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PERSONAGE IN SCIENCE

Professor N.V. Azbelev

A.I. Bulgakov 1, V.P. Maksimov 2∗, A.A. Martynyuk 3, and E.L. Tonkov 4

1 Tambov State University, International’naya Str., 33, Tambov, 392000, Russia
2 Perm State University, Bukirev Str. 15, Perm, 614990, Russia

3 Institute of Mechanics National Academy of Sciences of Ukraine,

Nesterov Str. 3, Kiev, 03057, Ukraine
4 Udmurt State University, Universitetskaya Str. 1, Izhevsk, 426034, Russia

Professor Nikolay Viktorovich Azbelev, a well-known Russian mathematician, has

been a leading figure in the differential and integral equations profession for about five

decades. To commemorate Professor Azbelev’s valuable contribution to nonlinear dy-

namics, the Editorial Board of the Journal presents a biographical sketch of his life and

academic activities. The main stages of Azbelev’s life and activity are also presented in

the special papers in ”Differential’nye Uravneniya” 18, No.4, 1982; 33, No.4, 1997; 38,

No.4, 2002; 43, No.5, 2007, ”Mem. Differential Equations Math. Phys.”, 26, 2002; 41,

2007 and ”Functional Differential Equations”, 9, No.3-4, 2002.

1 N.V. Azbelev’s life

Nikolay Viktorovich Azbelev was born on April 15, 1922 in selo (small village) Bazlovo,
Pskov Region, Russia, in a physician’s family. His mother, Antonina Fedorovna Khleb-
nikova, was a scholar and collaborator of a famous botanist V.L. Komarov, later the
President of the Academy of Sciences of the USSR. His father, Viktor Nikolaevich, grad-
uated from Military Medical Academy in St.Petersburg in 1905, further attended lectures
on microbiology at Robert Koch’s Institute, Berlin, Germany, and was a physician in a
field hospital during the World War I. Later he was the director of Polar Institute of
Bacteriology in Arkhangelsk, Russia.

In 1941 Nikolay Viktorovich enrolled at Moscow State University (MSU). His studies
at the Faculty of Mechanics and Mathematics of MSU were interrupted due to his military
service in the Soviet Army during the World War II. In 1945 he entered Moscow Aviation
Institute, from which he graduated with the degree in engineering in 1949. The same year
he started to work at the Design Bureau headed by Prof. A.A. Mikulin, a member of the
Academy of Sciences. At this place Nikolay Viktorovich gained an experience in several
areas of applied mathematics and solved several important problems. For example, he

∗ Corresponding author: maksimov@econ.psu.ru
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proposed an original computational method in the study of strength properties of a kind
of ball bearing. In 1947 he was among the first to make use of the so-called method of
electrical analogy as applied to turbine dynamics. He also designed an analog computer
to find the frequencies of the shift vibration in turbo-jet engines.

In 1951-54 he was a post-graduate student at the Department of Higher Mathematics
of Moscow Machine and Instruments Institute under supervision of Prof. B.I. Segal. In
1954 Nikolay Viktorovich defended his Candidate of Sciences (the Soviet equivalent of
Ph.D. degree) thesis ”On the boundaries of feasibility of Chaplygin’s theorem on differen-
tial inequalities” at Moscow State University (in his report, V.V. Nemytskyi, the official
reader of the thesis, emphasized a very high mathematical level of the work). The same
year he left Moscow for Izhevsk, a city situated in the vicinity of the Ural Mountains, to
become the head of the Higher Mathematics Department at Izhevsk Mechanical Insti-
tute (IMI). One of the first things Nikolay Viktorovich did upon his arrival at IMI was to
found the Izhevsk Mathematical Seminar. It soon became the central meeting point for
mathematicians and engineers. Azbelev’s warmth and sensitiveness were tremendously
important for the creation of the mathematical community around IMI. The works of
the participants of this seminar concerning the theory of integral, differential and differ-
ence inequalities allowed to solve a number of problems on existence, uniqueness, and
asymptotic behavior of solutions to differential equations. Other works of the Izhevsk
Mathematical Seminar are devoted to the search of effective conditions and criteria for
unique solvability of boundary value problems for ordinary differential equations and in-
vestigation of the properties of Green’s function for those problems. Since 1961 the major
attention of N.V. Azbelev and his seminar was focused on the problems of the general
theory of equations with discontinuous operators. In Izhevsk he wrote his Doctoral thesis
”On the Chaplygin problem”, which was defended in 1962 at Kazan State University. In
1964 he was granted the title of professor.

In 1966 Professor Azbelev was elected to be the Head of the Higher Mathematics
Department in Tambov Institute for Chemical Engineering. Nikolay Viktorovich moved
to Tambov together with his wife Lina Fazylovna Rakhmatullina, a brilliant mathemati-
cian and the closest collaborator. A large group of postgraduate students and colleagues
of Prof. Azbelev from Izhevsk joined them in Tambov. Soon after that the Tambov
Seminar under the leadership of N.V. Azbelev and L.F. Rakhmatullina started its work.
It dealt with equations with deviating argument. The activity of the Tambov Seminar
implied the creation of an effective theory of differential equations with deviating argu-
ment. This theory became a basis of the contemporary Theory of Functional Differential
Equations.

In 1975 Professor Azbelev accepted invitation of the Rector of Perm Polytechnic Insti-
tute (PPI), Prof. M.N. Dedyukin, and moved to Perm, where he founded the Department
of Mathematical Analysis. Azbelev’s scientific expertise and leadership contributed im-
mensely to the development of this department. As a result, it had become one of the
well known mathematical centers and the core of the Perm Seminar on Functional Differ-
ential Equations. Since 1994 to his last day N. Azbelev has been the head of the Research
Center on Functional Differential Equations at Perm State Technical University (former
PPI).

Nikolay Viktorovich was a true representative of the Russian intelligentsia. He was
a connoisseur of the Russian poetry and a great admirer of the classical music. As
a passionate traveller he together with Lina Fazylovna travelled across the Caucasus,
Middle Asia, and Central part of Russia first by his motorbike and later by his car.
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2 Main Direction of His Research

Nikolay Azbelev’s research covers integral, differential and functional differential equa-
tions and inequalities, numerical methods, stability theory, boundary value problems
and calculus of variations. He is one of the founders of the Russian scientific school
of differential and integral inequalities. In his first papers N. Azbelev gave a solution
to the Chaplygin problem on the boundaries of feasibility of the differential inequality
theorem. His works essentially expanded the area of applications of differential inequali-
ties. The activity of Azbelev and his Tambov Seminar implied the creation of the theory
of differential equations with deviating argument. This theory became a basis of the
contemporary Theory of Functional Differential Equations which was worked out by the
members of Perm Seminar under the leadership of Azbelev. In 1991 the Publishing House
Nauka, Moscow, published N. Azbelev’s book (with V. Maksimov and L. Rakhmatul-
lina) ”Introduction to the Theory of Functional Differential Equations”. It can be said
that up to now this monograph remains a reference book for specialists in the theory
of FDE. The further development of the FDE theory was treated thoroughly in eight
books, four of them in English. On his last day N. Azbelev dealt with the galley proof of
a new book. Now this theory covers many classes of equations containing the ordinary
derivatives of the solution function. Of special importance are the contributions of N.
Azbelev to creation and development (jointly with L. Rakhmatullina) of the theory of
Abstract FDE, further generalization of the equations with ordinary derivatives, cover-
ing wide classes of n-th order FDEs, systems with impulses, singular equations. It is
worth noting that this theory has become a very useful tool for solving some variational
problems, especially in the cases when the problem of minimization of a functional is
unsolvable within the framework of the classical calculus of variations, as well as for the
study of boundary value problems with arbitrary finite number of boundary conditions
in the form of equalities and inequalities.

3 General Education and Science Activity

N.Azbelev’s influence was not limited to the original and fundamental contributions to
the theory of integral and functional differential equations. A characteristic feature of
N. Azbelev’s activity was his ability to unite around himself colleagues and all those
who where enthusiastic about Science. He significantly contributed to the education of
young mathematicians, supervised over 60 Candidates and 10 Doctors of Sciences. In
the 60’s he became a founder of mathematical schools for gifted children in Izhevsk, Rus-
sia. N. Azbelev was a member of editorial boards of ”Differentsial’nye Uravneniya”(for
more than 25 years), ”Nonlinear Dynamics and System Theory”, ”Memoirs on Differen-
tial Equations and Mathematical Physics”,”Functional Differential Equations” and the
editor-in-chief of periodical interuniversity proceedings of scientific works ”Functional-
differential equations” and ”Boundary Value Problems”(Perm, Russia).

Professor Azbelev received many honors and awards in the course of his career. He was
awarded orders and medals, recognized as a Meritorious Science Worker of the Russian
Federation, awarded the Grant of the Russian Federation President for Leading Scientist,
selected as a Georg Soros Emeritus Professor, conferred the title of Honored member of
the Academy of Nonlinear Sciences.
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4 List of Monographs by N.V. Azbelev

[1] Introduction to the Theory of Functional Differential Equations, Moscow: Nauka, 1991,
280 p. (in Russian, with V.P. Maksimov, L.F. Rakhmatullina)

[2] Introduction to the Theory of Linear Functional Differential Equations, Atlanta: World
Federat. Publ. Company, 1995, 213 p. (with V.P. Maksimov, L.F. Rakhmatullina).
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Abstract: A general closed expression for the minimum free energy, related to a state
of a rigid heat conductor with memory, is derived in terms of Fourier-transformed
functions, by using the coincidence of this quantity with the maximum recoverable
work obtainable from that state. The linearized constitutive equations both for the
internal energy and for the heat flux consider the effects of the actual values of the
temperature and of its gradient, together with the ones of the integrated histories
of such quantities, which are chosen to characterize the states of the material. An
equivalent formulation for the minimum free energy is given and also used to derive
explicit formulae for a discrete spectrum model.

Keywords: fading memory; heat conduction; thermodynamics.

Mathematics Subject Classification (2000): 80A20; 74F05.

1 Introduction

A general nonlinear theory of rigid heat conductors with memory effects was proposed
by Gurtin and Pipkin in [21], by using Coleman’s results for materials with memory
[10]. The constitutive equation for the heat flux, derived in [21] for isotropic media when
small variations of the temperature and of its gradient are studied, is well known. Such
a relation is expressed by a linear functional of the history of the temperature gradient
and gives a generalization of the Cattaneo–Maxwell equation [9], which, therefore, is a
special case of the theory in [21]. In the framework proposed in [21], later on, a linear
theory of rigid heat conductors has been considered in particular in [14].
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Nunziato in [25] has subsequently developed a slightly different memory theory, which
had to include the effects of the present value of the temperature gradient in the con-
stitutive equation of the heat flux, together with the ones due to the history of the
temperature gradient [11, 22]. Such a theory yields a linearized constitutive equation,
for the heat flux in isotropic materials, characterized by two terms, one of which is sim-
ilar to the corresponding Gurtin–Pipkin’s relation, i.e. a linear functional of the past
history of the temperature gradient with an integral kernel k′(s), while the other term is
expressed by Fourier’s law, that is a term proportional to the present value of the tem-
perature gradient with a coefficient k0 = k(0). Thus, Nunziato’s linearized constitutive
equation, in absence of memory effects, that is when k′(s) = 0, coincides with Fourier’s
law; moreover, if k0 = 0, it reduces to Gurtin–Pipkin’s linearized equation.

