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Residual Generator Based Measurement of Current
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Abstract: We address the problem of real-time estimation of the excitation current
into a cell. The membrane voltages can be measured experimentally, even in vivo.
On the other hand, a direct measurement of the current into a cell interferes with
the voltage activity. We propose a method to estimate the current input into a cell
using the measured voltage and an observer based residual generator scheme. Our
approach can be applied to all cell models of the Hodgkin-Huxley type.
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1 Introduction

The paper addresses a measurement problem from cell biology. In particular, the po-
tential on the membrane of a cell such as a neuron can be recorded directly via voltage
measurement. The electrophysiological behaviour of the cell, especially the membrane
voltage dynamics, is influenced by ionic channels which allow ions to move through the
cell’s membrane.

Voltage clamp is a standard method to measure ionic currents across a membrane [1,
2]. The technique developed by Cole [3] uses two electrodes. One electrode is used
to measure the intracellular voltage relative to ground. This voltage is amplified and
compared with a given reference voltage. The difference of these signals is amplified
again and feed back via the second electrode. With this feedback the potential on the
membrane is hold at a specific level. The current injected into the cell by this feedback
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structure compensates the ionic current, i.e., the output current of the second amplifier
has equal value but opposite sign of the ionic current.

During the last decades, several more advanced measurement techniques such as
patch clamp [4] have been developed, see [5,6] and references cited there. Unfortunately,
most measurement methods have at least one the following disadvantages: measurement
inferences with the cell’s activities, or requirement of very specific laboratory conditions
(limiting the applicability in vivo), or expensive measurement devices, or slow dynamics.

The author suggests a new technique for a real-time estimation of the current input
into a cell. The paper extends preliminary results published in [7, 8]. Our approach
requires a dynamical model describing the interaction between the membrane voltage and
the different kinds of current. To estimate the input current we use an observer based
residual generator. The usage of an observer to estimate quantities which are not directly
available for measurement is quite common in system and control theory [9]. Originally,
residual generators are used to detect the occurence of faults in a given system [10]. Here,
we apply such a generator to reconstruct the input current quantitatively.

In Section 2 we present a large class of cell models. An observer based method to
estimate the current input into a cell is derived in Section 3. Our estimation scheme is
used in Section 4 to reconstruct the input current for the Hudgkin–Huxley model of a
neuron.

2 Cell Models

2.1 Conductance-based models

Important aspects of the biophysical behaviour of an excitable cell such as a neuron can
be represented by an equivalent circuit model. The dynamics of the membrane voltage V
is governed by a differential equation

CV̇ = I −
∑

j

g̃j (V − Vj) (2.1)

with a capacitance C > 0. The current I is injected into the cell, either from a coupling
with other cells, or by an electrode. The sum in (2.1) represents the ionic currents, that is
the leak current and the currents flowing through ionic channels. The reversal potential
of the ith channel is denoted by Vi. The ionic channels, which describe the concentrations
of certain ions, have two states: open and closed. The probability of a channel to be
open is represented by a so-called gating variable. In particular, the conductances g̃j

may depend on some gating variables. The dynamics of the gating variables w1, . . . , wp

is governed by differential equations of the form

ẇi = αi(V ) (1 − wi) − βi(V )wi for i = 1, . . . , p (2.2)

with functions αi and βi. These functions result from the Markov model of the associated
ionic channel (see [11]). More precisely, the functions αi and βi are the transition rates
for opening and closing an channel. Furthermore, we have αi(V ), βi(V ) > 0 for all V .

