

n, R+ = [0,+∞).
In the space R

n let the sets S0 = {x| x ∈ R
n, ‖x‖ < λ}; S = {x| x ∈

R
n, ‖x‖ < A} be defined for given constants A, λ > 0, λ < A.

Let G ⊂ R+×R
n and for any t ∈ R+ we define the set G(t) = {x ∈ R

n | (t, x) ∈ G}

and the set G =
∞⋃
i=1

G(τi).

Practical stability is studied by means of the Lyapunov function for which the follow-
ing assumptions are made:

a) function v(t, x) is continuous and differentiable in (t, x) ∈ [t0,∞) × S;

b) function v(t, x) is locally large in the domain of values (t, x) ∈ [t0,∞) × S, i.e.
there exists a positive constant N such that for any c, 0 < c < N , t0 ∈ R+ there
exists a positive number δ(t0, c) such that outside the sphere Kδ = {x : ‖x‖ ≤ δ} the
inequality v(t, x) > c is satisfied for all t ∈ [t0,∞);

c) total derivative dv
dt

∣∣∣
(6.4)

of function v(t, x) along solutions of system (6.4)

dv

dt

∣∣∣
(6.4)

=
∂v

∂t
+

(∂v
∂x

)T
f(t, x)

vanishes together with the function v(t, x) for x = 0;

d) function v(t, x) is positive definite in the domain R+×S in the sense of Lyapunov;

e) a(‖x‖) ≤ v(t, x) ≤ b(t, ‖x‖), for all (t, x) ∈ R+ × R
n, где a(.) is a function of

Khan class K, b(t, .) is a function continuous and nondecreasing in the second argument.

Theorem 6.2 Let system of equations (6.4) be such that:

1) there exists a function v(t, x) for which conditions (a)–(e) are satisfied;

2) there exist an invariant set G+ and functions ϕ1 ∈ C(R+,R+),
ψ1 ∈ C(R+,R+), p1 ∈ C(R+,R+), and ψ1(.) is a nondecreasing function such that the
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estimates below are satisfied

dv

dt

∣∣∣
(6.4)

≤ p1(t)ϕ1(v) for all (t, x) ∈ G
+
,

v(τk, x+ Ik(x)) ≤ ψ1(v(t, x)) for all x ∈ G
+
;

3) there exist functions ϕ2 ∈ C(R+,R+),ψ2 ∈ C(R+,R+), p2 ∈ C(R+,R+) such that
the estimates below are satisfied

dv

dt

∣∣∣
(6.4)

≤ −p2(t)ϕ2(v) for all (t, x) ∈ G
−
,

v(τk, x+ I(x)) ≤ ψ2(v(t, x)) for all x ∈ G
−
,

where G− = extG+;
4) constants λ,A > 0,λ < A < A0 satisfy the estimates:
a) for all η ∈ [0, b(t0, λ)), k = 0, 1, 2, ..., τ0 = t0,

ψ2(η)∫

η

ds

ϕ2(s)
≤

τk+1∫

τk

p1(t)d t,

b)
a(A)∫

b(t0,λ)

ds
ϕ1(s)

≥
τk+1∫
τk

p2(t)d t;

c)ψ1(a(A)) < b(t0, λ) .
Then system (6.4) is (S0, S, [t0,∞))-stable.

Theorem 6.2 generalizes the results of the paper [30] where conditions of Lyapunov
stability were established in terms of two auxiliary functions. Conditions of Lyapunov
stability for linear differential perturbed motion equations with impulse effect obtained in
[34] and motion stability conditions for nonlinear system of perturbed motion equations
of (6.4) type obtained in [30] enable one to investigate stability of the system in the case
when continuous and discrete components of the system are not stable.

In [31] a hybrid system of the form

dx

dt
= A(t)x + g(t, x) +Bku(k), t ∈ [τk, τk+1),

u(k + 1) = Cku(k) +Dkx(τk),
(6.5)

is considered, where x ∈ R
n, u ∈ R

m, A ∈ C([0,∞),Rn×n), Bk ∈ R
n×m,Ck ∈

R
m×m,Dk ∈ R

m×n, g ∈ C([0,∞) × R
n; Rn). Here {τk}

∞
k=1 is a sequence of switch-

ing moments possessing a unique limiting point at infinity.
By means of the methods of the theory of integral inequalities practical stability

conditions with respect to a part of variables and with respect to all variables of system
(6.5) are established in terms of estimates of the Cauchy matrix of linear approximation
of system (6.5).