It is well known that the thermodynamic principles impose restrictions on any consti-
tutive equation; the constraints related to Nunziato’s relation have been derived in [19]
and there used to prove a theorem of existence, uniqueness and stability of solutions to
the heat equation.

In [3] this constitutive equation has been considered to derive explicit formulae for
the minimum free energy for a rigid heat conductor, thus, generalizing previous articles
[2, 4] related to the use of Gurtin–Pipkin’s relation.

The problem of finding explicit forms for the minimum free energy associated with a
given state of a material is particularly important, since it coincides with the maximum
recoverable work, i.e. it allows us to determine the amount of energy available from that
state. In many papers this subject has been considered, particularly for linear viscoelastic
solids, see [6]-[7], [12]–[13], [15]–[17] and especially, [20], [18] and [26].

In this work we use again Nunziato’s general constitutive equation to solve the anal-
ogous problems of [3], but, instead of the histories of temperature and of its gradient
assumed in [3], we now choose the integrated histories of these two quantities to char-
acterize the state of the material. The integrated histories of the temperature gradient,
already introduced in the pioneer work [21], has been preferred by some authors, see for
example [23]; thus, it seems interesting to study the said problems with this point of view.
Therefore, in the present article the material states of the rigid body are characterized
by the actual values of the temperature, as in [3], and by the integrated histories of the
temperature and of its gradient.

To study these problems, in this paper, we shall refer to [14], for the linearization of
the Clausius–Duhem inequality, and to [19], for the thermodynamic constraints on the
constitutive equations of the internal energy and of the heat flux; finally, to derive the
expression for the minimum free energy we shall follow the procedure used in [20] and
[18].

As we have already observed in [3], contrary to what occurs for viscoelastic solids,
for which the method used to evaluate the minimum free energy yields a Wiener–Hopf
integral equation of the first kind, the use of Nunziato’s relation for a rigid heat conductor
yields two Wiener–Hopf integral equations but of the second kind. These two integral
equations of second kind can be easily solved in the frequency domain by virtue of the
thermodynamic properties of the kernels related to the expressions for the internal energy
and for the heat flux, together with some theorems on factorization. Hence, an explicit
expression for the minimum free energy is derived.

Another different but equivalent expression is also deduced for the minimum free
energy and used to study the discrete spectrum model material response.

The layout of the paper is as follows. In Sect. 2, the linear theory, the linearized



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 9 (4) (2009) 333–360 335

form of the Second Law of Thermodynamics and the thermodynamic constraints on the
constitutive equations of the internal energy and of the heat flux are examined. In Sect.
3, we introduce the notions of states and processes together with the prolongation of
histories; two particular histories are also considered. Then, in Sect. 4, we define an
equivalence relation between states. After giving the expression for the thermal work in
Sect. 5, in Sect. 6 we consider another equivalence relation between states by means
of work and we prove its equivalence with the previous one. In Sect. 7, we derive an
explicit expression for the minimum free energy. Another equivalent expression for this
minimum free energy is given in Sect. 8, and, in Sect. 9, it is used to obtain explicit
results for a discrete spectrum model material response.

2 Fundamental Relationships

We denote by B a homogeneous and isotropic rigid heat conductor, endowed of memory
effects, which occupies a fixed bounded domain Ω ⊂ R3 with a smooth boundary ∂Ω. If
we are concerned only with small variations of the temperature ϑ, relative to a uniform
absolute temperature Θ0, and of the temperature gradient g =∇ϑ, we can consider the
linearization of the theory developed in [14]. Thus, we consider the following constitutive
equations

e(x, t) = e0 + α0ϑ(x, t) +

∫ +∞

0

α′(s) rϑ
t(x, s)ds, (2.1)

q(x, t) = −k0g(x, t) −

∫ +∞

0

k′(s) rg
t(x, s)ds (2.2)

for the internal energy e and the heat flux q of B [25].
Here, we have denoted by x ∈ Ω the vector position and by rϑ

t(x, s) = ϑ(x, t−s) and

rg
t(x, s) = g(x, t− s) ∀s ∈ R++ ≡ (0,+∞) the past histories of ϑ and g. The history up

to time t of any function f can be expressed by means of the couple (f(t), rf
t), where

f(t) is the present value of f and rf
t its past history.

The kernels α′ : R
+ → R and k′ : R

+ → R are the relaxation functions such that α′,
α′′, α′′′ ∈ L1(R+) ∩ L2(R+) and k′, k′′ ∈ L1(R+) ∩ L2(R+). Moreover,

α(t) = α0 +

∫ t

0

α′(s)ds, k(t) = k0 +

∫ t

0

k′(s)ds (2.3)

are the heat capacity and the thermal conductivity of B, the asymptotic values of which

α∞ = lim
t→+∞

α(t), k∞ = lim
t→+∞

k(t) (2.4)

are said to be the equilibrium heat capacity and the thermal conductivity of B.
The physical consideration that the internal energy increases, if the temperature of a

body, constant up a time t = 0, instantaneously increases, justifies the assumption

α0 > 0. (2.5)

If, for any function f , we introduce its integrated history,

f̄ t(x, s) =

∫ s

0

f t(x, ξ)dξ =

∫ t

t−s

f(x, λ)dλ, (2.6)
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the internal energy (2.1) and the heat flux (2.2), by integrating by parts, assume the
following forms

e(x, t) = e0 + α0ϑ(x, t) −

∫ +∞

0

α′′(s)ϑ̄t(x, s)ds, (2.7)

q(x, t) = −k0g(x, t) +

∫ +∞

0

k′′(s)ḡt(x, s)ds. (2.8)

In order to give the restrictions imposed on the constitutive equation by the thermo-
dynamic principles, derived in [19], we recall that the Fourier transform of any function
f : R→Rn is

fF (ω) =

∫ +∞

−∞

f(s)e−iωsds = f−(ω) + f+(ω) ∀ω ∈ R, (2.9)

where

f−(ω) =

∫ 0

−∞

f(s)e−iωsds, f+(ω) =

∫ +∞

0

f(s)e−iωsds. (2.10)

Moreover, the half-range Fourier cosine and sine transforms are defined by

fc(ω) =

∫ +∞

0

f(s) cosωs ds, fs(ω) =

∫ +∞

0

f(s) sinωs ds; (2.11)

we observe that they hold even if f is defined only on R+, as it occurs also for f+.
Any function f , which is defined only on R+, can be extended on R; thus, we recall

that the Fourier transform of the new function is given by

fF (ω) = 2fc(ω), fF (ω) = −2ifs(ω), fF (ω) = fc(ω) − ifs(ω), (2.12)

when, respectively, the extension is made with an even function (f(ξ) = f(−ξ)∀ξ < 0), or
an odd one (f(ξ) = −f(−ξ)∀ξ < 0), or by using the causal extension (f(ξ) = 0 ∀ξ < 0).
Moreover, we remember that, if f and f ′ belong to L1(R+) ∩ L2(R+), we obtain

f ′
s(ω) = −ωfc(ω) (2.13)

and, if f ′′ ∈ L1(R+), we have

ωf ′
s(ω) = f ′(0) + f ′′

c (ω). (2.14)

The thermodynamic constraints on (2.1)-(2.2) are expressed by the following inequal-
ities [19]

ωα′
s(ω) > 0 ∀ω 6= 0, k0 + k′c(ω) > 0 ∀ω ∈ R. (2.15)

Hence, useful relations have been deduced, always in [19].
For α, by using (2.13), (2.14), (2.15)1 and the inverse half-range Fourier transforms,

we have

α′′
c (ω) = ωα′

s(ω) − α′(0), α(t) − α0 =
2

π

∫ +∞

0

α′
s(ω)

ω
(1 − cosωt)dω > 0, (2.16)

under the further hypothesis that α′′ ∈ L1(R+). Thus, we also have

α∞ − α0 =
2

π

∫ +∞

0

α′
s(ω)

ω
dω > 0, lim

ω→+∞
ωα′

s(ω) = α′(0) ≥ 0 (2.17)
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and hence

α0 < α (t) < 2α∞ − α0. (2.18)

For k, we have

k0 ≥ 0, k∞ = k0 + k′c(0) > 0. (2.19)

We shall assume

k0 > 0, α′(0) > 0. (2.20)

We note that the functions f±(ω), given by (2.10), can be extended to the complex
z-plane C. Thus, they become analytic functions in the subsets C(∓) so defined

C
(−) =

{

z ∈ C; Im z ∈ R
−−
}

, C
(+) =

{

z ∈ C; Im z ∈ R
++
}

, (2.21)

where R−− = (−∞, 0) and R++ = (0,+∞). Following [20], we assume the analyticity
of the Fourier transforms on R; therefore, f±(z) become analytic on an open region
containing C∓, given by

C
− =

{

z ∈ C; Im z ∈ R
−
}

, C
+ =

{

z ∈ C; Im z ∈ R
+
}

. (2.22)

Finally, will shall use the notation f(±)(z) to denote that the zeros and the singularities
of f are in C±.

Since we are concerned with a linear theory of rigid heat conductors, the linearization
of the Clausius-Duhem inequality is also required. Such a linearization, derived in [14],
involves the first order approximation for e and q and the second order one for the free
energy and the entropy. By introducing the pseudo-free energy ψ = Θ0(e−Θ0η), whose
properties closely resemble those of the canonical free energy, the factor 1/Θ0, involved
in the linearization of the term q · g, is eliminated by the presence of the factor Θ0 in
the definition of ψ; thus, the authors have derived the following linearized local form of
the Second Law of Thermodynamics

ψ̇(x, t) ≤ ė(x, t)ϑ(x, t) − q(x, t) · g(x, t). (2.23)

Henceforth, since our attention shall be fixed on a specific point x ∈ Ω, the dependence
on such a vector will be omitted in the equations.

3 States and Processes of the Rigid Heat Conductor

The behaviour of our rigid heat conductor B is characterized by the constitutive equations
(2.1)-(2.2) in the form given by (2.7)-(2.8), which allow us to consider B as a simple
material, that we can describe in terms of states and processes.

Thus, we assume that the material state of the conductor at time t is expressed by

σ(t) = (ϑ(t), ϑ̄t, ḡt), (3.1)

where ϑ(t) is the instantaneous value of ϑ, ϑ̄tand ḡt are the integrated histories of the
temperature and of its gradient.

The thermodynamic process of the conductor is given by a piecewise continuous map
P : [0, d) → R × R3 defined by

P (τ) = (ϑ̇P (τ),gP (τ)) ∀τ ∈ [0, d), (3.2)
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which can be applied to the body at any time t ≥ 0 and generally has a finite duration
d.

The sets of the states and of the processes, which are possible for the material, are
denoted by Σ and Π. We can introduce the state transition function ρ : Σ×Π → Σ, which
maps any initial state σi ∈ Σ and any process P ∈ Π into the final state σf = ρ(σi, P ) ∈
Σ. We can consider any restriction of a given P ∈ Π to a subset [τ1, τ2) ⊂ [0, d), denoted
by P[τ1,τ2), as well as the composition of two processes Pj ∈ Π (j = 1, 2) with durations
dj (j = 1, 2) so defined

P1 ∗ P2(τ) =

{

P1(τ) ∀τ ∈ [0, d1),
P2(τ − d1) ∀τ ∈ [d1, d1 + d2);

(3.3)

both also belong to Π. In particular, the restriction P[0,τ) applied to σi = σ(0) yields
the final state σ(τ) = ρ(σ(0), P[0,τ)). Finally, the pair (σ,P ) is said to be a cycle if
σ(d) = ρ(σ(0), P ) = σ(0).

