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PERSONAGE IN SCIENCE

Academician N.N. Bogoliubov

(to the 100th Birthday Anniversary)

A.A. Martynyuk 1∗ , E.F. Mishchenko 2, A.M. Samoilenko 3

and A.D. Sukhanov 4

1 S.P. Timoshenko Institute of Mechanics, National Academy of Sciences of Ukraine,
Nesterov Str., 3, 03057, Kiev-57, Ukraine

2 V.A. Steklov Institute of Mathematics Russian Academy of Sciences,
Vavilova Str., 42, Moscow, Russia

3 Institute of Mathematics, National Academy of Sciences of Ukraine,
Tereshchenkivska Str., 3, 01601, Kiev-4, Ukraine

4 Joint Institute of Nuclear Research, Joliot–Curie Str., 6, Dubna, Moscow reg., Russia

This paper is dedicated to the memory of N.N. Bogoliubov in recognition

of the significance of his efforts in the development of nonlinear mechanics

and theoretical physics, his remarkable and versatile genius, as well as the

novelty and depth of his contribution to the world science.

N.N. BOGOLIUBOV was born on August 21, 1909 in the city of Nizhny Novgorod. He
grew up as a prodigy. At the age of only 13, Bogoliubov participated in a seminar led by
Academician N.M. Krylov, a widely recognized scientist and teacher. In 1924, at the age
of 15, Bogoliubov wrote his first scholarly work, ”On the behavior of solutions to linear
differential equations at infinity”. Between 1925 and 1951, Bogoliubov was an employee in
the mathematical physics division of the Ukrainian Academy of Sciences. During a period
of his collaboration with Academician N.M. Krylov, Bogoliubov conducted fundamental
research in the area of boundary value problems, approximation theory of differential
equations, dynamical systems, and direct methods of variational calculus.

During those years, Bogoliubov created a new direction in the theory of uniform,
almost periodic functions. Thereby he established a close link to the general behavior
of linear combinations of arbitrary bounded functions. In 1930, one of Bogoliubov’s
first works was awarded the A. Merlani Prize by the Bologna’s Academy of Sciences.
In the same year, at the age of 21, with no formal thesis defense, Bogoliubov earned an
honorable Habilitation degree in Mathematics from the Presidium of Ukrainian Academy
of Sciences.

∗ Corresponding author: anmart@stability.kiev.ua
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The progress in science and technology created new avenues in telecommunication and
electrical engineering, as well as mechanics of complex oscillating systems and aerospace.
So, from 1932, Bogoliubov, together with his supervisor and mentor, N.M. Krylov, began
developing an entirely new branch of mathematical physics — the theory of nonlinear os-
cillations, which they called ”nonlinear mechanics”. Their first work in this new direction
was dealt with the theory of oscillations in power machinery and mechanical systems.
The research in nonlinear mechanics was carried out in two directions: developing new
asymptotic integration techniques of nonlinear equations of motion in oscillatory systems
and laying a foundation for these methods based on measure theory.

Having overcome copious difficulties, Krylov and Bogoliubov extended the tools of
perturbation theory to more general nonconservative systems and they created new and
well established asymptotic methods of nonlinear mechanics. Unlike the popular Van der
Pol’s method, the corresponding solutions could be obtained not only in the first but in
higher approximations as well. These methods became very useful in the studies of both
periodic and quasiperiodic oscillatory processes. Moreover, they met practical needs in
terms of simplicity and transparency of associated numerical algorithms.

Krylov and Bogoliubov quickly applied their asymptotic methods to many open and
crucial problems. Among them, they obtained second approximation formulas for the fre-
quency of stationary vibrations in electrical generators, which could estimate the overtone
effect on stability of frequency. Furthermore, the results had an impact on the studies
of resonances of frequency scaling and internal resonances in the systems with many
degrees of freedom. A primal attention in resonance theory was paid to applications of
nonlinear elements for controlling resonance in mechanical engineering. The asymptotic
methods were employed to solve problems on aircraft longitudinal stability, vibrations
and stability of rods, diverse frame structures and other engineering constructions.

The general measure theory in nonlinear mechanics developed by Bogoliubov and
Krylov was a driving force in further development of the theory of dynamical systems.
It also explained such properties of stationary motions as recurrence, i.e. strong stability
in the sense of Poisson. Applying Lyapunov–Poincare and Poincare–Denjoy theory of
trajectories on torus they studied the nature of the exact stationary solution near a
proximate solution for a small parameter value and established existence and stability
theorems for quasiperiodic solutions.

No wonder that the results of this research have become classical in modern theory
of dynamical systems. Furthermore, the development of efficient methods of asymptotic
integration for a wide class of nonlinear equations was due to Bogoliubov and Krylov’s
fundamental results. Bogoliubov also created new mathematical tools to study the be-
havior of general nonconservative systems with small parameter, which explained the
nature of the stationary solution near a proximate solution.

Krylov’s and Bogoliubov’s studies on resonances in nonlinear oscillations are of espe-
cial importance, as so are their studies of the related phenomena of synchronization, de-
multiplication and diminishing of oscillation amplitudes in resonance under the presence
of nonlinear elements in oscillatory system. Another sound result was their prediction of
a possibility to observe a new phenomenon, called by them an anomalous perturbation,
later on confirmed in practice. This phenomenon states that an equilibrium point, stable
in the traditional sense, looses its stability under the effect of small sinusoidal perturbing
forces.

The averaging method formulated and developed by Bogoliubov in the context of
standard form equations contained in its essence a solution to the following two problems.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 9(2) (2009) 109–115 111

Firstly, it is the establishment of conditions under which the norm of the difference
between the solutions of an exact and the associated averaged systems, for sufficiently
small parameter values, remains arbitrarily large on a finite interval. Secondly, it is the
establishment of a relationship between various properties of the solutions to exact and
averaged equations on a finite interval.

As early as in 1945, Bogoliubov proved a fundamental existence theorem on main
properties of a single-parametric integral manifold of a system of nonlinear differential
equations in the standard form. He investigated periodic and quasi-periodic solutions
on a one-dimensional manifold. This laid a foundation for a new method of nonlinear
mechanics — the ”method of integral manifolds”.

In 1950, Bogoliubov developed a perturbation method in nonlinear mechanics, which
he applied to a pendulum problem with a vibrating pivot point. In this problem, Bo-
goliubov was the first to prove that any unstable upper position of the pendulum can be
made stable by means of a high vibration frequency of the pivot point. This breakthrough
laid foundation to the theory of stability raise of elastic systems by vibrations.

Bogoliubov also obtained key results for systems of differential equations with a
rapidly switching phase. Here the construction of solutions to averaged equations was
rendered by separation of slow and rapid motions.

In 1963, Bogoliubov presented a new idea on application of accelerated convergence
techniques to nonlinear mechanics. As early as in 1934, Bogoliubov, jointly with Krylov,
developed a mixture of various changes of variables. Its application to the method of
integral manifolds solved an existence problem of multi-frequent conditionally periodic
solutions of nonlinear oscillatory systems, not only in the asymptotic, but also in a
strict sense. When establishing this theory, Bogoliubov combined the method of inte-
gral manifolds with the iteration method. The latter has been proposed and used by
A.N. Kolmogorov and V.I. Arnold for Hamiltonian systems by that time. This combined
method gave rise to yet another method of accelerated convergence in nonlinear mechan-
ics, which allowed Bogoliubov efficiently exclude the effect of small denominators that
occur when using the change of variables.

Bogoliubov’s ideas and methods expressed by him during his lectures in the inter-
national workshop in nonlinear mechanics (that took place in 1963 in Kanev) gave rise
to their further development and applications to many vital problems in nonlinear me-
chanics. Among them, the problems of reducibility of a nonlinear system to a linear one
with constant coefficients, reducibility of linear differential equations with quasi-periodic
coefficients, as well as the problem of the behavior of integral curves in a vicinity of
analytic and smooth manifolds.

The creative ideas and fundamental results of Bogoliubov in nonlinear mechanics laid
the foundation to the global research in such areas as general mechanics, continuum me-
chanics, celestial mechanics, mechanics of rigid bodies and gyroscopic systems, motion
stability, control theory, regulation and stabilization, mechanics of space flights, oscil-
lations of mechanical systems, aero- and rocket construction, mathematical ecology, as
well as other branches of science and engineering.

The word ”nonlinear mechanics” has entered the scientific lexicon and is being widely
used by mechanical and electrical engineers who are involved in the construction of
systems with small perturbations. It is also being used by mathematicians who deal with
differential equations containing small additive perturbation terms. The use of ”nonlinear
mechanics” has been further extended to include other mathematical disciplines such as
nonlinear analysis and nonlinear dynamics.
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The methods developed by Bogoliubov for the investigation of dynamical systems
opened new avenues to problems of classical statistical physics. As early as in 1945, when
studying the impact of a random force on a harmonic oscillator, Bogoliubov developed
and applied for the first time an idea about the time hierarchy in the statistical theory
of irreversible processes.

Chaining of recursive equations method proposed by Bogoliubov in 1946 for the dis-
tribution function of complexes of one, two, and more particles proved to be most efficient
in modern statistical mechanics of processes in their equilibrium or transient state.

Discarding Ludwig Boltzmann’s hypothesis on molecular chaos and having suggested
a new idea of using boundary conditions that reduce correlation, Bogoliubov arrived at
a method which allowed to include higher order terms of expansion in density powers.
The same methods Bogoliubov utilized in statistical quantum mechanics in 1946–1948.
Here he proposed a version of a secondary quantization with numerous forthcoming
applications. He also developed a generalized method of self-conformed field presently
referred to as the Hartry–Fock–Bogoliubov’s method.

Bogoliubov’s name is inseparable with the appearance of modern theory of nonideal
quantum macrosystems. His scientific dissertation on such significant physical pheno-
mena as superfluidity (1946) and superconductivity (1957) was a core element of this
theory.

Bogoliubov constructed an appropriate mathematical apparatus based on a special
canonic transformation of birth-death operators now widely known as Bogoliubov’s (u, v)-
transformation. This transformation is extensively applied in theoretical physics, in
particular, in recent works on quantum theory of gravitation and the theory of nonideal
Bose-condensate in magneto-optical traps.

Further development of superconductivity theory as superfluidity of the Fermi systems
led Bogoliubov to the discovery of a new principal phenomenon — the superfluidity of
nuclear substance. The notion of superfluidity of nuclear substance formed the basis for
the modern theory of nucleus.

When studying a stabilization problem of condensate in nonideal systems, Bogoliubov
developed the method of quasi-mean (1961). The latter turned out to be a universal tool
for the investigation of systems whose main state is unstable under small perturbations.

In the fiftieth, Bogoliubov formulated quantum field theory with new causality condi-
tion. This condition is widely known today as the Bogoliubov’s microcausality condition.
The axiomatic theory of perturbations and in quantum field theory created by Bogoli-
ubov was based on the disperse matrix and it reshaped the development of this theory
to the present day. Bogoliubov proved a theorem stating that the disperse matrix in
all orders of perturbation theory is well defined by the conditions of relativistic invari-
ance, spectrality, unitarity and causality up to quasi-local operators. It yielded a source
of ultra-violet divergences of the disperse matrix and gave rise to the method of their
successive elimination. This method was called the R-operation (1955).

Bogoliubov was among the first scientists who had dealt with axiomatic quantum
field theory (neither making any assumption on the weakness of interactions nor using
perturbation theory). Furthermore, he only partially modified the existing system of ax-
ioms in perturbation theory by augmenting it with the stability condition on vacuum and
single-particle state and reformulating the causality condition (1956). Bogoliubov used
this to establish expressions for pion-nucleolus dispersion. The latter in turn required the
development of mathematical tool of analytical continuation for generalized functions of
many complex variables. His famous ”edge of the wedge” theorem was formulated and
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proved in 1956 among his purely mathematical results and today this theorem is named
after him. His work in quantum field theory gave rise to the new direction — the theory
of strong interactions.

The scope of Bogoliubov’s scientific accomplishments is not limited by the areas cited
herein. It also includes a fundamental research on the theory of plasma and on kinetic
equations which are of great practical significance.

Among his most profound creations was the idea of spontaneous violation of symme-
try, initially proposed in the framework of statistical mechanics when developing super-
fluidity theory in 1948. It was a core part of the theory of weak electrical interaction,
various versions of the theory of Great Unification. It also laid foundation to the most
significant research on elementary particles, the theory of nucleus, and theory of phase
transitions in early Universe models.

For many years Bogoliubov has carried out an enormous work on training young
scientists. Being the department head at Kiev and then Moscow University he system-
atically gave lectures which were received with great interest. He also presented talks in
England, Belgium, Bulgaria, Hungary, Italy, India, Poland, the USA, Finland, Germany,
Yugoslavia, Japan and many other countries. Each one of them was a major scientific
event.

Another Bogoliubov’s distinct achievement was his creation of several scientific
schools. During his employment in the Ukraine he established a school of mathematical
physics and nonlinear mechanics in Kiev and then — the schools of elementary particles
(theoretical physics) in Moscow and Dubna. Many well-known scientists proudly and
respectfully regard Bogoliubov as their teacher.

Academician Bogoliubov was a dedicated organizer of science in the former Soviet
Union. He was a member of the Presidium and the Academician-Secretary of mathemat-
ics division of the USSR Academy of Sciences exerting a beneficial influence in promoting
the development of research in mathematics and physics in the Ukraine. Over 25 years
did he head the largest International Scientific Center — the Joint Institute of Nuclear
Research in Dubna, and was the founder and the first director of the Institute of Theo-
retical Physics of the Ukrainian Academy of Sciences. He was the founding chief editor of
the two world renowned journals: ”Theoretical and Mathematical Physics” and ”Physics
of Elementary Particles and Atom Nucleus”.

Despite his deep involvement in teaching and an immense scholarly work, Bogoliubov
was a dedicated volunteer in public work and political life. He was a representative of the
Supreme Soviet Parliament and a member of the Pagoush piece movement of scientists.
The Government of the former USSR rightfully recognized Bogoliubov’s scientific and
public achievements and awarded him with two Gold Star Medals and two titles of the
prestigious Social Labor Hero and five Lenin’s Medals of Honor. He was also highly
decorated with many other prestigious awards and medals.

Bogoliubov was an Honorary Member of several foreign Academies and various sci-
entific societies. He earned an Honorary Doctorate of numerous foreign Universities and
he was a Laureate of prestigious awards and medals.

Bogoliubov is regarded a triune personality in science. He was a great mathemati-
cian, physicist and a pioneer in mechanics. He mastered fine problems of mathematical
modeling and became a ground breaker of new horizons in modern mathematical physics.
Finally, he was well-acquainted with both theoretical and practical needs of mechanics
and technology.
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Monographs and Books by N.N. Bogoliubov

in the area of nonlinear mechanics

• Investigation of longitudinal stability of an aircraft.— Moskow–Leningrad: Gosaviaavto-
traktizdat, 1932.— 60 p. (with N.M. Krylov).

• On the oscillations of synchronous machines. 2. On stability of parallel work of n-
synchronous machines.— Kharkiv–Kyiv: Energovydav, 1932.— 98 p. (with N.M. Krylov).

• Fundamental problems of nonlinear mechanics.— Moskow–Leningrad: GTTI, 1932.— 23
p. (Wth N.M. Krylov).

• Méthodes nouvelles pour la solution de quelques problèmes mathématiques se rencontrant
dans la science des constructions.— Kiev, 1932.— 96 p. (with N.M. Krylov).

• New methods for solution of some mathematical problems found in engineering.—
Kharkov–Kiev: Budvydav, 1933.— 96 p.

• New methods of nonlinear mechanics and their application to the investigation of the
work of electronic generators. Part 1.— Moskow–Leningrad: GTTI, 1934.— 243 p. (with
N.M. Krylov).

• Application of the methods of nonlinear mechanics to the theory of stationary
oscillations.— Kiev: Izd-vo VUAN, 1934.— 112 p. / In-t stroit. mekh. VUAN. Dept.
Mat. Phys., No 8 (with N.M. Krylov).

• On some formal expansions of nonlinear mechanics.— Kyiv: Vyd-vo VYAN, 1934.— 89
p. (with N.M. Krylov).

• L’application des méthodes de la mèchanique nonlinéarire à la théorie des perturbations
des systémes canoniques. — Kiev: Acad. Sci. d’ Ukraine, 1934.— 57 p.— / Acad. Sci.
d’ Ukraine, Inst. de mécanique des constructions. Chaire de phys. mat. No 4 (with N.M.
Krylov).

• Introduction to nonlinear mechanics.— Kiev: Izd-vo AN USSR, 1937.— 365 p. (with
N.M. Krylov).

• General theory of measure in nonlinear mechanics.— In: Collection of papers on nonlinear
mechanics.— Kyiv: Vyd-vo AN URSR, 1937.— pp. 55–112.

• Introduction to Non-Linear Mechanics by N. Kryloff and N. Bogoluboff. A free Translation
by Solomon Lefschets of Excerpts from two Russian Monographs.— London: Princeton
Univ. Press, 1943.— 105 p. (with N.M. Krylov).

• On some statistical mehods in mathematical physics.— Kiev: Izd-vo AN USSR, 1945.—
139 p.

• Introduction to Non-Linear Mechanics.— Repr. Princeton: Princeton Univ. press,
1947.— 106 p. (with N.M. Krylov).

• Asymptotic methods in the theory of nonlinear oscillations.— Moskow: Gostekhizdat,
1955.— 448 p. (with Yu.A. Mitropolsky).

• Asymptotic methods in the theory of nonlinear oscillations.— 2nd ed., corr. and compl.—
Moskow: Fizmatgiz, 1958.— 408 p. (with Yu.A. Mitropolsky).

• Method of integral manifolds in nonlinear mechanics.— Kiev, 1961.— 126 p. (with Yu.A.
Mitropolsky).

• Asymptotic Methods in the Theory of Nonlinear Oscillations.— Dehli: Hindustan Publ.
Corp., 1961. (with Yu.A. Mitropolsky).

• Les méthodes asymptotiques en théorie des oscillations non linéaires.— Paris: Gauthier–
Villars, 1962.— VIII, 518 p. (Co-auteur Yu.A. Mitropolski).
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• On Certain Statistical Methods in Mathematical Physics / Studies in Statistical Mechanics
(Eds. I. de Boer, G.R. Uhlenbeck).— Amsterdam.— 1962, vol. 3.

• Asymptotic Methods in the Theory of Nonlinear Oscillations — 3rd ed., corr. and
compl.— Moskow: Fizmatgiz, 1963.— 410 p. (with Yu.A. Mitropolsky).

• Method of integral manifolds in nonlinear mechanics.— In: Proceedings of the Interna-
tional Symposiun on Nonlinear Oscillations.— Kiev, 1961, Vol. 1.— Kiev: Izd-vo AN
USSR, 1963.— pp. 93–154. (with Yu.A. Mitropolsky).

• On quasiperiodic solutions in problems of nonlinear mechanics.— In: The first summer
mathematicaln school.— Part 1.— Kiev: Naukova Dumka, 1964.— pp. 11–101.

• Asymptotische Methoden in der Theorie der Nichtlinearen Schwingungen.— Berlin:
Academie–Verlag, 1965.— XII, 453 s. (with Yu.A. Mitropolsky).

• The method of accelerated convergence in nonlinear mechanics.— Kiev: Naukova Dumka,
1969.— 247 p. (with Yu.A. Mitropolsky and A.M. Samoylenko).

• Selected papers: In 3 vol. (Ed. Yu.A. Mitropolsky). Vol. 1.— Kiev: Naukova Dumka,
1969.— 647 p.

• Methods of Accelerated Convergence in Nonlinear Mechanics (Ed. I. N. Sneddon). Transl.
from Russian by V. Kumar.— Berlin etc.: Springer–Verlag, 1976.— VIII.— 291 p. (with
Yu.A. Mitropolsky and A.M. Samoylenko).

• Selected works. Part I. Dynamical theory (Eds. N.N. Bogoliubov (Jr.), A.M. Kurbatov).
Transl. from the Russian by A. Ermilov. Classics of Soviet Mathematics, 2. New York:
Gordon and Breach Science Publishers, 1990.— x+386 pp.

• Selected works: In 4 parts, transl. from russian (Eds. N.N. Bogoliubov (Jr.), A.M.
Kurbatov). New York: Gordon and Breach Science Publl, 1990–1995.

• Nonlinear mechanics and pure mathematics (Ed. V.S. Vladimirov). New York: Gordon
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Abstract: The method of oriented manifolds is developed to study geometric prop-
erties of the sets of trajectories of nonlinear differential systems with control. This
method is conceptually connected with the classical methods of Lyapunov, Poincaré,
and Levi–Civita and is a natural extension and development of results of the Donetsk
school of mechanics. In terms of the method of oriented manifolds, sufficient condi-
tions for stabilizability of nonlinear control systems are established.

A new method for stability investigation of nonlinear differential systems of per-
turbed motions is created on the basis of the concept of matrix-valued Lyapunov
functions. This method is generalized for the systems with impulse action and after-
effect, differential equations with explosive right-hand sides and hybrid systems.

New conditions of practical stability of motion for nonlinear systems with im-
pulse action are established on the basis of two auxiliary Lyapunov functions and the
condition of exponential stability for linear impulse systems in a Hilbert space.

⋄ Series of works honoured with the State Prize of Ukraine in the Field of Science and Technology
in 2008.
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General theory of the Fredholm boundary-value problems is constructed for sys-
tems of functional-differential equations, a classification of resonance boundary-value
problems is elaborated, efficient coefficient criteria of existence of solutions are ob-
tained and bifurcation and branching conditions for solutions to such problems are
established.

New matrix methods are developed for the analysis of stability, localization of
spectrum and representation of solutions of arbitrary order linear differential and
difference systems. The methods of comparison and robust stability analysis are
worked out for nonlinear dynamic systems in partially ordered space.

The averaging technique and the method of integral manifolds are developed for
nonlinear resonance oscillating systems with slowly varying frequencies. New ex-
act error estimations are established for the averaging technique in the initial and
boundary-value problems for multifrequency systems and systems with impulse ac-
tion.

New statements on stability and instability of linear approach to solutions of evo-

lutionary equations in a Banach space are made. Absolute stability conditions are

established for systems with aftereffect. In particular, a process of aircraft under-

carriage galloping is studied at landing on the ground airfield with constant velocity.

Also, stability conditions are established for the metal cutting process at turning

behind a track with constant angular velocity of spindle rotation.
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1 Introduction

This paper presents a survey of main results of a series of investigations competing for
the State Prize of Ukraine in the Field of Science and Technology in 2008.

First, it should be noted that the fruitful ideas by Lyapunov have enabled his suc-
cessors to develop constructive approaches for the analysis of dynamical behaviour of
nonlinear systems.

Remarkable results of N.M. Krylov and N.N. Bogoliubov, which became a groundwork
for a new direction in the field of mathematical physics, called "nonlinear mechanics",
have become a source of many investigations of systems with small parameter, both of
theoretical and practical importance.

The discovery of the principle of maximum in the mathematical theory of optimal
control made by L.S. Pontryagin proved to be a profound synthesis of the theory of
differential equations and the variational calculus whose development is associated with
the name of outstanding mathematician of the 18-th century L. Euler.

A range of problems whose solutions are proposed in the monographs [1–12] and pa-
pers [13–43] was formed according to the needs of new fields of science and technology
such as exploration of the near-Earth and outer space, automatic control of produc-
tion processes by computers, mathematical biology, etc. A key role in the solution of
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these problems is played by the ideas and methods set out in the remarkable works by
Lyapunov–Bogoliubov–Pontryagin.

Several hundred references in the publications [1–43] give an idea about the directions
of the investigations mentioned in the title of this series of works and bring the reader to
the boundary beyond which new areas for further investigations are opened up in these
challenging scientific directions which constitute the basis for the technological advance
in the beginning of the third millenium.

2 Qualitative Theory of Nonlinear Control Systems

In the papers [1, 2, 13, 14, 16], [19]–[24], qualitative properties of the family of trajectories
of nonlinear systems of differential equations of the type

ẋ = f(x, u), x ∈ D ⊂ R
n, u ∈ U ⊂ R

m, (2.1)

are studied, where x is the state vector and u is the control. The function f(x, u) is
assumed to be continuously differentiable sufficient number of times in D×U . In papers
by A.M. Kovalev [13, 14], the notion of a set oriented with respect to control system
was introduced and the method of oriented manifolds was proposed. This method is
conceptually connected with the method of Lyapunov functions and the Poincaré–Levi–
Civita method of invariant relations.

Definition 2.1 A manifold K ⊂ D is called oriented with respect to system (2.1) in
the domain D if it coincides with its positive (K = Or+K) or negative (K = Or−K)
orbit. Positive orbit Or+K of the set K is a set of points attainable from the set K along
the trajectories of system (2.1) and negative orbit Or−K is a set of points from which
the set K can be attained.

By means of the method of oriented manifolds, a general controllability criterion for
nonlinear systems is proved.

Theorem 2.1 [13] System (2.1) is controllable iff there are no manifolds K with
smooth boundary oriented with respect to this system such that K 6= ∅, D.

As compared with known results in the control theory, Theorem 2.1 does not as-
sume infinite differentiability (or analiticity) of the vector fields of a control system. The
equations of oriented manifolds obtained in [13] are of independent interest. Their rela-
tionship with the Levi–Civita equations of invariant manifolds and Lyapunov equations
for functions ensuring motion instability is established. This relationship was used in
the investigation of the problem on sufficient conditions for stabilizability of nonlinear
controlled systems and the synthesis of a feedback law with respect to all and a part of
variables [22]. To formulate the main result of the paper, we designate the ε-neighborhood
of the point x = 0 by B(0, ε).

Theorem 2.2 [22] Let 0 ∈ intD, 0 ∈ U , f(0, 0) = 0, U be a compact and, for some
ε > 0, each point of the set B(0, ε) \ {0} is a point of local controllability of system
(2.1). Then there exists a feedback control u : B(0, ε) → U ,u(0) = 0 (generally speaking,
discontinuous) which ensures non-asymptotic stability of the solution x = 0 of the closed-
loop system

ẋ = f(x, u(x)). (2.2)

Besides, the solutions of system (2.2) are defined in the sense of A.F. Filippov.
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Examples are constructed which demonstrate that this result can not be refined (i.e.
it is final). For a control affine system, it is proved that the set of discontinuity points of
the feedback is contained in some set whose dimensions are smaller than the dimension
of the state space.

In order to generalize controllability conditions for the case of manifolds with smooth
boundary, properties of attainability domains of linear systems in the presence of joint
restrictions on the control and the initial state were studied in [2, Ch. 1]. A formula for
the gage function of attainability set was obtained which simplifies the further analysis
and allows one to construct the external and internal estimates of the attainability set.
In monographs [1, 2], problems on motion control for a rigid body and systems of bodies
were considered with the application of estimates of attainability sets. New estimates of
attainability sets of a system of differential equations modelling the rotational motion of
a rigid body under the action of a control torque were proposed. A problem in restricted
statement and a case of translational and rotational motion were studied. In particular,
in [13] equations of rigid body motion with respect to a center of masses under the action
of jet force were considered without taking into account mass changes

A1ω̇1 = (A2 −A3)ω2ω3 + e1u,

A2ω̇2 = (A3 −A1)ω1ω3 + e2u,

A3ω̇3 = (A1 −A2)ω1ω2 + e3u,

(2.3)

where A1, A2, A3 are the principal central moments of inertia of the body; ω1, ω2, ω3 are
the projections of the angular velocity vector ω on the main central axes; e = (e1, e2, e3)
is a unit vector of direction of the jet force moment; u is a control characterizing the
magnitude of the jet moment. It is established that system (2.3) is uncontrollable under
any of the conditions

A1(A2 −A3)e
2
3 = A3(A1 −A2)e

2
1, (2.4)

A2(A3 −A1)e
2
1 = A1(A2 −A3)e

2
2, (2.5)

A3(A1 −A2)e
2
2 = A2(A3 −A1)e

2
3. (2.6)

In paper [13], it is shown that if the parameters of system (2.3) do not satisfy condi-
tions (2.4)–(2.6) then system (2.3) is controllable according to Theorem 2.1. As compared
with the previous papers, the application of the method of oriented manifolds enabled
a unified description of controllability conditions for system (2.3) to be obtained in all
cases of dynamically symmetric and asymmetric rigid body.

The evolution of geometric methods of nonlinear control theory led to the necessity of
constructive description of the class of flat-systems, i.e. the systems which admit exact
linearization by means of an endogenous feedback. The theory of flat-systems, appeared
in the works by M. Fliess, J. Lévine, P. Rouchon, Ph. Martin, is being developed in
the papers [2, 14, 16]. In these works, the method of invariant relations is applied for
solving inverse control problems, observation, identification, convertibility, and functional
controllability problems. General theorem on identifiability of nonlinear systems was
proved. It states the identifiability of any system with respect to the measurements of its
phase vector under a condition of its nonrepresentability by means of a smaller number
of parameters. Conditions of observability and identifiability of nonlinear systems with
respect to a part of variables are established [2, Ch. 5]. For general type systems, a
functional controllability criterion is proposed, a property of invertibility is studied, a
notion of inverse system is introduced, and an algorithm of its construction is presented
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[14]. A generalized flat-algorithm proposed in [16] allows a considerable extension of
the class of nonlinear control systems which admit explicit solution of motion planning
problems. The concept of a generalized flat-system on the trajectory set is applied to
study the problems of observation and identification of phase coordinates and parameters
of motion equation of a rigid body in the force field. Observability conditions are used
to substantiate the choice of output functions which are measured at probe navigation.
In this direction, a class of problems on the determination of the mass center motion
and rigid body orientation is solved [2, Ch. 6]. The results obtained in the field of
identification of nonlinear systems are used to investigate problems of determining the
moments of inertia and aerodynamical characteristics of a rigid body by the available
information about motion.

A method of transforming the dynamical system with impulse control to the system
with jumps realized on some surfaces in a phase space is proposed in [19], and new
notions of impulses of high degrees and orders are introduced which are necessary for the
investigation of systems nonlinear with respect to control. By employing impulse effects, a
series of control and stabilization problems are solved and numerical methods are justified
which can be used for an approximate construction of solutions to impulse systems. The
results are applied for the problems on controlled stabilization of mechanical systems.
In particular, a solution for the problem on stabilization of the Brockett integrator is
obtained. An algorithm is proposed for constructing control system for nonholonomic
models with independent quasivelocities as a control.