In the monograph [5] stability conditions are obtained for systems with small parame-
ters of the following types: systems standard by Bogoliubov, systems with slow and quick
variables, systems with small perturbing forces. These conditions are based on the ideas
of the direct Lyapunov method, the averaging technique and the method of comparison
for auxiliary scalar functions.
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7 Boundary-Value Problems in the Nonlinear Oscillations Theory

This part of the paper involves the theory of nonlinear oscillations which is one of the
most important branches of nonlinear mechanics. For the first time in the field the most
complete theory of the (Fredholm) boundary-value problems was constructed for the
systems of differential equations with impulse effect in which the number of boundary
conditions does not coincide with the number of unknowns. Most complicated and not
well-studied resonance boundary-value problems, both underdetermined and overdeter-
mined ones, are considered:

ż = A(t)z + f(t) + εZ(z, t, ε), t 6= τi, t, τi ∈ [a, b],

∆z
∣∣∣
t=τi

−Siz(τi − 0) = ai + εJi(z(τi − 0, ε), ε), i = 1, ..., p, (7.1)

lz = α+ εJ(z(·, ε), ε).

Here A(t) и f(t) ∈ C([a, b] \ {τi}I) are n × n-dimensional matrix functions and n-
dimensional vector functions respectively; Z(z, t, ε) is a nonlinear n-dimensional vector
function continuously differentiable with respect to the first argument in the neighbour-
hood of solutions to generating boundary-value problem

ż = A(t)z + f(t) t 6= τi, t, τi ∈ [a, b], (7.2)

∆z
∣∣∣
t=τi

−Siz(τi − 0) = ai, i = 1, ..., p, lz = α,

Z(z, t, ε) is continuous or piece-wise continuous in the second argument with first kind

discontinuities for t = τi and continuous in ε ∈ [0, ε0]; ∆z
∣∣∣
t=τi

= z(τi + 0) − z(τi − 0),

Siare(n× n)- constant matrices: det(E + Si) 6= 0, ai ∈ R
n ; l is a linear continuous m-

dimensional vector functional; J(z(·, ε), ε), Ji(z(τi−0, ε), ε) are m-dimensional nonlinear
vector functionals continuously differentiable (by Frechet) in z in the neighbourhood of
solution of generating boundary-value problem (7.2)continuous in ε ∈ [0, ε0].

For the first time a problem was solved on establishing the existence (branching)
conditions for solutions z = z(t, ε) : z(·, ε) ∈ C1([a, b] \ {τi}I), z(t, ·) ∈ C[0, ε0] of the
problems which, for ε = 0, become one of the solutions z0(t, cr) : z(t, 0) = z0(t, cr),
cr ∈ R

r of generating boundary-value problem (7.2) and algorithms for their obtaining
are proposed.

Theorem 7.1 (on branching of solutions) Let boundary-value problem (7.1) be
such that the critical (resonance) case ( rank[Q := lX(·)] < m), takes place and gen-
erating problem (7.2) has r-parametric family of linearly independent solutions z0(t, cr),
(r = n− rankQ). Then for every value of the vector cr = c0r ∈ R

r, which is a simple real
root of the equation

PQ∗

{
J(z0(·, c

0
r), 0)−l

∫ b

a

K(·, τ)Z(z0(τ, c
0
r), τ, 0)dτ−l

p∑

i=1

K̄(·, τi)Ji(z0(τi−0, c0r), 0)
}

= 0,

(7.3)
boundary-value problem (7.1) has at least one solution x(t, ε) : x(·, ε) ∈ C1([a, b]\{τi}I),
x(t, ·) ∈ C[0, ε] which becomes generating with the vector constant c0r : x(t, 0) = z0(t, c

0
r).

This solution can be found with the help of the iteration process convergent on [0, ε∗].
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Here X(t) is a normal fundamental matrix of homogeneous differential system (7.2),
K(t, τ) is a Cauchy matrix, PQ∗ is an orthoprojector on the co-kernel of matrix Q.

In the case of periodic boundary-value problem (7.1) without impulses [7, 35] Theo-
rem 7.1 yields the classical result of A. Lyapunov and I. Malkin. If equation (7.3) has a
physical meaning then the constants c0r are the amplitudes of generating solutions and,
therefore, in the periodical case this equation is called the equation for generating am-
plitudes. In the case when generating boundary-value problem (7.2) has no solutions
bifurcation conditions were established for solutions to linearly perturbed (Fredholm)
boundary-value problem

ż = A(t)z + εA1(t)z + f(t), t 6= τi, (7.4)

∆z
∣∣∣
t=τi

−Siz(τi − 0) = ai + εA1iz(τi − 0), lz = α+ εl1z.