Let σ(0) = (ϑ∗(0), ϑ̄0
∗, ḡ

0
∗) be the initial state at time t = 0, when a process P (τ) =

(ϑ̇P (τ),gP (τ)) is applied for any τ ≡ t ∈ [0, d). In particular, we have

ϑ(t) = ϑ∗(0) +

∫ t

0

ϑ̇P (s)ds, rϑ
t(s) =

{

ϑ(t− s) ∀s ∈ (0, t],
ϑ0
∗(s− t) ∀s > t

(3.4)

and hence the subsequent states are expressed by

ϑ̄t(s) =

{

∫ t

t−s
ϑP (ξ)dξ ∀s ∈ [0, t),

∫ t

0
ϑP (λ)dλ + ϑ̄0

∗(s− t) ∀s ≥ t,
(3.5)

ḡt(s) =

{

∫ t

t−s gP (ξ)dξ ∀s ∈ [0, t),
∫ t

0
gP (λ)dλ + ḡ0

∗(s− t) ∀s ≥ t,
(3.6)

together with the values ϑ (t) of the temperature given by (3.4)1.
When P (τ) = (ϑ̇P (τ),gP (τ)) ∀τ ∈ [0, d) is applied at time t > 0 to the initial state

σi(t) = (ϑi(t), ϑ̄
t
i, ḡ

t
i), we must consider the continuations of the integrated histories of ϑ

and g to express the ensuing states. Now, we have

ϑP (τ) ≡ ϑ(t+ τ) = ϑi(t) +

∫ τ

0

ϑ̇P (η)dη, (3.7)

ϑ(t+ d− s) = (ϑP ∗ ϑi)
t+d

(s) =

{

ϑP (d− s) ∀s ∈ [0, d),
ϑi(t+ d− s) ∀s ≥ d,

(3.8)

and hence

ϑ̄(t+ d− s) = (ϑP ∗ ϑ̄i)
t+d(s) =

{

∫ d

d−s
ϑP (s)ds = ϑ̄d

P (s) ∀s ∈ [0, d),

ϑ̄d
P (d) + ϑ̄t

i(s− d) ∀s ≥ d,
(3.9)

ḡ(t+ d− s) = (gP ∗ ḡi)
t+d(s) =

{

∫ d

d−s gP (ξ)dξ = ḡd
P (s) ∀s ∈ [0, d),

ḡd
P (d) + ḡt

i(s− d) ∀s ≥ d.
(3.10)

These prolongations (ϑP ∗ ϑ̄i)
t+d and (gP ∗ ḡi)

t+d given in (3.9)-(3.10) allow us to
evaluate the final values of the internal energy (2.7) and the heat flux (2.8) at the end of
a process.
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Let the restriction P[0,τ) be applied at time t > 0 to the state σi(t) = (ϑi(t), ϑ̄
t
i, ḡ

t
i).

Then, the expressions (2.7) and (2.8) for e and q, by replacing d with τ in (3.9)-(3.10),
become

e(t+ τ) = e0 + α0ϑP (τ) −

∫ τ

0

α′′(s)ϑ̄τ
P (s)ds−

∫ +∞

τ

α′′(s)[ϑ̄τ
P (τ)

+ϑ̄t
i(s− τ)]ds, (3.11)

q(t+ τ) = −k0gP (τ) +

∫ τ

0

k′′(s)ḡτ
P (s)ds+

∫ +∞

τ

k′′(s)[ḡτ
P (τ)

+ḡt
i(s− τ)]ds. (3.12)

We observe that in these last two relations, in particular, we have

ϑ̄τ
P (τ) =

∫ τ

0

ϑP (ξ)dξ, ḡτ
P (τ) =

∫ τ

0

gP (ξ)dξ, (3.13)

which immediately follow from (2.6).
These formulae are now applied to the particular cases of a static continuation of

histories and of constant histories.
Firstly, we examine the static continuation of two assigned histories (ϑ(t), rϑ

t) and
(g(t), rg

t), with a finite duration a ∈ R++, defined by

ϑt(a)(s) =

{

ϑ(t) ∀s ∈ [0, a],
ϑt(s− a) ∀s > a,

gt(a)(s) =

{

g(t) ∀s ∈ [0, a],
gt(s− a) ∀s > a;

(3.14)

hence, the corresponding integrated histories of ϑ and g are expressed by

ϑ̄t+a(s) =

{
∫ a

a−s
ϑ(t)dξ = sϑ(t) ∀s ∈ [0, a],

∫ a

0
ϑ(t)dξ +

∫ t

t−(s−a)
ϑ(ξ)dξ = aϑ(t) +

∫ s−a

0
ϑt(ρ)dρ ∀s > a,

(3.15)

ḡt+a(s) =

{

∫ a

a−s g(t)dξ = sg(t) ∀s ∈ [0, a],
∫ a

0
g(t)dξ +

∫ t

t−(s−a)
g(ξ)dξ = ag(t) +

∫ s−a

0
gt(ρ)dρ ∀s > a.

(3.16)

Thus, (3.11) and (3.12), by substituting (3.15) and (3.16), give

e(t+ a) = e0 + α(a)ϑ(t) −

∫ +∞

0

α′′(ξ + a)ϑ̄t(ξ)dξ, (3.17)

q(t+ a) = −k(a)g(t) +

∫ +∞

0

k′′(ξ + a)ḡt(ξ)dξ. (3.18)

Now, let ϑ(t−s) = ϑ†(s) = ϑ and g(t−s) = g†(s) = g ∀s ∈ R+ be two given constant
histories; the internal energy and the heat flux at time t can be evaluated directly from
(2.7)-(2.8) and are expressed by

e(t) = e0 + α∞ϑ, q(t) = −k∞g, (3.19)

where the asymptotic values (2.4) of α and of k are involved; in particular, we note that
the heat flux has the opposite versus of the temperature gradient.

Taking account of the constitutive equations (2.7) and (2.8), we can introduce the
functionals ẽ : R × Γα → R and q̃ : Γk → R3 defined by

e(σ(t)) = ẽ(ϑ(t), ϑ̄t), q(σ(t), Pt) = q̃(g(t), ḡt), (3.20)
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where Γα and Γk denote the function spaces of the integrated histories of ϑ and g up to
time t, which, by virtue of (3.17)-(3.18), are so defined

Γα =

{

ϑ̄t : [0,+∞) → R; |

∫ +∞

0

α′′(η + τ)ϑ̄t(η)dη |< +∞ ∀τ ∈ R
+

}

, (3.21)

Γk =

{

ḡt : [0,+∞) → R
3; |

∫ +∞

0

k′′(η + τ)ḡt(η)dη |< +∞ ∀τ ∈ R
+

}

. (3.22)

4 An Equivalence Relation Between States

An equivalence relation can be introduced in the state space Σ with this definition.

Definition 4.1 Two states σj(t) = (ϑj(t), ϑ̄
t
j , ḡ

t
j) ∈ Σ (j = 1, 2) of a rigid heat

conductor, characterized by the constitutive equations (2.7) and (2.8), are said to be
equivalent if, for every process Pτ ∈ Π and for every τ > 0,

e(ρ(σ1(t), Pτ )) = e(ρ(σ2(t), Pτ )), q(ρ(σ1(t), Pτ ), Pτ ) = q(ρ(σ2(t), Pτ ), Pτ ). (4.1)

Such a definition of equivalence requires the coincidence of the response of the mate-
rial, expressed by the values of e and q; this implies some consequences, which are shown
in the following theorem.

Theorem 4.1 For a conductor, characterized by the constitutive equations (2.7) and

(2.8), two states σj(t) = (ϑj(t), ϑ̄
t
j , ḡ

t
j) ∈ Σ (j = 1, 2) are equivalent if and only if

ϑ1(t) = ϑ2(t),

∫ +∞

0

α′′(ξ + τ)
[

ϑ̄t
1(ξ) − ϑ̄t

2(ξ)
]

dξ = 0, (4.2)

∫ +∞

0

k′′(ξ + τ)
[

ḡt
1(ξ) − ḡt

2(ξ)
]

dξ = 0 (4.3)

for every τ > 0.

Proof If σj(t) = (ϑj(t), ϑ̄
t
j , ḡ

t
j) (j = 1, 2) are two equivalent states, then the equalities

(4.1) are satisfied for every Pτ ∈ Π and every τ > 0; thus, we have

ẽ(ϑP1 (τ), (ϑP1 ∗ ϑ̄1)
t+τ ) = ẽ(ϑP2(τ), (ϑP2 ∗ ϑ̄2)

t+τ ), (4.4)

q̃(gP (τ), (gP ∗ ḡ1)
t+τ ) = q̃(gP (τ), (gP ∗ ḡ2)

t+τ ). (4.5)

These two equalities, by using (3.11), (3.12) and (3.7), (3.9), (3.10), yield

α(τ) [ϑ1(t) − ϑ2(t)] −

∫ +∞

τ

α′′(s)
[

ϑ̄t
1(s− τ) − ϑ̄t

2(s− τ)
]

ds = 0, (4.6)

∫ +∞

τ

k′′(s)
[

ḡt
1(s− τ) − ḡt

2(s− τ)
]

ds = 0, (4.7)

which must be satisfied for arbitrary values of τ .
Taking the limit τ → +∞ in (4.6), we have

α∞ [ϑ1(t) − ϑ2(t)] = 0 (4.8)
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and hence (4.2)1 follows. Thus, (4.6) reduces to its integral, which, by changing the
variable of integration, coincides with (4.2)2. An analogous change in (4.7) gives (4.3).

Obviously, the converse follows from these same relations. 2
Consequently, using (3.11)-(3.12), it follows that a state σ(t) = (ϑ(t), ϑ̄t, ḡt) is equiv-

alent to the zero state σ0(t) = (0, 0̄†, 0̄†), where 0̄†(s) = ϑ̄t(s) = 0 ∀s ∈ R+ and
0̄†(s) = ḡt(s) = 0 ∀s ∈ R+ denote the zero integrated histories of ϑ and g, if

ϑ(t) = 0,

∫ +∞

τ

α′′(s)ϑ̄t(s− τ)ds ≡

∫ +∞

0

α′′(ξ + τ)ϑ̄t(ξ)dξ = 0, (4.9)

∫ +∞

τ

k′′(s)ḡt(s− τ)ds ≡

∫ +∞

0

k′′(ξ + τ)ḡt(ξ)dξ = 0. (4.10)

Moreover, it follows that the difference of two given equivalent states σj(t) (j = 1, 2),
i.e. σ1(t)− σ2(t) = (ϑ1(t)− ϑ2(t), ϑ̄

t
1 − ϑ̄t

2, ḡ
t
1 − ḡt

2) is a state equivalent to the zero state
σ0(t) = (0, 0̄†, 0̄†).