The notion of a control Lyapunov function with respect to a part of variables is
introduced in [20]. These functions are employed in the proof of the theorem on partial
stabilizability of nonlinear nonautonomous system. For control affine systems, an efficient
method of constructing a stabilizing feedback is proposed. This result extends a theorem
of Z. Artstein for the case of partial stabilization. The apparatus of control Lyapunov
functions allowed one to solve a series of model problems on partial stabilization of a
rigid body orientation. In particular, a model problem is considered for the motion of a
satellite as an absolutely rigid body around its center of mass in the restricted statement
under the action of jet control moments. Also, the case is studied when the control
moments are implemented by means of a pair of flywheels [21]. In [23], control and
stabilization algorithms are developed for motion of a satellite with elastic antennas and
rods. The proposed control technique incorporates the mathematical model of a hybrid
mechanical system in the form of differential Euler–Lagrange equations with infinite
number of degrees of freedom. For a preassigned arbitrary number of elastic modes, an
approximated finite-dimensional nonlinear system is constructed for which a stabilizing
control with feedback is found. The above-mentioned control ensures asymptotic stability
of the equilibrium state with respect to the combinations of elastic coordinates and body
orientation. Besides, stability in the sense of Lyapunov is reached with respect to all
phase coordinates. Observability of a model of hybrid system is proved with respect
to the measurements of sensors of elastic element deformations. This allows one to
substantiate the possibility of technical implementation of the proposed control laws.

A new approach is proposed in [24] for the investigation of stabilizability conditions
for nonlinear controlled system by means of critical Hamiltonians. New stabilizability
conditions are obtained for nonlinear affine control system defined by two homogeneous
vector fields.
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3 Rigid Body Dynamics and Motion Stability of Mechanical Systems

In [18] the author stated and solved a problem on the inclusion of given invariant manifold
into the family of integral manifolds for a system of ordinary differential equations of the
type

ẋ = ϕ(x), x ∈ D ⊂ R
n. (3.1)

Assume that for every x0 ∈ D system (3.1) has a unique solution x(t;x0), t ≥ 0 satisfying
the initial condition x(0;x0) = x0. We shall introduce necessary definition.

Definition 3.1 A manifoldM ⊂ D is called invariant for system (3.1) if x(t;x0) ∈M

for all t ≥ 0 and x0 ∈ M . If Fi(x), i = 1, 2, ..., k are independent integrals of system
(3.1), the set N = {x : Fi(x) = ci, i = 1, 2, ..., k} is called the integral manifold of system
(3.1).

Now we shall formulate the main result on the inclusion of an invariant manifold into
the family of integral manifolds.

Theorem 3.1 [18] Any integral manifold M of dimension n − k in a neighborhood
of a nonsingular point of system (3.1) is contained in some k-parametric set of integral
manifolds.

It is proved that such an inclusion is locally possible only if the invariant manifold
under consideration is not a (n− 1)-dimensional manifold consisting of singular points.

By means of the Levi–Civita equations of integral manifolds assertions describing the
structure of the including family are proved. The results obtained are applied in the
investigation of motion equations of the Hess gyroscope in special coordinate axes [18]

ẋ = −b1zx,
ẏ = (a− a∗)zx+ b1yz − ν3Γ,
ż = −(a− a∗)yx+ b1(x

2 + y2) + ν2Γ,
ν̇1 = a∗zν2 − (a∗y + b1x)ν3,
ν̇2 = (ax+ b1y)ν3 − a∗zν1,

ν̇3 = (a∗y + b1x)ν1 − (ax+ b1y)ν2,

(3.2)

where x, y, z are components of the kinetic moment vector in special coordinate axes;
ν1, ν2, ν3 are coordinates of the unit vector colinear to the direction of force field; a, a∗,
b1 are components of gyration tensor; the constant Γ characterizes intensity of the force
field (action of gravity force). The following three integrals of the Euler-Poisson system
of differential equations (3.2) are known

ax2 + a∗(y
2 + z2) + 2b1yx− 2ν1Γ = 2h;

xν1 + yν2 + zν3 = k;

ν2
1 + ν2

2 + ν2
3 = 1.

Besides, system (3.2) possesses the invariant Hess manifold x = 0.

Theorem 3.2 [18] System of differential equations (3.2) possesses an additional in-
tegral of the form I = xV , where V is a solution of the differential equation LϕV = b1zV .
Partial cases of this integral are the Euler and Lagrange integrals and the Hess and Dok-
shevich solutions.
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In the above theorem Lϕ means the operator of function differentiation along the
trajectories of system (3.2). In the paper cited first approximation of the integral I
is also obtained in the neighborhood of the uniform rotations curve belonging to the
invariant Hess manifold.

In [17] the author developed the results by V.V. Kozlov and V.N. Koshlyakov on
the application of the Rodrigues–Hamilton parameters in the motion investigation of a
rigid body possessing a fixed point. By introducing in a special way a fixed system of
coordinates a new form was obtained for motion equations of a rigid body which have a
symmetric form and are quadratic in main variables. By means of these equations linear
and nonlinear vibrations of a rigid body are studied in the Rodrigues–Hamilton parame-
ters. To study stability of stationary motions of the Hamiltonian systems reducible to the
two-dimensional ones a theorem generalizing the known Arnold–Moser result on stability
of the equilibrium state of two-dimensional Hamiltonian system was proved. Application
of this theorem to stability investigation of uniform rotations of a heavy rigid body with
a fixed point allowed closing with this classical problem which has attracted the attention
of investigators since the beginning of the 20-th century [15].

4 Stability, Control, and Stabilization of Infinite-Dimensional Systems

To study the motion of distributed parameter mechanical systems, the property of asymp-
totic stability with respect to a continuous functional is analyzed in [27] for generalized
dynamical systems on a metric space. In particular, dynamical systems whose evolution
is described by differential equations in some Banach space E are considered. Let X
be a closed subset of E containing a sphere BR = {x ∈ E | ‖x‖ ≤ R}, R > 0, and let
F : D(F ) → E be a nonlinear closed operator with dense in X domain of definition
D(F ). For initial conditions x0 ∈ X , we consider the abstract Cauchy problem

dx(t)

dt
= Fx(t), t ∈ R+ = [0,+∞), x(0) = x0. (4.1)

We assume that the operator F is the infinitesimal generator of a continuous semi-
group of nonlinear operators {S(t)}t≥0 in X , therefore the Cauchy problem (4.1) is
well-posed and its mild solutions are written in the form x(t) = S(t)x0.

Definition 4.1 Let y : X → R+ be a continuous functional, F (0) = 0. The singular
point x = 0 of differential equation (4.1) is called asymptotically stable with respect to
y if

(i) for arbitrary given ε > 0, there exists δ(ε) > 0 such that ‖x0‖ < δ implies
y(S(t)x0) < ε for all t ∈ R+;

(ii) there exists ∆ > 0 such that ‖x0‖ < ∆ implies

lim
t→∞

y(S(t)x0) = 0. (4.2)

The above definition of partial stability is associated with the development of abstract
approach to the definition of stability in two metrics. The absence of the condition
of positive definiteness of the functional y enables one to consider Definition 4.1 as a
generalization of the notion of asymptotic stability with respect to a part of variables in
the sense of Lyapunov and Rumyantzev for the case of infinite-dimensional systems.
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Let V : E → R be a Fréchet differentiable functional. Then the time derivative of V
along the trajectories of (4.1) can be written as

V̇ (x(t)) = (Fx(t),∇x(t)V ), (4.3)

where (·, ·) : E × E∗ → R denotes the duality pairing of E and E∗, i.e. (ξ,∇xV ) is the
value of linear functional ∇xV ∈ E∗ at the point ξ ∈ E.

In order to formulate partial stability conditions, we use the class of Hahn functions
K consisting of all continuous strictly increasing functions α : R

+ → R
+ possessing the

property α(0) = 0.

Theorem 4.1 [27] Let F be the infinitesimal generator of a continuous semigroup
{S(t)} of nonlinear operators in X, F (0) = 0, and let y : X → R+ be a continuous
functional. We assume that there exists a Frechet differentiable functional V : E → R

satisfying the following conditions:
1) For some functions α1(·), α2(·) ∈ K, the inequality

α1(y(x)) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ X.

is satisfied.
2) V̇ (x) ≤ 0 for all x ∈ D(F ).
3)There exists a ∆ > 0 such that, for any ‖x0‖ < ∆, the corresponding set

⋃

t≥0

{S(t)x0}

is precompact in X.
4) The set Ker y = {x ∈ X | y(x) = 0} is invariant for (4.1), i.e. if y(S(τ)x0) = 0,

τ ≥ 0 then y(S(t)x0) = 0 for all t ∈ R+.
5) The set

M = {x ∈ D(F ) | V̇ (x) = 0} \ Ker y

does not contain any semitrajectory of system (4.1) defined for t ∈ R+.
Then the singular point x = 0 of differential equation (4.1) is asymptotically stable

with respect to y.

This theorem generalizes results by C. Risito and V.V. Rumyantzev for the case of
partial stability of infinite-dimensional system. Theorem 4.1 is used for the synthesis of
control functionals for mathematical models of hybrid mechanical systems. Such mechan-
ical systems consisting of rigid and elastic bodies are widely applied in space industry
and robot technology. In[26, 28], the author considered models of rotational motion
of a satellite with an arbitrary number of elastic elements, i.e. antennas in the form
of the Euler–Bernoulli beams. If all the beams have the same mechanical parameters,
the system under investigation is not asymptotically stable and, under these conditions,
the stabilization problem with respect to the norm of some projection operator onto an
infinite-dimensional subspace of the state space was solved in [26]. In the case of beams
with nonresonant parameters, the approximate controllability was proved and a control
functional was proposed which ensures strong asymptotic stability of the equilibrium
state [28]. From the mechanical point of view, such a control implements the stabiliza-
tion of the body-carrier orientation with simultaneous damping of beams vibrations. In
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[25], equations of the spatial motion of an elastic robot-manipulator were studied with
allowance for the telescopic displacement of its links under the effect of control forces.
The Euler-Bernoulli and Timoshenko beams with mixed boundary conditions were con-
sidered as models of link deformations. A scheme of stabilization with the help of an
observer in the feedback chain was proposed for the model equilibrium state. It is proved
that this approach ensures asymptotic stability of the unperturbed solution of the sys-
tem for an arbitrary number of generalized coordinates corresponding to the elastic beam
vibrations.

5 The Method of Matrix-Valued Lyapunov Functions and the Analysis of
Dynamic Properties of Nonlinear Systems

Stability analysis of zero solution of nonlinear system in the normal form

dx

dt
= X(t, x), x(t0) = x0, (5.1)

where x ∈ R
n, X ∈ C(R+ × R

n,Rn), X(t, 0) = 0 for all t ≥ t0, is a challenging task if
the dimension of the vector x is large enough. One of the approaches to solution of this
problem is the decomposition of system (5.1) to the form

dxi

dt
= fi(t, xi) + gi(t, x1, ..., xm), i = 1, 2, ...,m, (5.2)

where xi ∈ R
ni , fi : R+ × R

ni → R
ni , gi : R+ × R

n1 × ...× R
nm → R

ni ,
m∑
i=1

ni = n.

The monographs [3, 4] and Chapter 5 of the monograph [5] presented the results of
development of the direct Lyapunov method in terms of auxiliary matrix-valued function

V (t, x) = [vij(t, x)], i, j = 1, 2, ...,m, (5.3)

which is considered to be a suitable medium for construction of both scalar and vector
Lyapunov functions solving the problem on stability of the state xi = 0 of system (5.2).

It is proposed to take the elements vij(t, x) of matrix-valued function (5.3) such that
to satisfy the estimates

γ
ij
ψij(‖xi‖)ψji(‖xj‖) ≤ vij(t, x) ≤ γijψij(‖xi‖)ψji(‖xj‖),

where γ
ii
, γ

ij
> 0, γij , γij are constants for i 6= j, (ψij , ψji) ∈ K(KR)-Hahn class for

all i, j = 1, 2, ...,m. If conditions (5.4) are satisfied, then for the function

V (t, x, y) = yTU(t, x)y, y ∈ R
m
+ , (5.5)

the bilateral estimate

ψT1 (‖x‖)Y TGY ψ1(‖x‖) ≤ V (t, x, y) ≤ ψT2 (‖x‖)Y TGY ψ2(‖x‖), (5.6)

is valid, where
ψ1(‖x‖) = (ψ11(‖x1‖), . . . , ψ1m(‖xm‖))T , ψ2(‖x‖) = (ψ21(‖x1‖), . . . , ψ2m(‖xm‖))T ,
Y = diag(y1, . . . , ym), G = [γ

ij
], G = [γij ], i, j = 1, 2, . . . ,m.
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For function (5.5) the total derivative

D+V (t, x, y) = yTD+U(t, x)y, (5.7)

is considered, where D+U(t, x) = [D+vij(t, x)], i, j = 1, 2, ...,m, and D+vij(t, x) =
lim sup{[vij(t+ θ, x+ θ(fi(t, xi) + gi(t, x1, ..., xm))]θ−1 : θ → 0+}.

For certain restrictions on function (5.5) and its total derivative (5.7) by virtue of
system (5.2) sufficient conditions are established for various types of stability of zero
solution to system (5.2)((5.1) respectively).

Theorem 5.1 Let the vector-function X in system (5.1) be continuous on R × N

(N ⊂ R
n) and admit decomposition of system (5.1) to the form (5.2).

If for function (5.5) estimates (5.6) are valid and

D+V (t, x, y) ≤ ψT3 (‖x‖)A3(y)ψ(‖x‖), (5.8)

for all (t, x) ∈ R+ ×N , where A3(y) is an m× n-constant matrix then:
(1) the state x = 0 of system (5.1) is stable if the matrices A1 = Y TGY и A2 =

Y TGY are positive definite and the matrix A3(y) is negative definite;
(2) the state x = 0 of system (5.1) is uniformly stable if the matrices A1, A2 are

positive and the matrix A3 is negative semidefinite.

Similarly to Theorem 5.1 the results on asymptotic stability, exponential stability and
instability of the state x = 0 of system (5.1) are formulated and proved.

For polystability analysis of the state x = 0 of system (5.2) it is proposed to apply
the vector function

L(t, x, b) = AU(t, x)b, (5.9)

where A is a constant m × m-matrix, b ∈ R
m
+ , U ∈ C(R+ × R

n,Rm×m), and its total
derivative

D+L(t, x, b) = AD+U(t, x)b (5.10)

by virtue of system (5.2). A detailed polystability analysis for system (5.2) was carried
out in the cases m = 2, 3, 4, and sufficient conditions were established for various types
of polystability of the state x = 0 of system (5.2).

Solution of the problem of constructing a suitable matrix-valued function (5.3) is
considered in the following cases:

Case 1. The elements vi(t, xi), i = 1, 2, ...,m are put in correspondence with the
independent subsystems

dxi

dt
= fi(t, xi), i = 1, 2, ...,m, (5.11)

of system (5.2) and the elements vij(t, xi, xj), i 6= j, i, j = 1, 2, ...,m are put in corre-
spondence with the (i, j)-pairs of the independent subsystems

dxi

dt
= qi(t, xi, xj),

dxj

dt
= qj(t, xi, xj), (i 6= j) ∈ [1,m],

where xi ∈ R
ni , xj ∈ R

nj , qi ∈ (R+ × R
ni × R

nj ,Rnj ).
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Case 2. Subsystems (5.11) are decomposed into Mi second level subsystems

dxij

dt
= fij(t, xij) + hij(t, xi), j = 1, 2, ...,mi (5.12)

where xij ∈ R
nij , fij ∈ C(R × R

nij ,Rnij ), hij ∈ C(R × R
ni ,Rnij ), i = 1, 2, ...,m,

j = 1, 2, ..., ni. The elements vii(t, xi) are put in correspondence with the free subsystems
of the second level of decomposition

dxij

dt
= fij(t, xij), j = 1, 2, ...,m, (5.13)

and the elements vij(t, x), (i 6= j) ∈ [1,m], are constructed with allowance for the
interconnection functions hij(t, xi) in system (5.12).

Case 3. For the class of systems of (5.2) type [30]

dxi

dt
= fi(xi) + gi(t, x1, ..., xm),

fi ∈ R
ni → R

ni , fi(0) = 0, i = 1, 2, ...,m, the elements vii(xi) are put in correspondence
with the independent subsystems

dxi

dt
= fi(xi), i = 1, 2, ...,m, (5.14)

and the elements vij(t, xi, xj) are found by the equations

Dtvij(t, xi, xj) + (Dxi
vij(t, xi, xj))

T fi(xi) + (Dxj
vij(t, xi, xj))

T fj(xj)+

+
yi

2yj
(Dxi

vii(xi))
T gij(t, xi, xj) +

yj

2yi
(Dxj

vjj(xj))
T gji(t, xi, xj) = 0, (i 6= j) ∈ [1,m],

where gij(t, xi, xj) = gi(t, 0, ..., xi, ..., xj , ..., 0), i 6= j, i, j = 1, 2, ...,m.
In all the above cases new conditions are established for various types of stability of

the state x = 0 of system (5.1), without assuming on exponential stability of the state
x = 0 of subsystems (5.11), (5.13) or (5.14). As is known this condition is necessary for
the application of the vector Lyapunov function and appropriate comparison system.

Also, the method of matrix-valued Lyapunov functions was developed for:
— time discrete systems in terms of semidefinite positive functions (5.3), whose ele-

ments are linear forms, and hierarchical matrix Lyapunov functions;
— large-scale impulse systems of the form

dxj

dt
= fj(t, xj) + f∗

j (t, x), t 6= τk(x), j = 1, 2, ...,m,

∆xj = Ikj(xj) + I∗kj(x), t = τk(x), k = 1, 2, ...

in terms of auxiliary functions satisfying conditions (5.4), and also in terms of hierarchical
matrix Lyapunov functions whose method of construction is indicated;

— systems with random parameters in the Ito form and Katz–Krasovsky form in
terms of stochastic matrix-valued function;

— singularly perturbed systems of the form

dx

dt
= f(t, x, y, µ),

µ
dy

dt
= g(t, x, y, µ),

(5.15)
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where (xT , yT )T is a state vector of system (5.15), x ∈ R
n, y ∈ R

m, f ∈ C(R+×R
n×R

n×
M,Rn), g ∈ C(R+ × R

n × R
m ×M,Rm), µ ∈ [0, 1] = M , in terms of the matrix-valued

function

V (t, x, y, µ) =

(
v11(t, x) v12(t, x, y, µ)

v21(t, x, y, µ) v22(t, y, µ)

)
.

Stability conditions of the state x = y = 0 of system (5.15), and large-scale system
of Lurie–Postnikov type are obtained in terms of sign-definiteness of special matrices.
Moreover, the upper bound µ∗ of the values of parameter µ is calculated for which an
appropriate type of stability of slow variables and boundary layer takes place.

The developed technique is illustrated by numerous examples and applications to the
problems of mechanics, electric power industry, population biology, etc.

6 Generalization of the Direct Lyapunov Method and Comparison Method
for Non-classical Stability Theories

The classical stability theory developed by A.M. Lyapunov is based on three fundamental
concepts:

(1) deviations of perturbed motion from the nominal one should be infinitely small;
(2) in the course of motion perturbing forces are absent;
(3) motion is considered on unbounded interval.
We refer all other stability theories which are based on other concepts to the non-

classical ones. One of such theories is the theory of practical stability based on the
following concepts:

(1) initial and further deviations of perturbing motion from the nominal one are final;
(2) system motion is performed under persistent perturbations;
(3) interval of system functioning is unbounded.
In the monograph [6] general theory of practical stability of motion is presented with

the applications in mechanics. The system of perturbed motion equations

dx

dt
= X(t, x) +R(t, x), (6.1)

is considered, where x ∈ R
n; X : R × R

n → R
n; R : R × R

n → R
n and it is not assumed

that R(t, 0) 6= 0, i.e. x = 0 is not a solution of system (6.1), but it is a solution of the
system

dx

dt
= X(t, x). (6.2)

For given estimates of the domains (S0(t), S(t), Π(t), R+) unperturbed motion of system
(6.2) is practically stable under persistent perturbations if for t0 ∈ R+ and any

x(t0) ∈ S0(t0), R(t, x) ∈ Π(t),

the solution x(t, t0, x0) of system (6.1) remains inside the domain S(t), i.e. x(t) ∈ intS(t)
for all t ≥ t0.

Practical stability of unperturbed motion of system (6.2) is determined as a motion
property opposite to practical stability.

To solve the problem on practical stability of systems of (6.1), (6,2) type or their
partial form three approaches were developed in the monograph [6]:

Approach 1 is based on the representation of general solution to system (6.2) as series
of special form.
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Approach 2 is based on the application of the direct Lyapunov method and locally
large auxiliary function.

Approach 3 is based on the reduction of system (6.1) or (6.2) to the other one called
a comparison system with further analysis of its solutions. Here both scalar and vector
Lyapunov functions are applied as a nonlinear transformation of the initial system.

In the framework of Approach 1 practical stability conditions are established for
system (6.2) with uniformly bounded and uniformly analytiс right-hand side and for a
system with integrable approximation of the form

dx

dt
= A(t)x + g(t, x), (6.3)

where x ∈ R
n; A(t) is an n × n-continuous and bounded matrix, g(t, x) satisfies the

estimate

‖g(t, x)‖ ≤ b(t)‖x‖α, α > 0, for all (t, x) ∈ R+ × S(t).

These conditions are based on representation of solution to system (6.2) by series of
the form

x(t) = x0 +

∞∑

m=1

Cm(x0)ψ
m,

where ψ = {exp[λ(t − t0)] − 1}{exp[λ(t − t0)] + 1}−1, λ is a positive number, with
further application of the Schur theorem on convergence of series (6.4). Practical stability
conditions for the state x = 0 of system (6.3) are based on the estimates associated with
nonlinear integral inequality.

The results obtained are employed for the analysis of dynamics of large scale systems
with integrable approximation.

In the framework of Approach 2 the direct Lyapunov method is applied with necessary
modifications. For locally large function V (t, x) the quantitative estimates

V ŜM (t) = sup(V (t, x) for x ∈ ∂S(t)),

V Ŝ0

m (t) = inf(V (t, x) for x ∈ ∂S0(t)),

are introduced, where S0(t) ⊂ S(t) and ∂S1 ∩ ∂S0 = ∅ for all t ∈ R+.

Theorem 6.1 Assume that
(1) V (t, x) ∈ C(R+ × S(t),R+), V (t, x) is locally large and locally Lipschitz in x;
(2) D+V (t, x) < D+η(t) for (t, x) ∈ R+ × S(t), where η ∈ C(R+, (0,∞)) and η(t) is

nondecreasing in t ∈ R+;
(3) for some t0 ∈ R+ the estimate η(t0) ≤ V

S0

M (t0) is valid and η(t) ≤ V ∂Sm (t) for all
t ≥ t0.

Then the unperturbed motion of system (6.2) is practically stable with respect to the
domains (S0(t), S(t)).

Similar theorems are proved for various types of practical stability and instability of
solutions for systems (6.1) and (6.2) with respect to different domains S0(t), S(t).

In the realization of Approach 3 scalar (vector) comparison equations are incorporated
which satisfy quasimonotonicity condition. Practical stability conditions are expressed
in the form of quantitative restrictions on variation of solutions to comparison equation.
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Moreover, alongside systems (6.1) and (6.2) the systems with first integrals are consid-
ered. General concept of practical stability is formulated in terms of extended system
(6.1) and stability with respect to a part of variables.

With regard to practical stability the problems of stabilization of controlled systems
are solved for some classes of linear and nonlinear systems on the basis of the principle
of comparison with mixed monotonicity of comparison system. For the axiomatically de-
termined system of processes conditions of practical stability are established with respect
to two vector measures whose components may take negative values.

In [31, 32] practical stability of some classes of hybrid systems consisting of time-
continuous and discrete components is studied. In [32] a nonlinear system of differential
equations of perturbed motion with impulsive effect

dx

dt
= f(t, x), t 6= τk,

∆x = Ik(x), t = τk,

(6.4)

is considered, where x ∈ R
n, f ∈ C(R+ × R

n,Rn), f(t, 0) = 0 for all t ∈ R+, Ik ∈
C(Rn,Rn), Ik(0) = 0, k = 1, 2, . . . , 0 < τ1 < τ2 < · · · < τk < · · · → +∞ for k → ∞. It
is assumed that the solution x(t) = x(t; t0, x0) of the Cauchy problem (1) exists and is
unique and the length of the maximal interval [t0, t0 + J(t0, x0)) of existence of solution
to the Cauchy problem for system of equations (6.4) when the impulse effect is absent
satisfies the inequality J(t0, x0) > θ2 for all (t0, x0) ∈ R+ × R

n, R+ = [0,+∞).
In the space R

n let the sets S0 = {x| x ∈ R
n, ‖x‖ < λ}; S = {x| x ∈

R
n, ‖x‖ < A} be defined for given constants A, λ > 0, λ < A.

Let G ⊂ R+×R
n and for any t ∈ R+ we define the set G(t) = {x ∈ R

n | (t, x) ∈ G}

and the set G =
∞⋃
i=1

G(τi).

Practical stability is studied by means of the Lyapunov function for which the follow-
ing assumptions are made:

a) function v(t, x) is continuous and differentiable in (t, x) ∈ [t0,∞) × S;

b) function v(t, x) is locally large in the domain of values (t, x) ∈ [t0,∞) × S, i.e.
there exists a positive constant N such that for any c, 0 < c < N , t0 ∈ R+ there
exists a positive number δ(t0, c) such that outside the sphere Kδ = {x : ‖x‖ ≤ δ} the
inequality v(t, x) > c is satisfied for all t ∈ [t0,∞);

c) total derivative dv
dt

∣∣∣
(6.4)

of function v(t, x) along solutions of system (6.4)

dv

dt

∣∣∣
(6.4)

=
∂v

∂t
+

(∂v
∂x

)T
f(t, x)

vanishes together with the function v(t, x) for x = 0;

d) function v(t, x) is positive definite in the domain R+×S in the sense of Lyapunov;

e) a(‖x‖) ≤ v(t, x) ≤ b(t, ‖x‖), for all (t, x) ∈ R+ × R
n, где a(.) is a function of

Khan class K, b(t, .) is a function continuous and nondecreasing in the second argument.

Theorem 6.2 Let system of equations (6.4) be such that:

1) there exists a function v(t, x) for which conditions (a)–(e) are satisfied;

2) there exist an invariant set G+ and functions ϕ1 ∈ C(R+,R+),
ψ1 ∈ C(R+,R+), p1 ∈ C(R+,R+), and ψ1(.) is a nondecreasing function such that the
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estimates below are satisfied

dv

dt

∣∣∣
(6.4)

≤ p1(t)ϕ1(v) for all (t, x) ∈ G
+
,

v(τk, x+ Ik(x)) ≤ ψ1(v(t, x)) for all x ∈ G
+
;

3) there exist functions ϕ2 ∈ C(R+,R+),ψ2 ∈ C(R+,R+), p2 ∈ C(R+,R+) such that
the estimates below are satisfied

dv

dt

∣∣∣
(6.4)

≤ −p2(t)ϕ2(v) for all (t, x) ∈ G
−
,

v(τk, x+ I(x)) ≤ ψ2(v(t, x)) for all x ∈ G
−
,

where G− = extG+;
4) constants λ,A > 0,λ < A < A0 satisfy the estimates:
a) for all η ∈ [0, b(t0, λ)), k = 0, 1, 2, ..., τ0 = t0,

ψ2(η)∫

η

ds

ϕ2(s)
≤

τk+1∫

τk

p1(t)d t,

b)
a(A)∫

b(t0,λ)

ds
ϕ1(s)

≥
τk+1∫
τk

p2(t)d t;

c)ψ1(a(A)) < b(t0, λ) .
Then system (6.4) is (S0, S, [t0,∞))-stable.

Theorem 6.2 generalizes the results of the paper [30] where conditions of Lyapunov
stability were established in terms of two auxiliary functions. Conditions of Lyapunov
stability for linear differential perturbed motion equations with impulse effect obtained in
[34] and motion stability conditions for nonlinear system of perturbed motion equations
of (6.4) type obtained in [30] enable one to investigate stability of the system in the case
when continuous and discrete components of the system are not stable.

In [31] a hybrid system of the form

dx

dt
= A(t)x + g(t, x) +Bku(k), t ∈ [τk, τk+1),

u(k + 1) = Cku(k) +Dkx(τk),
(6.5)

is considered, where x ∈ R
n, u ∈ R

m, A ∈ C([0,∞),Rn×n), Bk ∈ R
n×m,Ck ∈

R
m×m,Dk ∈ R

m×n, g ∈ C([0,∞) × R
n; Rn). Here {τk}

∞
k=1 is a sequence of switch-

ing moments possessing a unique limiting point at infinity.
By means of the methods of the theory of integral inequalities practical stability

conditions with respect to a part of variables and with respect to all variables of system
(6.5) are established in terms of estimates of the Cauchy matrix of linear approximation
of system (6.5).

In the monograph [5] stability conditions are obtained for systems with small parame-
ters of the following types: systems standard by Bogoliubov, systems with slow and quick
variables, systems with small perturbing forces. These conditions are based on the ideas
of the direct Lyapunov method, the averaging technique and the method of comparison
for auxiliary scalar functions.
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7 Boundary-Value Problems in the Nonlinear Oscillations Theory

This part of the paper involves the theory of nonlinear oscillations which is one of the
most important branches of nonlinear mechanics. For the first time in the field the most
complete theory of the (Fredholm) boundary-value problems was constructed for the
systems of differential equations with impulse effect in which the number of boundary
conditions does not coincide with the number of unknowns. Most complicated and not
well-studied resonance boundary-value problems, both underdetermined and overdeter-
mined ones, are considered:

ż = A(t)z + f(t) + εZ(z, t, ε), t 6= τi, t, τi ∈ [a, b],

∆z
∣∣∣
t=τi

−Siz(τi − 0) = ai + εJi(z(τi − 0, ε), ε), i = 1, ..., p, (7.1)

lz = α+ εJ(z(·, ε), ε).

Here A(t) и f(t) ∈ C([a, b] \ {τi}I) are n × n-dimensional matrix functions and n-
dimensional vector functions respectively; Z(z, t, ε) is a nonlinear n-dimensional vector
function continuously differentiable with respect to the first argument in the neighbour-
hood of solutions to generating boundary-value problem

ż = A(t)z + f(t) t 6= τi, t, τi ∈ [a, b], (7.2)

∆z
∣∣∣
t=τi

−Siz(τi − 0) = ai, i = 1, ..., p, lz = α,

Z(z, t, ε) is continuous or piece-wise continuous in the second argument with first kind

discontinuities for t = τi and continuous in ε ∈ [0, ε0]; ∆z
∣∣∣
t=τi

= z(τi + 0) − z(τi − 0),

Siare(n× n)- constant matrices: det(E + Si) 6= 0, ai ∈ R
n ; l is a linear continuous m-

dimensional vector functional; J(z(·, ε), ε), Ji(z(τi−0, ε), ε) are m-dimensional nonlinear
vector functionals continuously differentiable (by Frechet) in z in the neighbourhood of
solution of generating boundary-value problem (7.2)continuous in ε ∈ [0, ε0].