Theorem 7.2 (on bifurcation of solutions) Let boundary-value problem (7.2)
generating for (7.4) have no solutions for arbitrary functions f(t) ∈ C([a, b]\{τi}I), ai ∈
R
n, α ∈ R

m. Then under the condition

rank [B0 := PQ∗

[
l1Xr(·) − l

∫ b

a

K(·, τ)A1(τ)Xr(τ)dτ−

−l

p∑

i=1

K̄(·, τi)A1iXr(τi − 0)
]

= m− rankQ, (7.5)

for arbitrary nonhomogeneities f(t) ∈ C([a, b] \ {τi}I), ai ∈ R
n, α ∈ R

m boundary-value
problem (7.4) has a parametric family ρ = m− n of linear independent solutions in the
form of a part of the Laurent series

z(t, ε) =

∞∑

i=k

εizi(t) + Pρcρ, ∀cρ ∈ R
ρ, k = −1, (7.6)

which converges for fixed sufficiently small ε ∈ (0, ε∗].

Similar results were obtained in the investigation of boundary-value problems for
systems of ordinary differential equations with delaying argument [8, pp. 170–194], [38]
and for difference systems [8, pp. 93–96], [36], as well as for systems with boundary
conditions at infinity [8, pp. 257–304], [37] when the appropriate homogeneous differential
system is exponentially dichotomous on semi-axes. These results complete and generalize
essentially the known results of R.J. Sacker and K.J. Palmer.

8 Methods of Matrix Equations and Cone Comparisons in the Stability
Theory

8.1 Analogues of Matrix Lyapunov Equation and Their Application ([9],
[39])

The method of Lyapunov functions for linear differential and difference systems is for-
mulated in terms of positive definite solutions to the matrix equations

−AX −XA∗ = Y, X −AXA∗ = Y.
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The known Lyapunov theorem provides criteria for placing a spectrum of such systems
inside the left-hand half-plane and a unit disk. Matrix algebraic and differential Lyapunov
equations are widely applied in the theory of qualitative systems and control theory.

The monograph [9] deals with the methods of constructing, investigating and applying
in motion stability theory the analogues of the matrix Lyapunov equations and their
generalizations of the form ∑

i,j

γijAiXA
∗
j = Y, (8.1)

where Ai is a set of matrices, in particular, Ai = fi(A) are the analytic functions of the
matrix A.

The monograph presents criteria of localization and distribution of the matrix spec-
trum with respect to the sets

Λ+
f =

{
λ : f(λ, λ̄) > 0

}
, Λ−

f =
{
λ : f(λ, λ̄) < 0

}
, Λ0

f =
{
λ : f(λ, λ̄) = 0

}
.

The Lyapunov theorem and the inertia theorem of Ostrovsky–Schneider are gener-
alized for the maximal possible classes of analytical Hermitian functions f ∈ Hm

0 and
f ∈ Hm

2 determined by the corresponding conditions

‖1/f(µi, µj)‖
m
i,j=1 ≥ 0, ∀ µ1, . . . , µm ∈ Λ+

f ; i±
(
‖f(µi, µ̄j)‖

m

1

)
≤ 1, ∀ µ1, . . . , µm 6∈ Λ0

f ;

where i±(·) are the inertia indices of the Hermitian matrix that equal to the number of
its positive and negative eigenvalues. If f(λ, λ̄) =

∑
ij γijfi(λ)fj(λ) then f ∈ Hm

0 and
f ∈ Hm

2 under the corresponding restrictions i+(Γ) = 1 and i±(Γ) ≤ 1.

Theorem 8.1 [9] Let the matrix A ∈ Cn×n, the function f ∈ Hm
0 and the arbitrary

positive definite matrix Y = Y ∗ > 0 be given. Then the spectrum σ(A) is located in the
domain Λ+

f if and only if there exists a unique positive definite solution X = X∗ > 0 of
the matrix equation

LfX , −
1

4π2

∮

ω1

∮

ω2

f(λ, µ̄)(A − λI)−1X(A− µI)−1∗dλ dµ̄ = Y, (8.2)

where ω1 (ω2) is a closed contour embracing and not intersecting σ(A) (σ(A)).

All known results in the direction are the partial cases of Theorems 1–3 set out in
the monograph. Also, correlations of the type of linear system controllability conditions
are constructed which extend essentially the possibilities of the method of generalized
Lyapunov equation in spectrum localization problems. Equation (8.2) which can be
represented in the form of (8.1) was used for the first time in the problems of linear
system optimization with respect to output [39].