2.2 Hodgkin–Huxley model

The most well-known simulation model for excitable cells such as neurons and cardiac
myocytes was developed by Hodgkin and Huxley [12]. Originally, the model describes
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the ionic mechanisms underlying the initiation and propagation of action potentials in
the squid giant axon. The model takes the concentrations of sodium ions (Na+) and
potassium ions (K+) into account. In this case, Eq. (2.1) becomes

CV̇ = I − INa − IK − IL (2.3)

with C = 1µF/cm2. The ionic currents INa and IK , and the leak current IL are given
by

INa = gNam
3h(V − VNa),

IK = gKn4(V − VK),
IL = gL(V − VL),

(2.4)

with constant conductances gNa = 120mS/cm2, gk = 36mS/cm2, gL = 0.3mS/cm2, the
potentials VNa = 50mV, VK = −77mV, VL = −54.4mV and the gating variables m, h, n.
The gating variables are governed by differential equations of the form (2.2), namely

ṁ = αm(V )(1 − m) − βm(V )m,

ḣ = αh(V )(1 − h) − βh(V )h,
ṅ = αn(V )(1 − n) − βn(V )n,

(2.5)

with the normalized functions

αm(V ) = 0.1(V + 40)/(1 − exp(−(V + 40)/10)),
βm(V ) = 4 exp(−(V + 65)/18),
αh(V ) = 0.07 exp(−V + 65)/20,
βh(V ) = 1/(1 + exp(−(V + 35)/10)),
αn(V ) = 0.01(V + 55)/(1 − exp(−(V + 55)/10)),
βn(V ) = 0.125 exp(−(V + 65)/80).

(2.6)

The voltage V in Eq. (2.6) is in mV. The gating variables as well as the function values
of the transition rates (2.6) are dimensionless.

2.3 Similar models

There are many other models of cells and fibers that are based on the Hodgkin-Huxley
formalism. One of the most well-know models of this type, namely the Morris-Lecar
model [13], arose from studies of the excitability of the barnale muscle fiber. The model
takes ionic currents resulting from potassium ions (K+) and calcium ions (Ca+) into
account. The channels’ behaviour is modelled by p = 2 gating variables. Overall, the
model has the dimension n = 3. Under some circumstances, the model can be reduced
further to the dimension n = 2 (see [13]).

Several system-theoretical approaches have been used to reduce the dimension of
the Hodgkin–Huxley model. For example, FitzHugh [14] observed that the spike-like
oscillations of the Hodgkin-Huxley model are similar to oscillations generated by the
Bonhoeffer-van der Pol equation [15]. An equivalent circuit model using a tunnel diode
was derived in [16]. As a whole, the FitzHugh–Nagumo model has the dimenion n = 2.

In the past, the low dimensional models have been simulated on analog comput-
ers. Today fast digital computers allow the simulation of significantly more complicated
models. During the last decades, several advanced models have been developed. The
Connor–Stevens model [17] takes p = 5 gating variables into account and is there-
fore 6-dimensional. Another widely used model was derived by Traub [18, 19] and is
5-dimensional. Further informations on the modelling of excitable cells etc. can be found
in [11, 20, 21].
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3 Observer Based Residuum Generation

3.1 Observer structure

The 4-dimensional Hodgkin–Huxley model (2.3)-(2.5) can be written as

V̇ = f(V, w) + 1
C

I, (3.1a)

ẇ = g(V, w) (3.1b)

with smooth nonlinear maps f : R × R
3 → R, g : R × R

3 → R
3, and w = (m, h, n)T .

To estimate the unknown input current I via the measured voltage V we consider the
following dynamic system:

˙̂
V = f(V̂ , ŵ) + k(V − V̂ ), (3.2a)
˙̂w = g(V, ŵ), (3.2b)

Ṽ = V − V̂ . (3.2c)

The first part (3.2a),(3.2b) is a high-gain observer for (3.1), where the constant observer
gain k > 0 acts only on the first subsystem (3.2a). A difference to standard high-gain ob-
servers is the direct injection of the measured voltage V into the second subsystem (3.2b).
The output of (3.2) is the observation output error Ṽ given in Eq. (3.2c). As a whole,
system (3.2) has the structure of an observer based residual generator used for fault
detection (see [9] and references cited there). The observation error is governed by the
error dynamics

˙̃V = f(V, w) − f(V̂ , ŵ) − kṼ + 1
C

I, (3.3a)

˙̃w = g(V, w) − g(V, ŵ), (3.3b)

Ṽ = V − V̂ , (3.3c)

where w̃ = w − ŵ.

