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Abstract: In this study, linear second-order self-adjoint delta-nabla matrix systems
on time scales are considered with the motivation of extending the analysis of domi-
nant and recessive solutions from the differential and discrete cases to any arbitrary
dynamic equations on time scales. These results emphasize the case when the system
is non-oscillatory.
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1 Introduction

To motivate this study of dominant and recessive solutions, consider the self-adjoint
second-order scalar differential equation

(p')'(t) + q(t)x(t) = 0.

According to the classical formulation by Kelley and Peterson [1, Section 5.6], a solution
u is recessive at w and a second, linearly-independent solution v is dominant at w if the
conditions

i @ = ) 71 =00 ) 71 00
i o(t) 0 /t p(t)u?(t) At =oo, /t p(t)vz(t)dt =

all hold; see also a related discussion for three-term difference equations in Ahlbrandt [2],
Ahlbrandt and Peterson [3, Section 5.10], Ma [4], and scalar dynamic equations in Bohner

* Corresponding author: andersod@cord.edu
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220 D.R. ANDERSON

and Peterson [5, Section 4.3], Messer [6], and [7, Section 4.5]. It is the purpose of this
work to introduce a robust treatment of these types of solutions for the corresponding
self-adjoint second-order matrix dynamic equation on time scales. Dynamic equations
on time scales have been introduced by Hilger and Aulbach [8, 9] to unify, extend, and
generalize the theory of ordinary differential equations, difference equations, quantum
equations, and all other differential systems defined over nonempty closed subsets of the
real line. We use this overarching theory to extend from the discrete case [3, 4] the matrix

difference system
AP)AX(t—1))+ Q)X (t) =0, (1.1)

for ¢ > 1 the quantum system [10]
D7 (PDX) (t) + Q(t) X (t) =0, (1.2)
and the continuous case developed by Reid [11-15]
(PX")' (1) + Q)X (¢) =0, (1.3)
to the general time scale setting, which admits the self-adjoint delta-nabla matrix system
(PX2)Y (t) + Q1) X (t) = 0. (1.4)

Ounly recently has (formal) self-adjointness been investigated for arbitrary time scales,
even in the scalar case, by Messer [6], Anderson, Guseinov and Hoffacker [16], and Atici
and Guseinov [17]; self-adjoint matrix systems on time scales are relatively unexplored
at this time [18]. More commonly authors Bohner and Peterson [5, Chapter 5] and Erbe
and Peterson [19] focus on

(PX2)™ (1) + Q)X (1) = 0, (15)

which they term “self-adjoint” since it admits a Lagrange identity. Thus, these results
connected to the self-adjoint system (1.4) extend and generalize the results related to
(1.1), (1.2) and (1.3), and are different from those worked out for (1.5).

2 Technical Results on Time Scales

Any arbitrary nonempty closed subset of the reals R can serve as a time scale T; see the
books by Bohner and Peterson [5, 7] and the papers by Hilger and Aulbach [8, 9]. Here
and in the sequel we assume a working knowledge of basic time-scale notation and the
time-scale calculus. In addition, the following results will prove to be useful.

Theorem 2.1 If f is delta differentiable at t € T*, then fo(t) = f(t) + u(t)f2(t).
If f is nabla differentiable at t € Ty, then fP(t) = f(t) —v(t)fYV (t).

Theorem 2.2 Let f : T x T — R be a continuous function of two variables (t,s) €

T x T, and a € T. Assume that f has continuous derivatives f> and f¥ with respect to
t. Then the following formulas hold:

t A t
(i) (S 1t 9)As) " = Fla),6) + [1 FA (1 5)As,

t v t
(ii) ([ F(t.)As) " = Fp(t), p(0)) + [ F¥ (1, 5)As,
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t A _ t A
(iii) ([2 F(t,5)Vs)" = f(o(t).0() + [1 FA(t,5)Vs,

t v t
(iv) ([1 F(t.5)Vs) " = F(p(t),t) + [} [¥ (t,5)Vs.

The following sets and statement [6, Theorem 2.6] (see also [17]) will play an impor-
tant role in many of our calculations.

Definition 2.1 Let the time-scale sets A and B be given by

A:={teT:tis aleft-dense and right-scattered point}, (2.1)

and
B :={teT:tis aright-dense and left-scattered point}. (2.2)

It follows that for t € A,
lim o(s) =t,

s—t—

and for t € T\ A, o(p(t)) = t. Likewise for t € B,

lim p(s) =t,

s—tt
and for t € T\B, p(o(t)) = t.
Theorem 2.3 Let the sets A and B be given as in (2.1) and (2.2), respectively.

(i) If f : T — R is A differentiable on T and > is right-dense continuous on T,
then f is V differentiable on T, and

_ 2 0e®) 1t e T\A4,
17 = {hmsﬂt fA(s) :te A

(ii) If f : T — R is V differentiable on T, and fV is left-dense continuous on T,, then
fis A differentiable on T®, and

50 = {f%(t)) (1€ T\B,

lim,_,,+ fV(s) :t€B.

The statements of the previous theorem can be formulated as ( fA)p = fV and
( f V)U = 2 provided that f® and fV are continuous, respectively.

3 Self-Adjoint Matrix Equations

All of the results in this section are from Anderson and Buchholz [18]. Let P and Q be
Hermitian n x n-matrix-valued functions on a time scale T such that P > 0 (positive
definite) and @ are continuous for all ¢ € T. (A matrix M is Hermitian iff M* = M, where
* indicates conjugate transpose.) In this section we are concerned with the second-order
(formally) self-adjoint matrix dynamic equation

LX =0, where LX(t):=(PX)Y #)+Q®)X(t), teT~ (3.1)
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Definition 3.1 Let D denote the set of all n x n matrix-valued functions X defined
on T such that X is continuous on T* and (PX?)V is left-dense continuous on T%.

Then X is a solution of (3.1) on T provided X € D and LX(¢) =0 for all ¢t € T%.

Definition 3.2 (Regressivity) An n x n matrix-valued function M on a time scale
T is regressive with respect to T provided

I+ p(t)M(t) is invertible for all ¢t € T*, (3.2)
and the class of all such regressive and rd-continuous functions is denoted by
R =R(T) = R(T,R™*"™).

Theorem 3.1 Let a € T* be fizred and X,, X2 be given constant n x n matrices.
Then the initial boundary value problem

(PX2)7 () + QWX (1) =0, X(a)=X,, X*(a)= X2
has a unique solution.

Definition 3.3 If X,Y € D, then the (generalized) Wronskian matriz of X and Y
is given by
W(X,Y)(t) = X*(t)PO)Y2(t) - [POX2OIY (1)

for t € T".
Theorem 3.2 (Lagrange identity) If X,Y € D, then
W(X, Y)Y (t) = X*()(LY)(t) — (LX(1))" Y (t), te€Ty.

Definition 3.4 Define the inner product of n x n matrices M and N on [a, b]y for
a < b to be

b
(M, N) = / M*()N(©)VE, M,N € Cia(T), a,beT". (3.3)
Corollary 3.1 (Self-adjoint operator) The operator L in (3.1) is formally self
adjoint with respect to the inner product (3.3); that is, the identity
(LX.Y) = (X,LY)

holds provided X,Y € D and X,Y satisfy W(X, Y)(t)’i = 0, called the self-adjoint
boundary conditions.

Corollary 3.2 (Abel’s formula) If X,Y are solutions of (3.1) on T, then
WX, Y)t)=C, teTs,
where C' is a constant matrix.
From Abel’s formula we get that if X € D is a solution of (3.1) on T, then
WX, X)t)=C, teTy,

where C' is a constant matrix. With this in mind we make the following definition.
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Definition 3.5 Let X,Y € D and W be given as in (3.3).

(i) X € D is a prepared (conjoined, isotropic) solution of (3.1) iff X is a solution of
(3.1) and
WX, X)(t)=0, teT".

(ii) X,Y € D are normalized prepared bases of (3.1) iff X, Y are two prepared solutions
of (3.1) with
WX, Y)t)=1, teT".

Theorem 3.3 Assume that X € D is a solution of (3.1) on T. Then the following
are equivalent:

(i) X is a prepared solution;
(ii) X*(t)P(t)X2(t) is Hermitian for all t € T*;
(iii) X*(to)P(to)X*(to) is Hermitian for some to € T*.

Note that one can easily get prepared solutions of (3.1) by taking initial conditions
at to € T so that X*(to)P(to)X*(to) is Hermitian.

In the Sturmian theory for (3.1) the matrix function X*PX is important. We note
the following result.

Lemma 3.1 Let X be a solution of (3.1). If X is prepared, then
X*(t)P(t)X°(t) 1is Hermitian for all t € T".

Conversely, if there is tg € T® such that u(to) > 0 and X*(to)P(to) X (to) is Hermitian,
then X is a prepared solution of (3.1). Moreover, if X is an invertible prepared solution,
then

POX()X L), POX () (X)), and Z(t) := P()X2 ()X ~L(¢)
are Hermitian for all t € T".

Lemma 3.2 Assume that X is a prepared solution of (3.1) on T. Then the following
are equivalent:

(i) (X*)°PX = X*PX? >0 onT";
(ii) X is invertible and PX° X~ >0 on T*;
(iii) X is invertible and PX(X°)~! >0 on T*.
Theorem 3.4 (Reduction of order I) Let tg € T*, and assume X is a prepared

solution of (3.1) with X invertible on T. Then a second prepared solution Y of (3.1) is
given by

Y(t) = X (t) /t (X*PX?) ' (s)As, teT”

to

such that X, Y are normalized prepared bases of (3.1).
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Lemma 3.3 Assume X,Y € D are normalized prepared bases of (3.1). Then U :=
XE+YF is a prepared solution of (3.1) for constant n x n matrices E, F if and only
if F*E is Hermitian. If F = I, then X,U are normalized prepared bases of (3.1) if and
only if E is a constant Hermitian matriz.

Theorem 3.5 (Reduction of order II) Let tg € T*, and assume X is a prepared
solution of (3.1) with X invertible on T. Then U is a second n X n matriz solution of
(3.1) iff U satisfies the first-order matriz equation

(X7IU)2(t) = (X*PX°)"Y)F, teTx t>to, (3.4)

for some constant n x n matriz F iff U is of the form

Ut) = X(H)E + X(t) (/t (X*Px°)~! (S)AS) F, teT, t>t, (3.5)

to

where E and F are constant n X n matrices. In the latter case,
E = X"to)U(to), F=W(X,U)(t), (3.6)

such that U is a prepared solution of (3.1) iff F*E = E*F.

4 Factorization of the Self-Adjoint Operator

In this section we introduce the Pélya factorization for the self-adjoint matrix-differential
operator L defined in (3.1).

Theorem 4.1 (Pdlya factorization) If (3.1) has a prepared solution U > 0 (pos-
itive definite) on an interval T C T such that U*PU° > 0 on Z, then for any X € D we
have on T a Pdlya factorization

LX = M {My(M; X)2)}Y . My:=U"'>0, My:=U"PU° >0.