For the first time a problem was solved on establishing the existence (branching)
conditions for solutions z = z(t, ε) : z(·, ε) ∈ C1([a, b] \ {τi}I), z(t, ·) ∈ C[0, ε0] of the
problems which, for ε = 0, become one of the solutions z0(t, cr) : z(t, 0) = z0(t, cr),
cr ∈ R

r of generating boundary-value problem (7.2) and algorithms for their obtaining
are proposed.

Theorem 7.1 (on branching of solutions) Let boundary-value problem (7.1) be
such that the critical (resonance) case ( rank[Q := lX(·)] < m), takes place and gen-
erating problem (7.2) has r-parametric family of linearly independent solutions z0(t, cr),
(r = n− rankQ). Then for every value of the vector cr = c0r ∈ R

r, which is a simple real
root of the equation

PQ∗

{
J(z0(·, c

0
r), 0)−l

∫ b

a

K(·, τ)Z(z0(τ, c
0
r), τ, 0)dτ−l

p∑

i=1

K̄(·, τi)Ji(z0(τi−0, c0r), 0)
}

= 0,

(7.3)
boundary-value problem (7.1) has at least one solution x(t, ε) : x(·, ε) ∈ C1([a, b]\{τi}I),
x(t, ·) ∈ C[0, ε] which becomes generating with the vector constant c0r : x(t, 0) = z0(t, c

0
r).

This solution can be found with the help of the iteration process convergent on [0, ε∗].
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Here X(t) is a normal fundamental matrix of homogeneous differential system (7.2),
K(t, τ) is a Cauchy matrix, PQ∗ is an orthoprojector on the co-kernel of matrix Q.

In the case of periodic boundary-value problem (7.1) without impulses [7, 35] Theo-
rem 7.1 yields the classical result of A. Lyapunov and I. Malkin. If equation (7.3) has a
physical meaning then the constants c0r are the amplitudes of generating solutions and,
therefore, in the periodical case this equation is called the equation for generating am-
plitudes. In the case when generating boundary-value problem (7.2) has no solutions
bifurcation conditions were established for solutions to linearly perturbed (Fredholm)
boundary-value problem

ż = A(t)z + εA1(t)z + f(t), t 6= τi, (7.4)

∆z
∣∣∣
t=τi

−Siz(τi − 0) = ai + εA1iz(τi − 0), lz = α+ εl1z.

Theorem 7.2 (on bifurcation of solutions) Let boundary-value problem (7.2)
generating for (7.4) have no solutions for arbitrary functions f(t) ∈ C([a, b]\{τi}I), ai ∈
R
n, α ∈ R

m. Then under the condition

rank [B0 := PQ∗

[
l1Xr(·) − l

∫ b

a

K(·, τ)A1(τ)Xr(τ)dτ−

−l

p∑

i=1

K̄(·, τi)A1iXr(τi − 0)
]

= m− rankQ, (7.5)

for arbitrary nonhomogeneities f(t) ∈ C([a, b] \ {τi}I), ai ∈ R
n, α ∈ R

m boundary-value
problem (7.4) has a parametric family ρ = m− n of linear independent solutions in the
form of a part of the Laurent series

z(t, ε) =

∞∑

i=k

εizi(t) + Pρcρ, ∀cρ ∈ R
ρ, k = −1, (7.6)

which converges for fixed sufficiently small ε ∈ (0, ε∗].

Similar results were obtained in the investigation of boundary-value problems for
systems of ordinary differential equations with delaying argument [8, pp. 170–194], [38]
and for difference systems [8, pp. 93–96], [36], as well as for systems with boundary
conditions at infinity [8, pp. 257–304], [37] when the appropriate homogeneous differential
system is exponentially dichotomous on semi-axes. These results complete and generalize
essentially the known results of R.J. Sacker and K.J. Palmer.

8 Methods of Matrix Equations and Cone Comparisons in the Stability
Theory

8.1 Analogues of Matrix Lyapunov Equation and Their Application ([9],
[39])

The method of Lyapunov functions for linear differential and difference systems is for-
mulated in terms of positive definite solutions to the matrix equations

−AX −XA∗ = Y, X −AXA∗ = Y.
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The known Lyapunov theorem provides criteria for placing a spectrum of such systems
inside the left-hand half-plane and a unit disk. Matrix algebraic and differential Lyapunov
equations are widely applied in the theory of qualitative systems and control theory.

The monograph [9] deals with the methods of constructing, investigating and applying
in motion stability theory the analogues of the matrix Lyapunov equations and their
generalizations of the form ∑

i,j

γijAiXA
∗
j = Y, (8.1)

where Ai is a set of matrices, in particular, Ai = fi(A) are the analytic functions of the
matrix A.

The monograph presents criteria of localization and distribution of the matrix spec-
trum with respect to the sets

Λ+
f =

{
λ : f(λ, λ̄) > 0

}
, Λ−

f =
{
λ : f(λ, λ̄) < 0

}
, Λ0

f =
{
λ : f(λ, λ̄) = 0

}
.

The Lyapunov theorem and the inertia theorem of Ostrovsky–Schneider are gener-
alized for the maximal possible classes of analytical Hermitian functions f ∈ Hm

0 and
f ∈ Hm

2 determined by the corresponding conditions

‖1/f(µi, µj)‖
m
i,j=1 ≥ 0, ∀ µ1, . . . , µm ∈ Λ+

f ; i±
(
‖f(µi, µ̄j)‖

m

1

)
≤ 1, ∀ µ1, . . . , µm 6∈ Λ0

f ;

where i±(·) are the inertia indices of the Hermitian matrix that equal to the number of
its positive and negative eigenvalues. If f(λ, λ̄) =

∑
ij γijfi(λ)fj(λ) then f ∈ Hm

0 and
f ∈ Hm

2 under the corresponding restrictions i+(Γ) = 1 and i±(Γ) ≤ 1.

Theorem 8.1 [9] Let the matrix A ∈ Cn×n, the function f ∈ Hm
0 and the arbitrary

positive definite matrix Y = Y ∗ > 0 be given. Then the spectrum σ(A) is located in the
domain Λ+

f if and only if there exists a unique positive definite solution X = X∗ > 0 of
the matrix equation

LfX , −
1

4π2

∮

ω1

∮

ω2

f(λ, µ̄)(A − λI)−1X(A− µI)−1∗dλ dµ̄ = Y, (8.2)

where ω1 (ω2) is a closed contour embracing and not intersecting σ(A) (σ(A)).

All known results in the direction are the partial cases of Theorems 1–3 set out in
the monograph. Also, correlations of the type of linear system controllability conditions
are constructed which extend essentially the possibilities of the method of generalized
Lyapunov equation in spectrum localization problems. Equation (8.2) which can be
represented in the form of (8.1) was used for the first time in the problems of linear
system optimization with respect to output [39].

ẋ = Ax+Bu, y = Cx, u = −Ky, J(u) =

∫

∆

ρ(x0)

∞∫

0

(x∗Qx+u∗Ru)dt dx0 → min
u
. (8.3)

In terms of generalized Lyapunov theorem and matrix Atans–Levine system a re-
lationship of the quadratic quality functional and the domain of desirable location of
closed loop system spectrum is established. Optimization algorithms are constructed
controlling the system spectrum location in complex domain.
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A general technique of constructing the analogues of Lyapunov equation is developed
for polynomial and analytic matrix functions. Operators of such equations are presented
in the form of the Cauchy type integrals of logarithmic derivative and also by means of
special algebraic systems of spectrum splitting and the so-called right-hand and left-hand
pairs of matrix functions. We shall formulate an analogue of Lyapunov theorem with
the application of the left-hand eigen pairs of (U ∈ Cm×m, T ∈ Cm×n) of the matrix
function F (λ) of controllability index r determined by the conditions

TF (λ) ≡ (λI − U)Φ(λ), rankE = r, E = [T, UT, ..., Um−1T ].

In this case σ(U) = σr(F ) ⊆ σ(F ) and, besides, the spectra σ(U) and σ(F ) coincide

if rank

[
F (λ)
Φ(λ)

]
= n, ∀λ ∈ σ(F ). We introduce a set of matrices K = {X : EXE∗ ≥ 0}.

Theorem 8.2 [9] If the matrices X ∈ K and X ∈ K satisfy the correlations

∑

i,j

γijfi(U)EXE∗f∗
j (U) = EY E∗, (8.4)

Sλ = EY E∗ + (λI − U)EE∗(λI − U)∗ ≥ 0, rangSλ ≡ m,

then σr(F ) ⊂ Λ+
f , where f(λ, λ) =

∑
i,j γijfi(λ)fj(λ). Conversely, if σr(F ) ⊂ Λ+

f and
f ∈ Hm

0 , then for any matrix Y ∈ K equation (8.4) has the solution X ∈ K.

The eigen pairs (U, T ) of the matrix functions F (λ) are also employed in the con-
struction and investigation of solutions to dynamical systems of the type of
F (D)x = g, where D is an operator of differentiation or displacement in time t.

For the linear descriptor systems Bẋ = Ax, Bxk+1 = Axk and second order differen-
tial systems

Ax +Bẋ+ Cẍ = g, (8.5)

modelling the dynamics of many objects of mechanics and physics new methods are devel-
oped for stability analysis, Lyapunov function construction and estimation of spectrum
location with respect to algebraic curves. In particular, for the rotative system of the
Lavale rotor type described as (8.5) with the matrix coefficients

A = K + iS, B = D + iG, C = M,

necessary and sufficient stability conditions are constructed in analytical form in terms
of the corresponding mechanical parameters. Here M = MT > 0 is a mass matrix,
D = DT = D0 +D1 ≥ 0, G = GT = ωG0 ≥ 0 is a gyroscopic matrix, K = KT > 0 is a
rigidity matrix, S = ST ≥ 0 is a circulation matrix, D0 and D1 are constituents of the
internal and external dampings, ω is the angular velocity of rotor rotation. The proposed
technique refines the known estimate of the critical frequency of rotor rotation at which
stability is lost. Also a regulator of the type of g = Ru, u = K0x +K1ẋ, is constructed
which stabilizes closed loop system.

For the linear differential-difference systems

ẋ = Ax+
∑

i

Aix(t − τi)

an analogue of the Lyapunov equation is constructed and in terms of its solutions absolute
stability conditions are formulated (see [9], Chapters 2 and 3).
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The theory of linear equations and operators in the matrix space is developed ([9],
Chapter 4). Systems of matrix equation transformations are constructed allowing the de-
scription of their solvability conditions and inertia properties of the Hermitian solutions.
A class of equations with special families of matrix coefficients is indicated and the Hill
and Schneider theorems on inertia of their Hermitian solutions are generalized. A class
of linear equations in the space with cone is studied [9], Appendix 2). The method of
successive approximations is used to estimate solutions and their characteristics of the
type of Hermitian matrix inertia. Structure of positive and positive invertible operators
in the matrix space is studied ([9], Appendix 2).

8.2 Cone Inequalities in the Stability Theory([[40], [41], [42], [43])

For the modelling of physical objects differential and difference systems of equations are
employed the phase space of which contains invariant sets, in particular, cones. The
peculiarities of the systems such as positiveness and monotonicity should be taken into
account in stability and control analysis problems. Examples of the positive systems with
respect to a cone of symmetric negative definite matrices are the differential Lyapunov
and Riccati equations and second moments equation for stochastic systems of Ito type.
Positive and monotone systems appear, also due to the application of the comparison
technique as a generalization of the Lyapunov functions methods in stability theory.

The main results of the paper [40] are positiveness conditions and algebraic criteria
of asymptotic stability of linear systems in the Banach space E with normal generating
cone K

Ẋ +M(t)X = 0, t ≥ t0 ≥ 0, K ⊂ E . (8.6)

These conditions are formulated in terms of positive and positive invertible operators.

Theorem 8.3 [40] Positive stationary system (8.6) is exponentially stable iff the
operator M is positive invertible. If the operator M + γE is positive invertible for any
γ ≥ 0 then system (8.6) is positive and exponentially stable.

Stability investigation of linear positive reducible systems and nonstationary systems
with functional commutative operators is reduced to solution of algebraic equations and

cone comparison of their solutions: MX = Y , X
K

≥ 0, Y
K
> 0. A method of robust stability

analysis is proposed as well as analogues of the known comparison systems in the space
with cone.

Generalizations of the class of nonlinear monotone systems in partially ordered space
are introduced:

Ẋ = F (X, t), t ≥ t0 ≥ 0, (8.7)

their characterization by means of linear positive functionals is presented and analogues
of the Lyapunov theorem on stability of equilibrium state of such systems in first ap-
proximation are formulated. Comparison methods are developed for the solutions of
differential systems with the use of constant and variable cones. As a corollary robust
stability conditions are formulated for the families of systems of (8.7) type described by
the cone inequalities [41, 42]

F (X, t)
K

≤ F (X, t)
K

≤ F (X, t), F ∈ F1, F ∈ F1, t ≥ 0,

where F1,F1 are generalized classes of upper and lower systems of comparison with
respect to the cone K.
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In [43] the methods for positiveness and stability investigation are developed for linear
dynamic systems in partially ordered space. For stability analysis of positive systems
special methods are worked out which are based on spectral properties of positive and
positive invertible operators. Invariance conditions are found for the cones of circular type
and their generalizations which allow, in particular, solution of the problem on positive
stabilization of systems with respect to given cones by means of dynamical compensators.
Invariance conditions for ellipsoidal cones and exponential stability conditions for linear
differential and difference systems are formulated in terms of matrix inequalities. The
notion of maximal eigen pairs of a matrix polynomial is used to establish algebraic
conditions of exponential stability of linear arbitrary order differential systems.

9 Multifrequency Oscillations of Nonlinear Systems

Consider a multifrequency nonlinear system of ordinary differential equations with slow
and quick variables of the form

dx

dτ
= a(x, ϕ, τ, ε),

dϕ

dτ
=
ω(τ)

ε
+ b(x, ϕ, τ, ε), (9.1)

where x and ϕ are n- and m-dimensional vectors respectively, ε is a small positive pa-
rameter, τ = εt is a "slow" time, real functions a, b, ω belong to some classes of smooth
and almost periodic in ϕ functions. Systems of the type appear in the investigation of
oscillatory processes in many problems of mechanics, electrical engineering, biology, etc.

We write an averaged in ϕ system

dx̄

dτ
= ā(x̄, τ, ε),

dϕ̄

dτ
=
ω(τ)

ε
+ b̄(x̄, τ, ε), (9.2)

where

ā(x, τ, ε) = lim
k→∞

k−m

k∫

0

...

k∫

0

a(x, ϕ, τ, ε)dϕ1...dϕm,

and designate by Wp(τ) and WT
p (τ) the p×m-matrix

(
dj−1

dτ j−1
ων(τ)

)p,m

j,ν=1

and the transpose matrix respectively. Here ω = (ω1, ..., ωm).
Under the assumption that det

(
WT
p (τ)Wp(τ)

)
> 0, τ ∈ [0, L], we obtain an exact

estimate with respect to the order in ε [10]

‖x(τ, ε) − x̄(τ, ε)‖ + ‖ϕ(τ, ε) − ϕ̄(τ, ε)‖ ≤ cε
1
p , τ ∈ [0, L], ε > 0, (9.3)

where (x, ϕ) and (x̄, ϕ̄) are solutions of systems (9.1) and (9.2), coinciding for τ = 0. For
the proof of inequality (9.3) uniform estimates of oscillation integrals are essentially used
[10].

The averaging technique was applied for solution of boundary-value problems for
system (9.1) with multipoint and integral boundary conditions. Moreover, in the case of
integral boundary conditions the averaged problem is constructed via averaging of not
only differential equations but boundary conditions as well [10].
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If system (9.1) is given for τ ∈ R and

∥∥∥
(
WT
p (τ)Wp(τ)

)−1
WT
p (τ)

∥∥∥ ≤ c1 = const, τ ∈ R,

then existence of the integral manifold x = X(ϕ, τ, ε) of system (9.1) is proved on which
the equations of quick variables become

dϕ

dτ
=
ω(τ)

ε
+ b(X(ϕ, τ, ε), ϕ, τ, ε).

Under the assumption that the functions a, b, ω have continuous bounded partial
derivatives in all variables up to the order of l ≥ 2 it is proved that the function X is
l − 1 times differentiable and [10]

∥∥∥∥D
s
ϕ

∂q

∂τq
∂r

∂εr
X(ϕ, τ, ε)

∥∥∥∥ ≤ c2ε
1
p
−q−2r

, 1 ≤ s+ q + r ≤ l − 1,

and the derivatives of (l − 1)-th order satisfy Lipschitz condition in ϕ, τ, ε. Also, condi-
tional asymptotic stability of integral manifold is studied and decomposition of slow and
quick variables is accomplished in the neighbourhood of asymptotically stable integral
manifold [10].

The averaging method for initial and boundary-value problems and the method of
integral manifolds are justified as well in the case of systems of (9.1) type with impulse
effect at fixed moments of time τj = εtj , tj+1 − tj = θ = const > 0 and moreover,

∆x|τ=τj
= εp(x, ϕ, τj), ∆ϕ|τ=τj

= εq(x, ϕ, τj).

It should be noted that in this case the average system is smooth and not subject to
the impulse effect [10]

dx̄

dτ
= ā(x̄, τ) +

1

θ
p̄(x̄, τ),

dϕ̄

dτ
=
ω(τ)

ε
+ b̄(x̄, τ) +

1

θ
q̄(x̄, τ).

10 Absolute Stability, Stability and Instability by Linear Approximation
and Essential Instability of Motion for Nonlinear Infinite Dimensional
Systems

10.1 Absolute stability of systems with aftereffect.

In practice one have sometimes to study stability of dynamical systems at arbitrary
parameter values. If the systems are stable at arbitrary values of the corresponding
parameters these systems are called absolutely stable (with respect to these parameters).
Mathematical models of a wide class of dynamical systems are differential delay equations
and delays are the corresponding parameters.

In [11] spectral criteria of absolute stability (with respect to constant deviations of
argument) are obtained for solutions of linear autonomous differential difference equations
of delay and neutral type

dx(t)

dt
= A0x(t) +

m∑

k=1

Akx(t− τk),
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B0
dx(t)

dt
+

m∑

k=1

Bk
dx(t− δk)

dt
= C0x(t) +

m∑

k=1

Ckx(t− τk)

in a Banach space the separate case of which is the known theorem of Yu.M. Repin. Here
Ak, Bk, Ck, k = 0,m, are linear continuous operators, δk, τk, k = 0,m, are arbitrary
positive or nonnegative constants. Also, classes of systems with arbitrary slowly changing
operator coefficients and argument deviations are constructed whose solutions are strong
absolutely asymptotically stable. Algebraic criteria of absolute asymptotic stability and
instability are obtained for solutions to the scalar equation

dnx(t)

dtn
+
n−1∑

k=0

ak
dkx(t)

dtk
+

n∑

k=0

m∑

j=1

bkj
dkx(t − τj)

dtk
= 0,

which strengthen the known result of L.A. Zhivotovskii. It is shown that absolute ex-
ponential stability of solutions to the equations under consideration is preserved as well
for small nonlinear perturbations of equations. The results of investigation are applied
in stability investigation of the equilibrium states of mechanical systems. In particular,
undercarriage galloping at aircraft uniform motion on an even ground air strip is studied
and stability conditions are established for the equilibrium state at steady cutting at
trace turning for arbitrary constant angular velocity of spindle rotation. Note that in
these two examples the oscillation processes under some restrictions are described by
differential difference equation of the type

d2x(t)

dt2
+ a

dx(t)

dt
+ bx(t) + cx(t − τ) = f

(
x(t),

dx(t)

dt
, x(t− τ),

dx(t− τ)

dt

)
,

where a, b, c ∈ R and f(x1, x2, x3, x4) = o(|x1| + |x2| + |x3| + |x4|) for xk → 0, k = 1, 4.
The investigations are based on the analogue of the maximum principle for the spec-

trum of operator holomorphic function (see [11]).

10.2 Stability and instability in linear approximation and essential instabil-
ity of evolutionary systems.

New conditions of stability and instability in linear approximation are established for
solutions to differential and difference equations of the type

dx(t)

dt
= Ax(t) + F (t, x(t)), t ≥ 0,

xn+1 = Axn +Gn(xn), n ≥ 0,

and similar functional differential equations in a Banach space which generalize and
strengthen the results of A.M. Lyapunov, M.G. Krein and Yu.L. Daletskii. In these
equations A is a continuous linear operator and F (t, ·) and Gn are nonlinear operators
for which

lim
x→0

sup
t≥0

‖F (t, x)‖

‖x‖
= 0 and lim

x→0

sup
n≥0

‖Gn(x)‖

‖x‖
= 0.

Examples of autonomous nonlinear systems with asymptotically stable solutions are
set out for the linear approximations of which these solutions are unstable and are spec-
trum points of operators generated by linear approximations with positive real parts
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(differential case) or absolute values larger than one (difference case) [12]. Theorems on
stability in linear approximation are applicable to the investigation of oscillation pro-
cesses of a series of nonlinear mechanical systems, in particular, vibroimpact ones whose
constituents are components with distributed parameters, systems with impulse loadings,
etc. A mathematical apparatus is so far created for solution of a wide class of problems
of the theory of nonlinear oscillations of complex mechanical systems.

A notion of essentially unstable solution to evolution equation in infinite dimensional
case is introduced which is associated with the essentially approximate spectrum of op-
erator. Such equations have the property that arbitrary absolutely continuous and some
other perturbations can not influence essentially unstable solution so that it becomes
stable. The notion of essentially unstable solution allowed new results on instability of
solutions which have no analogues in the finite dimensional case [12].

The Belitskii–Lyubich hypothesis on smooth mapping of a convex compact subset of
finite dimensional space was disproved. The hypothesis claimed that in the case when
spectral radius of the Frechet derivative of the mapping at all points of the subset is
smaller than a unit, the sequences generated by this iteration mapping converge to the
unique point of the subset. It is shown that in general case the iteration sequences
can diverge and the mapping can have an arbitrary number of cycles. Mappings of the
type occur in practice in the computer investigation of oscillation processes in nonlinear
mechanical systems. Additional conditions are found under which the hypothesis is true.
Also, global asymptotic stability conditions are established for solutions to nonlinear
differential and difference equations in a Banach space [12].

11 Concluding Remarks

The paper provides review of results obtained by the authors in the field of nonlinear
mechanics. The development of the Lyapunov’s methods and the averaging theory al-
lowed solutions to a wide range of problems of the mathematical stability theory, motion
control theory, dynamics of a rigid body and systems of bodies, theory of boundary-value
problems and multifrequency oscillation theory to be described from a unique method-
ological point of view. New approaches set out in the paper are applied not only to
the investigation of systems of ordinary differential equations, but also to a huge class
of hybrid dynamical systems including the systems with impulse effect, delay equations
and differential difference equations in a Banach space. It seems reasonable to develop
further the presented methods for description of dynamical properties of complex sys-
tems in abstract spaces and to apply the obtained results to motion stability and control
problems for mechanical objects with distributed parameters.

The worked out method of oriented manifolds reduced the controllability problem to
the investigation of solvability of differential equations with respect to auxiliary functions
under general assumptions on regularity of vector fields of controlled system. For this
method to be constructively used it is of interest to develop approaches for constructing
basic systems for arbitrary nonlinear control processes. The results obtained in the paper
demonstrate efficiency of applying the method of trajectory set for solution of inverse
problems of control theory. Generalization of theorems of the direct Lyapunov method
yielded a complete description of conditions of strong and partial stabilizability of the
class of plane mechanical systems with elastic beams. Meanwhile, the problem on com-
pactness of limiting trajectory sets of nonlinear differential equations with non-monotone
and unbounded right-hand sides in a Banach space should be further investigated.
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Note that the method of matrix-valued Lyapunov functions allows to extend maxi-
mally the assumptions on dynamical properties of subsystems in large scale system and
assumptions on interconnection functions between the subsystems. As compared with the
other approaches developed in stability theory of large scale systems this method has the
following advantages: it does not require the application of quasimonotone comparison
systems which is a necessary condition when the vector Lyapunov functions are applied;
it allows extension of the class of auxiliary functions by means of which an appropriate
Lyapunov function can be constructed for the problem under consideration; it provides
a possibility of taking into account the effect of interconnection functions between sub-
systems on the whole system dynamics; the method also allows to take into account the
effect of pairs of subsystems appearing as result of first level decomposition on the whole
system dynamics.

It is known that the a priori determination of the domains of initial and subsequent
deviations of solutions from zero equilibrium states (or given nominal solution) and the
domain of persistent perturbations is characteristic for nonclassical stability theories such
as technical and practical ones. Moreover, the interval of system functioning is also fixed.
An efficient application of the direct Lyapunov method in the practical stability problems
by A.A. Martynyuk yielded significant extensions of this method, which are follows: an
extension of the class of auxiliary functions suitable for the studying practical stability
of motion; elimination of the property of having a fixed sign of the total derivative of an
auxiliary function along with solutions of the system under investigation; establishing a
relationship between the quantitative values of the auxiliary function in given (finite) do-
mains of the phase space and decrement (increment) of this function along with solutions
of the system under investigation.

The importance of practical application of the theory of boundary-value problems in
various fields (nonlinear oscillation theory, motion stability theory, control theory, a series
of economical and biological problems) attracts a great interest to the investigations in
the theory of boundary-value problems for a wide class of systems of functional differential
equations.

General theory of under- and over-determined resonance boundary-value problems
is constructed, natural classification of the problems is worked out, efficient coefficient
criteria of existence of solutions to both linear and nonlinear problems are obtained
and algorithms for their construction are developed [7, 8]. Perturbation theory for such
problems is constructed and bifurcation and branching conditions are established for so-
lutions of boundary-value problems (including the problems with conditions at infinity)
with the Fredholm operator in linear part. The application of the apparatus of gener-
alized inverse operators based on classical results of A.M. Lyapunov and I.J. Malkin on
nonlinear periodic oscillation theory provided the development of the qualitative theory
of boundary-value problems for the systems of ordinary differential [7, 8] and difference
[36] equations, systems of differential equations with delaying argument [38] and differ-
ential systems with impulse effect [35]. Further original application of this theory was
to the known problem on bounded on the whole real axis solutions to differential and
difference equations of appropriate homogeneous system under the dichotomy condition
on semiaxes [8, pp. 257–304].

Originality and importance of the main results of the papers [9], [39]–[43] are as
follows. The author generalizes the Lyapunov and Ostrovsky–Schneider theorems on lo-
calization of matrix spectrum for the classes of analytic domains including the previously
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known ones and being maximally admissible in the framework of the method of matrix
equations. Generalized Lyapunov equation is used in the problem on quadratic opti-
mization of linear controlled systems. The analogues of generalized Lyapunov equation
constructed for analytic matrix-functions enable formulation of new algebraic methods
for stability and localization analysis of spectrum of different classes of differential, dif-
ference and differential-difference systems. The elaborated transformation systems and
generalized inertia theory provide new techniques for classification of linear matrix equa-
tions with respect to their solvability conditions and properties of solutions employed in
the applied investigations. Stability criteria are obtained for linear dynamic systems in
partially ordered space in terms of positive and positive invertible operators. New meth-
ods for stability analysis and generalized principle of comparison of nonlinear differential
systems with the use of cone inequalities are formulated. The results obtained allow one
to describe algebraically the classes of stable systems in the parameter space, to compare
their dynamics and to construct stabilizing controls.

Scientific novelty of the results presented in the monograph [10] is as follows. New
uniform estimates are obtained for oscillation integrals and parameter dependent sums.
These estimates are used to substantiate the method of averaging with respect to all quick
parameters on a segment and semiaxis for nonlinear oscillation systems with slowly vary-
ing frequencies in the resonance case. A new construction technique is developed for
integral manifolds of resonant multifrequency systems and their smoothness and stabil-
ity are studied. Solvability conditions are established for boundary-value problems of
multifrequency systems with multipoint and integral boundary conditions and new error
estimates are proved for the averaging method for such problems. The averaging method
and the method of integral manifolds are justified for oscillation systems with slowly
varying frequencies and impulse effect.

In the monographs [11, 12] functional analytical methods are developed for investi-
gation of absolute stability of dynamic systems with aftereffect, stability, instability and
essential instability of trajectories of dynamic systems in infinite dimensional phase space.
These methods allow, first of all, obtaining general results on asymptotic behaviour of
trajectories of nonlinear systems under investigation, constructing a mathematical appa-
ratus for investigation of dynamic processes in complex nonlinear systems and finding out
general regularities of the evolutionary processes going on in many real systems where
motion occurs. Besides, they open up new possibilities for investigating oscillation of tra-
jectories of nonlinear dynamic systems and studying invertibility of nonlinear functional
operators.
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Abstract: Parametrization of nonunique linear equations solution via generalized
inversion is utilized in nonlinear spacecraft control system design. A stable linear
time-invariant ordinary differential equation in an attitude deviation norm measure
is formed and is evaluated along the trajectories defined by the spacecraft mathemat-
ical model, yielding a linear relation in the control variables. Generalized inversion
of the relation results in a control law that consists of auxiliary and particular parts.
The null-control vector in the auxiliary part is designed by solving a state dependent
Liapunov equation involving a perturbed nullprojector and by utilizing a damped con-
trols coefficient generalized inverse, yielding globally uniformly ultimately bounded
attitude trajectory tracking errors.
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1 Introduction

Throughout the second half of the twentieth century, numerous control methodologies
have been employed for spacecraft control, benefiting from the rapid development in
nonlinear system theory. Among the methodologies applied to the attitude control prob-
lem of rigid spacecraft with known inertia parameters were those based on geometrical
concepts, energy principles, optimal control, and feedback linearizing transformations.
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The present article introduces an algebraic control methodology that aims to utilize
the simplicity of linear system theory by casting the nonlinear spacecraft control problem
in a pointwise-linear form and utilizing a simple linear algebra relation to tackle the
control problem. The primary tool used is the Moore–Penrose generalized matrix inverse
(MPGI).

The procedure begins by defining a norm measure function of the spacecraft’s attitude
variables deviations from their desired values, and prespecifying a stable second-order
linear differential equation in the measure function, resembling the desired attitude devi-
ation dynamics. The differential equation is then transformed to a relation that is linear
in the control vector by differentiating the norm measure function along the trajectories
defined by the solution of the spacecraft’s state space mathematical model. The MPGI
is utilized thereafter to invert this relation for the control law required to realize the
desired stable linear attitude deviation norm measure dynamics.