5 Thermal Work

The linearized form of the Clausius-Duhem inequality, expressed by (2.23), gives for the
thermal power the following form [14]

w(t) = ė(t)ϑ(t) − q(t) · g(t). (5.1)

Therefore, during the application of a process P (τ) = (ϑ̇P (τ),gP (τ)) ∀τ ∈ [0, d), starting
at time t > 0 when σ(t) = (ϑ(t), ϑ̄t, ḡt) is the initial state, the thermal work done on the
material is

W (σ, P ) = W̃ (ϑ(t), ϑ̄t, ḡt; ϑ̇P ,gP ) =

∫ d

0

[ė(t+ τ)ϑP (τ) − q(t+ τ) · gP (τ)]dτ. (5.2)

To evaluate the derivative of the internal energy, which appears in (5.2), we observe
that (3.11), with an integration, can be written as follows

e(t+ τ) = e0 + α0ϑP (τ) + α′(τ)ϑ̄τ
P (τ) −

∫ τ

0

α′′(s)ϑ̄τ
P (s)ds

−

∫ +∞

0

α′′(ξ + τ)ϑ̄t(ξ)dξ. (5.3)

Thus, we can differentiate with respect to τ this expression (5.3); by using (3.13) and

the relation d
dτ ϑ̄

τ
P (s) ≡

·

ϑ̄τ (s) = ϑP (τ) − ϑτ
P (s), we obtain

ė(t+ τ) = α0ϑ̇P (τ) + α′(0)ϑP (τ) +

∫ τ

0

α′′(s)ϑτ
P (s)ds

−

∫ +∞

0

α′′′(ξ + τ)ϑ̄t(ξ)dξ. (5.4)

Moreover, the expression (3.12) for q(t+ τ), by replacing ḡt
i with the integrated history

ḡt of the initial state σ(t), with two integrations, can be rewritten as

q(t+ τ) = −k0gP (τ) −

∫ τ

0

k′(s)gτ
P (s)ds+

∫ +∞

0

k′′(ξ + τ)ḡt(ξ)dξ. (5.5)
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We firstly consider the particular case when the process P (τ) = (ϑ̇P (τ),gP (τ)) of
duration d < +∞ is applied at time t = 0 to the initial state σ0(0) = (0, 0̄†, 0̄†), in order
to derive the amount of work due only to P . Denoting the ensuing fields by (ϑ0, ϑ̄

t
0, ḡ

t
0)

and using (3.5)-(3.6), we have

ϑ0(t) =

∫ t

0

ϑ̇P (s)ds, ϑ̄t
0(s) = (ϑP ∗ 0̄†)t(s) =

{

ϑ̄t
0(s) ∀s ∈ [0, t),
ϑ̄t

0(t) ∀s ≥ t,
(5.6)

ḡt
0(s) = (gP ∗ 0̄†)t(s) =

{

ḡt
0(s) ∀s ∈ [0, t),

ḡt
0(t) ∀s ≥ t.

(5.7)

Thus, (5.4) and (5.5) become

ė(t) = α0ϑ̇0(t) + α′(0)ϑ0(t) +

∫ t

0

α′′(s)ϑt
0(s)ds, (5.8)

q(t) = −k0g0(t) −

∫ t

0

k′(s)gt
0(s)ds. (5.9)

By substituting (5.8)-(5.9) into (5.2), we have

W (σ0(0), P ) = W̃ (0, 0̄†, 0̄†; ϑ̇P ,gP ) =
1

2
α0ϑ

2
0(d)

+α′(0)

∫ d

0

ϑ2
0(t)dt +

∫ d

0

[
∫ t

0

α′′(s)ϑt
0(s)ds

]

ϑ0(t)dt

+k0

∫ d

0

g2
0(t)dt+

∫ d

0

[
∫ t

0

k′(s)gt
0(s)ds

]

· g0(t)dt. (5.10)

Definition 5.1 A process P = (ϑ̇P ,gP ) with a duration d, applied at time t = 0
and related to (5.8)-(5.9), is said to be a finite work process if

W̃ (0, 0̄†, 0̄†; ϑ̇P ,gP ) < +∞. (5.11)

Theorem 5.1 The work done during the application of any finite work process is

positive.

Proof Let the process P be extended to R by assuming that P (t) = (0,0) ∀t > d
and ϑ0(t) = 0 ∀t > d; the expression of the work, by applying Plancherel’s theorem and
using ∗ to denote the complex conjugate, can be written as follows

W (σ0(0), P ) =
1

2
α0ϑ

2
0(d) +

α′(0)

2π

∫ +∞

−∞

ϑ0F
(ω) [ϑ0F

(ω)]∗ dω

+
1

2π

∫ +∞

−∞

α′′
F (ω)ϑ0F

(ω) [ϑ0F
(ω)]

∗
dω +

k0

2π

∫ +∞

−∞

g0F
(ω) [g0F

(ω)]
∗
dω

+
1

2π

∫ +∞

−∞

k′F (ω)g0F
(ω) · [g0F

(ω)]
∗
dω. (5.12)

Using (2.12)3 for the Fourier transforms of any function which vanishes on R−−, it
follows that α′′

F (ω) = α′′
c (ω)− iα′′

s (ω) and k′F (ω) = k′c(ω)− ik′s(ω) are expressed in terms
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of the cosine and the sine transforms, which are even and odd functions, respectively;
therefore, (5.12) can be rewritten as

W (σ0(0), P ) =
1

2
α0ϑ

2
0(d) +

1

2π

∫ +∞

−∞

[α′(0) + α′′
c (ω)]

[

ϑ2
0c

(ω) + ϑ2
0s

(ω)
]

dω

+
1

2π

∫ +∞

−∞

[k0 + k′c(ω)]
[

g2
0c

(ω) + g2
0s(ω)

]

dω

=
1

2
α0ϑ

2
0(d) +

1

2π

∫ +∞

−∞

{

ωα′
s(ω)

[

ϑ2
0c

(ω) + ϑ2
0s

(ω)
]

+ [k0 + k′c(ω)]
[

g2
0c

(ω) + g2
0s(ω)

]}

dω > 0, (5.13)

by virtue of (2.16)1 and (2.15). 2

Thus, the work W (σ0(0), P ) depends on the ensuing field of the temperature ϑ0(t),
which is related to P through ϑ̇P by means of (3.4) or (3.5), and on the temperature
gradient gP (t) ≡ g0(t) assigned with P . Consequently, we can characterize the finite
work processes by introducing the following function spaces [18]

H̃α(R+,R) =

{

ϑ : R
+ → R;

∫ +∞

−∞

ωα′
s(ω)ϑ+(ω) [ϑ+(ω)]

∗
dω < +∞

}

, (5.14)

H̃k(R+,R3) =

{

g : R
+ → R

3;

∫ +∞

−∞

[k0 + k′c(ω)]g+(ω) · [g+(ω)]
∗
dω < +∞

}

,(5.15)

which, with the completions with respect to the norms corresponding to the follow-
ing two inner products (ϑ1, ϑ2)α =

∫ +∞

−∞
ωα′

s(ω)ϑ1+(ω) [ϑ2+(ω)]
∗
dω and (g1,g2)k =

∫ +∞

−∞
[k0 + k′c(ω)]g1+(ω) · [g2+(ω)]

∗
dω, respectively, yield two Hilbert spaces Hα(R+,R)

and Hk(R+,R3).

Now, we consider the general case when the initial state of B at time t > 0 is σ(t) =
(ϑ(t), ϑ̄t, ḡt) , where ϑ̄t and ḡt, belonging to the function spaces Γα and Γk, introduced
in (3.21)-(3.22), are possible integrated histories, which yield a finite work during any
process P , characterized by gP ∈ Hk(R+,R3) and related to ϑP ∈ Hα(R+,R). If, as
above, we extend any of these processes P = (ϑ̇P ,gP ) with a finite duration d < +∞ to
R+, by assuming that P (τ) = (0,0) ∀τ ≥ d and that ϑP (τ) = 0 ∀τ > d, the work done
during the application of any of these processes can be derived by means of (5.2), where
ė(t+ τ) has the form (5.4) and q(t+ τ) is given by (5.5). Thus, we obtain

W (σ(t), P ) = W̃ (ϑ(t), ϑ̄t, ḡt; ϑ̇P ,gP )

=
1

2
α0[ϑ

2
P (d) − ϑ2

P (0)] + α′(0)

∫ +∞

0

ϑ2
P (τ)dτ + k0

∫ +∞

0

g2
P (τ)dτ

+

∫ +∞

0

[
∫ τ

0

α′′(τ − η)ϑP (η)dη −

∫ +∞

0

α′′′(ξ + τ)ϑ̄t(ξ)dξ

]

ϑP (τ)dτ

+

∫ +∞

0

[
∫ τ

0

k′(τ − η)gP (η)dη −

∫ +∞

0

k′′(ξ + τ)ḡt(ξ)dξ

]

· gP (τ)dτ



344 G. AMENDOLA, M. FABRIZIO AND F. FRANCHI

=
1

2
α0[ϑ

2
P (d) − ϑ2

P (0)] + α′(0)

∫ +∞

0

ϑ2
P (τ)dτ + k0

∫ +∞

0

g2
P (τ)dτ

+

∫ +∞

0

[

1

2

∫ +∞

0

α′′(| τ − η |)ϑP (η)dη − It
(α)(τ, ϑ̄

t)

]

ϑP (τ)dτ

+

∫ +∞

0

[

1

2

∫ +∞

0

k′(| τ − η |)gP (η)dη − It
(k)(τ, ḡ

t)

]

· gP (τ)dτ, (5.16)

where

It
(α)(τ, ϑ̄

t) =

∫ +∞

0

α′′′(ξ+τ)ϑ̄t(ξ)dξ, It
(k)(τ, ḡ

t) =

∫ +∞

0

k′′(ξ+τ)ḡt(ξ)dξ ∀τ ≥ 0. (5.17)

Contrary to what occurs for It
(k) in (3.18), the quantity It

(α) is not present in (3.17),
which gives the value of the internal energy after a static continuation with a fixed
duration, τ = a. The reason for such a result is due to the fact that in the expression
(5.2) we have the presence of ė, instead of e, as already observed in [4]. We only observe
that such quantities are related to the minimal state of the rigid heat conductor (see, for
example, [8]).

6 The Equivalence Between States by Means of the Work

In Section 4 we have called equivalent two states σj(t) = (ϑj(t), ϑ̄
t
j , ḡ

t
j) (j = 1, 2) if the

application of the same process to each of them yields the same response of the material,
that is the final values of the internal energy and of the heat flux, corresponding to the
two cases, coincide.

A new but equivalent definition of this relation can be given in terms of the work.

Definition 6.1 Two states σj(t) = (ϑj(t), ϑ̄
t
j , ḡ

t
j) (j = 1, 2) are said to be w-

equivalent if
W (σ1(t), Pτ ) = W (σ2(t), Pτ ) (6.1)

for every process P : [0, τ) → R × R3 and for every τ > 0.

The two definitions, we have introduced, are equivalent by virtue of the following
theorem.

Theorem 6.1 Two states are equivalent in the sense of Definition 4.1 if and only if

they are w-equivalent.