Proof Assume U > 0 is a prepared solution of (3.1) on Z C T such that U*PU? > 0
onZ, and let X € D. Then U is invertible and

Lx M2 utlw(u, X)Y
Def 3.3 “H{urpxA — Ut px}Y
= M {U*[PX® - (U)'UAPX)}

M; {U*[PX2 - PUAU X))}

= M {M[U°) XA - (U)UAUT X))
= M;{M[U ) XA L (whAxY

= Ml {M2( ) }v

= My {My(M X))}

for M7 and Ms as defined in the statement of the theorem. O
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5 Dominant and Recessive Solutions

Throughout the rest of the paper assume a € T, and set w := supT. If w < oo, assume
p(w) = w. We focus on extending the analysis of dominant and recessive solutions
developed in the case of difference system (1.1), quantum system (1.2), and differential
system (1.3) to the general time-scale setting in (3.1).

X (to)
Definition 5.1 A solution X of (3.1) is a basis iff rank = n for some

(PX%)(to)

to > a. A solution V of (3.1) is dominant at w iff V' is a prepared basis and there exists
atg € [a,w)r such that V is invertible on [to,w)r and

/w (V*PV?) () At

converges to a Hermitian matrix with finite entries.

Lemma 5.1 Assume the self-adjoint equation LX = 0 has a dominant solution V at
w. If X is any other n x n solution of (3.1), then

Jim VIiHX(t) =K
—w
for some n x n constant matriz K.

Proof Since V is a dominant solution at w of (3.1), there exists a ty € [a,w)r such
that V is invertible on [to,w)r. By the second reduction of order theorem, Theorem 3.5,

X(t) = VOV (to) X (t) + V(1) < / Cvepvey <s>As) WV, X)(to).

to

Multiplying on the left by V! we have

VEBX () = Vo) X (to) + </t (vpvey ! (S)As> W (V, X)(to).

to

Since V is dominant at w, the following limit exists:

lim V(0 X(8) = K = V™) (1) X (to) + </w (v Pve)t (S)As) WV, X)(to).

to

Definition 5.2 A solution U of (3.1) is recessive at w iff U is a prepared basis and
whenever X is any other n x n solution of (3.1) such that W(X,U) is invertible, X is
eventually invertible and

lim X~ 1()U(t) = 0.

t—w

Lemma 5.2 IfU is a solution of (3.1) which is recessive at w, then for any invertible
constant matriz K, the solution UK of (3.1) is recessive at w as well.
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Proof The proof follows from the definition. O

Lemma 5.3 If U is a solution of (3.1) which is recessive at w, and V is a prepared
solution of (3.1) such that W(V,U) is invertible, then V is dominant at w.

Proof By the definition of recessive, W(V,U) invertible implies that V' is invertible
on [to,w)r for some tg € [a,w)r, and

lim V1) U(t) = 0. (5.1)

t—w

Let K := W(V,U); by assumption K is invertible, and by Definition 3.3
K = (V*PVo)(VO)lUA — (VA*PV) VLU
for all ¢ € [ty,w)r. Since V is prepared,
(V*PVo) LK = (Vo) UA — (Vo) VAV D = (V)2
Delta integrating from tg to w and using (5.1) yields that
/w(V*PV“)—l(t)At =V to)U(to) K*
to

converges. Thus V is dominant at w. O

Theorem 5.1 Assume (3.1) has a solution V' which is dominant at w. Then
U(t) :== V(t)/ (V*PV7)~(s)As
t

is a solution of (3.1) which is recessive at w and W(V,U) = —1I.

Proof Since V is dominant at w, U is a well-defined function and can be written as

v =ve | [ v eas- ([ t(V*PVC’)l(s)As) 1]

to to

by the second reduction of order theorem, Theorem 3.5, U is a solution of (3.1) of the
form (3.5) with

E= /W(V*PV")_l(s)As, F=-1I.

to

From (3.6), W(V,U) = F = —I. Since
E*F = —/ (V*PV7)~1(s)As
to

is Hermitian, U is a prepared solution of (3.1), and W (—V,U) = I implies that U and
—V are normalized prepared bases. Let X be an n X n matrix solution of LX = 0 such
that W(X,U) is invertible. By the second reduction of order theorem,

X(t)

V(t) [V—l(to)X(to) + (/t(V*PV”)_l(s)As) W(V, X)]

to

V(£)Cy + U(t)Ca, (5.2)
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where "
Cy =V te) X (to) + (/ (V*PV“)l(s)As> W(V,X)
to
and
Cy:= -W(V, X).
Note that

W(X,U)=CiW(V,U)+CsW(U,U) = —-Cf.
As W(X,U) is invertible by assumption, Cy is invertible. From (5.2),
lim VX () = Jim (C1+VHHU 1))
= tlim (Cl +/ (V*PV")l(s)Ang) =C
—w t
is likewise invertible. Consequently for large ¢, X (t) is invertible. Lastly,
lim X~ 'OU() = lim [V()Ci + Ut)Co] ' U(t)
= lim [CL+ VT (OU()C] VU =[CL+ 0 o= 0.
Therefore U is a recessive solution at w. O

Theorem 5.2 Assume (3.1) has a solution U which is recessive at w, and U (to) is
invertible for some to € [a,w)r. Then U is uniquely determined by U(to), and (3.1) has
a solution V' which is dominant at w.

Proof Assume U (tg) is invertible; let V' be the unique solution of the initial value

problem
LV =0, V(tg) =0, V2t =1

Then V is a prepared basis and
W(V,U) = W(V,U)(to) = (V*PU>)(to) — (PV*)*(to)U (to) = —P(to)U (to)

is invertible. It follows from Lemma 5.3 that V' is dominant at w. Let I be an arbitrary
but fixed n X n constant matrix. Let X solve the initial value problem

LX =0, X(to)=1I, X2 =T.

By Theorem 5.1,
Jim V)X (t) = K,

where K is an n X n constant matrix; note that K is independent of the recessive solution
U. By using the initial conditions at tg, by uniqueness of solutions it is easy to see that
there exist constant n x n matrices C; and Cs such that

U(t) = X(t)01 + V(t)OQ,
where C; = U(tp) is invertible. Consequently, using the recessive nature of U, we have
0= lim VHOU(t) = lim (VHOX (t)U (o) + C2) = KU (tg) + Co,
so that Cy = — KU (tg). Thus the initial condition for U is
U%(to) = (T — K)U(to),

and the recessive solution U is uniquely determined by its initial value U(tp). O
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Theorem 5.3 Assume (3.1) has a solution U which is recessive at w and a solution
V which is dominant at w. If U and [°(V*PV?)~1(s)As are both invertible for large
t € T, then there exists an invertible constant matrix K such that

Ut)=V(t) </tw(V*PV")1(s)As> K

for large t. In addition, W (U, V) is invertible and

lim V(1)U (t) = 0.

t—w

Proof For sufficiently large t € T define
Y(t) = V(t)/ (V*PV7)~!(s)As.
t

By Theorem 5.1 Y is also a recessive solution of (3.1) at w and W(V,Y) = —I. Because
U and ftw (V*PV?)~1(s)As are both invertible for large t € T, Y is likewise invertible
for large t, and

lim V)Y (t) =0

by the recessive nature of Y. Choose tg € [a,w)T large enough to ensure that U and YV
are invertible in [tg,w)r. By Lemma 5.2 the solution given by

X(t) = Y(t)yil(to)U(to), te [to,u])'ﬂ‘

is yet another recessive solution at w. Since U and X are recessive solutions at w and
Ul(to) = X (o), we conclude from the uniqueness established in Theorem 5.2 that X = U.
Thus for t € [to,w)r we have

Ut) =Y ()Y Y to)U(to) = V(1) (/tw(V*PV")_l(s)As) K,

where K := Y ~1(t)U(to) is an invertible constant matrix. O

The next result, when T = Z, relates the convergence of infinite series, the convergence
of certain continued fractions, and the existence of recessive solutions; for more see [3]
and the references therein.

Theorem 5.4 (Connection theorem) Let X and V' be solutions of (3.1) deter-
mined by the initial conditions

X(to) =1, X%(to) =P (to)K, and V(to)=0, V=2(to) =P (ty),

respectively, where ty € [a,w)r and K is a constant Hermitian matriz. Then X,V are
normalized prepared bases of (3.1), and the following are equivalent:

(i) V is dominant at w;

(ii) 'V is invertible for large t € T and lim;—,,, V~1(t) X (t) exists as a Hermitian matriz
Q(K) with finite entries;

(i11) there exists a solution U of (3.1) which is recessive at w, with U(tg) invertible.
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If (i), (i), and (i) hold then
UR(to)U ™ (to) = X2 (to) = VA (t0)QK) = =P~ (t0)$2(0).
Proof Since V(tg) =0, V is a prepared solution of (3.1). Also,
W(X,X)=W(X,X)(ty) = (X*PX? - X2PX)(tg) =IK - K*I =0
as K is Hermitian, making X a prepared solution of (3.1) as well. Checking
W(X,V)=W(X,V)(ty) = (X*PVA = X2*PV)(te) =1 - 0=1,

we see that X,V are normalized prepared bases of (3.1). Now we show that (i) implies
(ii). If V is a dominant solution of (3.1) at w, then there exists a t; € [a,w)r such that
V(t) is invertible for ¢ € [t;,w)T, and the delta integral

/w(V*PV“)—l(s)As

converges to a Hermitian matrix with finite entries. By the second reduction of order
theorem,

t
X(t) = VI)E + V(1) (/ (v Pye)! (S)As> F (5.3)
t1
where
E=V ' t)X(t), F=W(V.X)(t)=-W(X, V) =-L
Since X is prepared, E*F = —E* is Hermitian, whence F is Hermitian. As a result, by
(5.3)

lim V- ()X (t) = E — /w (V*PV7) ! (s)As

t—w t

converges to a Hermitian matrix with finite entries, and (ii) holds. Next we show that
(ii) implies (iii). If V is invertible on [t1,w) and

lim V)X () =Q (5.4)

exists as a Hermitian matrix, then from (5.3) and (5.4),

Q=1lmV'OX@t)=E— [ (V*PV?) ' (s)As;

t—w t

in other words,
/ (V*PVo) ! (s)As = E— Q.

ty

Define

Then

WU,U) = WX-VQX-VQ)
= W(X,X)-W(X,V)Q-QCW(V,X)+ WV, V)Q
= —Q+Q" =0,
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and U(tg) = X(tp) = I, making U a prepared basis for (3.1). If X; is an n x n matrix
solution of LX = 0 such that W (X, U) is invertible, then

Xi(t) = VIH)Cy + U(t)Cs (5.6)

for some constant matrices C; and Cs determined by the initial conditions at ty. It
follows that

W(X1,U) = W(VC,+UC,U)=CiWWV,U)+ Co5W(U,U)
— CIW(V,U) = W (V.U (to) = ~C5
by (5.5), so that C} is invertible. From (5.4) and (5.5) we have that

lim V(1)U (t) = lim V)X () — Q] =0,

t—w

resulting in

lim V- (0)Xa (1) = lim [Cy+ V- H(OU()C] = C,

which is invertible. Thus X (¢) is invertible for large ¢t € T, and

lim Xmu) = Hm [V(#)Cr + U(t)Co]1U(1)
= Jlim[C + VIHOU @) VTHU (1)
= c;H0)=0.