3.2 Passivity

For a given initial value of (3.1) and a bounded input I, the trajectories of the original
system stay in a compact subset X ⊂ R

n. Since the map f is continuousely differentiable
(see Eqs. (2.3) and (2.4)), it is also Lipschitz continuous on X. We assume that there
exist constants L1, L2 > 0 such that

∣∣∣f(V, w) − f(V̂ , ŵ)
∣∣∣ ≤ L1

∣∣∣V − V̂
∣∣∣ + L2 ‖w − ŵ‖

holds on (V, w), (V̂ , ŵ) ∈ X, where | · | is the absolute value and ‖·‖ is the euclidean norm.

In contrast to classical observer design we are not directly interested in the stability of
the error dynamics (3.3), but in its input-output behaviour. Instead, we will describe the
input-output behaviour qualitatively using the concept of passivity [22]. The candidate
storage function

S(Ṽ , w̃) =
C

2
Ṽ 2 +

1

2

p∑

i=1

w̃2
i
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is positive definite and radially unbounded. The derivative along the error dynamics (3.3)
reads as

Ṡ(Ṽ , w̃)
∣∣∣
(3.3)

= CṼ ˙̃V +

p∑

i=1

w̃i
˙̃wi. (3.4)

For the first summand of (3.4) we obtain

CṼ ˙̃V = CṼ
(
f(V, w) − f(V̂ , ŵ) − kṼ + 1

C
I
)

≤ CṼ
∣∣∣f(V, w) − f(V̂ , ŵ)

∣∣∣ − CkṼ 2 + Ṽ I

≤ CL1Ṽ
∣∣∣Ṽ

∣∣∣ + CL2Ṽ ‖w̃‖ − CkṼ 2 + Ṽ I

≤ CL1Ṽ
2 + θCL2Ṽ

2 + CL2θ
−1 ‖w̃‖

2
− CkṼ 2 + Ṽ I

= C (L1 + θL2 − k) Ṽ 2 + CL2θ
−1 ‖w̃‖

2
+ Ṽ I

for any θ > 0 because ab ≤ θa2 + θ−1b2 for all a, b ∈ R. Taking the special form (2.2) of
subsystem (3.3b) into account, the second summand of (3.4) is bounded by

p∑

i=1

w̃i
˙̃wi = −

p∑

i=1

(αi(V ) + βi(V )) w̃2
i ≤ −µ ‖w̃‖

2
(3.5)

with

µ := inf
i,V

(αi(V ) + βi(V )) > 0

since the functions αi and βi are positive and the measured voltage in bounded. Alto-
gether we obtain

Ṡ(Ṽ , w̃)
∣∣∣
(3.3)

≤ −C (k − L1 − θL2) Ṽ 2 −
(
µ − CL2θ

−1
)
‖w̃‖

2
+ IṼ

≤ −ρṼ 2 − ν ‖w̃‖
2
+ IṼ ,

where ρ := C(k−L1−θL2) and ν := µ−CL2θ
−1. Choosing θ > CL2/µ and k > L1+θL2

yields ρ, ν > 0. For I = 0, the scalar field S is a Lyapunov function, i.e., the point Ṽ = 0,
w̃ = 0 is a globally asymptotically stable equilibrium. However, we also have

Ṡ(Ṽ )
∣∣∣
(3.3)

≤ −ρṼ 2 + IṼ ,

which implies that the error system (3.3) is not only passive, but also output feedback
passive [22] with respect to the input I and the output Ṽ . Physically, the supply rate
IṼ is the difference of electric power of systems (3.1) and (3.2) provided by the input
current source, i.e., the rate of increase of energy is not bigger than the input power.

3.3 Input reconstruction

The residual Ṽ generated by (3.2) describes the degree of consistency between the
model (3.1) and the observer scheme (3.2). Since the input current is missing in (3.2a),
one would expect that the residual Ṽ is somehow related to the unknown input I. In
the classical application of residual generators, namely in fault detection, the residual is



438 K. RÖBENACK

only used qualitatively to indicate that a fault occurred (and which one). Here, we want
to use the residual Ṽ quantitatively to obtain an estimate of the input current I.