Proof Let σj(t) = (ϑj(t), ϑ̄
t
j , ḡ

t
j) (j = 1, 2) be two states equivalent in the sense of

Definition 4.1, then (4.1) and hence (4.2)-(4.3) hold for every process Pτ and for every
τ > 0. Therefore, it follows that

∫ d

0

[ė1(t+τ)ϑP1 (τ)−q1(t+τ)·gP (τ)]dτ =

∫ d

0

[ė2(t+τ)ϑP2 (τ)−q2(t+τ)·gP (τ)]dτ. (6.2)

In fact, on account of (4.1)1, the derivatives with respect to τ of e1 and e2 coincide;
ϑPj

(τ) (j = 1, 2) are expressed by (3.7), where we have ϑ1(t) = ϑ2(t), by virtue of (4.2)1,

and the same ϑ̇P (τ); finally, qj(t + τ) (j = 1, 2), given by (3.12) or equivalently by
(5.5), where we have the same gP in [0, τ) and the last integrals related to j = 1 and
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j = 2 coincide because (4.3) holds by hypothesis, assume the same value. Since such an
equality expresses the equality of the two works done during the application of the same
process to σj(t) (j = 1, 2), (6.1) is satisfied.

Let us now suppose that two states σj(t) (j = 1, 2) are w-equivalent; then, they
satisfy (6.1) for any P with any arbitrary duration d > 0. From (6.1), taking account of
the expression for the work (5.2) in the form (5.16)2, it follows that

α0

∫ d

0

ϑ̇P (τ) [ϑP1(τ) − ϑP2(τ)] dτ + α′(0)

∫ d

0

[

ϑ2
P1

(τ) − ϑ2
P2

(τ)
]

dτ

+
1

2

∫ +∞

0

∫ +∞

0

α′′(| τ − η |) [ϑP1(η)ϑP1 (τ) − ϑP2(η)ϑP2(τ)] dηdτ

−

∫ +∞

0

[

It
(α)(τ, ϑ̄

t
1)ϑP1 (τ) − It

(α)(τ, ϑ̄
t
2)ϑP2(τ)

]

dτ

−

∫ +∞

0

[

It
(k)(τ, ḡ

t
1) − It

(k)(τ, ḡ
t
2]
]

· gP (τ)dτ = 0, (6.3)

where the integrals with the factor k0 and the one with the kernel k′ have been eliminated
since expressed by means of the same gP . From (3.7) we have ϑPj

(τ) = ϑj(t)+
∫ τ

0 ϑ̇P (η)dη
(j = 1, 2), which allow us to rewrite (6.3) as

α0 [ϑ1(t) − ϑ2(t)]

∫ d

0

ϑ̇P (τ)dτ + α′(0)

∫ d

0

{[

ϑ2
1(t) − ϑ2

2(t)
]

+2 [ϑ1(t) − ϑ2(t)]

∫ τ

0

ϑ̇P (ξ)dξ

}

dτ +
1

2

∫ +∞

0

∫ +∞

0

α′′(| τ − η |)
{

[ϑ2
1(t) − ϑ2

2(t)]

+[ϑ1(t) − ϑ2(t)]

[
∫ η

0

ϑ̇P (ν)dν +

∫ τ

0

ϑ̇P (ρ)dρ

]}

dηdτ −

∫ +∞

0

[

It
(α)(τ, ϑ̄

t
1)ϑ1(t)

−It
(α)(τ, ϑ̄

t
2)ϑ2(t)

]

dτ −

∫ +∞

0

[

It
(α)(τ, ϑ̄

t
1) − It

(α)(τ, ϑ̄
t
2)
]

[
∫ τ

0

ϑ̇P (ξ)dξ

]

dτ

−

∫ +∞

0

[

It
(k)(τ, ḡ

t
1) − It

(k)(τ, ḡ
t
2]
]

· gP (τ)dτ = 0. (6.4)

Since this relation must hold for any P and any d > 0, we can choose the arbitrary
quantities ϑ̇P and gP equal to zero; thus, the sum of the remaining terms must vanish.
Consequently, (6.4) reduces to

[ϑ1(t) − ϑ2(t)]

{

α0

∫ d

0

ϑ̇P (τ)dτ + 2α′(0)

∫ d

0

[
∫ τ

0

ϑ̇P (ξ)dξ

]

dτ

+
1

2

∫ +∞

0

∫ +∞

0

α′′(| τ − η |)

[
∫ η

0

ϑ̇P (ν)dν +

∫ τ

0

ϑ̇P (ρ)dρ

]

dηdτ

}

−

∫ +∞

0

[

It
(α)(τ, ϑ̄

t
1) − It

(α)(τ, ϑ̄
t
2)
]

[
∫ τ

0

ϑ̇P (ξ)dξ

]

dτ

−

∫ +∞

0

[

It
(k)(τ, ḡ

t
1) − It

(k)(τ, ḡ
t
2]
]

· gP (τ)dτ = 0. (6.5)

We now observe that

α′′(| s1 − s2 |) = −2δ(s1 − s2)α
′(| s1 − s2 |) − α12(| s1 − s2 |), (6.6)
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where α12 = ∂2α/∂s1∂s2; hence, substituting it into (6.5) and recalling that both ϑ̇P (τ)
and ϑP (τ) are equal to zero for any τ > d, we obtain

[ϑ1(t) − ϑ2(t)]

{

α0f(d) −
1

2

∫ +∞

0

∫ +∞

0

α12(| τ − η |) [f(η) + f(τ)] dηdτ

}

−

∫ +∞

0

[

It
(α)(τ, ϑ̄

t
1) − It

(α)(τ, ϑ̄
t
2)
]

f(τ)dτ

−

∫ +∞

0

[

It
(k)(τ, ḡ

t
1) − It

(k)(τ, ḡ
t
2]
]

· gP (τ)dτ = 0, (6.7)

where we have put

f(τ) ≡

∫ τ

0

ϑ̇P (ξ)dξ, f(τ) = f(d) ∀τ > d, (6.8)

whence f ′(τ) ≡ ϑ̇P (τ).
From the relation (6.7), with an integration of each term of the integral with the

kernel α12, we have

−
1

2

∫ +∞

0

∫ +∞

0

α12(| τ − η |) [f(η) + f(τ)] dηdτ

=

∫ +∞

0

α′(τ)f(τ)dτ = −

∫ +∞

0

α(τ)f ′(τ)dτ + α∞f(d). (6.9)

By substituting this result into (6.7), after putting gP (τ) = 0, we obtain

[ϑ1(t) − ϑ2(t)]

[

(α0 + α∞) f(d) −

∫ +∞

0

α(τ)f ′(τ)dτ

]

=

∫ +∞

0

[

It
(α)(τ, ϑ̄

t
1) − It

(α)(τ, ϑ̄
t
2)
]

f(τ)dτ, (6.10)

which also implies

∫ +∞

0

[

It
(k)(τ, ḡ

t
1) − It

(k)(τ, ḡ
t
2]
]

· gP (τ)dτ = 0. (6.11)

In (6.10), with an integration by parts and taking account of (6.8)2, we have

I ≡

∫ +∞

0

[

It
(α)(τ, ϑ̄

t
1) − It

(α)(τ, ϑ̄
t
2)
]

f(τ)dτ

= −

∫ +∞

0

{
∫ τ

0

[

It
(α)(β, ϑ̄

t
1) − It

(α)(β, ϑ̄
t
2)
]

dβ

}

f ′(τ)dτ

+f(d)

∫ +∞

0

[

It
(α)(ρ, ϑ̄

t
1) − It

(α)(ρ, ϑ̄
t
2)
]

dρ. (6.12)

After substituting the expression (5.17)1 for It
(α), which has α′′′ as kernel, into this

relation, we can integrate with respect to β in (0, τ) and to ρ in (0,+∞); thus, I reduces
to

I = −

∫ +∞

0

∫ +∞

0

α′′(ξ + τ)
[

ϑ̄t
1(ξ) − ϑ̄t

2(ξ)
]

f ′(τ)dξdτ. (6.13)
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Therefore, (6.10) can be written as

∫ +∞

0

{[ϑ1(t) − ϑ2(t)] [α0 + α∞ − α(τ)]

+

∫ +∞

0

α′′(ξ + τ)
[

ϑ̄t
1(ξ) − ϑ̄t

2(ξ)
]

dξ

}

f ′(τ)dτ = 0. (6.14)

Hence, the arbitrariness of f ′(τ) = ϑ̇P (τ) yields

[ϑ1(t) − ϑ2(t)] [α0 + α∞ − α(τ)]

= −

∫ +∞

0

α′′(ξ + τ)
[

ϑ̄t
1(ξ) − ϑ̄t

2(ξ)
]

dξ. (6.15)

Hence the limit as τ → +∞, by virtue of (2.5), yields ϑ1(t) = ϑ2(t), that is (4.2)1.
This result implies that also the right-hand side of (6.15) vanishes so that (4.2)2 is

satisfied.
Finally, from (6.11), which must hold for any non-zero gP (τ), it follows that

It
(k)(τ, ḡ

t
1) = It

(k)(τ, ḡ
t
2), (6.16)

which, by virtue of the definition (5.17)2, yields (4.3).
Thus, all the equalities required by Theorem 4.1 hold; consequently, the two w-

equivalent σj(t) (j = 1, 2) are also equivalent in the sense of Definition 4.1. 2

7 A First Expression for the Minimum Free Energy

Let ψm(t) denote the minimum free energy and Π be the set of finite work processes of
B, we have

ψm(t) ≡WR(σ) = sup {−W (σ, P ) : P ∈ Π} , (7.1)

where WR(σ) is the maximum recoverable work from a given state σ of the body [15, 18,
20].

The work WR(σ) is a non-negative function of the state, since in Π there exists the
null process, for which the work done on the body starting from σ vanishes; moreover,
by virtue of thermodynamic considerations, it follows that WR(σ) < +∞.

Let σ(t) = (ϑ(t), ϑ̄t, ḡt) be the initial state at time t > 0, when a process P (τ) =
(ϑ̇P (τ),gP (τ)) is applied to the body for any τ ∈ [0, d). By extending P on R+ by means
of P (τ) = (0,0) ∀τ ∈ [0,+∞), the work done on the body has the expression given by
(5.16)2, which, if we assume that ϑP (d) ≡ ϑ(t+ d) = 0, can be written as

W (σ, P ) = −
1

2
α0ϑ

2(t) + α′(0)

∫ +∞

0

ϑ2
P (τ)dτ

+
1

2

∫ +∞

0

∫ +∞

0

α′′(| τ − η |)ϑP (η)ϑP (τ)dηdτ −

∫ +∞

0

It
(α)(τ, ϑ̄

t)ϑP (τ)dτ

+k0

∫ +∞

0

g2
P (τ)dτ +

1

2

∫ +∞

0

∫ +∞

0

k′(| τ − η |)gP (η) · gP (τ)dηdτ

−

∫ +∞

0

It
(k)(τ, ḡ

t) · gP (τ)dτ. (7.2)
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In order to obtain the maximum recoverable work, we must evaluate the maximum
of −W (σ, P ), which will correspond to an opportune process, denoted by P (m)(τ) =
(ϑ̇(m)(τ),g(m)(τ)), where ϑ̇(m)(τ) will be related to the optimal temperature ϑ(m), which
characterizes the maximum together with g(m). We can consider the ensuing field ϑP

with gP expressed by means of the quantities ϑ(m) and g(m) by assuming

ϑP (τ) = ϑ(m)(τ) + γϕ(τ), gP (τ) = g(m)(τ) + δe(τ) ∀τ ∈ R
+, (7.3)

with γ and δ being two real parameters, ϕ and e being two arbitrary smooth functions
such that ϕ(0) = 0 and e(0) = 0.