ẋ = Ax+Bu, y = Cx, u = −Ky, J(u) =

∫

∆

ρ(x0)

∞∫

0

(x∗Qx+u∗Ru)dt dx0 → min
u
. (8.3)

In terms of generalized Lyapunov theorem and matrix Atans–Levine system a re-
lationship of the quadratic quality functional and the domain of desirable location of
closed loop system spectrum is established. Optimization algorithms are constructed
controlling the system spectrum location in complex domain.
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A general technique of constructing the analogues of Lyapunov equation is developed
for polynomial and analytic matrix functions. Operators of such equations are presented
in the form of the Cauchy type integrals of logarithmic derivative and also by means of
special algebraic systems of spectrum splitting and the so-called right-hand and left-hand
pairs of matrix functions. We shall formulate an analogue of Lyapunov theorem with
the application of the left-hand eigen pairs of (U ∈ Cm×m, T ∈ Cm×n) of the matrix
function F (λ) of controllability index r determined by the conditions

TF (λ) ≡ (λI − U)Φ(λ), rankE = r, E = [T, UT, ..., Um−1T ].

In this case σ(U) = σr(F ) ⊆ σ(F ) and, besides, the spectra σ(U) and σ(F ) coincide

if rank

[
F (λ)
Φ(λ)

]
= n, ∀λ ∈ σ(F ). We introduce a set of matrices K = {X : EXE∗ ≥ 0}.

Theorem 8.2 [9] If the matrices X ∈ K and X ∈ K satisfy the correlations

∑

i,j

γijfi(U)EXE∗f∗
j (U) = EY E∗, (8.4)

Sλ = EY E∗ + (λI − U)EE∗(λI − U)∗ ≥ 0, rangSλ ≡ m,

then σr(F ) ⊂ Λ+
f , where f(λ, λ) =

∑
i,j γijfi(λ)fj(λ). Conversely, if σr(F ) ⊂ Λ+

f and
f ∈ Hm

0 , then for any matrix Y ∈ K equation (8.4) has the solution X ∈ K.

The eigen pairs (U, T ) of the matrix functions F (λ) are also employed in the con-
struction and investigation of solutions to dynamical systems of the type of
F (D)x = g, where D is an operator of differentiation or displacement in time t.

For the linear descriptor systems Bẋ = Ax, Bxk+1 = Axk and second order differen-
tial systems

Ax +Bẋ+ Cẍ = g, (8.5)

modelling the dynamics of many objects of mechanics and physics new methods are devel-
oped for stability analysis, Lyapunov function construction and estimation of spectrum
location with respect to algebraic curves. In particular, for the rotative system of the
Lavale rotor type described as (8.5) with the matrix coefficients

A = K + iS, B = D + iG, C = M,

necessary and sufficient stability conditions are constructed in analytical form in terms
of the corresponding mechanical parameters. Here M = MT > 0 is a mass matrix,
D = DT = D0 +D1 ≥ 0, G = GT = ωG0 ≥ 0 is a gyroscopic matrix, K = KT > 0 is a
rigidity matrix, S = ST ≥ 0 is a circulation matrix, D0 and D1 are constituents of the
internal and external dampings, ω is the angular velocity of rotor rotation. The proposed
technique refines the known estimate of the critical frequency of rotor rotation at which
stability is lost. Also a regulator of the type of g = Ru, u = K0x +K1ẋ, is constructed
which stabilizes closed loop system.

For the linear differential-difference systems

ẋ = Ax+
∑

i

Aix(t − τi)

an analogue of the Lyapunov equation is constructed and in terms of its solutions absolute
stability conditions are formulated (see [9], Chapters 2 and 3).
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The theory of linear equations and operators in the matrix space is developed ([9],
Chapter 4). Systems of matrix equation transformations are constructed allowing the de-
scription of their solvability conditions and inertia properties of the Hermitian solutions.
A class of equations with special families of matrix coefficients is indicated and the Hill
and Schneider theorems on inertia of their Hermitian solutions are generalized. A class
of linear equations in the space with cone is studied [9], Appendix 2). The method of
successive approximations is used to estimate solutions and their characteristics of the
type of Hermitian matrix inertia. Structure of positive and positive invertible operators
in the matrix space is studied ([9], Appendix 2).

8.2 Cone Inequalities in the Stability Theory([[40], [41], [42], [43])

For the modelling of physical objects differential and difference systems of equations are
employed the phase space of which contains invariant sets, in particular, cones. The
peculiarities of the systems such as positiveness and monotonicity should be taken into
account in stability and control analysis problems. Examples of the positive systems with
respect to a cone of symmetric negative definite matrices are the differential Lyapunov
and Riccati equations and second moments equation for stochastic systems of Ito type.
Positive and monotone systems appear, also due to the application of the comparison
technique as a generalization of the Lyapunov functions methods in stability theory.