In addition to its algebraic simplicity, the derived control law has a special geometrical
structure. It consists of auxiliary and particular parts, residing in the nullspace of the
controls coefficient row vector and the range space of its generalized inverse, respectively.
The auxiliary part contains a free nullvector, named the null-control vector, and is being
projected onto the controls coefficient nullspace by means of a nullprojection matrix.
Therefore, the choice of the null-control vector does not affect the dynamics of the attitude
deviation norm measure function, and it parameterizes all control laws that are capable
of realizing that dynamics.

The control problem is a problem of nonuniqueness; that is, if a dynamical system
is controllable then there exists no unique strategy to control it. The MPGI was rein-
troduced in [1] to parameterize this redundancy in control authority in the context of
program, or servo-constraints. The procedure is generalized in this work to the gas jet-
actuated spacecraft control problem by considering nulling the deviation from desired
spacecraft kinematics to be the servo-constraint that is to be realized.

Generalized inversion of the controls coefficient implies outer kinematics tracking
exponential stability. However, not all choices from the infinite set of null-control vectors
guarantee stability of the spacecraft internal dynamics. An observation is made in [1] that
the null-control vector choice substantially affects the inner system states. Therefore, the
primary objective in utilizing the null-control vector design freedom is to subdue internal
instability of the closed loop control system.

To fulfill the internal stability objective, and inspired by the control law’s affinity in
the null-control vector, the later is chosen in this work to be proportional to the spacecraft
angular velocity vector. The state dependent proportionality matrix is constructed by
solving a state dependent Liapunov equation that is produced by a quadratic Liapunov
function in the spacecraft angular velocity vector.

A fundamental property of the resulting Liapunov equation is its dependency on
the controls coefficient generalized inverse (CCGI) and the corresponding nullprojector.
This dependency is a source of two difficulties in the way of solving the equation. The
first difficulty is due to rank deficiency of the controls coefficient nullprojector, and it is
overcomed by perturbing the nullprojector to disencumber its rank deficiency.

The second difficulty is due to an inherent characteristic of the MPGI. Although well-
defined for any matrix, regardless of its size or rank, the MPGI mapping of a matrix that
is continuous in its elements suffers from a discontinuity, whenever the matrix changes
rank. This appears as a divergence of the generalized inverse matrix elements to infinite
values as the mapped matrix changes rank. Robustness against this generalized inversion



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 9(2) (2009) 147–160 149

instability is achieved by modifying the structure of the controls coefficient MPGI by
means of a damping factor that limits its growth as steady state response is approached.
Depending on the amount of modification, this damped CCGI results in a tradeoff between
trajectory tracking accuracy and generalized inversion stability.

Modifying the definition of the controls coefficient MPGI results in an approximate
realization of the desired spacecraft attitude deviation norm measure dynamics. It is
shown that the closed loop attitude trajectories tracking errors resulting from applying
the proposed generalized inversion-based control law are globally uniformly ultimately
bounded, and that the ultimate bound is inversely proportional to the damping factor
by which the generalized inverse is modified.

The present article introduces a nonlinear spacecraft attitude tracking control law,
derived in the generalized inversion framework via a novel state dependent Liapunov
equation, in a continuous development of Liapunov thoughts and results that remain
after a century and a half from his birth anniversary to be the most famous criteria for
nonlinear motion stability [2].

2 Spacecraft Mathematical Model

The spacecraft mathematical model is given by the following system of kinematical and
dynamical differential equations

ρ̇ = G(ρ)ω, ρ(0) = ρ0, (1)

ω̇ = J−1ω×Jω + τ, ω(0) = ω0, (2)

where ρ ∈ R
3×1 is the spacecraft vector of modified Rodrigues attitude parameters

(MRPs) [3], ω ∈ R
3×1 is the vector of spacecraft angular velocity components in its body

reference frame, J ∈ R
3×3 is a diagonal matrix containing spacecraft’s body principal

moments of inertia, and τ := J−1u ∈ R
3×1 is the vector of scaled control torques, where

u ∈ R
3×1 contains the applied gas jet actuator torque components about the spacecraft’s

principal axes. The cross product matrix x× which corresponds to a vector x ∈ R
3×1 is

skew symmetric of the form

x× =




0 x3 −x2

−x3 0 x1

x2 −x1 0





and the matrix valued function G(ρ) : R
3×1 → R

3×3 is given by

G(ρ) =
1

2

(
1 − ρT ρ

2
I3×3 − ρ× + ρρT

)
.

The MRPs are used as the attitude state variables, because of their validity in describing
any angular displacement about the spacecraft’s body axes up to 2π rad, such that G(ρ)
remains finite and invertible for any value of ρ that corresponds to such spacecraft angular
displacement.

3 Attitude Deviation Norm Measure Dynamics

Let ρd(t) ∈ R
3×1 be a prescribed desired spacecraft attitude vector such that ρd(t) is at

least twice continuously differentiable in t. The spacecraft attitude deviation vector from
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ρd(t) is defined as

z(ρ, t) := ρ − ρd(t). (3)

Define the scalar attitude deviation norm measure function φ : R
3×1 ×R → R to be half

the squared Euclidean norm of z(ρ, t)

φ =
1

2
‖ z(ρ, t) ‖2=

1

2
‖ ρ − ρd(t) ‖

2 . (4)

The first two time derivatives of φ along the spacecraft trajectories given by the solution
of Eqs. (1) and (2) are

φ̇ =
∂φ

∂ρ
G(ρ)ω +

∂φ

∂t
= zT (ρ, t) [G(ρ)ω − ρ̇d(t)] (5)

and

φ̈ = [G(ρ)ω − ρ̇d(t)]
T

[G(ρ)ω − ρ̇d(t)]

+ zT (ρ, t)
[
Ġ(ρ, ω)ω + G(ρ)

[
J−1ω×Jω + τ

]
− ρ̈d(t)

]
, (6)

where Ġ(ρ, ω) is the time derivative of G(ρ) obtained by differentiating the individual
elements of G(ρ) along the kinematical subsystem given by Eqs. (1). The procedure is
to prespecify a desired stable linear second-order dynamics of φ in the form

φ̈ + c1φ̇ + c2φ = 0, c1, c2 > 0. (7)

With φ, φ̇, and φ̈ given by Eqs. (4), (5), and (6), it is possible to write Eq. (7) in the
quasi-linear form

A(ρ, t)τ = B(ρ, ω, t), (8)

where the vector valued function A(ρ, t) : R
3×1 × R → R

1×3 is given by

A(ρ, t) = zT (ρ, t)G(ρ) (9)

and the scalar valued function B(ρ, ω, t) : R
3×1 × R

3×1 × R → R is

B(ρ, ω, t) = − [G(ρ)ω − ρ̇d(t)]
T

[G(ρ)ω − ρ̇d(t)]

− zT (ρ, t)
[
Ġ(ρ, ω)ω + G(ρ)J−1ω×Jω − ρ̈d(t)

]

− c1z
T (ρ, t) [G(ρ)ω − ρ̇d(t)] −

c2

2
‖ z(ρ, t) ‖2 .

The row vector function A(ρ, t) is named the controls coefficient of the attitude deviation
norm measure dynamics given by Eq. (7) along the spacecraft trajectories, and the scalar
function B(ρ, ω, t) is the corresponding controls load.

4 Linearly Parameterized Attitude Control Laws

The quasi-linear form given by Eq. (8) makes it feasible to assess realizability of the linear
attitude deviation norm measure dynamics given by Eq. (7) in a pointwise manner.
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Definition 4.1 For a given desired spacecraft attitude vector ρd(t), the linear atti-
tude deviation norm measure dynamics given by Eq. (7) is said to be realizable by the
spacecraft equations of motion (1) and (2) at specific values of ρ and t if there exists a
control vector τ that solves Eq. (8) for these values of ρ and t. If this is true for all ρ and
t such that z(ρ, t) 6= 03×1, then the linear attitude deviation norm measure dynamics is
said to be globally realizable by the spacecraft equations of motion.

Proposition 4.1 For any desired spacecraft attitude vector ρd(t), the linear attitude

deviation norm measure dynamics given by Eq. (7) is globally realizable by the spacecraft

equations of motion (1) and (2). Furthermore, the infinite set of all control laws realizing

that dynamics by the spacecraft equations of motion is parameterized by an arbitrarily

chosen nullvector y ∈ R
3×1 as

τ = A+(ρ, t)B(ρ, ω, t) + P(ρ, t)y, (10)

where A+ stands for the MPGI of the controls coefficient given by

A+(ρ, t) =

{
AT (ρ,t)

A(ρ,t)AT (ρ,t) , A(ρ, t) 6= 01×3,

03×1, A(ρ, t) = 01×3,
(11)

and P(ρ, t) ∈ R
3×3 is the corresponding nullprojector given by

P(ρ, t) = I3×3 −A+(ρ, t)A(ρ, t). (12)

Proof A necessary and sufficient condition for the existence of a control vector τ

that solves Eq. (8) at specific values of ρ and t is consistency of the equation at these
values, i.e., B(ρ, ω, t) is in the range space of A(ρ, t). This is guaranteed for all values
of ω ∈ R

3×1, provided that A(ρ, t) does not vanish at the specified values of ρ and
t, at which the linear attitude deviation norm measure dynamics given by Eq. (7) is
realizable by the spacecraft equations of motion (1) and (2) according to definition 4.1.
Since the matrix G(ρ) is invertible for all values of ρ, it has a trivial nullspace, which
implies from Eq. (9) that A(ρ, t) vanishes if and only if z(ρ, t) does. Therefore, Eq. (8) is
consistent at all ρ and t such that z(ρ, t) 6= 03×1, and the linear attitude deviation norm
measure dynamics is globally realizable by the spacecraft equations of motion according
to definition 4.1. Consequently, the infinite set of all control laws that realize the linear
attitude deviation norm measure dynamics by the spacecraft equations of motion at all
ρ and t such that A(ρ, t) 6= 01×3 is given by Eq. (10) [4].

Since any choice of the nullvector y in the control law expression given by Eq. (10)
yields a solution to Eq. (8), the choice of y does not affect realizability of the linear
attitude deviation norm measure dynamics given by Eq. (7). Nevertheless, the choice
of y substantially affects the spacecraft transient state response [1]. In particular, an
inadequate choice of y can destabilize the spacecraft internal dynamics given by Eq. (2)
or causes unsatisfactory closed loop performance. Due to the importance of the nullvector
y in the present control system design development as a control vector by itself, we name
it the null-control vector.

Corollary 4.1 The infinite set of spacecraft closed loop systems equations realizing

the linear attitude deviation norm measure dynamics given by Eq. (7) is parameterized

by the null-control vector y as

ρ̇ = G(ρ)ω, ρ(0) = ρ0, (13)

ω̇ = J−1ω×Jω + A+(ρ, t)B(ρ, ω, t) + P(ρ, t)y, ω(0) = ω0. (14)
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Proof Equations (13) and (14) are obtained by substituting the control laws expres-
sions given by Eqs. (10) in the spacecraft’s mathematical model given by Eqs. (1) and
(2).

5 Perturbed Controls Coefficient Nullprojector

The concept of perturbed controls coefficient nullprojector (PCCN) is crucial in the
present development of the generalized inversion-based spacecraft control law.

Definition 5.1 The PCCN P̃(ρ, δ, t) is defined as

P̃(ρ, δ, t) := I3×3 − h(δ)A+(ρ, t)A(ρ, t), (15)

where h(δ) : R
1×1 → R

1×1 is any continuous function such that

h(δ) = 1 if and only if δ = 0.

Proposition 5.1 The PCCN P̃(ρ, δ, t) is of full rank for all δ 6= 0.

Proof The singular value decomposition of A(ρ, t) is given by

A(ρ, t) = Σ(ρ, t)VT (ρ, t),

where

Σ(ρ, t) =
[
‖ A(ρ, t) ‖ 0 0

]

and V(ρ, t) ∈ R
3×3 is orthonormal, i.e.,

V−1(ρ, t) = VT (ρ, t), and detV(ρ, t) = 1.

By inspecting the four conditions defining the MPGI [4], it can be easily verified that it
is given for A(ρ, t) by

A+(ρ, t) = V(ρ, t)Σ+(ρ, t),

where Σ+(ρ, t) is the MPGI of Σ(ρ, t) given by

Σ+(ρ, t) =

[
1

‖ A(ρ, t) ‖
0 0

]T

.

Therefore,

A+(ρ, t)A(ρ, t) = V(ρ, t)Σ+(ρ, t)Σ(ρ, t)VT (ρ, t). (16)

The right hand side of Eq. (16) is a singular value decomposition of A+(ρ, t)A(ρ, t),
where the diagonal matrix Σ+(ρ, t)Σ(ρ, t) contains the singular values of A+(ρ, t)A(ρ, t)
as its diagonal elements

Σ+(ρ, t)Σ(ρ, t) =




1 0 0
0 0 0
0 0 0



 .
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Consequently, the PCCN P̃(ρ, δ, t) is

P̃(ρ, δ, t) = I3×3 − h(δ)A+(ρ, t)A(ρ, t)

= I3×3 − h(δ)V(ρ, t)Σ+(ρ, t)Σ(ρ, t)VT (ρ, t)

= V(ρ, t)[I3×3 − h(δ)Σ+(ρ, t)Σ(ρ, t)]VT (ρ, t)

= V(ρ, t)




1 − h(δ) 0 0

0 1 0
0 0 1



VT (ρ, t),

which is of full rank for all δ 6= 0.

Lemma 5.1 The controls coefficient nullprojector P(ρ, t) commutes with its pertur-

bation P̃(ρ, δ, t) for all δ ∈ R. Furthermore, their matrix multiplication is the controls

coefficient nullprojector itself, i.e.,

P(ρ, t)P̃(ρ, δ, t) = P̃(ρ, δ, t)P(ρ, t) = P(ρ, t). (17)

Proof Equations (17) are verified by direct evaluation of the P(ρ, t) and P̃(ρ, δ, t)
expressions given by Eqs. (12) and (15).

6 Null-Control Vector Design

The choice of the null-control vector y affects neither realizability of the attitude de-
viation norm measure dynamics given by Eq. (7) nor steady state spacecraft response.
However, the choice of the null-control vector y affects both of spacecraft internal dynam-
ics and spacecraft transient response. Hence, it provides a freedom that can be utilized
to stabilize internal states of the spacecraft. Internal dynamics stability and stability
robustness against controls coefficient singularity are the most important factors to be
considered in designing the null-control vector y.

The structure of the control law τ given by Eqs. (10) has a special feature, namely
the affinity of its auxiliary part in y, which provides a pointwise-linear parametrization
to the nonlinear control law. Hence, let y be chosen as

y = Kω,

where K ∈ R
3×3 is to be determined. With this choice of y, a class of control laws that

globally realize the attitude deviation norm measure dynamics given by Eq. (7) is given
by

τ = A+(ρ, t)B(ρ, ω, t) + P(ρ, t)Kω

= [H1(ρ, ω, t) + P(ρ, t)K]ω + H2(ρ, t), (18)

where

H1(ρ, ω, t) = −A+(ρ, t)zT (ρ, t)
[
Ġ(ρ, ω) + G(ρ)J−1ω×J + c1G(ρ)

]

−A+(ρ, t)
[
G(ρ)ω − ρ̇d(t)

]T

G(ρ) (19)
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and

H2(ρ, t) = −
c2

2
A+(ρ, t)zT (ρ, t)z(ρ, t) + A+(ρ, t)zT (ρ, t)

[
ρ̈d(t) + c1ρ̇d(t)

]

−A+(ρ, t) ‖ ρ̇d(t) ‖
2
2 . (20)

Hence, a class of closed loop dynamical subsystems realizing the dynamics given by
Eq. (7) is obtained by substituting the control law given by Eqs. (18) in Eqs. (2), and
it takes the form

ω̇ =
[
J−1ω×J + H1(ρ, ω, t) + P(ρ, t)K

]
ω + H2(ρ, t). (21)

The term H2(ρ, t) in the above closed loop dynamical subsystem can be viewed as a
forcing term that drives the internal dynamics of the spacecraft to realize the desired
attitude deviation norm measure dynamics.

7 Spacecraft Internal Stability

The cascaded nature of the spacecraft mathematical model given by Eqs. (1) and (2)
implies that coupling between the spacecraft kinematics and dynamics is unidirectional,
i.e., the open loop spacecraft dynamical subsystem is independent of the attitude param-
eters. This allows to independently analyze dynamical subsystem stability by using the
following squared Euclidean norm of the spacecraft angular velocity vector as a control
Liapunov function

V =‖ ω ‖2 .

Differentiating V along the trajectories of the unforced part of the closed loop dynamical
subsystem Eqs. (21) obtained by setting H2(ρ, t) = 03×1 and noticing skew-symmetry
of ω× yields

V̇ = 2ωT
[
J−1ω×J + H1(ρ, ω, t) + P(ρ, t)K

]
ω

= ωT
[
H1(ρ, ω, t) + HT

1 (ρ, ω, t) + P(ρ, t)K + KP(ρ, t)
]
ω,

where the matrix gain K is chosen to be symmetric. Global exponential stability of the
unforced part of the closed loop dynamical subsystem given by Eqs. (21) at ω = 03×1

is guaranteed if V̇ remains negative-definite as the spacecraft dynamics evolves in time,
which implies the existence of a positive-definite constant matrix Q ∈ R

3×3 such that
the Liapunov equation

H1(ρ, ω, t) + HT
1 (ρ, ω, t) + P(ρ, t)K + KP(ρ, t) + Q = 0 (22)

is satisfied for all t ≥ 0. Lemma 5.1 implies that Eq. (22) can be written as

H1(ρ, ω, t) + HT
1 (ρ, ω, t) + P̃(ρ, δ, t)P(ρ, t)K + KP(ρ, t)P̃(ρ, δ, t) + Q = 0. (23)

To solve the above matrix equation for the matrix gain K, the individual terms in the
equation are vectorized by stacking their columns above each others such that [5]

vec
[
P̃(ρ, δ, t)P(ρ, t)K

]
+vec

[
KP(ρ, t)P̃(ρ, δ, t)

]
= −vec

[
H1(ρ, ω, t) + HT

1 (ρ, ω, t) + Q
]
.
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Employing the relation between the matrix vectorizing operation and the Kronecker
product of matrices yields [5]

{
I3×3 ⊗ P̃(ρ, δ, t)

}
vec [P(ρ, t)K] +

{
P̃(ρ, δ, t) ⊗ I3×3

}
vec [KP(ρ, t)] =

− vec
[
H1(ρ, ω, t) + HT

1 (ρ, ω, t) + Q
]
.

Therefore, the unique matrix gain solution of Liapunov equation (22) for
P(ρ, t)K(ρ, ω, δ, t) is obtained as

P(ρ, t)K(ρ, ω, δ, t) = −vec−1

{[
I3×3 ⊗ P̃(ρ, δ, t) + P̃(ρ, δ, t) ⊗ I3×3

]−1

vec
[
H1(ρ, ω, t) + HT

1 (ρ, ω, t) + Q
]}

= −vec−1

{[
P̃(ρ, δ, t) ⊕ P̃(ρ, δ, t)

]−1

vec
[
H1(ρ, ω, t) + HT

1 (ρ, ω, t) + Q
]}

(24)

and the control law
τ = [H1(ρ, ω, t) + P(ρ, t)K(ρ, ω, δ, t)]ω

renders the equilibrium point ω = 03×1 for the unforced part of the closed loop spacecraft
dynamical subsystem equations (21) given by

ω̇ =
[
J−1ω×J + H1(ρ, ω, t) + P(ρ, t)K(ρ, ω, δ, t)

]
ω (25)

globally exponentially stable, where P(ρ, t)K(ρ, ω, δ, t) is given by Eqs. (24).

8 Controls Coefficient Singularity Analysis

If the controls coefficient A(ρ, t) is singular at specific values of ρ and t, i.e., has zero
elements, then its MPGI A+(ρ, t) given by Eqs. (11) is infinite. The following proposition
relates global realizability of the linear attitude deviation norm measure dynamics to
controls coefficient singularity.

Proposition 8.1 Given a desired spacecraft attitude vector ρd(t) satisfying the

smoothness assumption, a control law τ globally realizes the linear attitude deviation

norm measure dynamics given by Eq. (7) by the spacecraft equations of motion (1) and

(2) only if

lim
t→∞

A(ρ, t) = 01×3.

Proof Because of the equivalency of linear attitude deviation norm measure dynamics
given by Eq. (7) and its quasi-linear form given by Eq. (8), global realizability of of the
first implies the existence of a control law that drives φ according to the dynamics given
by Eq. (7) at all ρ and t such that z(ρ, t) 6= 03×1. The norm property of φ implies that
z(ρ, t) = 03×1 if and only if φ = 0. Therefore, global realizability of the stable dynamics
given by Eq. (7) implies that

lim
t→∞

φ = 0 and lim
t→∞

z(ρ, t) = 03×1.



156 ABDULRAHMAN H. BAJODAH

Since the matrix G(ρ) is nonsingular for all finite values of ρ, Eq. (9) implies that

lim
t→∞

z(ρ, t) = 03×1 if and only if lim
t→∞

A(ρ, t) = 01×3.

With the expression of A(ρ, t) given by Eq. (9), the MPGI controls coefficient given by
Eq. (11) can be written as

A+(ρ, t) =
GT (ρ)z(ρ, t)

‖ GT (ρ)z(ρ, t) ‖2
.

Therefore,

‖ A+(ρ, t) ‖=
‖ GT (ρ)z(ρ, t) ‖

‖ GT (ρ)z(ρ, t) ‖2
=

1

‖ GT (ρ)z(ρ, t) ‖
. (26)

Since G(ρ) is finite for all finite values of ρ, Eq. (26) implies that

lim
z(ρ,t)→03×1

‖ A+(ρ, t) ‖= ∞.

In other words, unbounded CCGI A+(ρ, t) in a control law given by Eqs. (10) is indis-
pensable to globally realize the associated attitude deviation norm measure dynamics.
For the purpose of controlling the growth of A+(ρ, t), a limited-growth modified CCGI
is introduced next.
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Figure 8.1: Damped CCGI.

Definition 8.1 The damped CCGI A+
d (ρ, β, t) is defined as

A
+

d (ρ, β, t) :=






A
T

(ρ,t)

‖A(ρ,t)‖2 : ‖ A(ρ, t) ‖> β,

A
T

(ρ,t)

β2 : ‖ A(ρ, t) ‖< β,

where the scalar β is a positive generalized inverse damping factor.
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The above definition implies that

‖A+
d (ρ, β, t)‖ 6

1

β

and that

lim
z(ρ,t)→03×1

‖ A+
d (ρ, β, t) ‖= lim

z(ρ,t)→03×1

1

β2
‖GT (ρ)z(ρ, t)‖ = 0

and that A+
d (ρ, β, t) pointwise converges to A+(ρ, t) as β vanishes (see Figure 8.1). Ac-

cordingly, we define H1d(ρ, ω, β, t) and H2d(ρ, β, t) by replacing the CCGI A+(ρ, t) in
the H1(ρ, ω, t) and H2(ρ, t) expressions given by Eqs. (19) and (20) with the damped
CCGI A+

d (ρ, β, t). Consequently, Kd(ρ, ω, β, δ, t) is defined by replacing H1(ρ, ω, t) in the
expression of K(ρ, ω, δ, t) given by Eqs. (24) with H1d(ρ, ω, β, t).

9 Generalized Inversion-Based Attitude Tracking Control Law

Theorem 9.1 The control law

τd = A+
d (ρ, β, t)B(ρ, ω, t) + P(ρ, t)Kd(ρ, ω, β, δ, t)ω (27)

renders the trajectory tracking errors of the closed loop system given by Eqs. (1) and (2)

globally uniformly ultimately bounded. Furthermore, any closed loop spacecraft attitude

control trajectory with initial condition ρ(0) ∈ R
3 enters the domain defined by

‖z(ρ, t)‖ <
β

σ(G(ρ))
(28)

in finite time and remains in it for all future time, where σ(G(ρ)) is the three times-

repeated singular value of G(ρ).

Proof Let φd be a norm measure function of the attitude deviation obtained by
applying the control law given by Eqs. (27) to the spacecraft equations of motion (1)
and (2), and let φ̇d, φ̈d be its first two time derivatives. Hence,

φd := φd(ρ, t) = φ(ρ, t),

φ̇d := φ̇d(ρ, ω, t) = φ̇(ρ, ω, t),

φ̈d := φ̈d(ρ, ω, τd, t) = φ̈(ρ, ω, τ, t) + A(ρ, t)τd −A(ρ, t)τ, (29)

where τ is given by

τ = A+(ρ, t)B(ρ, ω, t) + P(ρ, t)K(ρ, ω, δ, t)ω.

Adding c1φ̇d + c2φd to both sides of Eq. (29) yields

φ̈d + c1φ̇d + c2φd = φ̈ + c1φ̇ + c2φ + A(ρ, t)τd −A(ρ, t)τ = A(ρ, t)[τd − τ ].

Therefore, let the state vector Φd ∈ R
2×1 be defined as

Φd :=
[
φd φ̇d

]T
.

The attitude deviation norm measure closed loop dynamics becomes

Φ̇d = Λ1Φd + ∆1(ρ, β, t), (30)
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where the asymptotically stable system matrix Λ1 ∈ R
2×2 is

Λ1 =

[
0 1

−c2 −c1

]

and the input matrix valued function ∆1 : R
5×1 → R

2×1 is

∆1(ρ, ω, β, t) =






02×1 : ‖ A(ρ, t) ‖> β,

[
0

1
β2B(ρ, ω, t) − B(ρ, ω, t)

]
: ‖ A(ρ, t) ‖< β.

On the other hand, the control law given by Eqs. (27) can be written as

τd = [H1d(ρ, ω, β, t) + P(ρ, t)Kd]ω + H2d(ρ, β, t).

Using τd with the dynamical subsystem given by Eqs. (2) results in the closed loop
dynamical subsystem

ω̇ = Λ2(ρ, ω, β, δ, t)ω + ∆2(ρ, β, t), (31)

where
Λ2(ρ, ω, β, δ, t) =

[
J−1ω×J + H1d(ρ, ω, β, t) + P(ρ, t)Kd

]

and
∆2(ρ, β, t) = H2d(ρ, β, t).

Let the augmented state space vector ξ be defined as

ξ :=
[
ΦT

d ωT
]T

,

then Eqs. (30) and (31) form the augmented state space model

ξ̇ = Λ(ρ, ω, β, δ, t)ξ + ∆(ρ, ω, β, t), (32)

where

Λ(ρ, ω, β, δ, t) =

[
Λ1 02×3

03×2 Λ2(ρ, ω, β, δ, t)

]
, ∆(ρ, ω, β, t) =

[
∆1(ρ, ω, β, t)
∆2(ρ, β, t)

]
.

Now consider the unforced system

ξ̇p = Λ(ρ, ω, β, δ, t)ξp

and consider the positive definite Va(ξ) = ‖Φd‖2 +‖ω/ω0‖2, where ω0 is a nondimension-
alizing scalar. It can easily be verified that V̇a is negative definite along the trajectories
of ξp satisfying ‖A(ρ, t)‖ > β, and that ∆(ρ, ω, β, t) is a norm bounded nonvanishing per-
turbation vector. Therefore, the trajectories of the augmented dynamical system given
by Eqs. (32) are globally uniformly ultimately bounded ([6], pp. 347). Furthermore,
since ∆1 = 02×1 in the domain defined by ‖A(ρ, t)‖ > β, it follows from Liapunov theory
that the closed loop attitude trajectories move in the direction of decreasing Va(ξ) and
must cross in finite time the boundary of the domain to its open complement domain
defines by ‖ A(ρ, t) ‖< β, which becomes an invariant set. Moreover, G(ρ) satisfies

σmin(G(ρ)) = σmax(G(ρ)) = σ(G(ρ)).

Therefore,
‖A(ρ, t)‖ = ‖zT (ρ, t)G(ρ)‖ = σ(G(ρ))‖z(ρ, t)‖,

and the bound estimate of the attitude deviation vector norm given by Eq. (28) follows.
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10 Numerical Simulations

The spacecraft model selected has inertia parameters I1 = 200 Kg-m2, I2 = 150 Kg-m2,
I3 = 175 Kg-m2. Values of c1 = 0.9 and c2 = 0.3 are chosen, and the desired MRPs
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Figure 10.1: MRP ρ1 vs. t: β = 0.1, 0.3.
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Figure 10.2: Attitude deviation norm measure φ vs. t: β = 0.1, 0.3.

trajectories are chosen to be ρdi(t) = cos 0.1t, i = 1, 2, 3, and Q = I3×3. All figures
correspond to δ = 0.01 and two values of β = 0.1, 0.3. Figure 10.1 shows the response of
ρ1(t). Similar figures are obtained for ρ2(t) and ρ2(t), but are not shown. Figures 10.2
and 10.3 reveal the tradeoff between generalized inversion stability robustness against
singularity and closed loop system tracking performance. The effect of changing δ on the
closed loop response is minor.
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Abstract: We establish some linear and nonlinear integral inequalities of Gronwall–
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1 Introduction

Inequalities have always been of great importance for the development of several branches
of mathematics. For instance, in approximation theory and numerical analysis, linear
and nonlinear inequalities, in one and more than one variable, play an important role in
the estimation of approximation errors [12].

Time scales, which are defined as nonempty closed subsets of the real numbers, are the
basic but fundamental ingredient that permits to define a rich calculus that encompasses
both differential and difference tools [8, 9]. At the same time one gains more (cf., e.g.,
Corollary 3.1). For an introduction to the calculus on time scales we refer the reader to
[6] and [4, 5], respectively for functions of one and more than one independent variables.

Integral inequalities of Gronwall–Bellman–Bihari type for functions of a single variable
on a time scale can be found in [2, 3, 7, 11, 14]. To the best of the authors knowledge,
no such results exist in the literature of time scales when functions of two independent
variables are considered. It is our aim to obtain here a first insight on this type of
inequalities.
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2 Linear Inequalities

Throughout the text we assume that T1 and T2 are time scales with at least two points
and consider the time scales intervals T̃1 = [a1,∞) ∩ T1 and T̃2 = [a2,∞) ∩ T2, for
a1 ∈ T1, and a2 ∈ T2. We also use the notations R

+
0 = [0,∞) and N0 = N ∪ {0}, while

ep(t, s) denotes the usual exponential function on time scales with p ∈ R, i.e., p is a
regressive function [6].