Substitution of (7.3) into (7.2) gives

−W (σ, P ) = −W̃ (ϑ(t), ϑ̄t, ḡt; ϑ̇(m) + γϕ̇,g(m) + δe)

=
1

2
α0ϑ

2(t) − α′(0)

∫ +∞

0

{

[

ϑ(m)(τ)
]2

+ 2ϑ(m)(τ)ϕ(τ)γ + ϕ2(τ)γ2

}

dτ

−
1

2

∫ +∞

0

∫ +∞

0

α′′(| τ − η |)
{

ϑ(m)(η)ϑ(m)(τ) + [ϑ(m)(η)ϕ(τ)

+ϕ(η)ϑ(m)(τ)]γ + ϕ(η)ϕ(τ)γ2
}

dηdτ +

∫ +∞

0

It
(α)(τ, ϑ̄

t)[ϑ(m)(τ)

+ϕ(τ)γ]dτ − k0

∫ +∞

0

{

[

g(m)(τ)
]2

+ 2g(m)(τ) · e(τ)δ + e2(τ)δ2
}

dτ

−
1

2

∫ +∞

0

∫ +∞

0

k′(| τ − η |)
{

g(m)(η) · g(m)(τ) + [g(m)(η) · e(τ)

+e(η) · g(m)(τ)]δ + e(η) · e(τ)δ2
}

dηdτ

+

∫ +∞

0

It
(k)(τ, ḡ

t) · [g(m)(τ) + e(τ)δ]dτ, (7.4)

whence, the derivatives with respect to γ and δ yield























∂
∂γ [−W (σ, P )] |γ=0=

∫ +∞

0 ϕ(τ)
[

−2α′(0)ϑ(m)(τ)

−
∫ +∞

0
α′′(| τ − η |)ϑ(m)(η)dη + It

(α)(τ, ϑ̄
t)
]

dτ = 0

∂
∂δ [−W (σ, P )] |δ=0=

∫ +∞

0
e(τ) ·

[

−2k0g
(m)(τ)

−
∫ +∞

0 k′(| τ − η |)g(m)(η)dη + It
(k)(τ, ḡ

t)
]

dτ = 0.

(7.5)

From the arbitrariness of ϕ and e in (7.5) it follows that

{

∫ +∞

0
α′′(| τ − η |)ϑ(m)(η)dη + 2α′(0)ϑ(m)(τ) = It

(α)(τ, ϑ̄
t)

∫ +∞

0 k′(| τ − η |)g(m)(η)dη + 2k0g
(m)(τ) = It

(k)(τ, ḡ
t)

∀τ ∈ R
+. (7.6)

In this system we have two Wiener-Hopf integral equations of the second kind, which are
solvable by virtue of the thermodynamic properties of the kernels and of some theorems
on factorization; thus, we are able to derive the solutions ϑ(m) and g(m), which give the
maximum recoverable work.

Such a work, by substituting the expressions of It
(α) and It

(k), given by (7.6), into
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(7.2), assumes the form

WR(σ) =
1

2
α0ϑ

2(t) + α′(0)

∫ +∞

0

[

ϑ(m)(τ)
]2

dτ + k0

∫ +∞

0

[

g(m)(τ)
]2

dτ

+
1

2

∫ +∞

0

∫ +∞

0

α′′(| τ − η |)ϑ(m)(η)ϑ(m)(τ)dηdτ

+
1

2

∫ +∞

0

∫ +∞

0

k′(| τ − η |)g(m)(η) · g(m)(τ)dηdτ. (7.7)

This relation can be expressed in terms of Fourier’s transform, by using Plancherel’s
theorem and (2.16)1, as follows

WR(σ) =
1

2
α0ϑ

2(t) +
1

2π

∫ +∞

−∞

ωα′
s(ω)ϑ

(m)
+ (ω)

[

ϑ
(m)
+ (ω)

]∗

dω

+
1

2π

∫ +∞

−∞

[k0 + k′c(ω)]g
(m)
+ (ω) ·

[

g
(m)
+ (ω)

]∗

dω. (7.8)

It remains to solve the Wiener-Hopf integral equations in (7.6). To do this we intro-
duce

r(α)(τ) =

{ ∫ +∞

−∞
α′′(| τ − η |)ϑ(m)(η)dη ∀τ ∈ R−,

0 ∀τ ∈ R++,
(7.9)

r(k)(τ) =

{ ∫ +∞

−∞
k′(| τ − η |)g(m)(η)dη ∀τ ∈ R−,

0 ∀τ ∈ R
++,

(7.10)

which allow us to give to (7.6) the following form

{

∫ +∞

−∞
α′′(| τ − η |)ϑ(m)(η)dη + 2α′(0)ϑ(m)(τ) = It

(α)(τ, ϑ̄
t) + r(α)(τ)

∫ +∞

−∞
k′(| τ − η |)g(m)(η)dη + 2k0g

(m)(τ) = It
(k)(τ, ḡ

t) + r(k)(τ)
∀τ ∈ R. (7.11)

Hence, using the Fourier transform, we obtain

{

2 [α′′
c (ω) + α′(0)]ϑ

(m)
+ (ω) = It

(α)+(ω, ϑ̄t) + r
(α)
− (ω),

2 [k′c(ω) + k0]g
(m)
+ (ω) = It

(k)+(ω, ḡt) + r
(k)
− (ω).

(7.12)

Since, in particular, α′′
c (ω) + α′

0 = ωα′
s(ω) by virtue of (2.16)1, we can put

H(α)(ω) = ωα′
s(ω) ≥ 0, H(k)(ω) = k0 + k′c(ω) > 0, (7.13)

because of the thermodynamic restrictions (2.15).

We note that H
(α)
∞ is an even function, that is

H(α)(ω) = H(α)(−ω), (7.14)

and goes to zero at least quadratically at the origin; we assume for such a function a
behaviour no stronger than the quadratic one. Moreover, using (2.16)1 and (2.20)2, it
follows that

H(α)
∞ = lim

ω→+∞
ωα′

s(ω) = α′(0) > 0. (7.15)
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We also observe that

H(k)
∞ = lim

ω→+∞
[k0 + k′c(ω)] = k0 > 0, H(k)(0) = lim

ω→0
[k0 + k′c(ω)] = k∞ > 0, (7.16)

by virtue of (2.20)1 and (2.19)2.
Hence, the functions H(α)(ω) and H(k)(ω) can be factorized [20]

H(α)(ω) = H
(α)
(+)(ω)H

(α)
(−)(ω), H(k)(ω) = H

(k)
(+)(ω)H

(k)
(−)(ω), (7.17)

where the extensions to the complex plane C ofH
(α)
(+)(ω) andH

(k)
(+)(ω) have no singularities

and zeros in C(−) and, therefore, they are analytic in C−, while the extensions of H
(α)
(−)(ω)

and H
(k)
(−)(ω), without zeros and singularities in C

(+), are analytic in C
+.

Thus, from (7.12), by using (2.16)1, (7.13) and (7.17), we obtain

H
(α)
(+)(ω)ϑ

(m)
+ (ω) =

It
(α)+(ω, ϑ̄t)

2H
(α)
(−)(ω)

+
r
(α)
− (ω)

2H
(α)
(−)(ω)

, (7.18)

H
(k)
(+)(ω)g

(m)
+ (ω) =

I(k)+(ω, ḡt)

2H
(k)
(−)(ω)

+
r
(k)
− (ω)

2H
(k)
(−)(ω)

. (7.19)

Using the Plemelj formulae [24], we have

It
(α)+(ω, ϑ̄t)

2H
(α)
(−)(ω)

= P t
(α)(−)(ω)−P t

(α)(+)(ω), (7.20)

It
(k)+(ω, ḡt)

2H
(k)
(−)(ω)

= Pt
(k)(−)(ω)−Pt

(k)(+)(ω), (7.21)

where

P t
(α)(z) =

1

2πi

∫ +∞

−∞

It
(α)+(ω,ϑ̄t)

2H
(α)

(−)
(ω)

ω − z
dω, P t

(α)(±)(ω) = lim
β→0∓

P t
(α)(ω + iβ), (7.22)

Pt
(k)(z) =

1

2πi

∫ +∞

−∞

It
(k)+(ω,ḡt)

2H
(k)

(−)
(ω)

ω − z
dω, Pt

(k)(±)(ω) = lim
β→0∓

Pt
(k)(ω + iβ). (7.23)

From (7.18)-(7.19), by virtue of (7.20)-(7.21), we obtain

H
(α)
(+)(ω)ϑ

(m)
+ (ω) + P t

(α)(+)(ω) = P t
(α)(−)(ω) +

r
(α)
− (ω)

2H
(α)
(−)(ω)

, (7.24)

H
(k)
(+)(ω)g

(m)
+ (ω) + Pt

(k)(+)(ω) = Pt
(k)(−)(ω) +

r
(k)
− (ω)

2H
(k)
(−)(ω)

, (7.25)

where P t
(α)(±)(ω) and Pt

(k)(±)(ω), considered as functions of z ∈ C, are analytic in C(∓)

but also in R, by virtue of the assumption on the Fourier transforms. Hence, the functions
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at the left-hand sides are analytic in C−, while the others at the right-hand sides in C+;
moreover, they vanish at infinity. Therefore, both sides must be equal to zero and, in
particular, give

ϑ
(m)
+ (ω) = −

P t
(α)(+)(ω)

H
(α)
(+)(ω)

, g
(m)
+ (ω) = −

Pt
(k)(+)(ω)

H
(k)
(+)(ω)

, (7.26)

which, substituted into (7.8), yield

ψm(t) =
1

2
α0ϑ

2(t) +
1

2π

∫ +∞

−∞

| P t
(α)(+)(ω) |2 dω +

1

2π

∫ +∞

−∞

| Pt
(k)(+)(ω) |2 dω. (7.27)

8 Another Equivalent Expression for the Minimum Free Energy

The expression (7.27), now derived, can be changed in an equivalent one by considering
the relation between P t

(α)(+)(ω) and ϑ̄t(ω) and the one between Pt
(k)(+)(ω) and gt

+(ω).
In order to derive this new expression, firstly we consider the casual extensions of

ϑ̄t and ḡt, by assuming ϑ̄t(s) = 0 and ḡt(s) = 0 ∀s ∈ R
−−; then, we consider the odd

extension of α′′′(s) and k′′(s) on R−−, denoted by α′′′(o)(s) and k′′(o)(s), that is

α′′′(o)(s) =

{

α′′′(s) ∀s ≥ 0,
−α′′′(−s) ∀s < 0,

k′′(o)(s) =

{

k′′(s) ∀s ≥ 0,
−k′′(−s) ∀s < 0.