The main results of the paper [40] are positiveness conditions and algebraic criteria
of asymptotic stability of linear systems in the Banach space E with normal generating
cone K

Ẋ +M(t)X = 0, t ≥ t0 ≥ 0, K ⊂ E . (8.6)

These conditions are formulated in terms of positive and positive invertible operators.

Theorem 8.3 [40] Positive stationary system (8.6) is exponentially stable iff the
operator M is positive invertible. If the operator M + γE is positive invertible for any
γ ≥ 0 then system (8.6) is positive and exponentially stable.

Stability investigation of linear positive reducible systems and nonstationary systems
with functional commutative operators is reduced to solution of algebraic equations and

cone comparison of their solutions: MX = Y , X
K

≥ 0, Y
K
> 0. A method of robust stability

analysis is proposed as well as analogues of the known comparison systems in the space
with cone.

Generalizations of the class of nonlinear monotone systems in partially ordered space
are introduced:

Ẋ = F (X, t), t ≥ t0 ≥ 0, (8.7)

their characterization by means of linear positive functionals is presented and analogues
of the Lyapunov theorem on stability of equilibrium state of such systems in first ap-
proximation are formulated. Comparison methods are developed for the solutions of
differential systems with the use of constant and variable cones. As a corollary robust
stability conditions are formulated for the families of systems of (8.7) type described by
the cone inequalities [41, 42]

F (X, t)
K

≤ F (X, t)
K

≤ F (X, t), F ∈ F1, F ∈ F1, t ≥ 0,

where F1,F1 are generalized classes of upper and lower systems of comparison with
respect to the cone K.
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In [43] the methods for positiveness and stability investigation are developed for linear
dynamic systems in partially ordered space. For stability analysis of positive systems
special methods are worked out which are based on spectral properties of positive and
positive invertible operators. Invariance conditions are found for the cones of circular type
and their generalizations which allow, in particular, solution of the problem on positive
stabilization of systems with respect to given cones by means of dynamical compensators.
Invariance conditions for ellipsoidal cones and exponential stability conditions for linear
differential and difference systems are formulated in terms of matrix inequalities. The
notion of maximal eigen pairs of a matrix polynomial is used to establish algebraic
conditions of exponential stability of linear arbitrary order differential systems.

9 Multifrequency Oscillations of Nonlinear Systems

Consider a multifrequency nonlinear system of ordinary differential equations with slow
and quick variables of the form

dx

dτ
= a(x, ϕ, τ, ε),

dϕ

dτ
=
ω(τ)

ε
+ b(x, ϕ, τ, ε), (9.1)

where x and ϕ are n- and m-dimensional vectors respectively, ε is a small positive pa-
rameter, τ = εt is a "slow" time, real functions a, b, ω belong to some classes of smooth
and almost periodic in ϕ functions. Systems of the type appear in the investigation of
oscillatory processes in many problems of mechanics, electrical engineering, biology, etc.

We write an averaged in ϕ system

dx̄

dτ
= ā(x̄, τ, ε),

dϕ̄

dτ
=
ω(τ)

ε
+ b̄(x̄, τ, ε), (9.2)

where

ā(x, τ, ε) = lim
k→∞

k−m
k∫

0

...

k∫

0

a(x, ϕ, τ, ε)dϕ1...dϕm,

and designate by Wp(τ) and WT
p (τ) the p×m-matrix

(
dj−1

dτ j−1
ων(τ)

)p,m

j,ν=1

and the transpose matrix respectively. Here ω = (ω1, ..., ωm).
Under the assumption that det

(
WT
p (τ)Wp(τ)

)
> 0, τ ∈ [0, L], we obtain an exact

estimate with respect to the order in ε [10]

‖x(τ, ε) − x̄(τ, ε)‖ + ‖ϕ(τ, ε) − ϕ̄(τ, ε)‖ ≤ cε
1
p , τ ∈ [0, L], ε > 0, (9.3)

where (x, ϕ) and (x̄, ϕ̄) are solutions of systems (9.1) and (9.2), coinciding for τ = 0. For
the proof of inequality (9.3) uniform estimates of oscillation integrals are essentially used
[10].