Theorem 2.1 Let u(t1, t2), a(t1, t2), f(t1, t2) ∈ C(T̃1 × T̃2, R
+
0 ) with a(t1, t2) nonde-

creasing in each of its variables. If

u(t1, t2) ≤ a(t1, t2) +

∫ t1

a1

∫ t2

a2

f(s1, s2)u(s1, s2)∆1s1∆2s2 (1)

for (t1, t2) ∈ T̃1 × T̃2, then

u(t1, t2) ≤ a(t1, t2)e∫ t2
a2

f(t1,s2)∆2s2
(t1, a1) , (t1, t2) ∈ T̃1 × T̃2. (2)

Proof Since a(t1, t2) is nondecreasing on (t1, t2) ∈ T̃1 × T̃2, inequality (1) implies,
for an arbitrary ε > 0, that

r(t1, t2) ≤ 1 +

∫ t1

a1

∫ t2

a2

f(s1, s2)r(s1, s2)∆1s1∆2s2,

where r(t1, t2) = u(t1,t2)
a(t1,t2)+ε

. Define v(t1, t2) by the right hand side of the last inequality.

Then,

∂

∆2t2

(
∂v(t1, t2)

∆1t1

)
= f(t1, t2)r(t1, t2) ≤ f(t1, t2)v(t1, t2), (t1, t2) ∈ T̃

k
1 × T̃

k
2 . (3)

From (3), and taking into account that v(t1, t2) is positive and nondecreasing, we obtain

v(t1, t2)
∂

∆2t2

(
∂v(t1,t2)

∆1t1

)

v(t1, t2)v(t1, σ2(t2))
≤ f(t1, t2),

from which it follows that

v(t1, t2)
∂

∆2t2

(
∂v(t1,t2)

∆1t1

)

v(t1, t2)v(t1, σ2(t2))
≤ f(t1, t2) +

∂v(t1,t2)
∆1t1

∂v(t1,t2)
∆2t2

v(t1, t2)v(t1, σ2(t2))
.

The previous inequality can be rewritten as

∂

∆2t2

(
∂v(t1,t2)

∆1t1

v(t1, t2)

)
≤ f(t1, t2).

Delta integrating with respect to the second variable from a2 to t2 (we observe that t2

can be the maximal element of T̃2, if it exists), and noting that ∂v(t1,t2)
∆1t1

|(t1,a2)= 0, we
have

∂v(t1,t2)
∆1t1

v(t1, t2)
≤

∫ t2

a2

f(t1, s2)∆2s2,
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that is,

∂v(t1, t2)

∆1t1
≤

∫ t2

a2

f(t1, s2)∆2s2v(t1, t2).

Fixing t2 ∈ T̃2 arbitrarily, we have that p(t1) :=
∫ t2

a2
f(t1, s2)∆2s2 ∈ R+. Because

v(a1, t2) = 1, by [2, Theorem 5.4] v(t1, t2) ≤ ep(t1, a1). Inequality (2) follows from

u(t1, t2) ≤ [a(t1, t2) + ε]v(t1, t2)

and the arbitrariness of ε. 2

Corollary 2.1 (cf. Lemma 2.1 of [10]) Let T1 = T2 = R and assume that the

functions u(x, y), a(x, y), f(x, y) ∈ C([x0,∞) × [y0,∞), R+
0 ) with a(x, y) nondecreasing

in its variables. If

u(x, y) ≤ a(x, y) +

∫ x

x0

∫ y

y0

f(t, s)u(t, s)dtds

for (x, y) ∈ [x0,∞) × [y0,∞), then

u(x, y) ≤ a(x, y) exp

(∫ x

x0

∫ y

y0

f(t, s)dtds

)

for (x, y) ∈ [x0,∞) × [y0,∞).

Corollary 2.2 (cf. Theorem 2.1 of [13]) Let T1 = T2 = Z and assume that the

functions u(m, n), a(m, n), f(m, n) are nonnegative and that a(m, n) is nondecreasing for

m ∈ [m0,∞) ∩ Z and n ∈ [n0,∞) ∩ Z, m0, n0 ∈ Z. If

u(m, n) ≤ a(m, n) +
m−1∑

s=m0

n−1∑

t=n0

f(s, t)u(s, t)

for all (m, n) ∈ [m0,∞) ∩ Z × [n0,∞) ∩ Z, then

u(m, n) ≤ a(m, n)
m−1∏

s=m0

[
1 +

n−1∑

t=n0

f(s, t)

]

for all (m, n) ∈ [m0,∞) ∩ Z × [n0,∞) ∩ Z.

Remark 2.1 We note that, following the same steps of the proof of Theorem 2.1,
one can obtained other bound on the function u, namely

u(t1, t2) ≤ a(t1, t2)e∫ t1
a1

f(s1,t2)∆1s1
(t2, a2). (4)

When T1 = T2 = R, then the bounds in (2) and (4) coincide (see Corollary 2.1). If,
for example, we let T1 = T2 = Z, the bounds obtained can be different. Moreover, at
different points one bound can be sharper than the other and vice-versa (see Example 2.1).
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Example 2.1 Let f(t1, t2) be a function defined by f(0, 0) = 1/4, f(1, 0) = 1/5,
f(2, 0) = 1, f(0, 1) = 1/2, f(1, 1) = 0, and f(2, 1) = 5. Set a1 = a2 = 0. Then, from (2)

we get

u(2, 1) ≤ a(2, 1)
3

2
, u(3, 2) ≤ a(3, 2)

147

10
,

while from (4) we get

u(2, 1) ≤ a(2, 1)
29

20
, u(3, 2) ≤ a(3, 2)

637

40
.

Other interesting corollaries can be obtained from Theorem 2.1.

Corollary 2.3 Let T1 = qN0 = {qk : k ∈ N0}, for some q > 1, and T2 = R. Assume

that the functions u(t, x), a(t, x) and f(t, x) satisfy the hypothesis of Theorem 2.1 for all

(t, x) ∈ T̃1 × T̃2 with a1 = 1 and a2 = 0. If

u(t, x) ≤ a(t, x) +

t/q∑

s=1

(q − 1)s

∫ x

0

f(s, τ)u(s, τ)dτ

for all (t, x) ∈ T̃1 × T̃2, then

u(t, x) ≤ a(t, x)

t/q∏

s=1

[
1 + (q − 1)s

∫ x

0

f(s, τ)dτ

]

for all (t, x) ∈ T̃1 × T̃2.

We now generalize Theorem 2.1. If in Theorem 2.2 we let f ≡ 1 and g not depending
on the first two variables, then we obtain Theorem 2.1.

Theorem 2.2 Let u(t1, t2), a(t1, t2), f(t1, t2) ∈ C(T̃1 × T̃2, R
+
0 ), with a and f non-

decreasing in each of the variables and g(t1, t2, s1, s2) ∈ C(S, R+
0 ) be nondecreasing in t1

and t2, where S = {(t1, t2, s1, s2) ∈ T̃1 × T̃2 × T̃1 × T̃2 : a1 ≤ s1 ≤ t1, a2 ≤ s2 ≤ t2}. If

u(t1, t2) ≤ a(t1, t2) + f(t1, t2)

∫ t1

a1

∫ t2

a2

g(t1, t2, s1, s2)u(s1, s2)∆1s1∆2s2

for (t1, t2) ∈ T̃1 × T̃2, then

u(t1, t2) ≤ a(t1, t2)e∫ t2
a2

f(t1,t2)g(t1,t2,t1,s2)∆2s2
(t1, a1) , (t1, t2) ∈ T̃1 × T̃2. (5)

Proof We start by fixing arbitrary numbers t∗1 ∈ T̃1 and t∗2 ∈ T̃2, and considering
the following function defined on [a1, t

∗
1] ∩ T̃1 × [a2, t

∗
2] ∩ T̃2 for an arbitrary ε > 0:

v(t1, t2) = a(t∗1, t
∗
2) + ε + f(t∗1, t

∗
2)

∫ t1

a1

∫ t2

a2

g(t∗1, t
∗
2, s1, s2)u(s1, s2)∆1s1∆2s2 .

From our hypothesis we see that

u(t1, t2) ≤ v(t1, t2), for all (t1, t2) ∈ [a1, t
∗
1] ∩ T̃1 × [a2, t

∗
2] ∩ T̃2.
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Moreover, delta differentiating with respect to the first variable and then with respect to
the second, we obtain

∂

∆2t2

(
∂v(t1, t2)

∆1t1

)
= f(t∗1, t

∗
2)g(t∗1, t

∗
2, t1, t2)u(t1, t2)

≤ f(t∗1, t
∗
2)g(t∗1, t

∗
2, t1, t2)v(t1, t2),

for all (t1, t2) ∈ [a1, t
∗
1]

k ∩ T̃1 × [a2, t
∗
2]

k ∩ T̃2. From this last inequality, we can write

v(t1, t2)
∂

∆2t2

(
∂v(t1,t2)

∆1t1

)

v(t1, t2)v(t1, σ2(t2))
≤ f(t∗1, t

∗
2)g(t∗1, t

∗
2, t1, t2) .

Hence,

v(t1, t2)
∂

∆2t2

(
∂v(t1,t2)

∆1t1

)

v(t1, t2)v(t1, σ2(t2))
≤ f(t∗1, t

∗
2)g(t∗1, t

∗
2, t1, t2) +

∂v(t1,t2)
∆1t1

∂v(t1,t2)
∆2t2

v(t1, t2)v(t1, σ2(t2))
.

The previous inequality can be rewritten as

∂

∆2t2

(
∂v(t1,t2)

∆1t1

v(t1, t2)

)
≤ f(t∗1, t

∗
2)g(t∗1, t

∗
2, t1, t2).

Delta integrating with respect to the second variable from a2 to t2 and noting that
∂v(t1,t2)

∆1t1
|(t1,a2)= 0, we have

∂v(t1,t2)
∆1t1

v(t1, t2)
≤

∫ t2

a2

f(t∗1, t
∗
2)g(t∗1, t

∗
2, t1, s2)∆2s2,

that is,
∂v(t1, t2)

∆1t1
≤

∫ t2

a2

f(t∗1, t
∗
2)g(t∗1, t

∗
2, t1, s2)∆2s2v(t1, t2).

Fix t2 = t∗2 and put p(t1) :=
∫ t∗2

a2
f(t∗1, t

∗
2)g(t∗1, t

∗
2, t1, s2)∆2s2 ∈ R+. By [2, Theorem 5.4]

v(t1, t
∗
2) ≤ (a(t∗1, t

∗
2) + ε)ep(t1, a1).

Letting t1 = t∗1 in the above inequality, and remembering that t∗1, t∗2 and ε are arbitrary,
it follows (5). 2

3 Nonlinear Inequalities

Theorem 3.1 Let u(t1, t2) and f(t1, t2) ∈ C(T̃1 × T̃2, R
+
0 ). Moreover, let a(t1, t2) ∈

C(T̃1 × T̃2, R
+) be a nondecreasing function in each of the variables. If p and q are two

positive real numbers such that p ≥ q and if

up(t1, t2) ≤ a(t1, t2) +

∫ t1

a1

∫ t2

a2

f(s1, s2)u
q(s1, s2)∆1s1∆2s2 (6)

for (t1, t2) ∈ T̃1 × T̃2, then

u(t1, t2) ≤ a
1
p (t1, t2)

[
e∫

t2
a2

f(t1,s2)a
q
p
−1

(t1,s2)∆2s2

(t1, a1)

] 1
p

, (t1, t2) ∈ T̃1 × T̃2. (7)
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Proof Since a(t1, t2) is positive and nondecreasing on (t1, t2) ∈ T̃1 × T̃2, inequality
(6) implies that

up(t1, t2) ≤ a(t1, t2)

(
1 +

∫ t1

a1

∫ t2

a2

f(s1, s2)
uq(s1, s2)

a(s1, s2)
∆1s1∆2s2

)
.

Define v(t1, t2) on T̃1 × T̃2 by

v(t1, t2) = 1 +

∫ t1

a1

∫ t2

a2

f(s1, s2)
uq(s1, s2)

a(s1, s2)
∆1s1∆2s2.

Then

∂

∆2t2

(
∂v(t1, t2)

∆1t1

)
= f(t1, t2)

uq(t1, t2)

a(t1, t2)
≤ f(t1, t2)a

q

p
−1(t1, t2)v

q

p (t1, t2) ,

and noting that v
q

p (t1, t2) ≤ v(t1, t2) we conclude that

∂

∆2t2

(
∂v(t1, t2)

∆1t1

)
≤ f(t1, t2)a

q
p
−1(t1, t2)v(t1, t2).

We can now follow the same procedure as in the proof of Theorem 2.1 to obtain

v(t1, t2) ≤ ep(t1, a1),

where p(t1) =
∫ t2

a2
f(t1, s2)a

q

p
−1(t1, s2)∆2s2. Noting that

u(t1, t2) ≤ a
1
p (t1, t2)v

1
p (t1, t2),

we obtain the desired inequality (7). 2

Theorem 3.2 Let u(t1, t2), a(t1, t2), f(t1, t2) ∈ C(T̃1 × T̃2, R
+
0 ), with a and f non-

decreasing in each of the variables and g(t1, t2, s1, s2) ∈ C(S, R+
0 ) be nondecreasing in t1

and t2, where S = {(t1, t2, s1, s2) ∈ T̃1 × T̃2 × T̃1 × T̃2 : a1 ≤ s1 ≤ t1, a2 ≤ s2 ≤ t2}.
If p and q are two positive real numbers such that p ≥ q and if

up(t1, t2) ≤ a(t1, t2) + f(t1, t2)

∫ t1

a1

∫ t2

a2

g(t1, t2, s1, s2)u
q(s1, s2)∆1s1∆2s2 (8)

for all (t1, t2) ∈ T̃1 × T̃2, then

u(t1, t2) ≤ a
1
p (t1, t2)

[
e∫

t2
a2

f(t1,t2)a
q
p
−1

(t1,s2)g(t1,t2,t1,s2)∆2s2

(t1, a1)

] 1
p

for all (t1, t2) ∈ T̃1 × T̃2.

Proof Since a(t1, t2) is positive and nondecreasing on (t1, t2) ∈ T̃1 × T̃2, inequality
(8) implies that

up(t1, t2) ≤ a(t1, t2)

(
1 + f(t1, t2)

∫ t1

a1

∫ t2

a2

g(t1, t2, s1, s2)
uq(s1, s2)

a(s1, s2)
∆1s1∆2s2

)
.
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Fix t∗1 ∈ T̃1 and t∗2 ∈ T̃2 arbitrarily and define a function v(t1, t2) on [a1, t
∗
1] ∩ T̃1 ×

[a2, t
∗
2] ∩ T̃2 by

v(t1, t2) = 1 + f(t∗1, t
∗
2)

∫ t1

a1

∫ t2

a2

g(t∗1, t
∗
2, s1, s2)

uq(s1, s2)

a(s1, s2)
∆1s1∆2s2.

Then

∂

∆2t2

(
∂v(t1, t2)

∆1t1

)
= f(t∗1, t

∗
2)g(t∗1, t

∗
2, t1, t2)

uq(t1, t2)

a(t1, t2)

≤ f(t∗1, t
∗
2)g(t∗1, t

∗
2, t1, t2)a

q

p
−1(t1, t2)v

q

p (t1, t2).

Since v
q
p (t1, t2) ≤ v(t1, t2), we have that

∂

∆2t2

(
∂v(t1, t2)

∆1t1

)
≤ f(t∗1, t

∗
2)g(t∗1, t

∗
2, t1, t2)a

q
p
−1(t1, t2)v(t1, t2).

We can follow the same steps as done before to reach the inequality

∂v(t1, t2)

∆1t1
≤

∫ t2

a2

f(t∗1, t
∗
2)g(t∗1, t

∗
2, t1, s2)a

q

p
−1(t1, s2)∆2s2v(t1, t2).

Fix t2 = t∗2 and put p(t1) :=
∫ t∗2

a2
f(t∗1, t

∗
2)g(t∗1, t

∗
2, t1, s2)a

q

p
−1(t1, s2)∆2s2 ∈ R+. Again,

an application of [2, Theorem 5.4] gives

v(t1, t
∗
2) ≤ ep(t1, a1),

and putting t1 = t∗1 we obtain the desired inequality. 2

We end this section by considering a particular time scale. Let {αk}k∈N be a sequence
of positive numbers and let

tα0 ∈ R , tαk = tα0 +
k∑

n=1

αn, k ∈ N ,

where we assume that limk→∞ tαk = ∞. Then, we define the following time scale: T
α =

{tαk : k ∈ N0}. For p ∈ R we have (cf. [1, Example 4.6]):

ep(t
α
k , tα0 ) =

k∏

n=1

(1 + αnp(tn−1)), for all k ∈ N0. (9)

Given two sequences {αk, βk}k∈N and two numbers tα0 , t
β
0 ∈ R as above, we define the

two time scales T
α = {tαk : k ∈ N0} and T

β = {tβk : k ∈ N0}. We state now our last
corollary.

Corollary 3.1 Let u(t, s), a(t, s), and f(t, s), defined on T
α × T

β, be nonnegative

with a and f nondecreasing. Further, let g(t, s, τ, ξ), where (t, s, τ, ξ) ∈ T
α×T

β×T
α×T

β

with τ ≤ t and ξ ≤ s, be nonnegative and nondecreasing in the first two variables t and

s. If p and q are two positive real numbers such that p ≥ q and if

up(t, s) ≤ a(t, s) + f(t, s)
∑

τ∈[tα
0

,t)

∑

ξ∈[tβ
0

,s)

µα(τ)µβ(ξ)g(t, s, τ, ξ)uq(τ, ξ) (10)
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for all (t, s) ∈ T
α × T

β, where µα and µβ are the graininess functions of T
α and T

β ,

respectively, then

u(t, s) ≤ a
1
p (t, s)

[
e∫

s

t
β
0

f(t,s)a
q
p
−1

(t,ξ)g(t,s,t,ξ)∆βξ
(t, tα0 )

] 1
p

for all (t, s) ∈ T
α × T

β , where e is given by (9).

Remark 3.1 In (10) we are slightly abusing on notation by considering [tα0 , t) =

[tα0 , t) ∩ T
α and [tβ0 , t) = [tβ0 , t) ∩ T

β .

4 An Application

Let us consider the partial delta dynamic equation

∂

∆2t2

(
∂u2(t1, t2)

∆1t1

)
= F (t1, t2, u(t1, t2)) (11)

under given initial boundary conditions

u2(t1, 0) = g(t1), u2(0, t2) = h(t2), g(0) = 0, h(0) = 0, (12)

where we are assuming a1 = a2 = 0, F ∈ C(T̃1 × T̃2 × R
+
0 , R+

0 ), g ∈ C(T̃1, R
+
0 ),

h ∈ C(T̃2, R
+
0 ), with g and h nondecreasing functions and positive on their domains

except at zero.

Theorem 4.1 Assume that on its domain, F satisfies

F (t1, t2, u) ≤ t2u.

If u(t1, t2) is a solution of the IBVP (11)-(12) for (t1, t2) ∈ T̃1 × T̃2, then

u(t1, t2) ≤
√

(g(t1) + h(t2))
[
e∫ t2

0
s2(g(t1)+h(s2))−

1
2 ∆2s2

(t1, 0)
] 1

2

(13)

for (t1, t2) ∈ T̃1 × T̃2, except at the point (0, 0).

Proof Let u(t1, t2) be a solution of the IBVP (11)-(12). Then, it satisfies the following
delta integral equation:

u2(t1, t2) = g(t1) + h(t2) +

∫ t1

0

∫ t2

0

F (s1, s2, u(s1, s2))∆1s1∆2s2.

The hypothesis on F imply that

u2(t1, t2) ≤ g(t1) + h(t2) +

∫ t1

0

∫ t2

0

s2u(s1, s2)∆1s1∆2s2.

An application of Theorem 3.1 with a(t1, t2) = g(t1)+h(t2) and f(t1, t2) = t2 gives (13).
2
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Abstract: This paper presents an original practical criterion of global stability anal-
ysis of nonlinear polynomial systems. This criterion derived from the application of
the Lyapunov direct method with a quadratic function generalizes the famous Lya-
punov stability condition for linear systems. Useful mathematical transformations
have allowed the formulation of the obtained conditions as an LMI (Linear Matrix
Inequalities) problem according to the polynomial system parameters.

Keywords: nonlinear polynomial systems; Lyapunov methods; global stability anal-
ysis; LMI approach.

Mathematics Subject Classification (2000): 34D20, 93D20, 93D30.

1 Introduction

The problem of stability analysis of nonlinear systems has received considerable attention
in the field of research in automatic control and different approaches have been proposed
in the literature related with this subject [1]– [16]. The polynomial technique of studying
stability of nonlinear systems is one of the most important developed approaches. It is
based on the modeling of the considered nonlinear analytical systems by a polynomial
system [17]– [27]. Notice that the class of polynomial systems is large enough to include
the description of numerous physical processes such as electrical machines and robot
manipulators [28]. Moreover, the description of polynomial systems can be simplified
using the Kronecker product and power of vectors and matrices [17, 29, 30].

In previous works, sufficient algebraic conditions of global asymptotic stability of poly-
nomial systems have been derived using the direct Lyapunov method with a quadratic
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function [17, 18, 25, 29, 31, 32] or non quadratic function as polynomial or monomial
Lyapunov functions [33, 34]. The advantage of the proposed criteria is that they are
expressed according to the studied polynomial system parameters, generalizing the fa-
mous Lyapunov condition known for the linear systems. However, the implementation
of the general form of the derived stability conditions of polynomial systems requires
the resolution of nonlinear matrix inequalities [35, 36]. To overcome this difficulty, we
propose in this paper a new development which leads to the formulation of a practical
LMI stability condition for polynomial systems.

This paper is organized as follows: Section 2 is concerned with the description of the
studied systems and some useful notations. Then, in the third section we present the
derived global stability condition for polynomial systems. The fourth section shows how
the obtained condition can be implemented as an LMI problem. Section 5 is devoted to
a numerical example which illustrates the availability of the proposed approach.

2 System Description and Notations

2.1 System description

The considered nonlinear polynomial systems are described by the following state equa-
tion:

Ẋ = f (X) , (2.1)

where f (X) is a polynomial vector function of X .

f (X) =
r∑

i=1

AiX
[i] =

r∑
i=1

ÃiX̃
[i] (2.2)

with X = [x1, . . . , xn]T ∈ R
n, X [i] is the Kronecker power of the vector X defined as:

{
X [0] = 1,

X [i] = X [i−1] ⊗ X = X ⊗ X [i−1] for i ≥ 1,
(2.3)

⊗ designates the symbol of the Kronecker product [30], X̃
[i]
i=1,...,r ∈ R

ni ,

ni =

(
n + i − 1

i

)
is the nun-redundant Kronecker power of the state vector X defined

as:

X̃ [1] = X [1] = X,

∀ i ≥ 2, X̃ [i] = [xi
1, xi−1

1 x2, ..., xi−1
1 xn, ..., xi−2

1 x2
n, ..., xi−3

1 x3
2, ..., xi

n]T ,
(2.4)

where the repeated components of the redundant (ith-power) X [i] are omitted,

Ai,i=1,...,r ∈ R
n×ni

(resp. Ãi ∈ R
n×ni) are constant matrices. The polynomial order

r is considered odd: r = 2s − 1, with s ∈ N
∗. Let’s recall that this class of systems

describes a large set of processes as electrical machines and robot manipulators and that
any analytical system can be approached by a polynomial model.

2.2 Notations

In this section, we introduce some useful notations and needed rules and functions. Let
the matrices and vectors be of the following dimensions: A(p × q), B(r × s), C(q × f),
E(n × p), X(n× 1), Y (m × 1).
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(i) We consider the following notations: In is an (n × n) identity matrix; 0n×m is an
(n×m) zero matrix; 0 is a zero matrix of convenient dimension; AT is a transpose
of matrix A; A > 0(A ≥ 0) is a symmetric positive definite (semi-definite) matrix;
e

q
k is a q dimensional unit vector which has 1 in the kth element and zero elsewhere.

(ii) The relation between the redundant and the nun-redundant Kronecker power of
the state vector X can be stated as follows:

{
∀i ∈ N ∃ Ti ∈ R

ni×ni

X [i] = TiX̃
[i]

}
, (2.5)

where (ni) stands for the binomial coefficient. A procedure of the determination of
the matrix Ti is given in [37].

(iii) The permutation matrix denoted by (Un×m) is defined as:

Un×m =

n∑

i=1

m∑

j=1

(
en

i · ej
mT

)
⊗

(
em

j · ei
nT

)
. (2.6)

This matrix is square (nm × nm) and has precisely a single 1 in each row and in
each column. Among the main properties of this matrix presented in [30], we recall
the following useful ones:

(B ⊗ A) = Ur×p(A ⊗ B)Uq×s, (2.7)

(X ⊗ Y ) = Un×m(Y ⊗ X), (2.8)

∀i ≤ k X [k] = Uni×nk−iX [k]. (2.9)

(iv) An important vector valued function of matrix denoted by vec(.) was defined in
[30] as follows:

A =
[

A1 A2 ... Aq

]
∈ R

p×q, Ai ∈ R
p, i ∈ {1, ..., q} ,

vec(A) =





A1

A2

...
Aq




∈ R

pq.

We recall the following useful rules [30] of vec-function:

vec(EAC) = (CT ⊗ E)vec(A), (2.10)

vec(AT ) = Up×qvec(A). (2.11)

(v) A special function mat(n,m) (.) can be defined as follows:
If V is a vector of dimension p = nm then M = mat(n,m)(V ) is the (n × m)
matrix verifying: V = vec(M).
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(vi) For a polynomial vectorial function:

f (X) =

r∑

i=1

AiX
[i], (2.12)

where X ∈ R
n, Ai, i=1,...,r are (n × ni) constant matrices and r = 2s − 1, s ∈ N

∗,
M(f) designates the set of matrices defined by:

M(f) = {Mλ(f) ∈ R
υ×υ ; λ = [λij ] ∈ R

s×s} (2.13)

such that:

Mλ(f) =





λ11M11 λ12M12 ... λ1kM1k ... λ1sM1s

λ21M21 λ22M22 ... λ2kM2k ... λ2sM2s

...
...

. . .
...

...
...

λk1Mk1 λk2Mk2

... λkkMkk

... λksMks

...
...

...
...

. . .
...

λs1Ms1 λs2Ms2 ... λskMsk ... λssMss





, (2.14)

υ = n + n2 + ... + ns, and

• for k = 1, ..., r = 2s − 1,

• for j = gk, ..., hk where gk = sup(1, k + 1 − s) and hk = inf(s, k)

we have:

Mk+1−j,j =





mat(nk−j ,nj)

(
A1T

k

)

mat(nk−j ,nj)

(
A2T

k

)

...
mat(nk−j ,nj)

(
AnT

k

)




, (2.15)

Ai
k is the ith row of the matrix Ak:

Ak =





A1
k

A2
k
...

An
k




. (2.16)

Notice that, for all integer numbers i and j such that 1 ≤ i, j ≤ s, there exist
k ∈ N

∗ such that 1 ≤ k ≤ 2s − 1, i = k + 1 − j and gk ≤ j ≤ hk.
λij are arbitrary reals verifying:

hk∑
j=gk

λk+1−j,j = 1. (2.17)

(vii) We introduce the matrix R defined by:

R = τ
+[2]
1 · U · H · τ2, (2.18)
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where

τ1 =





T1

T2 0
T3

0
. . .

Ts




, (2.19)

τ2 =





T2 0
T3

. . .

0 T2s




, (2.20)

U =





Un×η0
0

Un2×η0

. . .

0 Uns×η0




, (2.21)

H =





Iη1
0

0η2×η1
Iη2

0η3×(η1+η2) Iη3

...
. . .

0ηs×(η1+η2+...+ηs−1) Iηs




, (2.22)

for j = 1, ....., s, : ηj = nj ·

(
s∑

i=1

ni

)
,

τ+
1 is the Moore-Penrose pseudo-inverse of τ1.

We note Γ is the matrix defined by:

Γ =
(
Iη2 + Uη×η

) (
R+TRT − Iη2

)
(2.23)

with η =
s∑

j=1

nj =
s∑

j=1

(
n + j − 1

j

)
and R+ is the Moore-Penrose pseudo-inverse

of R.

β = rank(Γ) and Ci, i=1,...,β are β linearly independent columns of Γ.

(iix) For a (n × n) matrix P , we define the (υ × υ) matrix Ds(P ) as:

Ds(P ) =





P 0
P ⊗ In

. . .

0 P ⊗ Ins−1




. (2.24)

Notice that if P is a definite symmetric positive matrix then so is Ds(P ).
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3 Stability Criterion of Polynomial Systems

We consider the analytical nonlinear autonomous systems described by the following
polynomial state-space equation:

Ẋ = f (X) =
r∑

k=1

AkX [k], r = 2s − 1. (3.1)

The Lyapunov’s direct method leads to a sufficient condition of the global asymptotic
stability of the equilibrium (X = 0) of the polynomial system (3.1). This condition is
stated in the following theorem.

Theorem 1 Consider the nonlinear polynomial system defined by the equation (3.1)

where the integer r is odd: r = 2s − 1. If there exist:

• an (n × n)-symmetric positive definite matrix P,

• an (s × s)-matrix λ = [λij ] verifying
hk∑

j=gk

λk+1−j,j = 1,

• arbitrary parameters µi,i=1,...,β ∈ R

such that the (η × η) symmetric matrix Q defined by:

Q = −τT
1 (DS(P )Mλ(f) + Mλ(f)TDS(P ))τ1 +

β∑
i=1

µimat(η,η)(Ci) (3.2)

is positive definite, then the equilibrium X = 0 of the considered system (3.1) is globally

asymptotically stable.

Proof Consider the quadratic Lyapunov function:

V (X) = XT PX. (3.3)

Differentiating V (X) along the trajectory of the system (3.1), one obtains:

V̇ (X) =
r∑

k=1

(XT PAkX [k] + X [k]T AT
k PX) = 2

r∑
k=1

XT PAkX [k]. (3.4)

Using the rule of the vec-function (2.10), the relation (3.4) can then be written as:

V̇ (X) = 2
r∑

k=1

V T
k X [k+1], (3.5)

where

Vk = vec(PAk). (3.6)

To ensure the global asymptotic stability of the equilibrium (X = 0) of the system (3.1),
it is sufficient to have V̇ (X) negative definite for ∀X ∈ R

n.
Let the following notations be used for k = 1, ..., 2s− 1 and j = gk, ..., hk

Nk+1−j, j = mat(nk+1−j , nj)(Vk). (3.7)

Then, using the relation (3.7), we can write:

V T
k X [k+1] =

hk∑
j=gk

λk+1−j,jX
[k+1−j]T Nk+1−jX

[j] (3.8)
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such that
hk∑

j=gk

λk+1−j,j = 1. It can be shown [17] that one has:

Nk+1−j,j = mat(nk+1−j ,nj)(V ec(PAk)) = Unk−j×n(P ⊗ Ink−j ).Mk+1−j,j , (3.9)

where Mk+1−j,j is defined in (2.15).
Using the result (3.9) and the relation (2.9), we can write:

X [k+1−j]T Nk+1−j,jX
[j] = X [k+1−j]T Unk−j×n(P ⊗ Ink−j )Mk+1−j,jX

[j]

= X [k+1−j]T (P ⊗ Ink−j )Mk+1−j,jX
[j]. (3.10)

Consequently, we obtain:

V T
k X [k+1] =

hk∑
j=gk

λk+1−j,jX
[k+1−j]T (P ⊗ Ink−j )Mk+1−j,jX

[j] = X TDS(P )Mk(λ)X

with

X =
[

XT X [2]T · · · X [s]T
]T

(3.11)

and

Mk(λ) =





0 λ1kM1k

. .
.