Hence U is a recessive solution of (3.1) at w and (iii) holds. Finally we show that (iii)
implies (i). If U is a recessive solution of (3.1) at w with U(¢o) invertible, then

W(V,U) =W(V,U)(to) = =U(to)

is also invertible. Hence by Lemma 5.3, V' is a dominant solution of (3.1) at w.
To complete the proof, assume (i), (ii), and (iii) hold. It can be shown via initial
conditions at tg that
Ut)=XHU(to) +V()C

for some suitable constant matrix C. By (ii),
Jim V)X (t) = QK),

and thus
VI U®#) = V)X (4)U(t) + C.

As U is a recessive solution at w by (iii),

0= lim (V'()X(#)U(to) + C) = QK)U(to) + C,

t—w

yielding U(t) = [X (t) — V(#)QUK)] U(to). Delta differentiation at ¢y gives
U2 (to) U (to) = X2 (to) — V2 (t0)QUK).

Now let Y be the unique solution of the initial value problem

LY =0, Y(to)=1, Y%(t)) =0.
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Using the initial conditions at ¢y we see that X (¢) = Y (¢t) + V(¢) K. Consequently,

lim V1) X () = lim V()Y (¢) + K

t—w t—w

implies, by (ii) and the fact that X =Y when K = 0, that Q(K) = Q(0) + K. Therefore
X2 (to) = VA (to)QUK) = =V2(16)Q(0) = =P~ (t9)2(0).
Thus the proof is complete. O

Theorem 5.5 (Variation of parameters) Let H be an n x n matriz function that
is left-dense continuous on [to,w)r. If the homogeneous matriz equation (3.1) has a pre-
pared solution X with X (t) invertible for t € [to,w)t, then the nonhomogeneous equation
LY = H has a solution Y € D given by

Y(t) = X(f)X_l(to)Y(lto)+X(t)/t(X*PX")_1 (M) ATW (X, Y)(to)

+X(t) /tt ((X*PX")I (1) /tT X*(S)H(S)Vs) Ar.

Proof Let Y € D and assume X is a prepared solution of (3.1) invertible on [to,w)r.
As in Theorem 4.1, we factor LY to get

H=LY =X (X"PX°(X"'V)2)"

Multiplying by X* and nabla integrating from ¢y to ¢ we arrive at

(X*PXT(XT'Y)R) (1) — W(X,Y)(to) = tX*(s)H(s)Vs,

to

where W(X,Y)(to) = (X*PX°(X'Y)?) (to) since X is prepared. This leads to

t
(X7IY)2(t) = (X*PX)"L(¢) (W(X, Y)(to) + X*(s)H(s)vs> ,
to
which is then delta integrated from t( to t to obtain the form for Y given in the statement
of the theorem. Clearly the right-hand side of the form of Y above reduces to Y (¢g) at
to, and since X is an invertible prepared solution, by Theorem 3.1 the delta derivative
reduces to Y2 (to) at to. O

Corollary 5.1 Let H be an n X n matrixz function that is left-dense continuous on
[to,w)T. If the homogeneous matriz equation (3.1) has a prepared solution X with X (t)
invertible for t € [to,w)T, then the nonhomogeneous initial value problem

LY = (PY?)V +QY =H, Y(t) =Yy, Y2(to) =Y, (5.7)
has a unique solution.

Proof By Theorem 5.5, the nonhomogeneous initial value problem (5.7) has a solu-
tion. Suppose Y7 and Y; both solve (5.7). Then X = Y; — Y5 solves the homogeneous
initial value problem

LX =0, X(to)=0, X%(t)=0;
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by Theorem 3.1, this has only the trivial solution X =0. O
We will also be interested in analyzing the self-adjoint vector dynamic equation

Lz =0, where Lax(t):= (P:EA)V )+ Q(t)x(t), te€ [a,w)r, (5.8)

where z is an n x 1 vector-valued function defined on T such that z® is continuous and
(Pz®)V is left-dense continuous on [a,w)r. We will see interesting relationships between
the so-called unique two-point property (defined below) of the nonhomogeneous vector
equation Lz = h, disconjugacy of Lx = 0, and the construction of recessive solutions to
the matrix equation LX = 0. The following theorem can be proven by modifying the
proof of Theorem 5.5 and its corollary.

Theorem 5.6 Let h be an n x 1 wvector function that is left-dense continuous on
[to,w)T. If the homogeneous matriz equation (3.1) has a prepared solution X with X (t)
invertible for t € [ty,w)r, then the nonhomogeneous vector initial value problem

Ly=(Py*)Y +Qy=h, y(to)) =vo, y*(to) =uy (5.9)
has a unique solution.

Definition 5.3 Assume h is an nx 1 left-dense continuous vector function on [tg, w)r.
Then the vector dynamic equation Lz = h has the unique two-point property on [tg, w)T
provided given any ¢ty < t; < t2 in T, if u and v are solutions of Lz = h with u(t1) = v(t1)
and u(tz2) = v(t2), then u = v on [tg,w)r.

Theorem 5.7 If the homogeneous matriz equation (3.1) has a prepared solution X
with X (t) invertible for t € [to,w)r, and if the homogeneous vector equation (5.8) has
the unique two-point property on [to,w)T, then the boundary value problem

Lzr=h, z(t1)=a, =z(t2)=270,
where tg <t1 <ty in T and a, € C™, has a unique solution on [ty,w)r.

Proof If t; is a right-scattered point and to = o(¢1), then the boundary value problem
is an initial value problem and the result holds by Theorem 5.6. Assume t3 > o(t1). Let
X(t,t1) and Y (¢,t1) be the unique n X n matrix solutions of (3.1) determined by the
initial conditions

X(tl,tl)zo, XA(tl,tl)ZI, and Y(tl,tl):I, YA(tl,tl)ZO;
by variation of constants, Theorem 5.5,
t
X(t,th) = X(t)/ (X*PX")*l(T)ATX*(tl)P(tl)
ty

and
Y(t,t) = X)X Ht) - X(t)/ (X*PX) "N 1)ATX2*(t1)P(t1).

ty

Then a general solution of (5.8) is given by

2(t) = X(t, 1)y + Y (t,41)6, (5.10)
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for 4,6 € C", as x(t;) = § and z°(t;) = 7. By the unique two-point property the
homogeneous boundary value problem

Lr=0, z(t1)=0, x(t2)=0

has only the trivial solution. For z given by (5.10), the boundary condition at ¢; implies
that 6 = 0, and the boundary condition at ¢y yields

X(tg,tl)’}/ = 0;

by uniqueness and the fact that x is trivial, v+ = 0 is the unique solution, meaning
X (to, 1) is invertible. Next let v be the solution of the initial value problem

Lv="h, o(t)=0, v>(t;)=0.
Then the general solution of Lx = h is given by

x(t) = X(t,t1)y + Y (t, 1) +v(t).
We now show that the boundary value problem

Le=h, a(t)=oa, a(ts)=p

has a unique solution. The boundary condition at ¢; implies that 6 = a. The condition
at to leads to the equation

ﬁ = X(tg, tl)v + Y(tg, tl)Oé + ’U(tz);
since X (t2,t1) is invertible, this can be solved uniquely for v. O

Corollary 5.2 If the homogeneous matriz equation (3.1) has a prepared solution X
with X (t) invertible for t € [to,w)r, and if the homogeneous vector equation (5.8) has
the unique two-point property on [to,w)T, then the matriz boundary value problem

LX =0, X(t1)=M, X(t2)=N
has a unique solution, where M and N are given constant n X n matrices.
Proof Modify the proof of Theorem 5.7 to get existence and uniqueness. O

Theorem 5.8 Assume the homogeneous matriz equation (3.1) has a prepared solu-
tion X with X (t) invertible for t € [to,w)r, and the homogeneous vector equation (5.8)
has the unique two-point property on [to,w)r. Further assume U is a solution of (3.1)
which is recessive at w with Ul(to) invertible. For each fized s € (to,w)r, let Y(t,s) be
the solution of the boundary value problem

LY (t,s) =0, Y(to,s)=1, Y(s,s)=0.
Then the recessive solution U(t)U ~Y(to) is uniquely determined by

UU to) = lim Y (¢, 5). (5.11)

S—w
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Proof Assume U is a solution of (3.1) which is recessive at w with U(to) invertible.
Let V be the unique solution of the initial value problem

LV =0, V(tg)=0, VA3t =P to).

By the connection theorem, Theorem 5.4, V' is invertible for large t. By checking bound-
ary conditions at to and s for s large, we get that

Y(t,s) = -VE)VHs)U()U  to) + URU(to).

Then
W(V,U) = W(V,U)(to) = (V*PU® = VA*PU)(to) = —U (to)

is invertible, and by the recessive nature of U,

lim V=1(t)U(t) = 0.

t—w
As a result,

lim Y (¢, s) = 04 U(£)U " (to),

S—w
and the proof is complete. O
Definition 5.4 A prepared vector solution = of (5.8) has a generalized zero at a
iff x(a) = 0, and x has a generalized zero at to > a iff x(tg) = 0, or if ¢y is a left-
scattered point and z** ()P (to)z(to) < 0. Equation (5.8) is disconjugate on [a,w)r iff

no nontrivial prepared vector solution of (5.8) has two generalized zeros in [a,w)rT.

Definition 5.5 A prepared basis X of (3.1) has a generalized zero at a iff X (a) is
noninvertible, and X has a generalized zero at to € (a,w)r iff X (to) is noninvertible, or
X*p(tQ)Pp(to)X(to) is invertible but X*p(tQ)Pp(to)X(to) S 0.

Lemma 5.4 If a prepared basis X of (3.1) has a generalized zero at ty € [a,w)T,
then there exists a vector v € C" such that x = X+ is a nontrivial prepared solution of
(5.8) with a generalized zero at tg.

Proof The proof follows from Definitions 5.4 and 5.5. O

Lemma 5.5 If f and g are continuous on [to,w)rt, then

/t F7()9(3)V's = / [(8)6°(5)Ds, L€ [to.w)n.

Proof Set
t t
F(t) := t fP(s)g(s)Vs — t f(s)g7 (s)As;

clearly F(tp) = 0, and

o= [ F(5)9(5) V] S oo,
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Using Theorem 2.2 (iii) and the set B in (2.2),

A
L _ ) (fP9)(a(t) :t € T\B,
{/to f (S)Q(S)Vs] = {limsﬁﬁ (fPg)(s) :te B.

For t € T\B, p(o(t)) = t, so that (f?g)(c(t)) = (fg°)(t). For t € B, t = o(t) and
lim,_,;+ p(s) = t, yielding

Slirg(f”g)(S) = (fg)t) = (f97)(@).

Thus in either case F2(t) = 0. By the uniqueness property, F' = 0, and the result follows.
O

Theorem 5.9 If the vector equation (5.8) is disconjugate on [p(to),w)r, then the
matriz equation (3.1) has a solution V' which is dominant at w and a solution U which
is recessive at w, with V. and U both invertible such that PVAV~™' > PUAU™! on

(U(to), w)']r.
Proof Let X be the solution of the initial value problem
LX =0, XP(tg)=0, X2(t)=1I.

If X is not invertible on (fg,w)T, then there exists a t; > ¢¢ such that X (¢1) is singular.
But then there exists a nontrivial vector ¢ € C™ such that X (¢1)6 = 0. If z(t) := X (¢)d,
then z is a nontrivial prepared solution of (5.8) with

a’(to) =0, x(t1) =0,
a contradiction of disconjugacy. Hence X is invertible in (¢9,w)r. We next claim that
(X*PPPX)(t) >0, te (o(ty),w)r; (5.12)
if not, there exists t3 € (o(to),w)r such that
(X*7PPX)(t2) # 0.