The averaging technique was applied for solution of boundary-value problems for
system (9.1) with multipoint and integral boundary conditions. Moreover, in the case of
integral boundary conditions the averaged problem is constructed via averaging of not
only differential equations but boundary conditions as well [10].
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If system (9.1) is given for τ ∈ R and

∥∥∥
(
WT
p (τ)Wp(τ)

)−1
WT
p (τ)

∥∥∥ ≤ c1 = const, τ ∈ R,

then existence of the integral manifold x = X(ϕ, τ, ε) of system (9.1) is proved on which
the equations of quick variables become

dϕ

dτ
=
ω(τ)

ε
+ b(X(ϕ, τ, ε), ϕ, τ, ε).

Under the assumption that the functions a, b, ω have continuous bounded partial
derivatives in all variables up to the order of l ≥ 2 it is proved that the function X is
l − 1 times differentiable and [10]

∥∥∥∥D
s
ϕ

∂q

∂τq
∂r

∂εr
X(ϕ, τ, ε)

∥∥∥∥ ≤ c2ε
1
p
−q−2r , 1 ≤ s+ q + r ≤ l − 1,

and the derivatives of (l − 1)-th order satisfy Lipschitz condition in ϕ, τ, ε. Also, condi-
tional asymptotic stability of integral manifold is studied and decomposition of slow and
quick variables is accomplished in the neighbourhood of asymptotically stable integral
manifold [10].

The averaging method for initial and boundary-value problems and the method of
integral manifolds are justified as well in the case of systems of (9.1) type with impulse
effect at fixed moments of time τj = εtj , tj+1 − tj = θ = const > 0 and moreover,

∆x|τ=τj
= εp(x, ϕ, τj), ∆ϕ|τ=τj

= εq(x, ϕ, τj).

It should be noted that in this case the average system is smooth and not subject to
the impulse effect [10]

dx̄

dτ
= ā(x̄, τ) +

1

θ
p̄(x̄, τ),

dϕ̄

dτ
=
ω(τ)

ε
+ b̄(x̄, τ) +

1

θ
q̄(x̄, τ).

10 Absolute Stability, Stability and Instability by Linear Approximation
and Essential Instability of Motion for Nonlinear Infinite Dimensional
Systems

10.1 Absolute stability of systems with aftereffect.

In practice one have sometimes to study stability of dynamical systems at arbitrary
parameter values. If the systems are stable at arbitrary values of the corresponding
parameters these systems are called absolutely stable (with respect to these parameters).
Mathematical models of a wide class of dynamical systems are differential delay equations
and delays are the corresponding parameters.

In [11] spectral criteria of absolute stability (with respect to constant deviations of
argument) are obtained for solutions of linear autonomous differential difference equations
of delay and neutral type

dx(t)

dt
= A0x(t) +

m∑

k=1

Akx(t− τk),
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B0
dx(t)

dt
+

m∑

k=1

Bk
dx(t− δk)

dt
= C0x(t) +

m∑

k=1

Ckx(t− τk)

in a Banach space the separate case of which is the known theorem of Yu.M. Repin. Here
Ak, Bk, Ck, k = 0,m, are linear continuous operators, δk, τk, k = 0,m, are arbitrary
positive or nonnegative constants. Also, classes of systems with arbitrary slowly changing
operator coefficients and argument deviations are constructed whose solutions are strong
absolutely asymptotically stable. Algebraic criteria of absolute asymptotic stability and
instability are obtained for solutions to the scalar equation

dnx(t)

dtn
+
n−1∑

k=0

ak
dkx(t)

dtk
+

n∑

k=0

m∑

j=1

bkj
dkx(t − τj)

dtk
= 0,

which strengthen the known result of L.A. Zhivotovskii. It is shown that absolute ex-
ponential stability of solutions to the equations under consideration is preserved as well
for small nonlinear perturbations of equations. The results of investigation are applied
in stability investigation of the equilibrium states of mechanical systems. In particular,
undercarriage galloping at aircraft uniform motion on an even ground air strip is studied
and stability conditions are established for the equilibrium state at steady cutting at
trace turning for arbitrary constant angular velocity of spindle rotation. Note that in
these two examples the oscillation processes under some restrictions are described by
differential difference equation of the type

d2x(t)

dt2
+ a

dx(t)

dt
+ bx(t) + cx(t − τ) = f

(
x(t),

dx(t)

dt
, x(t− τ),

dx(t− τ)

dt

)
,

where a, b, c ∈ R and f(x1, x2, x3, x4) = o(|x1| + |x2| + |x3| + |x4|) for xk → 0, k = 1, 4.
The investigations are based on the analogue of the maximum principle for the spec-

trum of operator holomorphic function (see [11]).