(8.1)

Hence, we can give to (5.17) the new forms

It
(α)(τ, ϑ̄

t) =

∫ +∞

−∞

α′′′(o)(ξ + τ)ϑ̄t(ξ)dξ, It
(k)(τ, ḡ

t) =

∫ +∞

−∞

k′′(o)(ξ + τ)ḡt(ξ)dξ ∀τ ≥ 0

(8.2)
and, by putting

I
t(n)

(α) (τ, ϑ̄t) =

∫ +∞

−∞

α′′′(o)(ξ + τ)ϑ̄t(ξ)dξ, I
t(n)

(k) (τ, ḡt) =

∫ +∞

−∞

k′′(o)(ξ + τ)ḡt(ξ)dξ ∀τ < 0,

(8.3)
extend the functions (8.2) on R as follows

I
t(R)

(α) (τ, ϑ̄t) =

∫ +∞

−∞

α′′′(o)(ξ + τ)ϑ̄t(ξ)dξ =

{

It
(α)(τ, ϑ̄

t) ∀τ ≥ 0,

I
t(n)

(a) (τ, ϑ̄t) ∀τ < 0,
(8.4)

I
t(R)

(k) (τ, ḡt) =

∫ +∞

−∞

k′′(o)(ξ + τ)ḡt(ξ)dξ =

{

It
(k)(τ, ḡ

t) ∀τ ≥ 0,

I
t(n)

(k) (τ, ḡt) ∀τ < 0.
(8.5)

Let us introduce the functions ϑ̄t
n(s) = ϑ̄t(−s) and ḡt

n(s) = ḡt(−s) for any s ≤ 0.
Then, we extend them on R by assuming ϑ̄t

n(s) = 0 and ḡt
n(s) = 0 ∀s > 0. We can

rewrite (8.4)-(8.5) as follows

I
t(R)

(α) (τ, ϑ̄t) =

∫ +∞

−∞

α′′′(o)(τ − s)ϑ̄t
n(s)ds, I

t(R)

(k) (τ, ḡt) =

∫ +∞

−∞

k′′(o)(τ − s)ḡt
n(s)ds. (8.6)

Using their Fourier’s transforms, given by (2.10)1 and expressed by

ϑ̄t
nF

(ω) = ϑ̄t
n−

(ω) =
[

ϑ̄t
+(ω)

]∗
, ḡt

nF
(ω) = ḡt

n−
(ω) =

[

ḡt
+(ω)

]∗
, (8.7)
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we obtain

I
t(R)

(α)F
(ω, ϑ̄t) = −2iα′′′

s (ω)ϑ̄t
nF

(ω) = 2iωα′′
c (ω)

[

ϑ̄t
+(ω)

]∗

= 2iω[H(α)(ω) − α′(0)]
[

ϑ̄t
+(ω)

]∗
, (8.8)

I
t(R)

(k)F
(ω, ḡt) = −2ik′′s (ω)ḡt

nF
(ω) = 2iωk′c(ω)

[

ḡt
+(ω)

]∗

= 2iω
[

H(k)(ω) − k0

]

[

ḡt
+(ω)

]∗
, (8.9)

where we have used (2.12)2, (2.13) for α′′′
s (ω) and k′′s (ω), (2.16)1 and (7.13).

These last two Fourier transforms can be evaluated also by means of (8.4)-(8.5); thus,
we obtain

I
t(R)

(α)F
(ω, ϑ̄t) = I

t(n)

(α)−(ω, ϑ̄t) + It
(α)+(ω, ϑ̄t), (8.10)

I
t(R)

(k)F
(ω, ḡt) = I

t(n)

(k)−(ω, ḡt) + It
(k)+(ω, ḡt), (8.11)

which, by virtue of (7.20)-(7.21), give

I
t(R)

(α)F
(ω, ϑ̄t)

2H
(α)
(−)(ω)

=
I

t(n)

(α)−(ω, ϑ̄t)

2H
(α)
(−)(ω)

+ P t
(α)(−)(ω)−P t

(α)(+)(ω), (8.12)

I
t(R)

(k)F
(ω, ḡt)

2H
(k)
(−)(ω)

=
I
t(n)

(k)−(ω, ḡt)

2H
(k)
(−)(ω)

+ Pt
(k)(−)(ω)−Pt

(k)(+)(ω). (8.13)

Hence, using the Plemelj formulae, we also have

I
t(R)

(α)F
(ω, ϑ̄t)

2H
(α)
(−)(ω)

= P t
(α)1(−)(ω)−P t

(α)1(+)(ω), (8.14)

I
t(R)

(k)F
(ω, ḡt)

2H
(k)
(−)(ω)

= Pt
(k)1(−)(ω) − Pt

(k)1(+)(ω), (8.15)

where the new functions P t
(α)1(±)(ω) and Pt

(k)1(±)(ω), as in (7.22)-(7.23), are defined by

P t
(α)1

(z) =
1

2πi

∫ +∞

−∞

I
t(R)

(α)F
(ω,ϑ̄t)

2H
(α)

(−)
(ω)

ω − z
dω, (8.16)

Pt
(k)1

(z) =
1

2πi

∫ +∞

−∞

I
t(R)

(k)F
(ω,ḡt)

2H
(k)

(−)
(ω)

ω − z
dω. (8.17)

Using (8.12)-(8.15), we can consider two functions

F(α)(ω) ≡ P t
(α)(+)(ω) − P t

(α)1(+)(ω)

= P t
(α)(−)(ω) − P t

(α)1(−)(ω) +
I

t(n)

(α)−(ω, ϑ̄t)

2H
(α)
(−)(ω)

(8.18)
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and

F(k)(ω) ≡ Pt
(k)(+)(ω) − Pt

(k)1(+)(ω)

= Pt
(k)(−)(ω) − Pt

(k)1(−)(ω) +
I
t(n)

(k)−(ω, ḡt)

2H
(k)
(−)(ω)

, (8.19)

defined by means of two different quantities, which are analytic in C− and in C+, respec-
tively, and vanish at infinity. Consequently, these functions must vanish, i. e. F(α)(ω) = 0
and F(k)(ω) = 0; thus, taking account of (8.16)-(8.17), it follows that

P t
(α)(+)(ω) ≡ P t

(α)1(+)(ω) = lim
z→ω−

1

2πi

∫ +∞

−∞

I
t(R)

(α)F
(ω′,ϑ̄t)

2H
(α)

(−)
(ω′)

ω′ − z
dω′, (8.20)

Pt
(k)(+)(ω) ≡ Pt

(k)1(+)(ω) = lim
z→ω−

1

2πi

∫ +∞

−∞

I
t(R)

(k)F
(ω′,ḡt)

2H
(k)

(−)
(ω′)

ω′ − z
dω′. (8.21)

Hence, using (8.8)3, (8.9)3 and (7.17), we have

P t
(α)(+)(ω) = lim

z→ω−

1

2πi

∫ +∞

−∞

iω′H
(α)
(+)(ω

′)
[

ϑ̄t
+(ω′)

]∗

ω′ − z
dω′

− lim
z→ω−

α′(0)

2πi

∫ +∞

−∞

iω′ [ϑ̄
t
+(ω′)]

∗

H
(α)

(−)
(ω′)

ω′ − z
dω′, (8.22)

Pt
(k)(+)(ω) = lim

z→ω−

1

2πi

∫ +∞

−∞

iω′H
(k)
(+)(ω

′)
[

ḡt
+(ω′)

]∗

ω′ − z
dω′

− lim
z→ω−

k0

2πi

∫ +∞

−∞

iω′ [ḡ
t
+(ω′)]∗

H
(k)

(−)
(ω′)

ω′ − z
dω′, (8.23)

which yield

[

P t
(α)(+)(ω)

]∗

= lim
w→ω+

1

2πi

∫ +∞

−∞

iω′H
(α)
(−)(ω

′)ϑ̄t
+(ω′)

ω′ − w
dω′

− lim
w→ω+

α′(0)

2πi

∫ +∞

−∞

iω′ ϑ̄t
+(ω′)

H
(α)

(+)
(ω′)

ω′ − w
dω′

= lim
w→ω+

1

2πi

∫ +∞

−∞

iω′H
(α)
(−)(ω

′)ϑ̄t
+(ω′)

ω′ − w
dω′, (8.24)
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[

Pt
(k)(+)(ω)

]∗

= lim
w→ω+

1

2πi

∫ +∞

−∞

iω′H
(k)
(−)(ω

′)ḡt
+(ω′)

ω′ − w
dω′

− lim
w→ω+

k0

2πi

∫ +∞

−∞

iω′ ḡ
t
+(ω′)

H
(k)

(+)
(ω′)

ω′ − w
dω′

= lim
w→ω+

1

2πi

∫ +∞

−∞

iω′H
(k)
(−)(ω

′)ḡt
+(ω′)

ω′ − w
dω′. (8.25)

We note that, in these last two relations (8.24)1 and (8.25)1, the two integrals with α′(0)
and k0 are equal to zero, since they can be evaluated by closing the contour in C(−),

where ϑ̄t
+(ω) with H

(α)
(+)(ω) and ḡt

+(ω) with H
(k)
(+)(ω) have no singularities and hence they

are analytic in C−, by virtue of the hypothesis assumed for the Fourier transforms after
(2.21); moreover, for the integral with α′(0) in (8.24)1, we observe that the zero at the

origin of H
(α)
(+)(ω) is eliminated by the presence of the factor ω.

The application of the Plemelj formulae to (8.24)2 and (8.25)2 yields

ωH
(α)
(−)(ω)ϑ̄t

+(ω) = Qt
(α)(−)(ω) −Qt

(α)(+)(ω), (8.26)

where

Qt
(α)(±)(ω) = lim

z→ω∓

1

2πi

∫ +∞

−∞

ω′H
(α)
(−)(ω

′)ϑ̄t
+(ω′)

ω′ − z
dω′ (8.27)

and

ωH
(k)
(−)(ω)ḡt

+(ω) = Qt
(k)(−)(ω) − Qt

(k)(+)(ω) (8.28)

with

Qt
(k)(±)(ω) = lim

z→ω∓

1

2πi

∫ +∞

−∞

ω′H
(k)
(−)(ω

′)ḡt
+(ω′)

ω′ − z
dω′. (8.29)

Thus, comparison of (8.24)2 and (8.25)2 with (8.27) and (8.29), respectively, yields

[

P t
(α)(+)(ω)

]∗

= iQt
(α)(−)(ω),

[

Pt
(k)(+)(ω)

]∗

= iQt
(k)(−)(ω), (8.30)

which give the required new expression

ψm(t) =
1

2
α0ϑ

2(t) +
1

2π

∫ +∞

−∞

| Qt
(α)(−)(ω) |2 dω +

1

2π

∫ +∞

−∞

| Qt
(k)(−)(ω) |2 dω. (8.31)

9 The Discrete Spectrum Model

We now apply the results of the previous section to study the particular class of response
functions, which characterize the discrete spectrum model.

For this purpose, we assume the following relaxation functions

α(t) =







α∞ −
n
∑

i=1

hie
−αit ∀t ∈ R+,

0 ∀t ∈ R
−−,

k(t) =







k∞ −
n
∑

i=1

gie
−kit ∀t ∈ R+,

0 ∀t ∈ R
−−,

(9.1)
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where n is a positive integer, the inverse decay times αi, ki and the coefficients hi,
gi (i = 1, 2, ..., n) are also assumed to be positive; moreover, αi and ki are such that
αj < αj+1 and kj < kj+1 (j = 1, 2, ..., n− 1).