It follows that there exists a nontrivial vector - such that z(t) := X (¢)vy is a nontrivial
prepared vector solution of Lz = 0 with a generalized zero at t2. Using the initial
condition for X, however, we have z”(tg) = 0, another generalized zero, a contradiction
of the assumption that the vector equation (5.8) is disconjugate on [p(to),w)r. Thus
(5.12) holds, in particular for any t2 € (0(tg),w)r. Define for ¢ € [t2,w)r

V(t) == X (t) [I+ /t(X*PX")_l(s)As} = X(t) [I+ /t(X*pP”X)_l(s)Vs :

t2 t2

where the second equality follows from Lemma 5.5. By Theorem 3.5, V' is a prepared
solution of LV = 0 with W (X, V) = I. Note that V is also invertible on [t2,w)T, so that
by the reduction of order theorem again,

X(t) = V() {1 - /t(V*PV")l(s)As] . tE [ty W)

ta
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Consequently,

I=[VIXO)X )V ()] = [I—/t(V*PV“)_l(s)As] [I—i—/t(X*PX")_l(s)As .

t2 t2

Since the second factor is strictly increasing and bounded below by I, the first factor is
positive definite and strictly decreasing, ensuring the existence of a limit, in other words,

we have
t

0<1— /W(V*PV")_l(s)As <I —/ (V*PVo)~(s)As < I.

t2 t2
It follows that

0< /t(V*PV")l(s)As < /M(V*PV“)*(S)AS <I, telty,w)r, (5.13)

to 2]

and V is a dominant solution of (3.1) at w. Set
U(t) := V(t)/ (V*PV7)71(s)As.
¢

By Theorem 5.1, U is a recessive solution of (3.1) at w, and W(U,V) = I. Since

v =ve | [ rvereas- [@rvn e,

2] to

V is invertible on [t2,w)T, and the difference in brackets is positive definite on [ta,w)r,
we get that U is invertible on [t2,w)T as well. Then on [t2,w)r, we have

PVAV-L_pUAUTY = UrlUrPVAV T - X lx A pyy Tt
Ut [urPvA —US PV V!

vt ww,vvtuuTt

U*—l [V_lU} U—l

= Ut [/ (V*PVo) " s)As| U™ >0
t

by (5.13). Since t3 in (o(to),w)r arbitrary, the conclusions of the theorem follow. O

Corollary 5.3 Assume the vector equation (5.8) is disconjugate on [p(to),w)r, and
K is a constant Hermitian matriz. Let U,V be the matrix solutions of LX = 0 satisfying
the initial conditions

Ulty) =1, UP(ty) = P H(t)K, and V(ty) =0, V2(ty) =P ts)

for any ta € (o(to),w)r. Then V is invertible in (o(ta2),w)r, V is a dominant solution of
(3.1) at w, and
lim V() U ()

t—w

exists as a Hermitian matriz.
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Proof By Theorem 5.9, the matrix equation (3.1) has a solution U which is reces-
sive at w with U(¢) invertible for ¢ € [t2,w)r. Thus (iii) of the connection theorem,
Theorem 5.4 holds; by (i), then, V is a dominant solution of (3.1) at w, and by (ii),

lim VH)U(t)
exists as a Hermitian matrix. Since V' (t2) = 0 and the vector equation (5.8) is disconju-
gate on [p(to),w)r,
(V*pppv) (t) >0, te (U(tg),w)']r.

In particular, V is invertible in (o (t2),w)y. O

Theorem 5.10 If the wvector equation (5.8) is disconjugate on [p(to),w)r, then
Lxz(t) = h(t) has the unique two-point property in [to,w)r. In particular, every boundary
value problem of the form

L.%'(t) = h(t), z(11) = o, .’L‘(Tg) =B,

where 11,7y € [ta,w) for ta € (o(ty),w)r with 71 < T2, and where «, 3 are given n-
vectors, has a unique solution.

Proof By Theorem 5.9, disconjugacy of (5.8) implies the existence of a prepared,
invertible matrix solution of (3.1). Thus by Theorem 5.7, it suffices to show that (5.8)
has the unique two-point property in [t2,w)r. To this end, assume wu, v are solutions of
Lx = 0, and there exist points s1, s € T such that t3 < s1 < s9 and

u(s1) = v(s1), u(s2) = v(s2).

If s1 is a right-scattered point and so = o(s1), then u and v satisfy the same initial
conditions and u = v by uniqueness; hence we assume s > o(s1). Setting = u — v, we
see that x solves the initial value problem

Lz =0, x(m) =0, x(m2) = 0.

Since Lz = 0 is disconjugate and z is a prepared solution with two generalized zeros, it

must be that z = 0 in [t2,w)r. Consequently, v = v and the two-point property holds.
O

Corollary 5.4 (Construction of the recessive solution) Assume the wvector
equation (5.8) is disconjugate on [p(to),w)r. For each s € (to,w)r, let U(t,s) be the
solution of the boundary value problem

LU(-,s)=0, Ulty,s)=1, U(s,s)=0.
Then the solution U with U(ty) = I which is recessive at w is given by

U(t) = lim U(t, s),

S—w

satisfying
(U*PPPU)(t) >0, t€ [to,w)r. (5.14)
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Proof By Theorem 5.9 and Theorem 5.10, LX = 0 has a recessive solution and Lx =
h has the unique two-point property. The conclusion then follows from Theorem 5.8,
except for (5.14). From the boundary condition U(s,s) = 0 and the fact that Lz = 0
is disconjugate, it follows that U*(p(t),s)P?(t)U(t,s) > 0 holds in [t, s)r. Again from
Theorem 5.8,
lim U(t,s) = U(t) U (ty) = U(t),

S—w

so that U invertible on [tp,w)r and (5.14) holds. O
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1 Introduction

It is useful to consider state equations that are close (in an appropriate sense) to another
linear state equation that is uniformly stable or uniformly exponentially stable. Prompted
by Lyapunov [6], DaCunha [4] showed that if the stability of the uniformly regressive
time varying linear dynamic system

o2 (t) = A(t)x(t), x(to) = wo, (1.1)

has already been determined by an appropriate generalized Lyapunov function, then cer-
tain conditions on the perturbation matrix F'(¢) guarantee specific stability characteristics
of the perturbed linear system

) = [A®) + F))2(t), (ko) = 0. (1.2)
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In Brogan [2], Chen [3], and Rugh [8], the stability of linear systems and perturbed linear
systems is investigated on the lackluster time scales of R and Z. As is known in the time
scales community, analysis on either of these two domains rarely offers the complexity
and challenge of the same study on an arbitrary closed set of the reals. One of the
main reasons for this is that the uniform graininess of each makes for a run of the mill
investigation. Despite these shortcomings of R and Z, this paper is motivated by these
works to unify and extend to the more general area of time scales, as were Gard and
Hoffacker [5] in the scalar dynamic equation case and Pétzsche, Siegmund, and Wirth [7]
in the constant and Jordan reducible linear systems case. Our aim in this exposition is
to prove analogous results for the universal time scales setting.

This paper is organized as follows. Section 2 introduces two dynamic inequalities
which are generalizations of Gronwall’s inequality. In addition to bounds for solutions to
linear dynamic systems using the system matrix coefficients, linear systems with pertur-
bations and their stability characteristics versus the unperturbed system are investigated
in Section 3. Section 4 gives slightly more general stability results for linear systems with
nonlinear perturbations. The author’s conclusions end the paper.

2 Generalizations of Gronwall’s Inequality

To begin with, we state two theorems from the introductory time scales text [1]. One
important result that is supplied from the following is a way to show uniqueness of
solutions for initial value problems of linear dynamic systems.

Theorem 2.1 [1, Thm. 6.1] Let f,x € C,q and p € RT. Then
a®(t) < p(t)z(t) + f(t), for allt €T
implies

x(t) < ep(t,to)xo + /t ep(t,o(s))f(t)As, forallt €T.

to

Theorem 2.2 (Gronwall’s inequality) [1, Thm. 6.4] Let f,x € Cia, p € RT,
and p >0 for all t > ty. Then

x(t) < f(t) + /tp(s)x(s)As, forallt €T
to
implies

z(t) < f(t) +/ ep(t,o(s))f(s)p(s)As, forallt € T. (2.1)

to

By employing these previous two theorems, in particular, the generalized Gronwall
inequality, we have the following two new generalized dynamic inequalities.

Theorem 2.3 Let x € Cpq, f € Cly, pe RT, and p >0 for all t > to. Then

z(t) < f(t) +/t p(s)x(s)As, forallt €T (2.2)
implies .
x(t) < ep(t, to) f(to) +/ ep(t,o(s))f2(s)As, for allt €T. (2.3)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 9 (3) (2009) 239-248 241

Proof Applying Gronwall’s inequality from Theorem 2.2 to the inequality (2.2), we
obtain the inequality (2.1).

Defining the function r(¢) as the right hand side of the inequality (2.1), using the fact
that p > 0, and then delta differentiating r(¢) we obtain

r2(t) = F2() + f(t)p(t) +/t p(t)ey(t, o () f(s)p(s)As = f2(t) +p(t)r(1).

Multiplying both sides by the positive function eg,(o(t),to) we have

eep(@(t),10)(r® (t) — p(t)r (1)) = eap(o(t),to) f2(2)

which is equivalent to

[eap(t: to)r(£)] S = ecp(a(t), to) f2(1).
On both sides, integrate from ty to ¢, then multiply by e, (t,to) and obtain
¢
r(t) = ep(t, to)r(to) +/ eep(a(s),t)fA(s)As.
to

Thus, the desired inequality (2.3) is obtained. O

Theorem 2.4 Let f,w,z € Cpq, where f is a constant, p € R™, and p > 0 for all
t>tg. Then

x(t) < f —I—/ w(s) + p(s)z(s)As, forallt €T (2.4)

to
implies

x(t) < ep(t,to)f —|—/ ep(t,o(s))w(s)As, for allt € T. (2.5)

to

Proof We define the function r(t) by writing the right hand side of the inequal-
ity (2.4). Observe that with (2.4) and the fact that p > 0,

r2(t) = w(t) + p(t)z(t) < w(t) + p(t)r(t).
Multiplying both sides by the positive function eg,(c(t),to) we have
eop(0(t), o) (™ (t) — p(t)r(1)) = ecp(o(t), to)w(t)
which is equivalent to
A
[eap(t, to)r(8)]™ = eep(o(t), to)w(t).
On both sides, integrate from ty to ¢, then multiply by e, (t,to) and obtain

r(t) = ep(t, to)r(to) —|—/ eep(a(s),t)w(s)As.

to

Thus, we obtain the desired inequality (2.5). O

Example 2.1 Given the time varying system (1.1), we can use Theorem 2.1 (with
f(t) = 0) or Theorem 2.4 (with w = 0) to derive a bound on the solution using the
system matrix. Observe that

t
(Ol < lhaoll + [ 14 lle(@)l1As = [le@)] < eat.to)laoll.  for all ¢ €.
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3 Linear Perturbations

We begin this section with a few useful definitions.