From Eq. (3.5) we conclude that the equilibrium w̃ = 0 of subsystem (3.3b) is globally
asymptotically stable (uniform in V ). After the transient oscillations of (3.3) we can
expect w̃ ≈ 0, i.e., w ≈ ŵ. To ensure the passivity of (3.3), we have to choose k > 0
sufficiently large. This implies

∣∣∣f(V, w) − f(V̂ , w)
∣∣∣ ≪ k

∣∣∣Ṽ
∣∣∣ for t ≫ 0, (3.6)

which means that the observer correction term is much stronger than the difference
between the two systems (3.1) and (3.2).

Next, we consider Eq. (3.3a) near an equilibrium point, i.e., ˙̃V ≈ 0. From (3.6) we
conclude that

0 ≈ −k Ṽ +
1

C
I.

Hence, an estimate of the input current I can be obtained from Ṽ by

I ≈ k C Ṽ . (3.7)

If the current input I exceeds a certain level, the original system (3.1) oscillates.
These oscillations can also be seen at the output Ṽ of (3.2), although the oscillations are
better suppressed using a large observer gain k. Therefore, we will smooth the current
estimate from (3.7) by a mth order low-pass with the continuous time transfer function

F (s) =
1

(1 + sT )m

with a time constant T > 0. For simplicity, the transfer function used here has a multiple
real pole at −1/T . However, one could also choose from several other filter design
techniques (e.g. Bessel, Butterworth or Cauer filter). Combining time and frequency
domain as well as taking the scaling (3.7) into account, the final estimate Î of I results
from

Î(t) =
k C

(1 + sT )m
◦ Ṽ (t). (3.8)

The whole estimation scheme is given in Fig. 3.1.

4 Simulation Results

For the simulation of the Hudgkin–Huxley model (2.3)-(2.6) we used the initial values
V (0) = 65mV, m(0) = 0.1, h(0) = 0.6 and n(0) = 0.3. The input current was chosen as
follows:

I(t) =





10µA/cm2 for 0ms ≤ t < 80ms,
25µA/cm2 for 80ms ≤< 140ms,
15µA/cm2 for t ≥ 140ms.

(4.1)

The simulation was carried out by the scientific software package Scilab [23]. The gen-
erated output trajectory is shown in Fig. 4.1. The membrane voltage shows spike-like
oscillations, whose amplitude and frequency vary according to the current in the specific
time interval.
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Figure 3.1: Current Estimation Scheme.

Figure 4.1: Output voltage of the Hudgkin–Huxley model (2.3)-(2.6).
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Figure 4.2: Trajectories of the gating variables and its estimates.

Figure 4.3: Estimated current Î according to Eq. (3.8).
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For the observer (3.2a) we have chosen the initial value V̂ (0) = V (0) = 65mV to
be consistent with the measurement (see [24, Section 3.3]). Since we have no further
information on the state of the gating variables we used the 3-dimensional zero vector
as initial value of (3.2b), i.e., m̂(0) = ĥ(0) = n̂(0) = 0. The transient behaviour of the
observer (3.2b) for the gating variables is shown in Fig. 4.2. We used solid lines for the

original gating variables m, n, h and dashed lines for its estimates m̂, ĥ, n̂ generated by
the observer (3.2b). Note that Fig. 4.2 has a different time domain as Fig. 4.1, i.e., we
only show the first 20ms in Fig. 4.2. After that, the gating variables and its estimates
basically coincide, i.e., they cannot be separated visually.

The observer scheme (3.2) with the gain k = 1000 yields the residual Ṽ . To obtain an
estimate Î for the current I we have to scale and filter this voltage difference according
to Eq. (3.8), where we used the normalized filter time constant T = 0.1. The result is
shown in Fig. 4.3. After some transient oscillations the estimated current matches the
input current (4.1) almost perfectly.

5 Conclusions

We suggested a new approach to estimate the current input into a (possibly living) cell.
This method requires a reasonable precise model of the cell under consideration. In
contrast to voltage and patch clamp techniques, our approach cannot be used to analyze
new cell types or cells with significant anomalies. However, our measurement technique
can be used to verify given models and to study the interaction of cells (such as neurons
interconnected by synapses).
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