λk−1,2Mk−1,2

λk1Mk1 0



 . (3.12)

Then V̇ (X) can be written as:

V̇ (X) = 2

2s−1∑

k=1

V T
k X [k+1] = X T (DS(P )Mλ(f) + Mλ(f)TDS(P ))X , (3.13)

where Mλ(f) =
r∑

k=1

Mk(λ) is defined in (2.14).

Using the nun-redundant form, the vector X can be written as:

X = τ1X̃ , (3.14)

where X̃ ∈ R
η, η =

s∑
j=1

nj and τ1 is defined in (2.19).

Then V̇ (X) can be written in the following form:

V̇ (X) = X̃TτT
1 (DS(P )Mλ(f) + Mλ(f)TDS(P ))τ1X̃ . (3.15)

A sufficient condition of the global asymptotic stability of the equilibrium (X = 0) is
that the quadratic form V̇ (X) should be negative definite. This condition can be ensured
if there exists a symmetric positive definite Q ∈ R

η×η such that:

X̃TτT
1 (DS(P )Mλ(f) + Mλ(f)TDS(P ))τ1X̃ = −X̃TQX̃ . (3.16)
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Using the vec-function, the equality (3.16) can be expressed as:

vecT
(
τT
1 (DS(P )Mλ(f) + Mλ(f)TDS(P ))τ1 + Q

)
)X̃ [2] = 0 (3.17)

But, it can be easily checked that X̃ [2] can be written as

X̃ [2] = RX̃2, (3.18)

where

X̃2 =





X̃ [2]

...

X̃ [s+1]

X̃ [s+2]

...

X̃ [2s]





(3.19)

and R is the matrix defined in (2.18). Therefore the equality (3.17) yields the following
equation:

RTvec(S) = 0 (3.20)

with S = τT
1

(
DS(P )Mλ(f) + Mλ(f)TDS(P )

)
τ1 + Q. The η2-vector vec(S) which is a

solution of (3.20) can be expressed as:

vec(S) =
(
R+TRT − Iη2

)
Y, (3.21)

where Y is an arbitrary vector of R
η2

. On the other hand, the matrix S is symmetric
since Q is symmetric, then we have

S = 1
2 (S + ST ) (3.22)

and using the property (2.11) yields

vec(S) = 1
2 (Iη2 + Uη×η)vec(S) =

β∑
i=1

µiCi, (3.23)

where β = rank
[(

Iη2 + Uη×η

) (
R+TRT − Iη2

)]
, Ci,i=1,...,β are β linearly independent

columns of (
Iη2 + Uη×η

) (
R+TRT − Iη2

)
, (3.24)

µi,i=1,...,β are arbitrary values. Consequently, the matrix Q verifying (3.20) is of the
following form:

Q = −τT
1 (DS(P )Mλ(f) + Mλ(f)TDS(P ))τ1 +

β∑
i=1

µimat(η,η)(Ci) (3.25)

which ends the proof.
Remark. For r = 1, the system (3.1) becomes linear (Ẋ = AX) and by (3.25)

we obtain the famous Lyapunov stability condition for linear system: The asymptotic

stability of the origin equilibrium of the system Ẋ = AX is ensured iff there exist

symmetric positive definite matrices P and Q such that AT P + PA = −Q. Thus, the
criterion stated in Theorem 1 generalizes this linear stability Lyapunov condition for
polynomial systems.
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4 LMI Formulation of the Global Stability Criterion of Polynomial Systems

In this section we show how the stated stability conditions of Theorem 1 can be for-
mulated as LMI conditions. Les us notice that the proved stability condition can be
presented as the following matrix inequality feasibility problem. Find:

• a (n × n) matrix P ;
• λ = [λij ] ∈ R

s×s verifying the relation (2.17);
• real parameters µi,i=1,...,β;

such that:





P > 0,

τT
1 (DS(P )Mλ(f) + Mλ(f)TDS(P ))τ1 −

β∑
i=1

µimat(η,η)(Ci) < 0.

(4.1)

However, these inequalities are nonlinear with respect of the unknown parameters P ,λij

and µi, since the second inequality of (4.1) is bilinear on (P, λij). To overcome this
problem we make use of the separation lemma [38] and we exploit the generalized Schur’s
complement [35], in order to transform the BMI problem into an LMI one.

Let us remark that the coefficients λij of the matrix λ verify the relations (2.17) which
implies that

λ11 = 1, λss = 1, (4.2)

and the matrix Mλ(f) can be written as

Mλ(f) = N (f) + Nλ(f), (4.3)

where:

N (f) =





M11 0

M22

. . .

0 Mss




(4.4)

and

Nλ(f) =





0 λ12M12 · · · · · · λ1sM1s

λ21M21 α2M22
. . .

. . .
...

...
. . .

. . .
. . .

...
...

. . .
. . . αs−1Ms−1,s−1 λs−1sMs−1,s

λs1Ms1 · · · · · · λss−1Ms,s−1 0





(4.5)

for k = 2, ..., s − 1,

αk = −
∑

1 ≤ i, j ≤ s

i + j = 2k

i 6= j

λij .

(4.6)

According to the relation (4.3), the second inequality of (4.1) becomes:

−
β∑

i=1

µimat(η,η)(Ci) + τT
1 (DS(P )N (f) + N (f)TDS(P ))τ1

+ [DS(P )τ1]
T [Nλ(f)τ1] + [Nλ(f)τ1]

T [DS(P )τ1] < 0.

(4.7)
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Making use of the following separation lemma.

Lemma 1 [38]: For any matrices A and B with appropriate dimensions and for any

positive scalar ǫ > 0, one has: AT B + BT A ≤ ǫAT A + ǫ−1BT B.

Then, the inequality (4.7) is satisfied if there exists a real ǫ > 0 such that

−
β∑

i=1

µimat(η,η)(Ci) + τT
1 (DS(P )N (f) + N (f)TDS(P ))τ1

+ǫ [DS(P )τ1]
T

[DS(P )τ1] + 1
ǫ
[Nλ(f)τ1]

T
[Nλ(f)τ1] < 0.

(4.8)

This inequality (4.8) can be put as

−
β∑

i=1

µimat(η,η)(Ci) + τT
1 (DS(P )N (f) + N (f)TDS(P ))τ1

− [DS(P )τ1]
T (−ǫI) [DS(P )τ1] − [Nλ(f)τ1]

T (
− 1

ǫ
I
)
[Nλ(f)τ1] < 0

(4.9)

Using Schur complement, inequality (4.9) holds if and only if



−

β∑
i=1

µimat(η,η)(Ci) + τT
1 (DS(P )N (f) + N (f)T

DS(P ))τ1 [DS(P )τ1]
T [Nλ(f)τ1]

T

DS(P )τ1 −
1

ǫ
I 0

Nλ(f)τ1 0 −ǫI



 < 0.

(4.10)
Multiplying diag

(
I, I, ǫ−1I

)
for both sides of (4.10), we have




−

β∑
i=1

µimat(η,η)(Ci) + τT
1 (DS(P )N (f) + N (f)TDS(P ))τ1 [DS(P )τ1]

T
[
Ñλ(f)τ1

]T

DS(P )τ1 −ǫ−1I 0

Ñλ(f)τ1 0 −ǫ−1I



<0,

(4.11)

where λ̃ij = ǫ−1λij . This new inequality (4.11) is linear on the decision variables, and
then we can state the following theorem.

Theorem 2 The equilibrium (X = 0) of the system (3.1) is globally asymptotically stable

if there exist:

• a (s × s)-matrix λ̃ = [λ̃ij ] verifying
hk∑

j=gk

λ̃k+1−j,j = 1;

• a (n × n)-symmetric positive definite matrix P ;

• arbitrary parameters µi,i=1,...,β ∈ R ;

• a real ǫ > 0 ;

such that:

P > 0 (4.12)

and



−

β∑
i=1

µimat(η,η)(Ci) + τT
1 (DS(P )N (f) + N (f)TDS(P ))τ1 [DS(P )τ1]

T
[
Ñλ(f)τ1

]T

DS(P )τ1 −ǫ−1I 0

Ñλ(f)τ1 0 −ǫ−1I



<0.

(4.13)

The stability analysis of polynomial systems using Theorem 2, can be carried out
using Matlab software.
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5 Illustrative Example

To illustrate the availability of the proposed method we consider the stability study of
the origin equilibrium of the following second order polynomial systems:
{

ẋ1 = −x1 − x2 + x2
1 + x1x2 − x3

1 + x2
1x2 − x1x

2
2 + 2x3

2,

ẋ2 = −x1 − 1.5x2 − 1.1x2
1 + 0.3x1x2 − 1.8x3

1 − 5.6x2
1x2 − 5.3x1x

2
2 − 0.7x3

2.
(5.1)

This system can be written in the following form:

Ẋ = A1X + A2X
[2] + A3X

[3] (5.2)

with

A1 =

[
−1 −1
−1 −1.5

]
, A2 =

[
1 1 0 0

−1.1 0.3 0 0

]
,

A3 =

[
−1 0 1 0 0 0 1 2
−1.8 0.9 −5.2 −1.8 −1.3 4.3 −8.3 −0.7

]
.

Solving the optimization problem formulated by Theorem 2, we obtain:






µ1 = 0
µ2 = 0
µ3 = 3.8529

,






λ11 = 1
λ12 = 0.1419
λ21 = 0.8581
λ22 = 1

, ǫ = 0.1864, P =

[
1.9551 −0.1723
−0.1723 1.1529

]
,

which ensure the global asymptotic stability of the equilibrium X = 0.

6 Conclusion

In this paper, we have presented an original practical criterion for global stability analysis
of nonlinear polynomial systems. This criterion is stated as sufficient conditions derived
from a quadratic Lyapunov function. Furthermore, useful mathematical transformations
have allowed the formulation of the obtained conditions as an LMI problem, which has
facilitated the numerical implementation of the proposed criterion using Matlab LMI
toolboxes.

Let’s notice that the obtained results presented in this paper are developed with a
quadratic Lyapunov function, but they can be easily extended for the case of polynomial
Lyapunov functions. Also, we point out that a similar method can be elaborated for the
stabilization and robust control of polynomial systems.
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Abstract: In this study, we are concerned with proving the existence of multiple
positive solutions of a general second order nonlinear m-point boundary value problem
(m-PBVP)

u
∆∇(t) + a(t)u∆(t) + b(t)u(t) + λh(t)f(t, u) = 0, t ∈ [0, 1],

u(ρ(0)) = 0, u(σ(1)) =
m−2∑

i=1

αiu(ηi),

on time scales. The proofs are based on the fixed point theorems in a Banach space.
We present an example to illustrate how our results work.

Keywords: m-point boundary value problems, positive solutions, fixed point theo-
rems, time scales.
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1 Introduction

The theory of dynamic equations on time scales unifies the well-known analogies in
the concept of difference equations and differential equations. Some basic definitions
and theorems on time scales can be found in the books [3, 4]. In the past few years
starting with Il’in and Mossiev [8] and Gupta [6], the existence of positive solutions for
nonlinear high-order and second order boundary value problems have been studied by
many authors by using the coincidence degree theory and fixed point theorems in cones
(see [1, 2, 7, 9, 11, 12, 15] and references therein).
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The m-point boundary value problems for dynamic equations on time scales arise in
a variety of different areas of applied mathematics, physics and engineering. Recently
Yaslan [14], Sun and Lee [13] obtained some existence results for three point and multi-
point boundary value problems on time scales.

In 2003, Ma and Wang [12] studied the nonlinear boundary value problem

u′′(t) + a(t)u′(t) + b(t)u(t) + h(t)f(u) = 0, t ∈ (0, 1), u(0) = 0, αu(η) = u(1)

and obtained some existence results if f satisfies either superlinear and sublinear condi-
tions by applying fixed point theorems in cones. We generalized the results of Ma and
Wang in three aspects: (a) we generalized the three point BVP to m-point BVP with a
dynamic equation; (b) we study the eigenvalue problem; (c) we obtain the existence of
at least three positive solutions.

In this paper we deal with the determining the value of λ for which the following
m-point BVP has a positive solution:

u∆∇(t) + a(t)u∆(t) + b(t)u(t) + λh(t)f(t, u) = 0, t ∈ [0, 1], (1)

u(ρ(0)) = 0, u(σ(1)) =

m−2∑

i=1

αiu(ηi), (2)

where 0 < ηi < 1, ∀i = 1, 2, . . . ,m− 2, h, f, a and b satisfy:

(H1) f ∈ C([ρ(0), σ(1)] × [0,∞), [0,∞));

(H2) h ∈ C([0, 1], [0,∞)) and there exists t0 ∈ [0, 1] such that h(t0) > 0;

(H3) a ∈ C([0, 1], [0,∞)), b ∈ C([0, 1], (−∞, 0]).

This paper is organized as follows. In Section 2, starting with some preliminary
lemmas we state the Krasnosel’skii and Legget-Williams fixed point theorems. In Section
3, we give the main results which state the sufficient conditions for the m-point BVP
(1)-(2) to have at least one or at least three solutions.

2 Preliminaries and Fixed Point Theorems

In this section we state the preliminary information that we need the prove the main
results.

Lemma 2.1 Assume that (H3) holds. Let φ1 and φ2 be the solutions of

φ∆∇
1 (t) + a(t)φ∆

1 (t) + b(t)φ1(t) = 0, (3)

φ1(ρ(0)) = 0, φ1(σ(1)) = 1, (4)

φ∆∇
2 (t) + a(t)φ∆

2 (t) + b(t)φ2(t) = 0, (5)

φ2(ρ(0)) = 1, φ2(σ(1)) = 0 (6)

respectively. Then

(i) φ1 is strictly increasing on [ρ(0), 1], (ii) φ2 is strictly decreasing on [ρ(0), 1].

Lemma 2.2 Assume that (H3) holds. Then (3)-(4) and (5)-(6) have unique solutions

respectively.
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The proofs of the Lemma 2.1 and Lemma 2.2 can be obtained easily by generalizing
the proofs of Lemma 2.1 and Lemma 2.2 in [12] to time scales.

For the rest of the paper we need the following assumption

(H4) 0 <
m−2∑
i=1

αiφ1(ηi) < 1.

In the following lemma we express the Green’s function and the form of the solution of
the linear m-point BVP corresponding to (1)-(2).

Lemma 2.3 Assume that (H3) and (H4) hold. Let y ∈ C[ρ(0), σ(1)]. Then the

problem

u∆∇(t) + a(t)u∆(t) + b(t)u(t) + y(t) = 0, t ∈ [0, 1], (7)

u(ρ(0)) = 0, u(σ(1)) =
m−2∑

i=1

αiu(ηi) (8)

is equivalent to the integral equation

u(t) =

∫ σ(1)

ρ(0)

G(t, s)p(s)y(s)∇s +Aφ1(t), (9)

where

A =
1

1 −
m−2∑
i=1

αiφ1(ηi)

m−2∑

i=1

αi

(∫ σ(1)

ρ(0)

G(ηi, s)p(s)y(s)∇s

)
, (10)

p(t) = ea(ρ(t), ρ(0)), (11)

G(t, s) =
1

φ∆
1 (ρ(0))

{
φ1(t)φ2(s), s ≥ t,

φ1(s)φ2(t), t ≥ s.
(12)

Proof First we show that the unique solution of (7)-(8) can be represented by (9).
From Lemma 2.1, we know that the homogenous part of (7) has two linearly independent
solutions φ1(t) and φ2(t) since

∣∣∣∣
φ1(ρ(0)) φ

△
1 (ρ(0))

φ2(ρ(0)) φ
△
2 (ρ(0))

∣∣∣∣ = −φ∆
1 (ρ(0)) 6= 0.

Now by the method of variations of constants, we can obtain the unique solution of
(7)-(8) which can be represented by (9) whereA andG are as in (10) and (12) respectively.
Next we check the function defined in (9) is the solution of the BVP (7)-(8). For this
purpose we first show that (9) satisfies (7). From the definition of the Green’s function
(12), we get

u(t) =
1

φ∆
1 (ρ(0))

(∫ t

ρ(0)

φ1(s)φ2(t)p(s)y(s)∇s+

∫ σ(1)

t

φ1(t)φ2(s)p(s)y(s)∇s

)
+Aφ1(t).
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Hence the derivatives u∆ and u∆∇ are as follows:

u∆(t) =
1

φ∆
1 (ρ(0))

(
φ∆

2 (t)

∫ t

ρ(0)

φ1(s)p(s)y(s)∇s+ φ∆
1 (t)

∫ σ(1)

t

φ2(s)p(s)y(s)∇s

)
+Aφ∆

1 (t)

and

u∆∇(t) =
1

φ∆
1 (ρ(0))

(
φ∆∇

2 (t)

∫ ρ(t)

ρ(0)

φ1(s)p(s)y(s)∇s + φ∆
2 (t)φ1(t)p(t)y(t)

+φ∆∇
1 (t)

∫ σ(1)

ρ(t)

φ2(s)p(s)y(s)∇s − φ∆
1 (t)φ2(t)p(t)y(t)

)
+Aφ∆∇

1 (t).

Replacing the derivatives in (7), we deduce

u∆∇(t) + a(t)u∆(t) + b(t)u(t) = A
(
φ∆∇

1 (t) + a(t)φ∆
1 (t) + b(t)φ1(t)

)

+
( 1

φ∆
1 (ρ(0))

∫ t

ρ(0)

φ1(s)p(s)y(s)∇s
)(
φ∆∇

2 (t) + a(t)φ∆
2 (t) + b(t)φ2(t)

)

+
( 1

φ∆
1 (ρ(0))

∫ σ(1)

t

φs(s)p(s)y(s)∇s
)(
φ∆∇

1 (t) + a(t)φ∆
1 (t) + b(t)φ1(t)

)

+
1

φ∆
1 (ρ(0))

(
φ∆∇

2 (t)

∫ ρ(t)

t

φ1(s)p(s)y(s)∇s + φ∆∇
1 (t)

∫ t

ρ(t)

φ2(s)p(s)y(s)∇s
)

+
1

φ∆
1 (ρ(0))

(
φ∆

2 (t)φ1(t) − φ∆
1 (t)φ2(t)

)
p(t)y(t)

=
1

φ∆
1 (ρ(0))

(
φ∆∇

2 (t)(ρ(t) − t)φ1(t)p(t)y(t) − φ∆∇
1 (t)(ρ(t) − t)φ2(t)p(t)y(t)

+φ∆
2 (t)φ1(t)y(t) − φ∆

1 (t)φ2(t)y(t)
)

=
1

φ∆
1 (ρ(0))

p(t)y(t)
(
φ∆

2 (t)φ1(t) − φ∆
1 (t)φ2(t)

)

−
1

φ∆
1 (ρ(0))

p(t)y(t)(ρ(t) − t)
(
φ∆∇

1 (t)φ2(t) − φ∆∇
2 (t)φ1(t)

)

=
1

φ∆
1 (ρ(0))

p(t)y(t)
{(
φ∆

2 (t)φ1(t) − φ∆
1 (t)φ2(t)

)

+(ρ(t) − t)
(
φ∆

2 (t)φ1(t) − φ∆
1 (t)φ2(t)

)∇}

=
1

φ∆
1 (ρ(0))

p(t)y(t)
(
φ∆

2 (ρ(t))φ1(ρ(t)) − φ∆
1 (ρ(t))φ2(ρ(t))

)

=
1

φ∆
1 (ρ(0))

p(t)y(t)e⊖a(ρ(t), ρ(0))
(
− φ∆

1 (ρ(0))
)

= −y(t).

Therefore the function defined in (9) satisfies (7). Further we obtain that (8) is satisfied
by (9). The first boundary condition of (8) follows from (9), (10) and (12). Now we
verify the second boundary condition. Since

G(σ(1), s) =
1

φ∆
1 (ρ(0))

φ1(s)φ2(σ(1)) = 0,
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we obtain

u(σ(1)) =

∫ σ(1)

ρ(0)

G(σ(1), s)p(s)y(s)∇s +Aφ1(σ(1)) = A. (13)

On the other hand, by using equation (10) we find

m−2∑

i=2

αiu(ηi) =

m−2∑

i=2

αi

(∫ σ(1)

ρ(0)

G(ηi, s)p(s)y(s)∇s+Aφ1(ηi))

)

=

m−2∑

i=2

αi

(∫ σ(1)

ρ(0)

G(ηi, s)p(s)y(s)∇s+

m−2∑
i=1

αiφ1(ηi)
∫ σ(1)

ρ(0)
G(ηi, s)p(s)y(s)∇s

1 −
m−2∑
i=1

αiφ1(ηi)

)

=
1

1 −
m−2∑
i=1

αiφ1(ηi)

m−2∑

i=1

αi

(∫ σ(1)

ρ(0)

G(ηi, s)p(s)y(s)∇s

)
= A. (14)

Combining the equations (13) and (14) finishes the proof. 2

In this study we consider the Banach space B of continuous functions defined on
[ρ(0), σ(1)] with the supremum norm. Now we set

q(t) = min

{
φ1(t)

||φ1(t)||
,
φ2(t)

||φ2(t)||

}
. (15)

Lemma 2.4 Assume that (H3) and (H4) hold. Let y ∈ C ([ρ(0), σ(1)], [0,∞)). Then

the unique solution of (7)-(8) satisfies u(t) ≥ ||u||q(t).

Proof Let t0 be the point in (ρ(0), σ(1)) such that ||u|| = u(t0). Next we verify

G(t, s) ≥ G(t0, s)q(t). (16)

For this purpose, we consider the following four cases:

(i) t, t0 ≤ s : In this case,

G(t, s)

G(t0, s)
=

φ1(t)

φ1(t0)
≥
φ1(t)

||φ1||
≥ min{

φ1(t)

||φ1(t)||
,
φ2(t)

||φ2(t)||
} = q(t).

(ii) t, t0 ≥ s : In this case,

G(t, s)

G(t0, s)
=

φ2(t)

φ2(t0)
≥
φ2(t)

||φ2||
≥ min{

φ1(t)

||φ1(t)||
,
φ2(t)

||φ2(t)||
} = q(t).

(iii) t0 ≤ s ≤ t : In this case,

G(t, s)

G(t0, s)
=

φ1(s)φ2(t)

φ1(t0)φ2(s)
≥
φ2(t)

φ2(s)
≥
φ2(t)

||φ2||
≥ min{

φ1(t)

||φ1(t)||
,
φ2(t)

||φ2(t)||
} = q(t).

(iv) t ≤ s ≤ t0 : In this case,

G(t, s)

G(t0, s)
=

φ1(t)φ2(s)

φ1(s)φ2(t0)
≥
φ1(t)

φ1(s)
≥
φ1(t)

||φ1||
≥ min{

φ1(t)

||φ1(t)||
,
φ2(t)

||φ2(t)||
} = q(t).
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In the third and the fourth cases we make use of Lemma 2.1. It follows from the fact
1 ≥ φ1(t) ≥ q(t), ∀t ∈ [ρ(0), σ(1)] and the inequality (16) that

u(t) = λ

{∫ σ(1)

ρ(0)

G(t, s)p(s)y(s)∇s +Aφ1(t)
}
≥λ
{
q(t)

∫ σ(1)

ρ(0)

G(t0, s)p(s)y(s)∇s+Aφ1(t)
}

≥ λq(t)
( ∫ σ(1)

ρ(0)

G(t0, s)p(s)y(s)∇s+A

)
≥λq(t)

( ∫ σ(1)

ρ(0)

G(t0, s)p(s)y(s)∇s+Aφ1(t0)
)

= q(t)u(t0) = q(t)||u||. 2

Assume that ξ := inf{t ∈ T : t > ρ(0)}, w := sup{t ∈ T : t < σ(1)} both exist and
are included in [ρ(0), σ(1)], and also satisfy ρ(0) < ξ < w < σ(1). Also assume that
σ(w) < σ(1) and ρ(ξ) > ρ(0) hold.

Lemma 2.5 Assume that (H3) and (H4) hold. Let y ∈ C ([ρ(0), σ(1)], [0,∞)). Then

there exists γ > 0 such that unique solution of (7)–(8) satisfies u(t) > γ||u||.

Proof Choose
γ = min{q(t) : t ∈ [ξ, w]}. (17)

It is clear that γ > 0 and u(t) ≥ q(t)||u|| > γ||u||, ∀t ∈ [ξ, w]. 2

To make use of the fixed point theorems we consider the cone

P = {u ∈ B : u(t) > 0, t ∈ [ρ(0), σ(1)], min
t∈[ξ,w]

u(t) ≥ γ||u||} (18)

on the Banach space B, and set Pr = {x ∈ P : ||x|| < r}.

Theorem 2.1 [5] (Krasnosel’skii Fixed Point Theorem) Let E be a Banach space,

and let K ⊂ E be a cone. Assume Ω1 and Ω2 are open, bounded subsets of E with

0 ∈ Ω1,Ω1 ⊂ Ω2, and let A : K ∩ (Ω2 \ Ω1) → K be a completely continuous operator

such that either

(i) ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2, or

(ii) ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2

hold. Then A has a fixed point in K ∩ (Ω2 \ Ω1).

Theorem 2.2 [11] (Legget–Williams Fixed Point Theorem) Let P be a cone in a real

Banach space E. Set

P(ψ, a, b) := {x ∈ P : a ≤ ψ(x), ‖x‖ ≤ b}.

Suppose A : Pr → Pr be a completely continuous operator and ψ be a nonnegative, con-

tinuous, concave functional on P with ψ(u) ≤ ‖u‖ for all u ∈ Pr. If there exist

0 < p < q < l ≤ r such that the following conditions hold:

(i) {u ∈ P(ψ, q, l) : ψ(u) > q} 6= ∅ and ψ(Au) > q for all u ∈ P(ψ, q, l),

(ii) ‖Au‖ < p for all ‖u‖ ≤ p,

(iii) ψ(Au) > q for u ∈ P(ψ, q, r) with ‖Au‖ > l.

Then A has at least three positive solutions u1, u2 and u3 in Pr satisfying

‖u1‖ < p, ψ(u2) > q, p < ‖u3‖ with ψ(u3) < q.
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3 Main Results

We are concerned with determining values of λ, for which there exist positive solutions
of m-point boundary value problem (1)-(2). We use Krasnosel’skii fixed point theorem
and Legget-Williams fixed point theorem to prove the main results. From Lemma 2.3, it
is clear that the solutions of (1)-(2) are the fixed points of the operator

Φλu(t) = λ

{∫ σ(1)

ρ(0)

G(t, s)p(s)h(s)f(s, u(s))∇s +Aφ1(t)
}
. (19)

To state the main results we need to define the following extended real numbers:

f0 = lim
u→0+

inf min
t∈[ρ(0),σ(1)]

f(t, u)

u
, (20)

f0 = lim
u→0+

sup max
t∈[ρ(0),σ(1)]

f(t, u)

u
, (21)

f∞ = lim
u→∞

inf min
t∈[ρ(0),σ(1)]

f(t, u)

u
, (22)

f∞ = lim
u→∞

sup max
t∈[ρ(0),σ(1)]

f(t, u)

u
. (23)

Let K and L be defined by

K = min
t∈[ξ,w]

∫ w

ξ

G(t, s)p(s)h(s)∇s, (24)

L = max
t∈[ρ(0),σ(1)]

∫ σ(1)

ρ(0)

G(t, s)p(s)h(s)∇s ≤

∫ σ(1)

ρ(0)

G(s, s)p(s)h(s)∇s. (25)

In the following three main results, we state the criteria on λ to make sure the existence
of positive solutions of (1)-(2).

Theorem 3.1 Assume that (H1)-(H4) are satisfied. Then for each λ satisfying either

one of the following conditions

(a)
1

γKf∞
< λ <

1

Lf0

(1 −
m−2∑
i=1

αiφ1(ηi)

1 +
m−2∑
i=1

αi

)
; (b)

1

γKf0
< λ <

1

Lf∞

(1 −
m−2∑
i=1

αiφ1(ηi)

1 +
m−2∑
i=1

αi

)
,

there exists at least one positive solution of (1)-(2).

Proof We claim that Φλ : P → P Let u ∈ P . First from the nonnegativity of G
and from the assumptions (H2) and (H3), it is clear that Φλu(t) ≥ 0 for t ∈ [ρ(0), σ(1)].
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Next by using (16) and (15), we get

min
t∈[ξ,w]

Φλu(t) = min
t∈[ξ,w]

λ

{∫ σ(1)

ρ(0)

G(t, s)p(s)h(s)f(s, u(s))∇s +Aφ1(t)
}

≥ λ

{∫ σ(1)

ρ(0)

q(t)G(t0, s)p(s)h(s)f(s, u(s))∇s +Aφ1(t)
}

≥ q(t)
{
λ

∫ σ(1)

ρ(0)

G(t0, s)p(s)h(s)f(s, u(s))∇s +A

}

≥ γ

{
λ

∫ σ(1)

ρ(0)

G(t0, s)p(s)h(s)f(s, u(s))∇s +A

}

≥ γ

{
λ

∫ σ(1)

ρ(0)

G(t0, s)p(s)h(s)f(s, u(s))∇s +Aφ1(t0)
}

= γ||Φλu||.

Thus Φλu ∈ P . Also complete continuity of Φλu(t) can be obtained easily by the analysis
methods. Now we seek for the fixed points of Φλu(t) which belongs to P .

Assume (a) holds. Since λ <
1

Lf0

(1 −
m−2∑
i=1

αiφ1(ηi)

1 +
m−2∑
i=1

αi

)
there exists ǫ > 0 such that

λL(f0 + ǫ)
( 1 +

m−2∑
i=1

αi

1 −
m−2∑
i=1

αiφ1(ηi)

)
≤ 1.

The use of the definition of f0 guarantees that there exists r1 > 0, sufficiently small such
that

f(t, u)

u
< f0 + ǫ, ∀u ∈ [0, r1].