Definition 3.1 [7, Lem. 4.5] A regressive mapping A € C.q(T,C) is uniformly re-
gressive on the time scale T if there exists a constant § > 0 such that

0< 6t <L+ A1), (3.1)

forall t € T.
Further, the n x n linear dynamic system (1.1) is uniformly regressive if all eigenvalues
{3,k <n, of A satisfy (3.1) for all t € T.

We now define the concepts of uniform stability and uniform exponential stability.
These two concepts involve the boundedness of the solutions of the uniformly regressive
time varying linear dynamic equation (1.1).

Definition 3.2 The time varying linear dynamic equation (1.1) is uniformly stable
if there exists a finite constant v > 0 such that for any ¢y and z(¢g), the corresponding
solution satisfies

@I < yllz(o)ll, ¢ =to.

For the next definition, we define a stability property that not only concerns the bound-
edness of a solutions to (1.1), but also the asymptotic characteristics of the solutions as
well. If the solutions to (1.1) possess the following stability property, then the solutions
approach zero exponentially as t — oo (i.e. the norms of the solutions are bounded above
by a decaying exponential function).

Definition 3.3 The time varying linear dynamic equation (1.1) is called uniformly
exponentially stable if there exist constants v, A > 0 with —\ € R™ such that for any
to and z(ty), the corresponding solution satisfies

lz@® < [lz(to)llve-x(t o),  t>to.

It is obvious by inspection of the previous definitions that we must have v > 1. By using
the word uniform, it is implied that the choice of v does not depend on the initial time
to.

Definition 3.4 [7] The regressive stability region for the scalar IVP is defined to be
the set

T
. . log |1+ svy(7)]
S(T) = t) € C:limsu / lim ——————A7<0;.
( ) {7( ) Tﬂoop T— tO to s\ (T) S

It is easy to see that the regressive stability region is always contained in {y € C :
Re(y) < 0}. The reader is referred to [7] for more explanation.

Theorem 3.1 Suppose the linear system (1.1) is uniformly stable. Then there exists
some 3 > 0 such that if

/OOIIF(SNIAsSﬂ

for all T € T, the perturbed system (1.2) is uniformly stable.
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Proof See [4] for proof. O

Theorem 3.2 Suppose the linear system (1.1) is uniformly exponentially stable.
Then there exists some 3 > 0 such that if

| Felas <o
for all T € T, the perturbed system (1.2) is uniformly exponentially stable.

Proof For any initial conditions, the solution of (1.2) satisfies
¢
z(t) = @ a(t, t0)z0 +/ D4(t,0(8))F(s)z(s)As,
to

where @ 4(t,t0) is the transition matrix for the system (1.1). By the uniform exponential
stability of (1.1), there exist constants A, v > 0 with —A € R™ uniformly such that
[|@a(t, 7)|| <ve_a(t,7), for all ¢, 7 € T with ¢t > 7. Taking the norms of both sides and
utilizing the uniform regressivity, we see

t
12Ol < veattstollloll + | veost I J(0)] A5, 2 to
to

Defining v (t) := e_x(to, t)||2(t)||, this implies
t
0(t) <ol + [ 0Pl 6(s)As

Applying Gronwall’s inequality, we obtain

[z < 7[lzolle—xane) 71 (E: o)

= 7120l e-x(t: to) exp ( / Log 1+u/5?>;6||F<s>||> AS)
(

< falles(ttoyenp ([ EELELEAFOD o, )
to w(s)
< lzo0lle-a(t, to) exp (fy ||F(s ||As>

< v||z0l|€"Pe_x(t,to), t> to.

Since v and —\ can be used for any initial conditions, the system (1.2) is uniformly
exponentially stable. O

Theorem 3.3 Suppose the linear system (1.1) is uniformly exponentially stable.
Then there exists some 3 > 0 such that if

1P| < 8 (3.2)

for all t >ty with t,tg € T, the perturbed system (1.2) is uniformly exponentially stable.
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Proof For any initial conditions, the solution of (1.2) satisfies
t
z(t) = @ a(t, t0)z0 +/ D4(t,0(8))F(s)z(s)As,
to

where ® 4 (t,t0) is the transition matrix for the system (1.1). By the uniform exponential
stability of (1.1), there exist constants v, A > 0 with —\ € R* such that ||®4(t,7)|| <
~ve_x(t,7), for all t, 7 € T with ¢ > 7. By taking the norms of both sides, we have

HMWSWA@MWM+AvaWJ®mﬂﬂwdﬂM&tzm

Rearranging and applying the uniform regressivity bound and the inequality (3.2), we
obtain

t
efx(to,t)HZ(t)llS”Y||20||+/ vBoe—x(to, s)||z(s)|| As, ¢ = to.
to

Defining v (t) := e_x(to, t)||2(t)||, we now have

t
vlt) < sllaoll + [ 2056(s) As, £ 2 10
to
By Gronwall’s inequality, we obtain

1/}(t) S 7||ZO||6755(t7t0)7 t Z tO-

Thus, substituting back in for ¢(t), we conclude
1z < 7llzolle-reyps(t o), T > to.

We need —\ @ 785 € RT and negative for all t € T. Observe, since 785 > 0, it is
positively regressive, and so y8J € RT. Since RT is a subgroup of R, we see that
-A@® 36 € RT. So we must have

A

—)\EB’Yﬁ6<O - ﬁ<m,

for all t € T. Thus, by choosing 3 accordingly and since ~ is independent of the initial
conditions, the system (1.2) is uniformly exponentially stable. O

Theorem 3.4 Consider the uniformly regressive linear dynamic system (1.2), with
the matrices A(t) and F(t) constant. Let the uniformly regressive constants A € Rt and
v > 0 such that

llea(t,to)|l < vea(t, to), t > to.

Then the bound
llearr(t,to)l| < verane| | (Es to)s t > to,

is valid.
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Proof We begin by noting that the solution X to (1.2) with constant system matrices
is given by
t
earr(t,to) = X(t) =ealt,to) + / ea(t,o(s))FX(s)As. (3.3)
to
The solution (3.3) can be bounded by the following

IX (@] < vea(t, to) +/t vea(t, o(s))|F[| [[X(s)]|As. (3-4)

We now employ Gronwall’s inequality on (3.4) by defining ¢ (t) := ex(to,t)|| X (¢)]].
Thus,

bt) <y + / vex(s, o(s)||Fll h(s)As < + / 28| (s) As

which implies
llearr(t,to)ll < verasyl F|(t: to). O

Theorem 3.5 Given the uniformly regressive system (1.2) with A(t) = A a constant
matriz, suppose all eigenvalues of A belong to S(T), the matriz F(t) € Cq(T,R™*")

satisfies
lim [|F(t)]] =0, (3.5)

t—oo

and the solution x(t) € CL(T,R™) is defined for all t > to. Then given any initial
conditions x(to) = xo, the solution to (1.2) satisfies

tlirgo x(t) = 0. (3.6)

Proof Since spec(A) € S(T) for all ¢ € T and the system is uniformly regressive, we
have
llea(t, to)|] < ve-x(t.to), (3.7)
for some v, A > 0 with —X\ € R™, and all ¢ > to. Using (3.7), we can bound the solution
by .
lz()]] < ve-x(t,to) +/t vex(t, a()|[F(s)]] [lz(s)]|As.
0

Choose an ¢ > 0 such that —A®e <0 and —A@ec € RT for all t € T. By Gronwall’s
inequality, we have

t

. 1

|lz(t)|le—x(to, 1) < 7[|zo|| exp U lim —Log[l + syd|[F(7)[[|AT| . (3.8)
to SNu(T) S

Denoting the upper bound of the graininess of T by u* and employing the generalized
version of L’Hépital’s rule [1] and (3.5), we have

t 4. .
I ogll + 0 F@IIAT | lim,s i Loglt + 596 (0)]
=00 1 limg () 2Logll + sz]Ar t=o0  limge i 3 Log[l + se]
< Y limy o0 || F(2)]]
= Logll + p*e]
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thus implying that there exists a T' € T such that for ¢ > T we have

¢ 1 ¢ 1
lim —Log[l + syd||F(7)|||AT < / lim —Log[l + se|AT.
| Jm Loslt + slF@IIAT < [ tm Loglt + 52

From (3.8), for ¢ > T we obtain

[lz(®)lle-x(to, 1) <llzolle=(t, o).

With a correct choice of £ above, it easily follows that

lz(®)]] < ~llzolle-ree(t, to)

which implies the claim (3.6). O

4 Nonlinear Perturbations

In the following theorem, we show that under certain conditions on the linear and nonlin-
ear perturbations, the resulting perturbed nonlinear initial value problem will still yield
uniformly exponentially stable solutions.

Theorem 4.1 Given the nonlinear uniformly regressive initial value problem
a®(t) = [A(t) + F()]a(t) + g(t,2(t),  x(te) = o, (4.1)

and an arbitrary time scale T, suppose (1.1) is uniformly exponentially stable, the matriz
F(t) € Cua(T,R™*™) satisfies ||F(t)]] < B for all t € T, the vector-valued function
g(t,z(t)) € Ca(T,R™) satisfies ||g(t, z(t))|| < €||z(t)|| for all t € T and x(t), and the
solution x(t) € CLy(T,R™) is defined for all t > to. Then if § and ¢ are sufficiently
small, there exist constants v, \* > 0 with —\* € R™ such that

()] < v[lzolle—x=(t,t0)
for all t > tg.

Proof Observe that the solution to (4.1) is given by

x(t) = ®a(t, t0)To —|—/ D A(t,0(8))[F(s)x(s) + g(s,xz(s))]As, (4.2)

to

for all ¢ > ty. Since (1.1) is uniformly exponentially stable, there exist constants v, A > 0
with —\ € R such that ||[®4(t,t0)|| < ve—a(t,to) for all £ > ty. Recall ||F(t)|] < 3,
[lg(t, z(£))|] < €||z(t)|| for all t € T, and since the decay factor —\ is uniformly regressive
on T, there exists a § > 0 such that 0 < 6= < (1 — u(t)\) for all t € T which implies
that 0 < (1 — u(t)\)~! < 6. Taking the norms of both sides of (4.2), we obtain

AN

(1] < [|@a(t, to)ll [lzoll +/t @A, a(DIUIE G [z()I] + llg(s, 2(s)]])As

e (t.to) [wnxon + [ 3506+ 9eatto, o)1)

to
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for all t > .
By Gronwall’s inequality,

(@) < vllzolle—rars(s+e) (t to)-

To conclude, we need —\ & v5(3 +¢€) € RT as well as —\ & (8 + €) < 0. Observe
that v6(8 + €) > 0 implies v6(8 + €) € RT and since RT is a subgroup of R, we have
“A&Y5(B+¢€) € RT. So we need

A
“APV(f+e) <0 = < ——F——— —¢
= EEORET
From this result, we must have W —e>0forallteT, ie €< W

v
allt e T.
Thus, to fulfill the requirements of the theorem, we must satisfy the following:

for

A
l<e<—— —— 0<f<
CT—ane 07

forallteT. O

A
m — €, and —)\* = —)\@75(64-6)

Corollary 4.1 Given the nonlinear uniformly regressive initial value problem (4.1)
with A(t) = A a constant matriz, suppose spec(A) € S(T) for all t € T, the matriz
F(t) € Cua(T,R™™™) satisfies ||F(t)|| < 6 for all t € T, the vector-valued function
g(t,z(t)) € Ca(T,R™) satisfies ||g(t, z(t))|| < €||z(t)|| for all t € T and x(t), and the
solution x(t) € Cly(T,R™) is defined for all t > to. Then if § and € are sufficiently
small, there exist constants v, \* > 0 with —\* € RT such that

lz@I] < llzolle—x- (¢ to)
for all t > tg.