10.2 Stability and instability in linear approximation and essential instabil-
ity of evolutionary systems.

New conditions of stability and instability in linear approximation are established for
solutions to differential and difference equations of the type

dx(t)

dt
= Ax(t) + F (t, x(t)), t ≥ 0,

xn+1 = Axn +Gn(xn), n ≥ 0,

and similar functional differential equations in a Banach space which generalize and
strengthen the results of A.M. Lyapunov, M.G. Krein and Yu.L. Daletskii. In these
equations A is a continuous linear operator and F (t, ·) and Gn are nonlinear operators
for which

lim
x→0

sup
t≥0

‖F (t, x)‖

‖x‖
= 0 and lim

x→0

sup
n≥0

‖Gn(x)‖

‖x‖
= 0.

Examples of autonomous nonlinear systems with asymptotically stable solutions are
set out for the linear approximations of which these solutions are unstable and are spec-
trum points of operators generated by linear approximations with positive real parts
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(differential case) or absolute values larger than one (difference case) [12]. Theorems on
stability in linear approximation are applicable to the investigation of oscillation pro-
cesses of a series of nonlinear mechanical systems, in particular, vibroimpact ones whose
constituents are components with distributed parameters, systems with impulse loadings,
etc. A mathematical apparatus is so far created for solution of a wide class of problems
of the theory of nonlinear oscillations of complex mechanical systems.

A notion of essentially unstable solution to evolution equation in infinite dimensional
case is introduced which is associated with the essentially approximate spectrum of op-
erator. Such equations have the property that arbitrary absolutely continuous and some
other perturbations can not influence essentially unstable solution so that it becomes
stable. The notion of essentially unstable solution allowed new results on instability of
solutions which have no analogues in the finite dimensional case [12].

The Belitskii–Lyubich hypothesis on smooth mapping of a convex compact subset of
finite dimensional space was disproved. The hypothesis claimed that in the case when
spectral radius of the Frechet derivative of the mapping at all points of the subset is
smaller than a unit, the sequences generated by this iteration mapping converge to the
unique point of the subset. It is shown that in general case the iteration sequences
can diverge and the mapping can have an arbitrary number of cycles. Mappings of the
type occur in practice in the computer investigation of oscillation processes in nonlinear
mechanical systems. Additional conditions are found under which the hypothesis is true.
Also, global asymptotic stability conditions are established for solutions to nonlinear
differential and difference equations in a Banach space [12].

11 Concluding Remarks

The paper provides review of results obtained by the authors in the field of nonlinear
mechanics. The development of the Lyapunov’s methods and the averaging theory al-
lowed solutions to a wide range of problems of the mathematical stability theory, motion
control theory, dynamics of a rigid body and systems of bodies, theory of boundary-value
problems and multifrequency oscillation theory to be described from a unique method-
ological point of view. New approaches set out in the paper are applied not only to
the investigation of systems of ordinary differential equations, but also to a huge class
of hybrid dynamical systems including the systems with impulse effect, delay equations
and differential difference equations in a Banach space. It seems reasonable to develop
further the presented methods for description of dynamical properties of complex sys-
tems in abstract spaces and to apply the obtained results to motion stability and control
problems for mechanical objects with distributed parameters.

The worked out method of oriented manifolds reduced the controllability problem to
the investigation of solvability of differential equations with respect to auxiliary functions
under general assumptions on regularity of vector fields of controlled system. For this
method to be constructively used it is of interest to develop approaches for constructing
basic systems for arbitrary nonlinear control processes. The results obtained in the paper
demonstrate efficiency of applying the method of trajectory set for solution of inverse
problems of control theory. Generalization of theorems of the direct Lyapunov method
yielded a complete description of conditions of strong and partial stabilizability of the
class of plane mechanical systems with elastic beams. Meanwhile, the problem on com-
pactness of limiting trajectory sets of nonlinear differential equations with non-monotone
and unbounded right-hand sides in a Banach space should be further investigated.
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Note that the method of matrix-valued Lyapunov functions allows to extend maxi-
mally the assumptions on dynamical properties of subsystems in large scale system and
assumptions on interconnection functions between the subsystems. As compared with the
other approaches developed in stability theory of large scale systems this method has the
following advantages: it does not require the application of quasimonotone comparison
systems which is a necessary condition when the vector Lyapunov functions are applied;
it allows extension of the class of auxiliary functions by means of which an appropriate
Lyapunov function can be constructed for the problem under consideration; it provides
a possibility of taking into account the effect of interconnection functions between sub-
systems on the whole system dynamics; the method also allows to take into account the
effect of pairs of subsystems appearing as result of first level decomposition on the whole
system dynamics.