It follows that f(t, u) < (f0 + ǫ)u for 0 ≤ u ≤ r1 and t ∈ [ρ(0), σ(1)]. If u ∈ ∂Pr1
then

using the fact G(t, s) ≤ G(s, s) we obtain

Φλu(t) = λ

{∫ σ(1)

ρ(0)

G(t, s)p(s)h(s)f(s, u(s))∇s+Aφ1(t)
}

≤ λ

(
1 +

m−2∑
i=1

αi

1 −
m−2∑
i=1

αiφ1(ηi)

) ∫ σ(1)

ρ(0)

G(s, s)p(s)h(s)f(s, u(s))∇s

≤ λ

( 1 +
m−2∑
i=1

αi

1 −
m−2∑
i=1

αiφ1(ηi)

) ∫ σ(1)

ρ(0)

G(s, s)p(s)h(s)f(s, u(s))∇s
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≤ λ

( 1 +
m−2∑
i=1

αi

1 −
m−2∑
i=1

αiφ1(ηi)

)
(f0 + ǫ)||u||

∫ σ(1)

ρ(0)

G(s, s)h(s)∇s

= λ

( 1 +
m−2∑
i=1

αi

1 −
m−2∑
i=1

αiφ1(ηi)

)
(f0 + ǫ)||u||L ≤ ||u||.

Hence if we define the open bounded set

Ω1 = {u ∈ P : ||u|| < r1}, (26)

then

||Φλu|| ≤ ||u||, ∀u ∈ ∂Pr1
= P ∩ ∂Ω1. (27)

Now we use the other part of the inequality in part (a),
1

γKf∞
< λ. We distinguish this

part of the proof into two parts and first consider the case f∞ <∞. In this case, we pick
ǫ1 such that γK(f∞ − ǫ1) ≥ 1. The use of the definition of f∞ guarantees that there
exists r > r1, sufficiently large so that

f(t, u)

u
> f∞ − ǫ1, ∀u ≥ r.

Therefore, f(t, u) > (f∞ − ǫ1)u for (t, u) ∈ [ρ(0), σ(1)] × [0, r1]. We pick r2 such that

r2 ≥
r

γ
> r1 and define

Ω2 = {u ∈ P : ||u|| < r2}. (28)

If u ∈ ∂Pr2
, then Lemma 2.5 leads us to have

Φλu(t) = λ

{∫ σ(1)

ρ(0)

G(t, s)p(s)h(s)f(s, u(s))∇s+Aφ1(t)
}

≥ λ

∫ σ(1)

ρ(0)

G(t, s)p(s)h(s)f(s, u(s))∇s

≥ λ(f∞ − ǫ1)γ||u||

∫ w

ξ

G(t, s)p(s)h(s)∇s

≥ λ(f∞ − ǫ1)γ||u||K

≥ ||u||. (29)

Consequently, we consider the case f∞ = ∞ for which the second part of the inequality
in part (a) becomes λ > 0. If we choose M sufficiently large so that

λMγ

∫ w

ξ

G(t, s)p(s)h(s)∇s ≥ 1 (or λMγK ≥ 1)
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for any t ∈ [ρ(0), σ(1)], then there exists r > r1 so that f(t, u) > Mu for u ≥ r1. Let r2
be defined as above and let u ∈ ∂Pr2

. Then for all t ∈ [ρ(0), σ(s)], we have

Φλu(t) ≥ λM

∫ σ(1)

ρ(0)

G(t, s)p(s)h(s)u(s)∇s

≥ λMγ||u||

∫ w

ξ

G(t, s)p(s)h(s)∇ = λMγK||u|| ≤ ||u|| (30)

From the inequalities (29) and (30)

||Φλu|| ≥ ||u||, ∀u ∈ ∂Pr2
= P ∩ ∂Ω2. (31)

Inequalities (27) and (31) show that the conditions of Krasnosel’skii fixed point theorem
(Theorem 2.1) are fulfilled. Thus from Theorem 2.1, we conclude that Φλu has a fixed
point in P ∩ (Ω2 \ Ω1). 2

The following result states the existence of at least one positive solution of problem
(1)-(2) in a different manner and also bounds the positive solution.

Theorem 3.2 Let f(t, u) satisfy (H1). Assume that there exist two positive constants

r2 > r1 > 0 such that the following conditions are satisfied:

(H5) f(t, u) ≤
Mr2

λ
for (t, u) ∈ [ρ(0), σ(1)] × [0, r2],

(H6) f(t, u) ≥
Nr1

λ
for (t, u) ∈ [ρ(0), σ(1)] × [0, r1],

where

M =

1 −
m−2∑
i=1

αiφ1(ηi)

1 +
m−2∑
i=1

αi

(∫ σ(1)

ρ(0)

G(s, s)p(s)h(s)∇s
)−1

, (32)

N =
(
γ

∫ w

ξ

G(t0, s)p(s)h(s)∇s
)−1

(33)

and t0 ∈ (ρ(0), σ(1)) such that ||u|| = u(t0). Then the problem (1)-(2) has at least one

positive solution u satisfying r1 ≤ ||u|| ≤ r2.

Proof Let Ω2 be defined as in (28). If u ∈ ∂Ω2 then ||u|| = r2.

Φλu(t) ≤ λ

( 1 +
m−2∑
i=1

αi

1 −
m−2∑
i=1

αiφ1(ηi)

) ∫ σ(1)

ρ(0)

G(s, s)p(s)h(s)f(s, u(s))∇s

≤ λ

( 1 +
m−2∑
i=1

αi

1 −
m−2∑
i=1

αiφ1(ηi)

)Mr2

λ

∫ σ(1)

ρ(0)

G(s, s)p(s)h(s)∇s = r2.

Therefore,
||Φλu|| ≤ ||u||, ∀u ∈ ∂Ω2. (34)
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Let Ω1 be defined as in (26). Using (16) and (17) we obtain

Φλu ≥ λ

∫ σ(1)

ρ(0)

G(t, s)p(s)h(s)f(s, u(s))∇s ≥ λq(t)

∫ w

ξ

G(t0, s)p(s)h(s)f(s, u(s))∇s

≥ λγ

∫ w

ξ

G(t0, s)p(s)h(s)f(s, u(s))∇s ≥ λγ
Nr1

λ

∫ w

ξ

G(t0, s)p(s)h(s)∇s = r1.

Therefore,

||Φλu|| ≥ ||u||, ∀u ∈ ∂Ω1. (35)

Inequalities (35) and (34) imply that the conditions of Theorem 2.1 hold. Hence Φλu

has at least one fixed point i.e., (1)-(2) has at least one positive solution in P ∩ (Ω2 \Ω1)
satisfying r1 ≤ ||u|| ≤ r2. 2

Theorem 3.3 Let f(t, u) satisfy (H1) and there exist constants 0 < r1 < r2 < r3
such that the following assumptions hold:

(H7) f(t, u) < λ−1Mr1 for all (t, u) ∈ [ρ(0), σ(1)] × [0, r1],

(H8) f(t, u) ≥ λ−1Nr2 for all (t, u) ∈ [ξ, w] × [r2, r3],

(H9) f(t, u) ≤ λ−1Mr3 for all (t, u) ∈ [ρ(0), σ(1)] × [ρ(0), r3].

Then (1)-(2) has at least three positive solutions u1, u2 and u3 satisfying

||u1|| < r1, r2 < min
t∈[ξ,w]

|u2(t)| ≤ r3, r1 < ||u3|| ≤ r3 and min
t∈[ξ,w]

|u3(t)| < r2.

Proof We verify that the conditions of Legget-Williams fixed point theorem (The-
orem 2.2) are satisfied. For this purpose we first define the nonnegative, continuous,
concave functional ψ : P → [0, ∞) to be ψ(u) := min

t∈[ξ,w]
|u(t)|, the cone P is as in (18),

M as in (32) and N as in (33). Then ψ(u) ≤ ‖u‖ for all u ∈ P .
If u ∈ Pr3

, then ‖u‖ ≤ r3. So by using assumption (H9) and the similar calculations as
in Theorem (3.2), we get

Φλu(t) ≤ λ

( 1 +
m−2∑
i=1

αi

1 −
m−2∑
i=1

αiφ1(µi)

) ∫ σ(1)

ρ(0)

G(s, s)p(s)h(s)f(s, u(s))∇s

≤ λ

( 1 +
m−2∑
i=1

αi

1 −
m−2∑
i=1

αiφ1(µi)

)
λ−1M−1r3

∫ σ(1)

ρ(0)

G(s, s)p(s)h(s)∇s = r3.

Hence Φλ : Pr3
→ Pr3

.
In the same way, if u ∈ Pr1

, i.e. ||u|| ≤ r1 assumption (H7) yields ||Φλu|| < r1.
Therefore (ii) of Theorem 2.2 is satisfied.

To check the condition (i) of Theorem 2.2 we choose u(t) = r3, ∀t ∈ [ρ(0), σ(1)]. It
is clear that u(t) = r3 ∈ P(φ, r2, r3). Consequently, since φ(u) = φ(r3) = r3 > r2 then
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{u ∈ P(φ, r2, r3) : φ(u) > r2} 6= ∅. Moreover by taking assumption (H8) and Lemma 2.5
into account, we obtain

φ(Φλu) = min
t∈[ξ,w]

|Φλu(t)| ≥ λγ

∫ w

ξ

G(t0, s)p(s)h(s)f(s, u(s))∇s

≥ λγλ−1Nr2

∫ w

ξ

G(t0, s)p(s)h(s)∇s = r2.

Therefore (i) of Theorem 2.2 holds.

Similarly (iii) of Theorem 2.2 is satisfied. Hence Φλu has at least three fixed points
u1, u2 and u3 satisfying

||u1|| < r1, r2 < min
t∈[ξ,w]

|u2(t)| ≤ r3, r1 < ||u3|| ≤ r3 and min
t∈[ξ,w]

|u3(t)| < r2. 2

To illustrate how our results can be used in practice we present an example.

Example 3.1 Let T =
{
0,

1

4
,
2

4
,
3

4
, 1,

5

4
, ...

}
. We consider the following four point

boundary value problem:

u∆∇(t) +
12

5
u∆(t) −

16

5
u(t) + 10−3(35 + u)e1(t, 0) = 0, t ∈ [0, 1],

u(0) = 0, u(
5

4
) =

1

2
u(

1

4
) +

1

4
u(

1

2
).

This problem can be regarded as a BVP of the form (1)-(2), where a(t) = 12/5, b(t) =
−16/5, λ = 10−3, h(t) = 1 and f(t, u) = (35 + u)e1(t, 0). Clearly (H1)-(H3) are satisfied.
Let φ1(t) and φ2(t) be the solutions of the following linear BVP’s respectively.

u∆∇(t) +
12

5
u∆(t) −

16

5
u(t) = 0 t ∈ [0, 1], u(0) = 0, u(

5

4
) = 1,

u∆∇(t) +
12

5
u∆(t) −

16

5
u(t) = 0 t ∈ [0, 1], u(0) = 1, u(

5

4
) = 0.

It is evident (from the the Corollaries 4.24 and 4.25 and Theorem 4.28 of [4]) that

φ1(t) =
(5
4 )4t − (1

2 )4t

(5
4 )5 − (1

2 )5
and φ2(t) =

(5
4 )5(1

2 )4t − (1
2 )5(5

4 )4t

(5
4 )5 − (1

2 )5
.

Also φ1(t) satisfies (H4). The Green’s function is of the following form:

G(t, s) =
1024

9279

{
{(5

4 )4t − (1
2 )4t}{(5

4 )5(1
2 )4s − (1

2 )5(5
4 )4s}, s ≥ t,

{(5
4 )4s − (1

2 )4s}{(5
4 )5(1

2 )4t − (1
2 )5(5

4 )4t}, t ≥ s.

p(t) = (
2

5
)4t−1 follows from eα(t, t0) =

(
1+αh

) t−t0
h

on T = hN. Furthermore we obtain

γ ≈ 0, 106,
∫ 5

4

0

G(s, s)
(2

5

)4s−1

∇s ≈ 0, 44 and

∫ 3
4

1
2

G(s, s)
(2

5

)4s−1

∇s ≈ 0, 0025.

and thus M ≈ 19, 84 and N ≈ 3650.
If we choose r2 > r1 > 0 such that r1 = 5 · 10−6 and r2 = 0, 1, then it is straightforward
from Theorem 3.2 that the four point BVP has at least one positive solution satisfying
5 · 10−6 ≤ ‖u‖ ≤ 0, 1.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 9(2) (2009) 185–197 197

Acknowledgment

The authors express their gratitude to the referees for valuable comments and suggestions.

References

[1] Anderson, D.R. Solutions to second order three-point problems on time scales. J. Difference
Equations, 47 (2004) 1–12.

[2] Avery, R.I. and Henderson, J. Two positive fixed points of nonlinear operators on ordered
Banach spaces. Comm. Appl. Nonlinear Anal. 8 (2001) 27–36.

[3] Bohner, M. and Peterson, A. Dynamic Equations on time scales, An Introduction with
Applications. Birkhäuser, Boston, 2001.
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Abstract: In this paper, the global robust dissipativity of a class of neural networks
with variable and unbounded delays is investigated. Several criteria are obtained
by constructing radically unbounded and positive definite Lyapunov functionals and
using analytic techniques. Some numerical examples are given to compare our results
with previous robust dissipativity results derived in the literature. It is shown that
our results extend and improve earlier ones.
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1 Introduction

In recent years, the stability of dynamical neural networks has received much attention
and has been used in signal processing, pattern recognition, associative memory and
optimization problems [1–10]. However, it is possible that there are no equilibrium points
of dynamical systems in some situations. As pointed in [11–15], the global dissipativity is
a more general concept and is of great importance to study in dynamical neural networks.
It has found applications in the areas such as stability theory, chaos and synchronization
theory and robust control [12]. The authors of [12] analyzed the global dissipation of
neural networks with both variable and unbounded delays. In [11], some conditions for
globally robust dissipativity of neural networks with time-varying delays are derived.

In this paper, motivated by the above discussions, we obtain several new sufficient
conditions for the global robust dissipativity of integro-differential models of neural net-
works with variable and unbounded delays. The results compared with those presented
in [11] can be checked easily. Some numerical examples illustrate the proposed conditions
may provide useful and less conservative results for the problem.
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2 System Description

In this paper, we consider the model of neural network with variable and unbounded
delays as follows [11]:

dxi(t)

dt
= −dixi(t) +

n∑

j=1

aijfj(xj(t)) +

n∑

j=1

bijfj(xj(t − τij(t)))

+

n∑

j=1

cij

∫ t

−∞

Kij(t − s)fj(xj(s))ds + ui. (1)

for i = 1, 2, ..., n, where n denotes the number of the neurons in the neural network, xi(t)
is the state of the ith neuron at time t, f(x(t)) = [f1(x1(t)), f2(x2(t)), ..., fn(xn(t))]T is
the activation function of the jth neuron at time t, D = diag(d1, d2, ..., dn) is a positive
definite diagonal matrix, A = (aij)n×n, B = (bij)n×n and C = (cij)n×n are the feedback
matrix and the delayed feedback matrix, respectively, u = (u1, u2, ..., un)T is a constant
external input vector. The assumption on the transmission delay τ(t) is proposed as

0 < τij(t) ≤ σ, τ(t) is a differential function such that
dτij(t)

dt
≤ τ∗ ≤ 1, for i, j = 1, 2, ...n.

The delay kernel function k(·) = (Kij(·))n×n, i, j = 1, 2, ..., n is assumed to satisfy the
following conditions simultaneously:

(1) Kij : [0,∞) → [0,∞);
(2) Kij are bounded and continuous on [0,∞);
(3)

∫ ∞

0
Kij(s)ds = 1;

(4) there exists a positive number ε such that
∫ ∞

0 Kij(s)e
εsds < ∞,

(5)
∫ ∞

0 eβsKij(s)ds = pij(β), for i, j = 1, 2, ..., n, where pij(β) is continuous function
in [0, δ), δ > 0, and pij(0) = 1.

The initial conditions associated with the system (1) are given by xi(s) = φi(s),−σ ≤
s ≤ 0, i = 1, 2, ..., n, where φi(·) is bounded and continuous on [−σ, 0].

Throughout this paper, we will employ the following classes of activation functions :
(1) The set of bounded activation functions is defined as

Γ = {f(x)||fi(xi)| ≤ ki, i = 1, 2, ..., n}.

(2) The set of Lipschitz-continuous activation functions is defined as

Ψ = {f(x)|0 ≤
fi(xi) − fi(yi)

xi − yi

≤ li, li > 0, ∀xi, yi ∈ R, xi 6= yi, i = 1, 2, ..., n}.

(3) The general set of monotone non-decreasing activation functions is defined as

Φ = {f(x)|D+fi(xi) ≥ 0, i = 1, 2, ..., n}.

(4) There exist constants ϑi > 0 such that |fi| ≤ ϑi|x|, i = 1, 2, ..., n,∀x ∈ R. This
class of functions will be denoted by f(x) ∈ Υ.

The quantities di, aij , bij and cij may be considered as intervals as follows [15]:

DI : = {D = diag(di) : D ≤ D ≤ D, i.e., di ≤ di ≤ di, i = 1, ..., n,∀D ∈ DI},

AI : = {A = (aij)n×n : A ≤ A ≤ A, i.e., aij ≤ aij ≤ aij , i, j = 1, ..., n,∀A ∈ AI},

BI : = {B = (bij)n×n : B ≤ B ≤ B, i.e., bij ≤ bij ≤ bij , i, j = 1, ..., n,∀B ∈ BI},

CI : = {C = (cij)n×n : C ≤ C ≤ C, i.e., cij ≤ cij ≤ cij , i, j = 1, ..., n,∀C ∈ CI}. (2)

Similar to [11], we give the following definitions.
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Definition 2.1 The neural network definied by (1) is said to be a dissipative system,
if there exists a compact set S ⊂ Rn, such that ∀x0 ∈ Rn, ∃T > 0, when t ≥ t0 +
T, x(t, t0, x0) ⊆ S, where x(t, t0, x0) denotes the solution of Eq. (1) from initial state x0

and initial time t0. In this case, S is called a globally attractive set. A set S is called
positive invariant if ∀x0 ∈ S implies x(t, t0, x0) ⊆ S for t ≥ t0.

Definition 2.2 If R → R is a continuous function, then the upper right derivative
D+f(t)

dt
of f(t) is defined as

D+f(t) = lim
θ→0+

f(t + θ) − f(t)

θ
. (3)

Lemma 2.1 [16] Let D, S and P be real matrices of appropriate dimensions with

P > 0. Then for any vectors x, y with appropriate dimensions,

2xT DSy ≤ xT DPDT x + yT ST P−1Sy.

3 Main Results

Theorem 3.1 Let f(x) ∈ Γ, then neural network system (1) is a robust dissipative

system and the set S1 is a positive invariant and globally attractive set, where

S1 = {x||xi| ≤ d−1
i

n∑

j=1

[(a∗
ij + b∗ij + c∗ij)kj + |ui|)], i = 1, 2, ..., n}, (4)

a∗
ij = max(|aij |, aij), b

∗
ij = max(|bij |, bij) and c∗ij = max(|cij |, cij).

Proof Let us use a radically unbounded and positive definite Lyapunov functional

V (x) =

n∑

i=1

1

r
|xi|

r.

Computing dV
dt

along the positive half trajectory of (1), we have

dV

dt
=

n∑

i=1

|xi|
r−1sgn(xi)

dxi

dt

≤
n∑

i=1

[−di|xi|
r +

n∑

j=1

(a∗
ij + b∗ij + c∗ij)kj |xi|

r−1 + |ui||xi|
r−1]

= −
n∑

i=1

|xi|
r−1[di|xi| −

n∑

j=1

[(a∗
ij + b∗ij + c∗ij)kj + |ui|] < 0, (5)

where x ∈ Rn\S1, i.e., x∈S1. Eq. (5) implies that the neural network system (1) is a
robust dissipative system and S1 is a positive invariant and globally attractive set. 2

Theorem 3.2 Let f(x) ∈ Ψ, f(0) = 0 and |fi(xi)| → ∞ as |xi| → ∞. If

A + A
T

+
1

1 − τ∗
BB

T
+ (1 + ‖C∗‖∞ + ‖C∗‖1)I ≤ 0,

where C∗ = (c∗ji)n×n, then the neural network system (1) is a robust dissipative system

and the set S2 = {x||fi(xi(t))| ≤
li|ui|

di

, i = 1, 2, ..., n is a positive invariant and globally

attractive set.
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Proof We use the following positive definite and unbounded Lyapunov functional:

V (x(t)) = 2
n∑

i=1

∫ xi(t)

0

fi(s)ds +
n∑

i=1

∫ t

t−τi(t)

f2
i (xi(s))ds

+

n∑

i=1

n∑

j=1

c∗ji

∫ ∞

0

Kji(s)(

∫ t

t−s

f2
i (xi(ξ)dξ)ds.

Computing dV
dt

along the positive half trajectory of (1), we can conclude that

dV

dt
= −2

n∑

i=1

difi(xi(t))xi(t) + 2

n∑

i=1

n∑

j=1

aijfi(xi(t))fj(xj(t)) +

n∑

i=1

f2
i (xi(t))

+ 2

n∑

i=1

n∑

j=1

bijfi(xi(t))fj(xj(t − τj(t))) −
n∑

i=1

(1 −
dτi(t)

dt
)f2

i (xi(t − τi(t)))

+ 2

n∑

i=1

n∑

j=1

cijfi(xi(t))

∫ t

−∞

Kij(t − s)fj(xj(s))ds + 2

n∑

i=1

fi(xi(t))ui

+

n∑

i=1

n∑

j=1

c∗ji

∫ ∞

0

Kji(s)[f
2
i (xi(t)) − f2

i (xi(t − s))]ds

≤ −2

n∑

i=1

di

li
f2

i (xi(t)) + fT (x(t))(A + AT )f(x(t)) + 2fT (x(t))Bf(x(t − τ(t)))

+ fT (x(t))f(x(t)) + 2
n∑

i=1

n∑

j=1

c∗ij

∫ ∞

0

Kijfi(xi(t))fj(xj(t − s))ds

+ 2

n∑

i=1

|ui||fi(xi(t))| +
n∑

i=1

n∑

j=1

c∗jif
2
j (xj(t))

− (1 − τ∗)fT (x(t − τ(t)))f(x(t − τ(t))) −
n∑

i=1

n∑

j=1

c∗ji

∫ ∞

0

Kij(s)f
2
j (xj(t − s))ds.

(6)

Using Lemma 1 and inequality technique, we have

dV

dt
≤ −2

n∑

i=1

di

li
|fi(xi(t))|[|fi(xi(t))| −

li|ui|

di

] + fT (x(t))[A + A
T

+
1

1 − τ∗
BB

T

+ (1 + ‖C∗‖∞ + ‖C∗‖1)I]f(x(t)) ≤ −2

n∑

i=1

di

li
|fi(xi(t))|[|fi(xi(t))| −

li|ui|

di

] < 0 (7)

when x ∈ Rn\S2. Eq. (7) implies that the set S2 is a positive invariant and globally
attractive set. 2

Theorem 3.3 Let f(x) ∈ Ψ, f(0) = 0 and |fi(xi)| → ∞ as |xi| → ∞. If there exists

a positive diagonal matrix P = diag(p1, p2, ..., pn) such that the matrix

Q = P (A − DL−1) + (A
T
− DL−1)P +

1

1 − τ∗
PBB

T
P + (1 + ‖PC∗‖∞ + ‖PC∗‖1)I
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is negative definite, then the neural network system (1) is a robust dissipative system and

the set

S3 =

{
x|

n∑

i=1

(fi(xi(t)) +
piui

λM (Q)
)2 ≤

n∑

i=1

(
piui

λM (Q)
)2, i = 1, 2, ..., n

}

is a positive invariant and globally attractive set, where L = diag(L1, L2, ..., Ln), P =
diag(p1, p2, ..., pn) and λM (Q) is the maximum eigenvalue of the matrix Q.

Proof We employ the following positive definite and radially unbounded Lyapunov
functional:

V (x(t)) = 2
n∑

i=1

pi

∫ xi(t)

0

fi(s)ds +
n∑

i=1

∫ t

t−τi(t)

f2
i (xi(ξ))dξ

+

n∑

i=1

n∑

j=1

pic
∗
ji

∫ ∞

0

Kji(s)(

∫ t

t−s

f2
i (xi(ξ))dξ)ds.

Calculating dV
dt

along the positive half trajectory of (1), we obtain that

dV

dt
= 2

n∑

i=1

pifi(xi(t))[−dixi(t) +

n∑

j=1

aijfj(xj(t)) +

n∑

j=1

bijfj(xj(t − τj(t))) + ui

+

n∑

j=1

cij

∫ t

−∞

Kij(t − s)fj(xj(s))ds] −
n∑

i=1

(1 −
dτi(t)

dt
)f2

i (xi(t − τi(t)))

+

n∑

i=1

n∑

j=1

pic
∗
ji

∫ ∞

0

Kji(s)[f
2
i (xi(t)) − f2

i (xi(t − s))]ds +

n∑

i=1

f2
i (xi(t))

≤ −2

n∑

i=1

pidi

li
f2

i (xi(t)) + fT (x(t))(PA + A
T
P )f(x(t)) + fT (x(t))f(x(t))

+ 2

n∑

i=1

n∑

j=1

pic
∗
ij

∫ ∞

0

Kij(s)fi(xi(t))fj(xj(t − s))ds + 2

n∑

i=1

piuifi(xi(t))

− (1 − τ∗)fT (x(t − τ(t)))f(x(t − τ(t))) +

n∑

i=1

n∑

j=1

pic
∗
jif

2
i (xi(t))

−
n∑

i=1

n∑

j=1

pic
∗
ji

∫ ∞

0

Kji(s)f
2
i (xi(t − s))ds + 2fT (x(t))PBf(x(t − τ(t))). (8)

From Lemma 1 and inequality technique, we can write the following inequalities:

dV

dt
≤ −2

n∑

i=1

pidi

li
f2

i (x(t)) + fT (x(t))(PA + A
T
P )f(x(t))

+
1

1 − τ∗
fT (x(t))PBB

T
Pf(x(t)) +

n∑

i=1

n∑

j=1

pic
∗
ijf

2
i (xi(t))
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+ fT (x(t))f(x(t)) +
n∑

i=1

n∑

j=1

pic
∗
ijf

2
j (xj(t)) + 2

n∑

i=1

piuifi(xi(t))

= 2

n∑

i=1

piuifi(xi(t)) + fT (x(t))Qf(x(t))

≤ 2

n∑

i=1

piuifi(xi(t)) + λM (Q)

n∑

i=1

f2
i (xi(t))

= λM (Q)
n∑

i=1

[(fi(xi(t)) +
piui

λM (Q)
)2 − (

piui

λM (Q)
)2] < 0, (9)

when x ∈ Rn\S3. Eq. (9) implies that the set S3 is a positive invariant and globally
attractive set. 2

Theorem 3.4 Let f(x) ∈ Φ, f(0) = 0 and |fi(xi)| → ∞ as |xi| → ∞. If the following

condition holds:

A + A
T

+ B +
1

1 − τ∗
B

T
+ (‖C∗‖∞ + ‖C∗‖1)I ≤ 0,

where C∗ = (c∗ji)n×n, then the neural network system (1) is a robust dissipative system

and the set S4 = {x||xi(t) ≤ |ui|

di

, i = 1, 2, ..., n} is a positive invariant and globally

attractive set.

Proof Let us use the following positive definite and radially unbounded Lyapunov
functional:

V (x(t)) = 2

n∑

i=1

∫ xi(t)

0

fi(s)ds +

n∑

i=1

n∑

j=1

∫ t

t−τji(t)

b∗jif
2
i (xi(s))ds

+

n∑

i=1

n∑

j=1

c∗ji

∫ ∞

0

Kji(s)(

∫ t

t−s

f2
i (xi(ξ))dξ)ds.

Calculating dV
dt

along the positive half trajectory of (1), we have

dV

dt
= 2

n∑

i=1

fi(xi(t))[−dixi(t) +
n∑

j=1

aijfj(xj(t)) +
n∑

j=1

bijfj(xj(t − τj(t))) + ui

+
n∑

j=1

cij

∫ t

−∞

Kij(t − s)fj(xj(s))ds] −
n∑

i=1

n∑

j=1

(1 −
dτji(t)

dt
)f2

i (xi(t − τji(t)))

+

n∑

i=1

n∑

j=1

b∗jif
2
i (xi(t)) +

n∑

i=1

n∑

j=1

c∗ji

∫ ∞

0

Kji(s)[f
2
i (xi(t)) − f2

i (xi(t − s))]ds

≤ −2

n∑

i=1

di|fi(xi(t))||xi(t)| + fT (x(t))(A + A
T
)f(x(t)) + 2

n∑

i=1

uifi(xi(t))



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 9(2) (2009) 199–208 205

+ 2
n∑

i=1

n∑

j=1

c∗ij

∫ ∞

0

Kij(s)fi(xi(t))fj(xj(t − s))ds + 2fT (x(t))Bf(x(t − τ(t)))

− (1 − τ∗)fT (x(t − τ(t)))Bf(x(t − τ(t))) + fT (x(t))Bf(x(t))

+

n∑

i=1

n∑

j=1

c∗jif
2
i (xi(t)) −

n∑

i=1

n∑

j=1

c∗ji

∫ ∞

0

Kji(s)f
2
i (xi(t − s))ds. (10)

From Lemma 1, it follows that

2fT (x(t))Bf(x(t − τ(t))) ≤
1

1 − τ∗
fT (x(t))BT f(x(t))

+ (1 − τ∗)fT (x(t − τ(t)))BT B−T Bf(x(t − τ(t)))

=
1

1 − τ∗
fT (x(t))BT f(x(t))

+ (1 − τ∗)fT (x(t − τ(t)))Bf(x(t − τ(t))) (11)

By using the inequality 2ab ≤ a2 + b2 for any a, b ∈ R, we have

2

∞∫

0

Kij(s)fi(xi(t))fj(xj(t − s))ds ≤

∞∫

0

Kij(s)f
2
i (xi(t))ds +

∞∫

0

Kij(s)f
2
j (xj(t − s))ds. (12)

From (10) to (12), we get

dV

dt
≤ −2

n∑

i=1

di|fi(xi(t))||xi(t)| + 2

n∑

i=1

|fi(xi(t))||ui|

+ fT (x(t))(A + A
T

+ B +
1

1 − τ∗
B

T
+ (‖C∗‖∞ + ‖C∗‖1)I)f(x(t))

≤ −2

n∑

i=1

di|fi(xi(t))||xi(t)| + 2

n∑

i=1

|fi(xi(t))||ui| < 0, (13)

when x ∈ Rn\S4. Eq. (13) implies that the set S4 is a positive invariant and globally
attractive set. 2

Theorem 3.5 Let f(x) ∈ Υ, f(0) = 0 and |fi(xi)| → ∞ as |xi| → ∞. If the following

condition holds:
n∑

j=1

(aij +
1

1 − τ∗
b∗ij + c∗ij) < 0,

where a∗
ij = max(|aij |, aij), b

∗
ij = max(|bij |, bij), c

∗
ij = max(|cij |, cij), then the neural

network system (1) is a robust dissipative system and the set S5 = {x||xi(t) ≤ |ui|

di

, i =

1, 2, ..., n} is a positive invariant and globally attractive set.