Proof The proof follows exactly as in Theorem 4.1, with the observation that
D4(t,t0) = ealt,to). Since spec(A) € S(T), there exist constants v, A > 0 with
—X € R such that |lea(t,to)|] < ve_x(t,to) for all t > to, we now have the bound
[|®al(t,to)]] < ve—x(t, to), for some constants v, A >0 with —\ € R*. O

Conclusions

The intent of this paper was to add to the completeness of bounds on solutions to linear
systems on time scales. In particular, in Section 2 this was done via introduction of
two generalizations of Gronwall’s inequality, thereby creating addition possibilities for
bounding solutions to systems of the form (1.1) and (1.2).

In Section 3 and Section 4, certain bounds were given on the linear and nonlinear
perturbations which maintained stability of the system (1.2) were investigated. This
included integral bounds and asymptotic bounds on the perturbation matrix F.
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Abstract: We prove some new results regarding the boundedness, stability and
attractivity of the solutions of a class of initial-boundary-value problems characterized
by a quasi-linear third order equation which may contain time-dependent coefficients.
The class includes equations arising in superconductor theory, and in the theory
of viscoelastic materials. In the proof we use a family of Liapunov functionals W
depending on two parameters, which we adapt to the ‘error’, i.e. to the size o of the
chosen neighbourhood of the null solution.
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1 Introduction

In this paper we study the boundedness and stability properties of a large class of initial-
boundary-value problems of the form

{ —e(O) gzt + utr — C()uge + a'ur = F(u) — auy, x €|0,m[, t>to,
(1.1)

u(0,t) =0, wu(m,t)=0,

u(z,tg) = uo(x), ug(x,to) = ur(x). (1.2)
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Here tg > 0, e € C*(1,1), C € CY(I,R") (with I := [0,00[) are functions of ¢, with
C(t)>C =const >0, the conservative force fulfills F(0) = 0, so that the equation admits
the trivial solution u(z,t) = 0; @’ = const >0, a = a(x, t, u, Uz, Ut, Uzz) >0, (t) >0, so
that the corresponding terms are dissipative!.

Solutions u of such problems describe a number of physically remarkable continuous
phenomena occurring on a finite space interval.

For instance, when F(u) = bsinu, a = 0 we deal with a perturbed Sine-Gordon
equation which is used to describe the classical Josephson effect [§] in the theory of su-
perconductors, which is at the base (see e.g. [12, 1] and references therein) of a large
number of advanced developments both in fundamental research (e.g. macroscopic ef-
fects of quantum physics, quantum computation) and in applications to electronic devices
(see e.g. Chapters 3-6 in [2]): u(z,t) is the phase difference of the macroscopic quantum
wave functions describing the Bose—Einstein condensates of Cooper pairs in two super-
conductors separated by a very thin and narrow dielectric strip (a socalled “Josephson
junction”), the dissipative term (a’+a)u; is due to Joule effect of the residual current
across the junction due to single electrons, whereas the third order dissipative term is
due to the surface impedence of the two superconductors of the strip. Usually the model
is considered with constant (dimensionless) coefficients ¢, C, (a’+a), but in fact the lat-
ter depend on other physical parameters like the temperature or the voltage difference
applied to the junction (see e.g. [12]), which can be controlled and varied with time; in
a more accurate description of the model one should take a non-constant a = (cosu,
where (8 also depends on temperature and voltage difference applied and therefore can
be varied with time.

Other applications of problem (1.1)—(1.2) include heat conduction at low temperature
[13, 7], sound propagation in viscous gases [10], propagation of plane waves in perfect
incompressible and electrically conducting fluids [15], motions of viscoelastic fluids or
solids [9, 14, 16]. For instance, problem (1.1)—(1.2) with a = 0 = o’ describes [14] the
evolution of the displacement u(x,t) of the section of a rod from its rest position z in a
Voigt material when an external force F' is applied; in this case ¢ = E/p, ¢ = 1/(pu),
where p is the (constant) linear density of the rod at rest, and E,p are respectively
the elastic and viscous constants of the rod, which enter the stress-strain relation o =
Ev + 0w/ p, where o is the stress, v is the strain. Again, some of these parameters, like
the viscous constant of the rod, may depend on the temperature of the rod, which can
be controlled and varied with time.

The problem (1.1)—(1.2) considered here generalizes those considered in [3, 4, 5, 6], in
that the square velocity C and the dissipative coefficient ¢ can depend on ¢t. The physical
phenomena just described provide the motivations for such a generalization. While we
require C' to have a positive lower bound, in order not to completely destroy the wave
propagation effects due to the operator 97 — C92, we wish to include the cases that e
goes to zero as t — oo, vanishes at some point ¢, or even vanishes identically. To that

1 This follows from the non-positivity of the corresponding terms in the time derivative of the
Hamiltonian:

H:/d:c
0

We also see that the last term is respectively dissipative, forcing if Cis negative, positive. H can play
the role of Liapunov functional w.r.t. the reduced norm de—o(u, u¢).

uZ+Cu? _
2

u(z) . . .2
/ F(z)dzl = H= —/d:c [(a—i—a’)uf—i—augt] —i—/dxC’—z.
0
0
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end, we consider the t-dependent norm

™

d*(p,) = d2(p,1)) = /dw [E2(t) 2, +oa+" +1p%). (1.3)
0

£2 plays the role of a weight for the second order derivative term 2, so that for € = 0 this
automatically reduces to the proper norm needed for treating the corresponding second
order problem. Imposing the condition that ¢, vanish in 0,7 one easily derives that
|p(x)], el (x)] < d(p,v) for any a; therefore a convergence in the norm d implies also
a uniform (in x) pointwise convergence of ¢ and a uniform (in x) pointwise convergence
of p, for e(t)#0. To evaluate the distance of u from the trivial solution we shall use the
t-dependent norm d(t) = d.)[u(z,t),u(x,t)]; we use the abbreviation d(t) whenever
this is not ambiguous.

In Section 2 we state the hypotheses necessary to prove our results, give the relevant
definitions of boundedness and (asymptotic) stability, introduce a 2-parameter family of
Liapunov functionals W and tune these parameters in order to prove bounds for W, W.
In Sections 3, 4 we prove the main results: a theorem of stability and (exponential)
asymptotic stability of the null solution (Section 3), under stronger assumptions theorem
of eventual and/or uniform boundedness of the solutions and eventual and/or exponential
asymptotic stability in the large of the null solution (Section 4). In Section 5, we mention
some examples to which these results can be applied.

We note that for constant e the existence and uniqueness of the solution of the problem
(1.1)—(1.2) follows from the theorem in section 2 of [6], as we can replace at the left-hand
side C(¢) by inf; C and include in the right-hand side the difference [inf; C' — C'(¢)]uzy.

2 Main Assumptions, Definitions and Preliminary Estimates

For any function f(t), we denote f = infxo f(1), ? = SUpyy f(t). We assume that there
exist constants A>0, 7>0, k>0, p>0, x>0 such that

F0)=0 & F,(2)<k if|z|<p. (2.1)
—_ . C =

C>k, C—e>p(l+e), u+§—2k>0, €>—00. (2.2)
0 < a<Ad (u, uy), a'+%>0 (2.3)

We are not excluding the following cases: e(t) = 0 for some ¢, € =20, e(t)=0,¢ =% %
[in view of (2.2)5 the latter condition requires also C' pand ool; but by condition (2.3)2 at
least one of the dissipative terms must be nonzero. Eq. (2.1) implies

© 2
[Tt ere<kd i< (2.4)
0

We shall consider also the cases that, in addition to (2.1), either one of the following
inequalities [which are stronger than (2.4)] holds:

©
/F(z)dzgo, eF(p)<0 if |p|<p. (2.4
0
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To formulate our results, we need the following definitions. Fix once and for all k € R,
£€>0 and let I, := [k, 00[, d(t) := de(s) [u(, 1), ue (2, 1)].

Definition 2.1 The solution u(z,t) = 0 of (1.1) is stable if for any o €0,¢] and
to € I; there exists a d(o,ty) > 0 such that

d(to) < 8(o,t0) = d(t) <o Vt>t,.
If 6 can be chosen independent of ¢, 6 = §(0), u(z,t) = 0 is uniformly stable.

Definition 2.2 The solution u(z,t) = 0 of (1.1) is asymptotically stable if it is
stable and moreover for any to € I,; there exists a §(tg) >0 such that d(tg) <d(tg) implies
d(t) — 0 as t — oo, namely for any v >0 there exists a T'(v, to, ug, u1) > 0 such that

d(te) < d(ty) = d(t)<v Vt>to+T.

The solution w(z,t) = 0 is uniformly asymptotically stable if it is uniformly stable and
moreover 0, T can be chosen independent of tg, ug, u1, i.e. d(t) — 0 as t — oo uniformly
in to, Uup, Uq-

Definition 2.3 The solutions of (1.1) are eventually uniformly bounded if for any
0 > 0 there exist a s(6) > 0 and a 3(0) > 0 such that if ¢, > s(d), d(to) < 4, then
d(t) < B(9) for all t > . If s(6) = 0 the solutions of (1.1) are uniformly bounded.

_ Definition 2.4 The solutions of (1.1) are bounded if for any § > 0 there exist a
B(d,to) > 0 such that if d(to) < d, then d(t) < B(d,to) for all t > t.

Definition 2.5 The solution wu(z,t) = 0 of (1.1) is eventually exponential-
asymptotically stable in the large if for any § > 0 there are a nonnegative constant
s(6) and positive constants D(d), E(d) such that if tg > s(4), d(tg) < 4, then

A(t) < D) exp [~ BO)(t — o) dlte), Vb > to, (25)
If s(6) = 0 then u(x,t) = 0 is exponential-asymptotically stable in the large.

Definition 2.6 The solution wu(z,t) = 0 of (1.1) is (uniformly) exponential-
asymptotically stable if there exist positive constants §, D, E such that

d(t) <8 = d(t) < Dexp[—E(t —to)]d(to), Yt > to. (2.6)

Definition 2.7 The solution u(x,t) =0 of (1.1) is asymptotically stable in the large
if it is stable and moreover for any to € I, v,a > 0 there exists T(«, v, to, ug,u1) > 0
such that
d(to) <a = d(t) <v Vt>tg+T.