It is known that the a priori determination of the domains of initial and subsequent
deviations of solutions from zero equilibrium states (or given nominal solution) and the
domain of persistent perturbations is characteristic for nonclassical stability theories such
as technical and practical ones. Moreover, the interval of system functioning is also fixed.
An efficient application of the direct Lyapunov method in the practical stability problems
by A.A. Martynyuk yielded significant extensions of this method, which are follows: an
extension of the class of auxiliary functions suitable for the studying practical stability
of motion; elimination of the property of having a fixed sign of the total derivative of an
auxiliary function along with solutions of the system under investigation; establishing a
relationship between the quantitative values of the auxiliary function in given (finite) do-
mains of the phase space and decrement (increment) of this function along with solutions
of the system under investigation.

The importance of practical application of the theory of boundary-value problems in
various fields (nonlinear oscillation theory, motion stability theory, control theory, a series
of economical and biological problems) attracts a great interest to the investigations in
the theory of boundary-value problems for a wide class of systems of functional differential
equations.

General theory of under- and over-determined resonance boundary-value problems
is constructed, natural classification of the problems is worked out, efficient coefficient
criteria of existence of solutions to both linear and nonlinear problems are obtained
and algorithms for their construction are developed [7, 8]. Perturbation theory for such
problems is constructed and bifurcation and branching conditions are established for so-
lutions of boundary-value problems (including the problems with conditions at infinity)
with the Fredholm operator in linear part. The application of the apparatus of gener-
alized inverse operators based on classical results of A.M. Lyapunov and I.J. Malkin on
nonlinear periodic oscillation theory provided the development of the qualitative theory
of boundary-value problems for the systems of ordinary differential [7, 8] and difference
[36] equations, systems of differential equations with delaying argument [38] and differ-
ential systems with impulse effect [35]. Further original application of this theory was
to the known problem on bounded on the whole real axis solutions to differential and
difference equations of appropriate homogeneous system under the dichotomy condition
on semiaxes [8, pp. 257–304].

Originality and importance of the main results of the papers [9], [39]–[43] are as
follows. The author generalizes the Lyapunov and Ostrovsky–Schneider theorems on lo-
calization of matrix spectrum for the classes of analytic domains including the previously
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known ones and being maximally admissible in the framework of the method of matrix
equations. Generalized Lyapunov equation is used in the problem on quadratic opti-
mization of linear controlled systems. The analogues of generalized Lyapunov equation
constructed for analytic matrix-functions enable formulation of new algebraic methods
for stability and localization analysis of spectrum of different classes of differential, dif-
ference and differential-difference systems. The elaborated transformation systems and
generalized inertia theory provide new techniques for classification of linear matrix equa-
tions with respect to their solvability conditions and properties of solutions employed in
the applied investigations. Stability criteria are obtained for linear dynamic systems in
partially ordered space in terms of positive and positive invertible operators. New meth-
ods for stability analysis and generalized principle of comparison of nonlinear differential
systems with the use of cone inequalities are formulated. The results obtained allow one
to describe algebraically the classes of stable systems in the parameter space, to compare
their dynamics and to construct stabilizing controls.

Scientific novelty of the results presented in the monograph [10] is as follows. New
uniform estimates are obtained for oscillation integrals and parameter dependent sums.
These estimates are used to substantiate the method of averaging with respect to all quick
parameters on a segment and semiaxis for nonlinear oscillation systems with slowly vary-
ing frequencies in the resonance case. A new construction technique is developed for
integral manifolds of resonant multifrequency systems and their smoothness and stabil-
ity are studied. Solvability conditions are established for boundary-value problems of
multifrequency systems with multipoint and integral boundary conditions and new error
estimates are proved for the averaging method for such problems. The averaging method
and the method of integral manifolds are justified for oscillation systems with slowly
varying frequencies and impulse effect.

In the monographs [11, 12] functional analytical methods are developed for investi-
gation of absolute stability of dynamic systems with aftereffect, stability, instability and
essential instability of trajectories of dynamic systems in infinite dimensional phase space.
These methods allow, first of all, obtaining general results on asymptotic behaviour of
trajectories of nonlinear systems under investigation, constructing a mathematical appa-
ratus for investigation of dynamic processes in complex nonlinear systems and finding out
general regularities of the evolutionary processes going on in many real systems where
motion occurs. Besides, they open up new possibilities for investigating oscillation of tra-
jectories of nonlinear dynamic systems and studying invertibility of nonlinear functional
operators.
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