Proof Let us use the following positive definite and radially unbounded Lyapunov
functional:

V (x(t)) = xi(t) +
1

1 − τ∗

n∑

j=1

b∗ij

t∫

t−τj(t)

|fj(xj(s))|ds +

n∑

j=1

c∗ijϑj

∞∫

0

Kij(s)

t∫

t−s

|xj(ξ)|dξ ds.
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Calculating dV
dt

along the positive half trajectory of (1), we have

dV

dt
= −dixi(t) +

n∑

j=1

aijfj(xj(t)) +

n∑

j=1

bijfj(xj(t − τ(t))) + ui

+
1

1 − τ∗

n∑

j=1

b∗ijfj(xj(t)) +

n∑

j=1

cij

∫ ∞

0

Kij(s)fj(xj(t − s))ds

−
1

1 − τ∗
(1 −

dτ(t)

dt
)

n∑

j=1

b∗ijfj(xj(t − τ(t)))

+

n∑

j=1

c∗ijϑ

∫ ∞

0

Kij(s)|xj(t)|ds −
n∑

j=1

c∗ijϑj

∫ ∞

0

Kij(s)|xj(t − s)|ds

≤ −di|xi(t)| +
n∑

j=1

aijϑj |xj | +
n∑

j=1

bijϑj |xj(t − τ(t))| + |ui| +
1

1 − τ∗

n∑

j=1

b∗ijϑjxj(t)

−
n∑

j=1

bijϑjxj(t − τ(t))) +

n∑

j=1

c∗ijϑj |xj |

= −di|xi(t)| + |ui| +
n∑

j=1

ϑj(aij +
1

1 − τ∗
b∗ij + c∗ij)|xj | < 0, (14)

when x ∈ Rn\S5. Eq. (14) implies that the set S5 is a positive invariant and globally
attractive set. 2

Remark 3.1 Our activation functions are more general than those in [11]. Hence,
our results improve and generalizes the earlier results.

Remark 3.2 Our methods used in this paper, such as Lyapunov functional and
matrix inequalities used in Theorem 4, are different to those in [11].

Remark 3.3 The neural network system in [14] can be seen as a special case for
model (1). Therefore, the global robust dissipativity of that system can be studied
similarly.

4 Comparison and Examples

To compare with [11], we restated Theorem 1 of [11].

Theorem 4.1 Let f(x) ∈ Υ, f(0) = 0 and |fi(xi)| → ∞ as |xi| → ∞, the neu-

ral network defined by (1) is a robust dissipative system and the set S6 = {x||xi(t) ≤
|ui|

d
i

, i = 1, 2, ..., n} is a positive invariant and globally attractive set, if there exist positive

constants pi > 0, i = 1, 2, ..., n such that

pi(−aii −
1

1 − τ∗
b∗ii − c∗ii) −

n∑

j=1,j 6=i

pj(a
∗
ji +

1

1 − τ∗
b∗ji + c∗ji) ≥ 0, (15)

where i = 1, 2, ..., n, a∗
ij = max(|aij |, aij), b∗ij = max(|bij |, bij), c∗ij = max(|cij |, cij).
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Example 4.1 Consider the system (1) with delays: τij(t) = 1 for i, j = 1, 2,

D =

[
0.4 0
0 1.2

]
, D =

[
1 0
0 1.5

]
, A =

[
−2 0.7
−0.9 −3

]
,

A =

[
−1.5 0.4
0.3 −1.5

]
, B =

[
0.25 −0.5
−0.2 −0.7

]
, B =

[
0.5 0.25
0 −0.5

]
,

C = C = 0, u1 = 1.5, u2 = −2, σ = 1, τ∗ = 0, pi = 1.

The initial values of system (1) is assumed as φ(s) = 0.5, t ∈ [−1, 0). Since
{

a11 + a12 + 1
1−τ∗

b∗11 + 1
1−τ∗

b∗12 + c∗11 + c∗12 = −0.1 < 0,

a21 + a22 + 1
1−τ∗

b∗21 + 1
1−τ∗

b∗22 + c∗21 + c∗22 = −0.3 < 0,

the condition of Theorem 5 in this paper is satisfied; the neural network system (1) is a
globally robust dissipative system, and the set S5 = {(x1(t), x2(t))||x1(t)| ≤

15
4 , |x2(t)| ≤

5
3} is positive invariant and globally attractive. Since

{
−a11 −

1
1−τ∗

b∗11 − c∗11 − (a∗
21 + 1

1−τ∗
b∗21 + c∗21) = −0.1 < 0,

−a22 −
1

1−τ∗
b∗22 − c∗22 − (a∗

12 + 1
1−τ∗

b∗12 + c∗12) = −0.4 < 0,

the condition of Theorem 6 is not satisfied, one can not determine the dissipativity of the
neural network (1). Therefore, our obtained criteria for the global robust dissipativity of
neural networks with variable and unbounded delays are new.

Example 4.2 Consider the system (1) with delays: τij(t) = 1 for i, j = 1, 2,

D =

[
0.4 0
0 1.2

]
, D =

[
1 0
0 1.5

]
, A =

[
−3.3 −0.25

1
3 −3

]
, A =

[
−3 0.25
0.5 −4

]
,

B =

[
1 −1
−1 −1

]
, B =

[
1 1
1 1

]
, C =

[
0.25 −0.25
−0.25 −0.25

]
, C =

[
0.25 0.25
0.25 0.25

]
,

and u1 = 1.5, u2 = −2, σ = 1, τ∗ = 0. The initial values of system (1) are assumed as
φ(s) = 0.5, t ∈ [−1, 0). Since that

A + A
T

+
1

1 − τ∗
BB

T
+ (1 + ‖C∗‖∞ + ‖C∗‖1)I =

[
−2 7

4
7
4 −4

]
≤ 0,

then the conditions of Theorem 2 are satisfied, and the neural networks system (1) is a
globally robust dissipative system, and the set

S2 = {f1(x1(t)), f2(x2(t))||f1(x1(t))| ≤
15

4
l1, |f2(x2(t))| ≤

5

3
l2}

is positive invariant and globally attractive.

5 Conclusion

This paper studies the global robust dissipativity of a class of neural networks with
variable and unbounded delays. Several sufficient conditions are presented to characterize
the global dissipation together with their sets of attraction. Our results would make good
effects in studying the uniqueness of equilibria, global asymptotic stability, instability and
the exsitence of periodic solutions. In addition, several examples are given to demonstrate
the improvements and correctness of our results.
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Abstract: This paper is concerned with a class of nonlinear delay partial diffe-
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frequency measures, some new oscillatory criteria are established.
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1 Introduction

Let Z be the set of integers, Z[k, l] = {i ∈ Z|i = k, k + 1, ..., l} and Z[k,∞) =
{i ∈ Z|i = k, k + 1, ...} .

In [1], authors considered oscillations of the partial difference equation with several
nonlinear terms of the form

um+1,n + um,n+1 − um,n +

h∑

i=1

pi(m, n) |um−ki,n−li |
αi sgnum−ki,n−li = 0.

In this paper, we investigate the equation of the following form

um+1,n+1+um+1,n+um,n+1−um,n +

h∑

i=1

pi(m, n) |um−ki,n−li |
αi sgnum−ki,n−li = 0, (1)

where m, n ∈ Z[0,∞), Pi (m, n) ≥ 0 (i = 1, 2, · · · , h) and

∗ Corresponding author: zyj 030@yahoo.com.cn

c© 2009 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 209
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(H1) αh > αh−1 > · · · > αk > 1 > αk−1 > · · · > α1 > 0;
(H2) ki, li (i = 1, 2, · · · , h) are nonnegative integers.
Such an equation arises in several mathematical models (see e.g.[3]) including inter-

connected neuron units placed on an arbitrary large board, heat transfer in lattice of
molecules, population migration among cities, and discrete simulation of the heat equa-
tion et al.

The usual concepts of oscillation or stability of steady state solutions do not catch all
their fine details, and it is necessary to use the concept of frequency measures introduced
in [2] to provide better descriptions. In this paper, by employing frequency measures,
some new oscillatory criteria of (1) are established.

In addition to (H1) and (H2), we also assume
(H3) pi = {pi(m, n)}m,n∈Z[0,∞) (i = 1, 2, · · · , h) are real double sequences;

(H4) Suppose there exists ai > 0 (i = 1, 2, · · · , h) such that
∑h

i=1 ai = 1 and∑h
i=1 aiαi = 1;
(H5) If pi = {pi(m, n)} has negative components, then ai is chosen such that ai is a

quotient of odd positive integers.
Let

k = max
1≤i≤h

{ki} > 0, l = max
1≤i≤h

{li} > 0, k = min
1≤i≤h

{ki} , l = min
1≤i≤h

{li}

and

γ = min

{
1

a1
, · · · ,

1

ah

}
.

Since 0 < ai < 1, we see that γ > 1.

Our plan is as follows. In the next section, we recall some of the terminologies and
basic results related to the frequency measures. Then we derive several criteria for all
solutions of (1) to be frequently oscillatory or unsaturated. In the final section, we give
some examples to illustrate our results.

For the sake of convenience, Z[−k,∞)×Z[−l,∞) will be denoted by Ω in the sequel.
Given a double sequence {um,n} , the partial differences um+1,n −um and um,n+1−um,n

will be denoted by ∆1um,n and ∆2um,n respectively.

2 Preliminaries

The union, intersection and difference of two sets A and B will be denoted by A + B,

A · B and A\B respectively. The number of elements of a set S will be denoted by |S| .
Let Φ be a subset of Ω. Then

XmΦ = {(i + m, j) ∈ Ω| (i, j) ∈ Φ} , Y mΦ = {(i, j + m) ∈ Ω| (i, j) ∈ Φ}

are the translations of Φ. Let α, β, λ and δ be integers satisfying α ≤ β and λ ≤ δ. The
union

∑β
i=α

∑δ
j=λ X iY jΦ will be denoted by Xβ

αY δ
λ Φ. Clearly,

(i, j) ∈ Ω\Xβ
αY δ

λ Φ ⇔ (i − s, j − t) ∈ Ω\Φ

for α ≤ s ≤ β and λ ≤ t ≤ δ.

For any m, n ∈ Z[0,∞), we set Φ(m,n) =
{
(i, j) ∈ Φ| − k ≤ i ≤ m,−l ≤ j ≤ n

}
. If

lim sup
m,n→∞

∣∣Φ(m,n)
∣∣

mn
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exists, then the superior limit, denoted by µ∗(Φ), will be called the upper frequency
measure of Φ. Similarly, if

lim inf
m,n→∞

∣∣Φ(m,n)
∣∣

mn

exists, then the inferior limit, denoted by µ∗(Φ), will be called the lower frequency mea-
sure of Φ. If µ∗(Φ) = µ∗(Φ), then the common limit is denoted by µ(Φ) and is called the
frequency measure of Φ.

Clearly, µ(∅) = 0, µ(Ω) = 1 and 0 ≤ µ∗(Φ) ≤ µ∗(Φ) ≤ 1 for any subset Φ of Ω,

furthermore if Φ is finite, then µ(Φ) = 0.

The following results are concerned with the frequency measures and their proofs are
similar to those in [3].

Lemma 2.1 Let Φ and Γ be subsets of Ω. Then µ∗(Φ + Γ) ≤ µ∗(Φ) + µ∗(Γ).
Furthermore, if Φ and Γ are disjoint, then

µ∗(Φ) + µ∗(Γ) ≤ µ∗(Φ + Γ) ≤ µ∗(Φ) + µ∗(Γ) ≤ µ∗(Φ + Γ) ≤ µ∗(Φ) + µ∗(Γ),

so that

µ∗(Φ) + µ∗(Ω\Φ) = 1.

Lemma 2.2 Let Φ be a subset of Ω and α, β, λ and δ be integers such that α ≤ β

and λ ≤ δ. Then

µ∗
(
Xβ

αY δ
λ Φ
)
≤ (β − α + 1)(δ − λ + 1)µ∗(Φ)

and

µ∗

(
Xβ

αY δ
λ Φ
)
≤ (β − α + 1)(δ − λ + 1)µ∗(Φ).

Lemma 2.3 Let Φ1, ..., Φn be subsets of Ω. Then

µ∗

(
n∑

i=1

Φi

)
≤

n∑

i=1

µ∗ (Φi) − (n − 1)µ∗

(
n∏

i=1

Φi

)

and

µ∗

(
n∑

i=1

Φi

)
≤ µ∗ (Φ1) + µ∗

(
n∑

i=2

Φi

)
− (n − 1)µ∗

(
n∏

i=1

Φi

)
.

Lemma 2.4 Let Φ and Γ be subsets of Ω. If µ∗(Φ)+µ∗(Γ) > 1, then the intersection

Φ · Γ is infinite.

For any real double sequence {vi,j} defined on a subset of Ω, the level set
{(i, j) ∈ Ω| vi,j > c} is denoted by (v > c) . The notations (v ≥ c) , (v < c), (v ≤ c)
are similarly defined. Let u = {ui,j}(i,j)∈Ω be a real double sequence. If µ∗(u ≤ 0) = 0,

then u is said to be frequently positive, and if µ∗(u ≥ 0) = 0 , then u is said to be
frequently negative.

u is said to be frequently oscillatory if it is neither frequently positive nor frequently
negative.. If µ∗(u > 0) = ω ∈ (0, 1), then u is said to have unsaturated upper positive
part, and if µ∗(u > 0) = ω ∈ (0, 1), then u is said to have unsaturated lower positive
part. u is said to have unsaturated positive part if µ∗(u > 0) = µ∗(u > 0) = ω ∈ (0, 1).

The concepts of frequently oscillatory and unsaturated double sequences were in-
troduced in [2-6]. It was also observed that if a double sequence u = {ui,j}(i,j)∈Ω is

frequently oscillatory or has unsaturated positive part, then it is oscillatory, that is, u

is not positive for all large m and n, nor negative for all large m and n. Thus if we can
show that every solution of (1) is frequently oscillatory or has unsaturated positive part,
then every solution of (1) is oscillatory.
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3 Frequently Oscillatory Solutions

An inequality, which can be found in [7], will be used in deriving the following results:

h∑

i=1

σixi ≥
h∏

i=1

x
σi

i , (2)

where σi > 0,
∑h

i=1 σi = 1, xi ≥ 0, i = 1, 2, · · · , h.

Lemma 3.1 Suppose there exist m0 ≥ 2k and n0 ≥ 2l such that

pi(m, n) ≥ 0 for (m, n) ∈ Z[m0 − 2k , m0 + 1] × Z[n0 − 2l, n0 + 1], i = 1, 2, · · · , h.

Let {um,n} be a solution of (1). If um,n ≥ 0 for (m, n) ∈ Z[m0 − 2k, m0 + 1] × Z[n0 −
2l, n0 + 1], then

∆1um,n ≤ 0, ∆2um,n ≤ 0 for (m, n) ∈ Z[m0 − k, m0] × Z[n0 − l, n0],

and if um,n ≤ 0 for (m, n) ∈ Z[m0 − 2k, m0 + 1] × Z[n0 − 2l, n0 + 1], then

∆1um,n ≥ 0, ∆2um,n ≥ 0 for (m, n) ∈ Z[m0 − k, m0] × Z[n0 − l, n0].

Proof If um,n ≥ 0 for (m, n) ∈ Z[m0 − 2k, m0 + 1] × Z[n0 − 2l, n0 + 1], it follows
from (1) that

um,n = um+1,n+1 + um+1,n + um,n+1 +

h∑

i=1

pi(m, n)uαi

m−ki,n−li

≥ um+1,n+1 + um+1,n + um,n+1

≥ um+1,n + um,n+1.

Hence ∆1um,n ≤ 0, ∆1um,n ≤ 0 for (m, n) ∈ Z[m0 − k, m0] × Z[n0 − l, n0].
Similarly, we also have ∆1um,n ≥ 0, ∆2um,n ≥ 0 for (m, n) ∈ Z[m0−k, m0]×Z[n0−

l, n0]. Let
h∏

i=1

p
ai

i =

{
h∏

i=1

p
ai

i (m, n)

}

m,n∈Z[0,∞)

.

Under the assumption (H5),
∏h

i=1 p
ai

i is well defined. We remark that if pi(m, n) ≥ 0,
the assumption (H5) is not needed.

Theorem 3.1 Suppose there exist constants ωi (i = 1, 2, · · · , h) and ω such that

µ∗(pi < 0) = ωi (i = 1, 2, · · · , h), µ∗

(
h∏

i=1

(pi < 0)

)
= ω,

µ∗

(
γ

h∏

i=1

p
ai

i > 1

)
> 4(k + 1)(l + 1)

(
h∑

i=1

ωi − (h − 1)ω

)
.

Then every nontrivial solution of (1) is frequently oscillatory.
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Proof Suppose to the contrary that u = {um,n} is a frequently positive solution
of (1). Then µ∗(u ≤ 0) = 0. By Lemmas 2.1–2.3, we have

1 = µ∗

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) + (u ≤ 0)

]}

+µ∗

{
X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) + (u ≤ 0)

]}

≤ µ∗

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) + (u ≤ 0)

]}

+4(k + 1)(l + 1)

{
µ∗

(
h∑

i=1

(pi < 0)

)
+ µ∗(u ≤ 0)

}

≤ µ∗

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) + (u ≤ 0)

]}
+ 4(k + 1)(l + 1)

(
h∑

i=1

ωi − (h − 1)ω

)

< µ∗

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) + (u ≤ 0)

]}
+ µ∗

(
γ

h∏

i=1

p
ai

i > 1

)
.

Therefore by Lemma 4, the intersection

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) + (u ≤ 0)

]}
·

(
γ

h∏

i=1

p
ai

i > 1

)

is infinite. This implies that there exist m0 ≥ 2k and n0 ≥ 2l such that

γ

h∏

i=1

p
ai

i (m0, n0) > 1 (3)

and

pi(m, n) ≥ 0 (i = 1, 2, · · · , h), um,n > 0. (4)

for (m, n) ∈ Z[m0−2k, m0+1]×Z[n0−2l, n0+1]. In view of (4) and Lemma 3.1, we may
then see that ∆1um,n ≤ 0 and ∆2um,n ≤ 0 for (m, n) ∈ Z[m0 − k, m0] × Z[n0 − l, n0],
and hence um0−ki,n0−li ≥ um0−k,n0−l ≥ um0,l0 (i = 1, 2, · · · , h), so that by (2) and (4),

0 ≥ um0+1,n0+1 + um0+1,n0
+ um0,n0+1 − um0,n0

+

h∑

i=1

pi(m0, n0)u
αi

m0−k,n0−l

≥ um0+1,n0+1 + um0+1,n0
+ um0,n0+1 − um0,n0

+ γ

h∏

i=1

p
ai

i (m0, n0)um0,n0

≥

(
γ

h∏

i=1

p
ai

i (m0, n0) − 1

)
um0,n0

> 0,

which is a contradiction.
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In a similar manner, if u = {um,n} is a frequently negative solution of (1) such that
µ∗(u ≥ 0) = 0, then we may show that

{
Ω\X2k1

−1 Y
2l1
−1

[
h∑

i=1

(pi < 0) + (u ≥ 0)

]}
·

(
γ

h∏

i=1

p
ai

i > 1

)

is infinite. Again we may arrive at a contradiction as above. The proof is complete.

Theorem 3.2 Suppose there exist constants ωi (i = 1, 2, · · · , h) and ω such that

µ∗(pi < 0) = ωi (i = 1, 2, · · · , h), µ∗

(
γ

h∏

i=1

p
ai

i ≤ 1

)
= ω,

µ∗




h∏

i=1

(pi < 0) ·



γ

h∏

j=1

p
aj

j ≤ 1







 >

h∑
i=1

ωi + ω

h
−

1

4h(k + 1)(l + 1)
.

Then every nontrivial solution of (1) is frequently oscillatory.

Proof Suppose to the contrary that u = {um,n} be an eventually positive solution
of (1). Then µ∗(u ≤ 0) = 0. By Lemmas 2.1–2.3, we get

µ∗

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) +

(
γ

h∏

i=1

pai

i ≤ 1

)
+ (u ≤ 0)

]}

= 1 − µ∗

{
X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) +

(
γ

h∏

i=1

p
ai

i ≤ 1

)
+ (u ≤ 0)

]}

≥ 1 − 4(k + 1)(l + 1)

{
µ∗

[
h∑

i=1

(pi < 0) +

(
γ

h∏

i=1

p
ai

i ≤ 1

)]
+ µ∗ (u ≤ 0)

}

≥ 1 − 4(k + 1)(l + 1)

[
h∑

i=1

µ∗ (pi < 0) + µ∗

(
γ

h∏

i=1

p
ai

i ≤ 1

)

−hµ∗




h∏

i=1

(pi < 0) ·



γ

h∏

j=1

p
aj

j ≤ 1











 > 0.

Thus, by Lemma 2.4, the intersection

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) +

(
γ

h∏

i=1

p
ai

i ≤ 1

)
+ (u ≤ 0)

]}

is infinite. This implies that there exist m0 ≥ 2k and n0 ≥ 2l such that (3) and

pi(m, n) ≥ 0 (i = 1, 2, · · · , h), um,n > 0

hold for (m, n) ∈ Z[m0 − 2k, m0 + 1] × Z[n0 − 2l, n0 + 1]. By similar discussions as in
the proof of Theorem 3.1, we may arrive at a contradiction against (3).
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In case u = {um,n} is eventually negative, then µ∗(u ≥ 0) = 0. In an analogous
manner, we may see that

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) +

(
γ

h∏

i=1

p
ai

i ≤ 1

)
+ (u ≥ 0)

]}

is infinite. This can lead to a contradiction again. The proof is complete.

4 Unsaturated Solutions

The methods used in the above proofs can be modified to obtain the following results for
unsaturated solutions.

Theorem 4.1 Suppose there exist constants ωi (i = 1, 2, · · · , h), ω and ω0 ∈ (0, 1)
such that

µ∗(pi < 0) = ωi (i = 1, 2, · · · , h), µ∗

(
h∏

i=1

(pi < 0)

)
= ω,

µ∗

(
γ

h∏

i=1

p
ai

i > 1

)
> 4(k + 1)(l + 1)

(
h∑

i=1

ωi + ω0 − (h − 1)ω

)
.

Then every nontrivial solution of (1) has unsaturated upper positive part.

Proof Let u = {um,n} be a nontrivial solution of (1). We assert that µ∗(u > 0) ∈
(ω0, 1). Suppose not, then µ∗(u > 0) ≤ ω0 or µ∗(u > 0) = 1. In the former case, applying
arguments similar to the proof of Theorem 3.1, we may then arrive at the fact that

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) + (u > 0)

]}
·

(
γ

h∏

i=1

p
ai

i > 1

)

is infinite and a subsequent contradiction. In the latter case, we have µ∗(u ≤ 0) = 0. By
Lemmas 2.1–2.3, we have

1 = µ∗

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) + (u ≤ 0)

]}

+µ∗

{
X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) + (u ≤ 0)

]}

≤ µ∗

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) + (u ≤ 0)

]}

+ 4
(
k + 1

)
(l + 1)µ∗

[
h∑

i=1

(pi < 0) + (u ≤ 0)

]

≤ µ∗

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) + (u ≤ 0)

]}
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+ 4
(
k + 1

)
(l + 1)

{
µ∗

[
h∑

i=1

(pi < 0)

]
+ µ∗ (u ≤ 0)

}

≤ µ∗

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) + (u ≤ 0)

]}

+ 4
(
k + 1

)
(l + 1)

(
h∑

i=1

ωi + ω0 − (h − 1)ω

)

< µ∗

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) + (u ≤ 0)

]}
+ µ∗

(
γ

h∏

i=1

pai

i > 1

)
.

Therefore by Lemma 2.4, we know that the set

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) + (u ≤ 0)

]}
·

(
γ

h∏

i=1

p
ai

i > 1

)

is infinite. Then by discussions similar to those in the proof of Theorem 3.1 again, we
may arrive at a contradiction. This completes the proof. Combining Theorem 3.2 and
4.1, we have the following theorem the proof of which is omitted.

Theorem 4.2 Suppose there exist constants ωi (i = 1, 2, · · · , h), ω and ω0 ∈ (0, 1)
such that

µ∗(pi < 0) = ωi (i = 1, 2, · · · , h), µ∗

(
γ

h∏

i=1

p
ai

i ≤ 1

)
= ω,

µ∗




h∏

i=1

(pi < 0) ·



γ

h∏

j=1

p
aj

j ≤ 1







 >

h∑
i=1

ωi + ω + ω0

h
−

1

4h(k + 1)(l + 1)
.

Then every nontrivial solution of (1) has unsaturated upper positive part.

Theorem 4.3 Suppose there exist constants ωi (i = 1, 2, · · · , h), ω′, ω′′ and ω0 ∈
(0, 1) such that

µ∗(pi < 0) = ωi (i = 1, 2, · · · , h), µ∗

(
γ

h∏

i=1

p
ai

i ≤ 1

)
= ω′,

µ∗




h∏

i=1

(pi < 0)·



γ

h∏

j=1

p
aj

j ≤ 1







 = ω′′, 4(k + 1)(l + 1)

(
h∑

i=1

ωi + ω′ + ω0 − hω′′

)
< 1.

Then every nontrivial solution of (1) has unsaturated upper positive part.

Proof We claim that µ∗(u > 0) ∈ (ω0, 1). First, we prove that µ∗(u > 0) > ω0.
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Otherwise, if µ∗(u > 0) ≤ ω0, by Lemmas 2.1, 2.2 and 2.3, we have

µ∗

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) +

(
γ

h∏

i=1

p
ai

i ≤ 1

)]}
+ µ∗

{
Ω\X2k

−1Y
2l
−1 [(u > 0)]

}

= 2 − µ∗

{
X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) +

(
γ

h∏

i=1

p
ai

i ≤ 1

)]}
− µ∗

{
X2k

−1Y
2l
−1 [(u > 0)]

}

≥ 2 − 4(k + 1)(k + 1)

{
h∑

i=1

µ∗ (pi < 0) + µ∗

(
γ

h∏

i=1

p
ai

i ≤ 1

)
+ µ∗ (u > 0)

−hµ∗

[
h∏

i=1

(pi < 0) ·

(
γ

h∏

i=1

p
ai

i ≤ 1

)]}
> 1.

Hence, by Lemma 2.4, we see that

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) +

(
γ

h∏

i=1

p
ai

i ≤ 1

)]}
·
{

Ω\X2k
−1Y

2l
−1 [(u > 0)]

}

is infinite. Then there exist m0 ≥ 2k and n0 ≥ 2l such that (3) and

pi(m, n) ≥ 0 (1, 2, · · · , h), um,n ≤ 0

hold for (m, n) ∈ Z[m0−2k, m0+1]×Z[n0−2l, n0+1]. Applying similar discussions as in
the proof of Theorem 3.1, we can get a contradiction. Next, we prove that µ∗(u > 0) < 1.
Otherwise, µ∗(u ≤ 0) = 0. Analogously, we see that

{
Ω\X2k

−1Y
2l
−1

[
h∑

i=1

(pi < 0) +

(
γ

h∏

i=1

p
ai

i ≤ 1

)]}
·
{

Ω\X2k
−1Y

2l
−1 [(u ≤ 0)]

}

is infinite. Then, we can also come to a contradiction. The proof is complete. We
remark that very nontrivial solution of (1) has unsaturated lower positive part under the
same conditions as in Theorem 4.1, Theorem 4.2 or Theorem 4.3.

5 Examples

We give two examples to illustrate our previous results.

Example 5.1 Consider the partial difference equation

um+1,n+1 + um+1,n + um,n+1 − um,n + p1(m, n)|um−4,n−3|
1
4 sgnum−4,n−3

+p2(m, n)|um−3,n−2|
1
2 sgnum−3,n−2 + p3(m, n)|um−1,n−1|

3
2 sgnum−1,n−1 = 0, (5)

where p1(m, n) = 2
1
4
(n−1) + 2

1
4
(5n−3) + 2

1
4
(3n+7), p2(m, n) = p3(m, n) = 1. Obviously,

α1 = 1/4, α2 = 1/2, α3 = 3/2. Let a1 = 1/5, a2 = 1/4, a3 = 11/20. It is easy to see that∑3
i=1 aiαi = 1, γ = 20/11. It is clear that

µ∗

(
γ

3∏

i=1

p
ai

i > 1

)
= 1, µ∗

(
3∏

i=1

(pi < 0) ·

(
γ

3∏

i=1

p
ai

i ≤ 1

))
= 0,
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µ∗(p1 < 0) = µ∗(p2 < 0) = µ∗(p3 < 0) = µ∗

(
3∏

i=1

(pi < 0)

)
= µ∗

(
γ

3∏

i=1

p
ai

i ≤ 1

)
= 0.

Therefore, by Theorem 3.1 or 3.2, every nontrivial solution of (5) is frequently oscillatory.
Furthermore, let ω0 ∈ (0, 1/80), we see that all conditions in Theorem 4.1, 4.2 or 4.3 are
satisfied. Thus, every nontrivial solution of (5) has unsaturated upper positive part.
Indeed, u = {(−1)m2n} is such a solution with µ∗(u > 0) = 1/2.

Example 5.2 Consider the partial difference equation

um+1,n+1 + um+1,n + um,n+1 − um,n + p1(m, n)|um−3,n−3|
1
3 sgnum−3,n−3

+p2(m, n)|um−3,n−2|
1
2 sgnum−3,n−2 + p3(m, n)|um−1,n−1|

2sgnum−1,n−1 = 0, (6)

where

p1(m, n) = p3(m, n) = 1, p2(m, n) =

{
−1, m = 10s and n = 13t, s, t ∈ Z[0,∞),
1, otherwise.

Choose a1 = 3/10, a2 = 1/3, a3 = 11/30. It is easy to see that
∑3

i=1 ai = 1,
∑3

i=1 aiαi =
1 and γ = 30/11. Clearly,

µ∗ (p1 < 0) = µ∗ (p3 < 0) = µ∗

(
3∏

i=1

(pi < 0)

)
= µ∗

(
3∏

i=1

(pi < 0)·

(
γ

3∏

i=1

p
ai

i ≤ 1

))
= 0,

µ∗ (p2 < 0) = µ∗

(
γ

3∏

i=1

p
ai

i ≤ 1

)
=

1

130
, µ∗

(
γ

3∏

i=1

p
ai

i > 1

)
=

129

130
.

Then by Theorem 3.1 or 3.2, every nontrivial solution of (6) is frequently oscillatory.
Furthermore, when given ω0 = 1/4161, applying Theorem 4.1, 4.2 and 4.3, we may see
that every nontrivial solution of (6) has unsaturated upper positive part.
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