We recall Poincaré inequality, which easily follows from Fourier analysis:
seC0al, GO =0 o) =0 = [ddw:z [wiw. @)
0 0
We introduce the non-autonomous family of Liapunov functionals

W=Wowtin0) = [ 50w+ v 0 -t+e@+O)2 (28)

@(x)
+a'0p* +2001p —2(1 +7)/ F(z)dz}dx
0
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where 6,~ are for the moment unspecified positive parameters. W coincides with the
Liapunov functional of [3] for constant £,C and v = 3, § = d/. Let W(t;~,6) :=
W (u, ut, t;7,0). Using (1.1), from (2.8) one finds

. 7 . 2
W(t7’779) = /{(Euww_ut)(gummt_utt+5uzw)+[C(1+’Y)_5+5(a/+9)] L
0

HC(149) —é+e(a'+0)]uptiz +a'Ouuy+0ui + (vup+0u)uy — (1+7) F(u)u, } do

U
2

™

- /{(aum —wy)[(a+a" )y — Cigy — F (1) +Etige ] +[C(1+7) —E+E(a’ +6))]

] N

u

|

—C(1+7) —é+e(a' +0)|ugpus +a Ouug +0u?

Hoyue+0u) [Cigy + Uz + F(u) — (a+a’)ug] — (14+7) F (w)u } do

0
Uz — (a4 0) Uy +a Ou+0uy+vYCOULy +VeULzt +YF (u) — (ata’ ) yuy — 0 (ata’ )u
) 2
—(147) F(u)|us+0u[Cugy +etper+ F(u) | +[C(1+7) —é—i—é(a'—i—ﬁ)]u—;} dx
= /{a[(é—C’)um—F(u)]um—Fut [tz — (a+a") (1 +7)us—ebug,
0
. u2
Hup+yeuper — abu]+0u[Cuge + et + F (u)] + [C’(l—l—’y)—é'—l—é(a’—l—@)]?z} dz
T . 2
- —/{E(C—é)ufm—i—[(a—i—a’)(l—i—v)—@] w2+ [2ec+é—é(a'+9)—(1+7)c] %muit
0

—|—9auut—9uF(u)—l—s[—aut—i—F(u)]um}da@. (2.9)

2.1 Upper bound for W
After some rearrangement of terms and integration by parts of the last term, we obtain

2
2 a Ugx

i 2
i 2 / Y L L . _
W = /o {a”yumt—l— {(a—l—a Y(1+v)—06 o 90] ui+e(C—é) |:C—E§Ut )

|

2
Uy

+e(C =&, + [C (g —a’> —l—é—l—(C—é)(a’—l—H)—(1+7)C‘—25Fu] 3
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Using (2.7) with ¢(z) = wi(x, t), u(z, t) we thus find, provided |u| < p, 0> 2d’, u(a’™+0) > 2k
; " / of1 O\ 2,3 o5
W<- evt(ata)(l+y)—0—a™( =+ = | |ui+ pe ug,+
0 po C 4
[ / . / - Ui 2
C 3¢ +E+p(l+e)(a'+0)—(1+~)C—2¢k 7_%” dx

g 1 6 3
é—/ {[?v+(a+a’)(1+v>—9—a2<;+=>}u?+1u62uim+
0

C
(0 N = ., ) : u;
C 3¢ +é+p(a’ +0)+[pu(a’+0)—2kle— (14~)C—2k6 > dz. (2.10)
We now assume that there exists ¢(y) € [0, oo[ such that
C(1+~)<1 fort>t, C(l4+7)>1 for0<t<t. (2.11)

This is clearly satisfied with #(y)=0 if C' < 0, whereas it is satisfied with some () >0
if ¢ =X 0. We fix 0 by choosing

2k 5—&—d'(p—C
0 > 0, := max {2a’, L o, w} . (2.12)
7 u+C/2—2k
Then for all ¢t > ¢
C , - L, _
9(#—1—5—216)4—[#(& +0)—2k|E+é—(1+~)C+a'(u—C) > 4. (2.13)
Next, provided d(u, us) <o < p, we choose
1+6 9 A? 1 0
= — T = — 4= 2.14
v >71(0) = + Y3207, V32 (@+7) M+C ; (2.14)
what implies, for d < o,
ey+(a+d)(14+7)—0—-a® <l+ﬁ) =a+d+ (a+d +8)y—0—a? <l+£>
po C po C
,, atad+E 2 (1,0 o o1, 0 o /
—— 1+ + A* | —+= —0—A—+=)d" >1 . 2.15
> '+ [(+)+ (u+C o pRie >1+d.  (2.15)

Equations (2.10), (2.13) and (2.15) imply for all ¢ > ¢

W (u, ue, £, G)S—/ {[€7+ (a+a')(1+7)—0—a’ (l + %) } uf+%u€2u§x+
0 H

C ’U,2 u2
[9(u+§—2k>+[u(a’+9)—2k]§+§—(1+7)C+a’(u—6)] wz }dw
< —nd*(t),  n:=min{l,3u/4} (2.16)

provided 0<d(t) <o. If, in addition to (2.3) with k& > 0, the inequality (2.4’) [which is
stronger than (2.4)] holds, then it is easy to check that we can avoid assuming (2.2)3 and
obtain again the previous inequality, provided we replace k by 0 in the definition (2.12)
of 6‘1.
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Remark 2.1 One can check that if we had adopted the same Liapunov functional
as in [5, 6] formulae (4.2), i.e. W of (2.8) with §=0=a’, we would have not been able to
obtain (2.16) (which is essential to prove the asymptotic stability of the null solution) in
a number of situations, e.g. if e —0 sufficiently fast as t— oo.

2.2 Lower bound for W

From the definition (2.8) it immediately follows

T B ) - , ,
W(go,w,t;%e) = /%{ (7_92_%) w2+ (ESDMC 21/1) + (E@mm w) +<€2 Pre
0

4 2 4

»(x)
+[C(1+7)—é—l—s(a’—l—@)]g@i—l—(a’ﬁ—1)<p2+[9¢+<p]2—2(1+7)/0 F(z)dz}d:v. (2.17)

Using (2.2)2, (2.4) and (2.7) with ¢(z) = ¢(z) we find for |p|<p

1 1 2
W2/5{<”y—92—§> Y2 +e2 25 (O )yt gt (o’ +0)e] @2+ [a'0—1— k] <p2} dz
0

4
1 1 2 1 0
2/— Y= 02— 2 )2 4222 (T —k)yt ot (pta +2 ) 2| 2
2 2 4 2
0
+ (a/—l—%) 9—1—k] @2} dz. (2.18)
Choosing
k+5/4
9>92 = max{@l,m}, ’72’}/2(0') = 71(0)+92+1, (219)

we find that for d < o

1 1 0
W (e, ¥, t;7,0) = xd*(p,), X:=3 min{17 (C—=k)y+p+ (u+a’+ 5) 5} . (2:20)

(Note that 0 < x < 1/8). If, in addition to (2.1) (with some k>0), the inequality (2.4°);
holds, then it is easy to check that we obtain (2.20) [with the replacement & — 0 in the
definition of x] by choosing 8, as in (2.19), but replacing k — 0 there.

Finally, we note that if 7=0 in (2.3), i.e. a<A =const, then ~,#(y) are independent
of 0.

2.3 Upper bound for W

As argued in [3],

/0@ F(z)dz /0@ dz /OC Fe(C)d¢

Consequently, introducing the non-decreasing funtion m(r) := max {|F¢(¢)| : |¢] < r}
and in view of the inequality |¢| < d(p, 1)) we obtain

/ RO - Ode].

< m(d)—. (2.21)
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Thus, from definition (2.8) and the inequalities —2ep,.t) < €202 +1h2, 201 < O(p*+1h?),
(2.2)3 we easily find

™

W, ¥, t;7,60) < / %{(7+2+9)¢2+252wiw+[C(1+v>—
0

d2 Trl 2 2 2
+e(a'+0)] oo+ (a' +1)0p° } dz+(1+7)m (d)§§/§{(7+2+9)¢ +2e%05,

0
2

a’”ﬂ <p§+(a’+1)9go2} dw+(1+7)m(d)%'

+ [Cw—i— (C—¢) (1+
Choosing

¥ 2 73(0) 1= 72(0) + 144+ (' +1)0 = 731 + 75207, (2.22)

where 31 := ;7:% —|—92—|—2—|—a/7+‘9+(0/—|—1)9 and setting
g(t):=C(t)—é(t)/2+1>1,  B*(d) := [L+m(d)]d?, (2.23)

we find that for d < o

1 &2
W(p, 9, t;7,0) < /5[(v+2+9)1/)2+252<pix+7(20—6')wi+w2] da+(1+7)m(d) =
0

< [2vg()+(A+y)m(d)] 5 < (1+9) [g(t) +m(d)] d®

d?
2 -
< [149(0)]g(t) B*(d). (2.24)

The map d €0, oo[—> B(d) €0, oo is continuous and increasing, therefore also invertible.
Moreover, B(d) > d

3 Asymptotic Stability of the Null Solution

Theorem 3.1 Assume that conditions (2.1)-(2.3) are fulfilled. Then the null solution
u(z,t) of (1.1) is stable if one of the following conditions is fulfilled:

C<0, Vitel, (3.1)
¢ =X 0; (3.2)

the stability is uniform if the function g(t) defined by (2.23) fulfills § < oco. The &
appearing in Definition 2.1 is a suitable positive constant, more precisely & €0, p| if
p < 0o. The null solution is asymptotically stable if, in addition,

o dt

and uniformly exponential-asymptotically stable if § < co.
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Proof As a first step, we analyze the behaviour of

o2 o2

2
= =:7%(0).
14+73(0)  14+731+732027 ()

The positive constants 31, y32, defined in (2.22), are independent of o,ty. The function
r(o) is an increasing and therefore invertible map 7:[0, opr[— [0, 7as[, where:

oM =00, M =00, if T€[0,1],

oM =00 v =1/\/732, if 7=1, (3.4)
] q7L = .

o3 = %1:(13_11), rM:[l_Twil] = INTVE if 7>1,

(in the latter case r(o) is decreasing beyond o).
Next, let € := min{oys, p} if the rhs is finite, otherwise choose ¢ € RT; we shall
consider an “error” o €]0,£[. We define

§(o,tg) :== B™*

(o)X ] k= Fa(©). (3.5)
g(to)

§(a,to) belongs to 0, o, because B(d) > d implies B~1 [T(U)ﬂ/\/g(to)} < VX0 <o/2
and is an increasing function of o. The function () was defined in (2.11); ¢[y3(0)] <k
as the function #[y3(c)] is non-decreasing. Mimicking an argument of [6], we can show
that for any tg > &

d(to) < 5(0’, to) = d(t) <o Vt>tp. (36)

Ad absurdum, assume that there exists a finite ¢; >ty such that (3.6) is fulfilled for all
t € [to, t1[, whereas

d(t1) =o. (3.7)
The negativity of the rhs(2.16) implies that W(t) = Wlu, u, t;v3(0), 6] is a decreasing
function of ¢ in [tg, ¢1]. Using (2.20), (2.24) we find the following contradiction with (3.7):

Xd(t1) < W(t1) < Wito) < [1+73(0)] g(to) B? [d(to)] < [1+73(0)] g(to) B*(6)

2
EERCIIOY

Eq. (3.6) amounts to the stability of the null solution; if § < co we obtain the uniform

stability replacing (3.5); by 6(c):=B~! [r(g)\/%/\/g}
Let now d(tg) := d(&, ). By (3.6) and the monotonicity of §(-,tg) we find that for
any tg > K

= [1+73(0)] 9(to) {B

Choosing W (t) = Wlu, u, t;v3(£), 6], (2.24) becomes

W(t) < h(€gt)d*(t),  h(g) := [1+3(&)] [1+m(E)], (3.9)
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which together with (2.16), implies W (t) < —nW (t)/[hg(t)] and (by means of the com-
parison principle [17]) W (t) < W (to) exp [—77 fti dz/[hg(z)]}, whence

t

iy < WO W) o f s

Ths =T er h/Q(Z)
hat0) oy s oo | [z | M@)o | 0 [z
=Ty e h/g<z> ST e h(&)/gw

Condition (3.3) implies that the exponential goes to zero as t — oo, proving the asymp-
totic stability of the null solution; if g < oo we can replace g(to), g(z) by g in the last but
one inequality and obtain

h(&)g U
d*(t) < == exp | == (t—to) | d*(to),
X h(&)g
which proves the uniform exponential-asymptotic stability of the null solution (just set

5:3—1[r(5)\/y/\/§], D=+/h(€)3/x, E=n/[2h(£)F] in Def. 2.6). O

Remark 3.1 We stress that the theorem holds also if p = co. In the latter case ¢ is
o, if the latter is finite, an arbitrary positive constant, if also oy = co.

Next, we are going to extend some of the previous results in the large.

4 Boundedness of the Solutions and Asymptotic Stability in the Large

Theorem 4.1 Assume that: conditions (2.1)-(2.3), and possibly either one of (2.4°),
are fulfilled with p = oo and T < 1; the function g(t) defined by (2.23) fulfills § < oo;
(8.1) is fulfilled. Then:

1. the solutions of (1.1) are uniformly bounded;
2. the null solution of (1.1) is exponential-asymptotically stable in the large.
If only (3.2), instead of (3.1), is satisfied, then:
3. the solutions of (1.1) are eventually uniformly bounded;
4. the null solution of (1.1) is eventually exponential-asymptotically stable in the large.

Proof As noted, (o) can be inverted to an increasing map r~! : [0, 7y [0, 0],

whence also _
V7B(9)
VX

defines an increasing map 3 : [0, 0= [0, oas[, where dps ::B’l(rM\/Y/\/g). Note that
B(6)>04. An immediate consequence of (4.1) is

X — 1+3[8(9)]
From (2.11) it immediately follows that

B(6) = (4.1)

(4.2)

=0, if (3.1)is fulfilled,

s(0) := t{~3[B(0)]} { , , (4.3)
< oo, if (3.2) is fulfilled.
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We can now show that for any 6 €]0, das[, to>s(0)
d(tg) <o = d(t) <p(d), Vt>to. (4.4)

Ad absurdum, assume that there exists a finite ¢ >ty such that (4.4) is fulfilled for all
t € [to, t2[, whereas

d(tz) = 5(0). (15)
The negativity of the rhs(2.16) implies that W (t) = W{u, us, t;v3[8(9)], 0} is a decreas-
ing function of t in [tg,?2]. Using (2.20), (2.24) and the (4.2) we find the following
contradiction with (4.5):

XdA(t2) < W(tz) < Wito) < {14+3[8(8)]}g(to) B [d(to)] < {1+73[8(8)]}gBA3) = x5°(9).-

Formula (4.4) together with (4.3) proves statements 1., 3. under the assumption
7 €0, 1], because then by (3.4) dpy = 00, so that we can choose any ¢ >0 in Definition
2.3.

With the above choice of 6, by (4.4), (3.9) we find that for ¢ >ty >s(d) the Liapunov
functional Wis(t) = W{u U, T 73[ ] 0(0) } fulfills
(t

) < h(8)gd*(t); (4.6)

this, together with (2.16) implies Ws(t) < —nWs(t)/[h(5)7] and (by means of the compar-
ison principle [17]) Wi(t) < Ws(to) exp [—n(t—to)/[h(6)7]]. From the latter inequality,
(2.20) and (4.6) with t=tg it follows

Ws(t) _ Ws(to) [ n } h(0)g n
d?(t) < < exp | ———=(t—to)| < =L exp | ———=(t—to)| d*(¢
(< —L2 < =8 ==t < 25 ra=(i=t0)| ()
for all t > tp > s(§). Recalling again (4.3), we see that the latter formula proves
statements 2., 4. O
In the case 7>1 we find, by (3.4),

1
Sy=B"" rMﬂ =B"! { 1 } WX
\/3 14731 = 1/7

9732
The finiteness of das prevents us from extending the results in the large of the previous
theorem to the case 7>1. One might think to exploit the freedom in the choice of 8 to
make dj as large as we wish. From the #-dependence of 31,32 [formulae (2.22), (2.14)]
we see that d,s decreases with 6, so this is impossible. However, we can prove boundedness
and asymptotic stability in the large even for some unbounded g(t), provided 7 = 0.

(6)
Ws

Theorem 4.2 Assume that: conditions (2.5-2.1), and possibly either one of (2.4°),
are fulfilled with p = oo and 7 = 0; the function g(t) defined by (2.23) fulfills (3.3); either
(8.1) or (3.2) is fulfilled. Then:

1. the solutions of (1.1) are bounded;
2. the null solution of (1.1) is asymptotically stable in the large.

Proof The condition 7 = 0 means that v does not depend on o; then r~—1(3) =
Bv/T+7, which is an increasing map r~! : I —I. For any fixed t, setting

Be: b ) e oL V9(to)Bla) | N g(to)(1+7)
Blasto) = [7\/% = B( )7\/Y (4.7)
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also defines an increasing map B : [ — I, with B(a; to) > a. We now prove statement 1,
Le. for any a>0, to>rk:=t(7),

dto) <a = d(t) < Blasty) Vt>to. (4.8)

Ad absurdum, assume that there exist a finite t5 € [to, t] such that (4.8) is fulfilled for all
t € [to, t2[, whereas

d(t2) = B(as to). (4.9)
The negativity of the rhs(2.16) implies that W (t) = W{u(t), us(t),t;y, 0} is a decreasing
function of ¢ in [to, t2]. Using (2.20), (2.24) and (4.7) we find the following contradiction
with (4.9):
Xd(t2) < W (t2) < Wi(to) < (147)g(to) B [d(to)] < (1+y)g(to) BAar) = xF* (e to), Q-E.D.

By Theorem 3.1 the null solution of (1.1) is stable. Moreover, by (4.8) relation (2.24)
becomes

W) < hoto)gd(0),  hla.to) = (1+4) {1+m[Fato)] }
which, together with (2.16), implies W (t) < —yW (t)/[hg(t)] and employing usual argu-
ments, W (t) < W(to) exp [—77 fti dz/[ﬁg(z)]], whence, for all t > ¢y > &,

t t

2 W) _Wite) | 0 [dz | _hglte) .\ | n[dz
@) < X < b% P ﬁt/g(Z) = b% @ (to) exp B/g(Z)
Mo to)glte) o | [z
X P h(a,t0>/g<z>

The function Gy, (t) ::ftto dz/g(z) is increasing and by (3.3) diverges with ¢, what makes
the rhs go to zero as t — oo; more precisely, we can fulfill Definition 2.7 defining the
corresponding function T'(a, v, to, ug, u1) by the condition that the rhs of the previous
equation equals 13 :=min{v? a2} at t = to+7T, or equivalently

T 2
T=G;} _Hlesto) 1og[~ XY } —to
n h(a,to) g(to) o

(the rhs is positive as the argument of the logarithm is less than 1, by the definitions of
X, h and by the inequality v/« < 1); this proves statement 2. O

5 Examples

Out of the many examples of forcing terms fulfilling (2.1) we just mention F(z) =
bsin(wz) (this has F,(z) < bw =: k), which makes (1.1) into a modification of the sine-
Gordon equation, and the possibly non-analytic ones F'(z) = —b|z|?72 with b > 0, ¢ > 0
(this has F,(2)<0=:k), or F(z) = b|z|?z (this has F,(2)=b(q+1)|2|7<b(q+1)|p|?=:k if
|z| < p). Out of the many examples of t-dependent coefficients that fulfill (2.2-2.3) and
either (3.1) or (3.2), but not the hypotheses of the theorems of [4, 5, 6], we just mention
the following ones:
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Example 5.1 () = eo(1+t) P with constant £9,p>0 and C = Cy =constant, with

Co> 1%0)1@ As a consequence =0<¢e<eg = F, = —pey < é= —peo[l+] P <0=8,

£€= p(p-l—l)so[l—l—t] P2 >(=¢ [condition (2.2), is fulfilled], (¢, &,&—0 as t—o00). Conditions
(2.2)1-(2.2)3 are fulfilled with p=C/(14-€0). We find g(t) = Co+peo[1+1] 77141, whence
g = Co+peo+1. Finally we assume that o’ >0 and a fulfills (2.3);. Then Theorems
3.1, 4.1, apply: the null solution of (1.1) is uniformly stable and uniformly exponential-
asymptotically stable; it is also uniformly bounded and exponential-asymptotically stable
in the large if in addition p = oo, 7 < 1.

One can check that if we had adopted the same Liapunov functional as in [5, 6]
formulae (4.2), i.e. W of (2.8) with 0=0=4d/, for p>1 (namely ¢ — 0 sufficiently fast as
t—00) we would have not been able to prove the asymptotic stability .

Example 5.2 ¢(t) = eo(14+t)?, C(t) = Co(1+t)9, with 1 > ¢ > p > 0, £0>0 and Cy
fulfilling
4(1+80)]€+2p80
3+¢o '

If g,p> 0 then C(t),e(t) diverge as t — co. We immediately find e(t) > 9 =%, € =
peo(1+8)P >0, E=p(p—1)eo(1+t)P2 <0, € =p(p—1)eo [condition (2.2)4 is fulfilled],
C(t)>Cy,

Cy > Dpeo, Co>

C-¢ Co(l—I—t)q—pEo(l—I—t)%l Co(l-i—t) —p{:‘o(l-ﬁ-t)il > Co—peg
1+e 1+<€0(1+t) (1+t)_p+80 = 14ey

and conditions (2.2)1-(2.2)3 are fulfilled with pu = (Co—peg)/(14£o). Moreover, C' =
qCo (14T — 0 as t— oo [condition (3.2) is fulfilled]; g(¢) grows as 7, implying that (3.3)
is fulfilled. Finally we assume that a fulfills (2.3); [condition (2.3)3 is already satisfied]
. Then Theorem 3.1 applies: the null solution of (1.1) is asymptotically stable. If in
addition p = co, 7=0 then Theorem 4.2 applies, and the null solution is also bounded
and asymptotically stable in the large.

Example 5.3 £(t) fulfilling < oo, £<00, E>—00, E>—00 [condition (3.2)]; we note
that this includes regular, periodic e(t). C(t) = Co+C1(1+t)~? with constant Cy, Cy,q
fulfilling C;, > 0, ¢ > 0 and

= 4(14+8)k+22
Co>max{0,é,L:+8}, Co>k.
34+¢€

Then conditions (2.2);-(2.2)3 are fulfilled with p = (Co—¢)/(1+E). Moreover, C' < 0
(condition (3.1) is fulfilled). We find g(t) < Co+C1—E+1=:g< oco. Finally we assume
that @’ >0 and a fulfills (2.3);. Then Theorems 3.1, 4.1, apply: the null solution of (1.1)
is uniformly stable and uniformly exponential-asymptotically stable. It is also uniformly
bounded and exponential-asymptotically stable in the large if in addition p = 0o, 7<1.
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