From (9.1) we have

α′(t) =

n
∑

i=1

αihie
−αit, α′

F (ω) =

n
∑

i=1

αihi

αi + iω
=

n
∑

i=1

αihi
αi − iω

α2
i + ω2

, (9.2)

k′(t) =

n
∑

i=1

kigie
−kit, k′F (ω) =

n
∑

i=1

kigi

ki + iω
=

n
∑

i=1

kigi
ki − iω

k2
i + ω2

. (9.3)

Hence, by virtue of (2.12)3, it follows that

α′
s(ω) = ω

n
∑

i=1

αihi

α2
i + ω2

, k′c(ω) =

n
∑

i=1

k2
i gi

k2
i + ω2

. (9.4)

These Fourier’s transforms allow us to derive the expressions for the two functions
defined in (7.13); we have

H(α)(ω) = ω2
n
∑

i=1

αihi

ω2 + α2
i

≥ 0 ∀ω ∈ R, H(α)
∞ =

n
∑

i=1

αihi = α′(0) > 0, (9.5)

H(k)(ω) = k0 +

n
∑

i=1

k2
i gi

k2
i + ω2

> 0 ∀ω ∈ R, H(k)
∞ = k0 > 0. (9.6)

We observe that the relaxation functions α and k, we have assumed in (9.1), satisfy
all the conditions of Sect. 2. In fact we have

α∞ − α0 =

n
∑

i=1

hi > 0, k∞ − k0 =

n
∑

i=1

gi > 0, (9.7)

which satisfy (2.17)1, (2.19)2 and (2.20), by virtue of (9.5)2.
Firstly, we consider the kernel α, for which the expression (9.5)1 is analogous to the

one obtained in [20], where however a minus sign occurs at the right-hand side of (9.5)1
and the numerators are negative; it coincides with the one derived in [4] and [3]. We
recall the results deduced in these works.

Let n 6= 1.
The function f(α)(z) = H(α)(ω) |z=−ω2 has n simple poles at α2

i (i = 1, 2, ..., n) and
n simple zeros at γ1 = 0 and γ2

j (j = 2, 3, ..., n), which are so ordered

α2
1 < γ2

2 < α2
2 < ... < α2

n−1 < γ2
n < α2

n. (9.8)

Consequently, we can give a new form to (9.5)1, since it easily yields the factorization
(7.17)1; we have

H(α)(ω) = H(α)
∞

n
∏

i=1

{

γ2
i + ω2

α2
i + ω2

}

= H(α)
∞

n
∏

i=1

{

(ω − iγi) (ω + iγi)

(ω − iαi) (ω + iαi)

}

, (9.9)

and, in particular,

H
(α)
(−)(ω) = h(α)

∞

n
∏

i=1

{

ω + iγi

ω + iαi

}

≡ h(α)
∞

(

1 + i

n
∑

i=1

Ri

ω + iαi

)

, (9.10)
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with

Ri = (γi − αi)

n
∏

j=1,j 6=i

{

γj − αi

αj − αi

}

, h(α)
∞ =

√

H
(α)
∞ . (9.11)

We must consider (8.27) to derive the quantity Qt
(α)(−)(ω) in (8.27). For this purpose

we note that, contrary to what occurs in the previous works [4] and [3], H
(α)
(−)(ω) is now

multiplied by ω in the integrand of (8.27).
Substitution of (9.10)2 into (8.27) yields

Qt
(α)(−)(ω) =

h
(α)
∞

2πi

[

∫ +∞

−∞

ω′ϑ̄t
+(ω′)

ω′ − ω+
dω′ + i

n
∑

r=1

Rr

∫ +∞

−∞

ϑ̄t
+(ω′) ω′

ω′−ω+

ω′ − (−iαr)
dω′

]

. (9.12)

The first integral of this relation vanishes since it can be extended to an infinite contour
in C

(−), where the integrand function, considered as a function of z ∈ C, is analytic. By
closing again in C(−) and taking account of the sense of the integrations, we can evaluate
the other integrals; we have

Qt
(α)(−)(ω) = h(α)

∞

n
∑

r=1

αrRr

ω + iαr
ϑ̄t

+(−iαr). (9.13)

Hence, we obtain
[

Qt
(α)(−)(ω)

]∗

= h(α)
∞

n
∑

l=1

αlRl

ω − iαl
ϑ̄t

+(−iαl), (9.14)

since, by virtue of (2.10)2,

ϑ̄t
+(−iαr) =

∫ +∞

0

ϑ̄t(s)e−αrsds =
[

ϑ̄t
+(−iαr)

]∗
. (9.15)

By closing now in C
(+), the first integral of (8.31) can be evaluated; we have

1

2π

∫ +∞

−∞

| Qt
(α)(−)(ω) |2 dω

=
[

h(α)
∞

]2 n
∑

r,l=1

αrαlRrRlϑ̄
t
+(−iαr)ϑ̄

t
+(−iαl)

1

2πi

∫ +∞

−∞

i
ω+iαr

ω − iαl
dω

= H(α)
∞

n
∑

r,l=1

BrBl

αr + αl
ϑ̄t

+(−iαr)ϑ̄
t
+(−iαl), (9.16)

where we have put
Br = αrRr (r = 1, 2, ..., n). (9.17)

Let n = 1.
From (9.10)1, since γ1 = 0, we have

H
(α)
(−)(ω) = h(α)

∞

ω

ω + iα1
= h(α)

∞

(

1 + i
R1

ω + iα1

)

, R1 = −α1, h
(α)
∞ =

√

α1h1.

(9.18)
Now, we consider the kernel k.
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Case n 6= 1.

Taking in mind the expression (9.6)1, we observe that the function f(k)(z) =

H(k)(ω) |z=−ω2 , such that

f(k)(0) = k0 +

n
∑

i=1

gi, lim
z→±∞

f(k)(z) = k∓0 , lim
z→(k2

i )
∓
f(k)(z) = ±∞, (9.19)

has n simple poles at k2
i (i = 1, 2, ..., n) and n simple zeros in ν2

i (i = 1, 2, ..., n) so ordered

k2
1 < ν2

1 < k2
2 < ... < ν2

n−1 < k2
n < ν2

n; (9.20)

thus, (9.6)1 can be written as

H(k)(ω) = H(k)
∞

n
∏

i=1

{

ν2
i + ω2

k2
i + ω2

}

= k0

n
∏

i=1

{

(ω − iνi) (ω + iνi)

(ω − iki) (ω + iki)

}

. (9.21)

Hence, it follows that

H
(k)
(−)(ω) = k

1/2
0

n
∏

i=1

{

ω + iνi

ω + iki

}

≡ k
1/2
0

(

1 + i

n
∑

i=1

Si

ω + iki

)

, (9.22)

where

Sr = (νr − kr)

n
∏

j=1,j 6=r

{

νj − kr

kj − kr

}

(r = 1, 2, ..., n). (9.23)

As above for Qt
(α)(−)(ω), still now in the expression for Qt

(k)(−)(ω) given by (8.29),

the quantity H
(k)
(−)(ω) is multiplied by ω. Thus, by substituting (9.22)2, with Sr given by

(9.23), into (8.29), we obtain

Qt
(k)(−)(ω) =

k
1/2
0

2πi

[

∫ +∞

−∞

ω′ḡt
+(ω′)

ω′ − ω+
dω′ + i

n
∑

r=1

Sr

∫ +∞

−∞

ḡt
+(ω′) ω′

ω′−ω+

ω′ − (−ikr)
dω′

]

= k
1/2
0

n
∑

r=1

krSr

ω + ikr
ḡt

+(−ikr), (9.24)

since, as we have noted above for Qt
(α)(−)(ω) after (9.12), still now the first integral

vanishes and the other integrals can be evaluated by closing again in C
(−) and taking

account of the sense of integrations.

Using (2.10)2, as for ϑ̄t
+ in (9.15),

ḡt
+(−ikr) =

[

ḡt
+(−ikr)

]∗
(9.25)

also holds; thus, (9.24)2 gives

[

Qt
(k)(−)(ω)

]∗

= k
1/2
0

n
∑

r=1

krSr

ω − ikr
ḡt

+(−ikr). (9.26)
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Hence, the second integral of (8.31) can be evaluated by closing in C(+); we obtain

1

2π

∫ +∞

−∞

| Qt
(k)(−)(ω) |2 dω

= k0

n
∑

r,l=1

krklSrS
t
l ḡ

t
+(−ikr) · ḡ

t
+(−ikl)

1

2πi

∫ +∞

−∞

i
ω+ikr

ω − ikl
dω

= k0

n
∑

r,l=1

CrCl

kr + kl
ḡt

+(−ikr) · ḡ
t
+(−ikl), (9.27)

where we have put
Cr = krSr (r = 1, 2, ..., n). (9.28)

Let n = 1.
In this particular case from (9.6)1 we can evaluate the zero ν1 = k1

√

1 + g1

k0
; then,

(9.22)2 gives

H
(k)
(−)(ω) = k

1
2
0

ω + iν1
ω + ik1

≡ k
1
2
0

(

1 + i
S1

ω + ik1

)

, (9.29)

with

S1 = ν1 − k1 = k1

(√

1 +
g1
k0

− 1

)

. (9.30)

Therefore, when n 6= 1, by using (9.15)1 for ϑ̄t
+ and the analogous relation (9.25) for

ḡt
+, in (9.16)2 and in (9.27)2, respectively, (8.31) yields the required expression

ψm(t) =
1

2
α0ϑ

2(t)

+
1

2

∫ +∞

0

∫ +∞

0



2H(α)
∞

n
∑

r,l=1

BrBl

αr + αl
e−(αrs1+αls2)ϑ̄t(s1)ϑ̄

t(s2)

+2k0

n
∑

r,l=1

CrCl

kr + kl
e−(krs1+kls2)ḡt(s1) · ḡ

t(s2)



 ds1ds2. (9.31)

In the simple case when n = 1, (9.31), by using (9.18) and (9.29), becomes

ψm(t) =
1

2
α0ϑ

2(t) +
1

2
h1α

4
1

[
∫ +∞

0

e−α1sϑ̄t(s)ds

]2

+
1

2
k0k

3
1

(√

1 +
g1
k0

− 1

)2 [∫ +∞

0

e−k1sḡt(s)ds

]2

. (9.32)

Finally, we want to observe that, at least in this last case characterized by n = 1,
from (9.32), by means of the following integrations by parts

∫ +∞

0

e−α1sϑ̄t(s)ds =
1

α1

∫ +∞

0

e−α1s
rϑ

t(s)ds,

∫ +∞

0

e−k1sḡt(s)ds =
1

k1

∫ +∞

0

e−k1s
rg

t(s)ds,
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it is easy to obtain the corresponding result derived in [3] for ψm(t), that is

ψm(t) =
1

2
α0ϑ

2(t) +
1

2

{

α2
1h1

[
∫ +∞

0

e−α1s
rϑ

t(s)ds

]2

+k0k1

(√

1 +
g1
k0

− 1

)2 [∫ +∞

0

e−k1s
rg

t(s)ds

]2
}

(9.33)

expressed in terms of (ϑ(t), rϑ
t(s), rg

t(s)), there assumed as the material state of the
body.
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1 Introduction

We consider the following Dirichlet boundary value problem (BVP)

Lx = f(t, x) + h(t), t ∈ (ρ(a), σ(b))T, (1.1)

x(ρ(a)) = 0, (1.2)

x(σ(b)) = 0, (1.3)

where the operator L is defined by Lx := −
(

p(t)x∆
)∇

, and T is a time scale containing
a and b. We define the time scale interval (a, b)T by (a, b)T := (a, b)∩T, and similarly for
other types of intervals. If T has a right-scattered minimum m, we define Tκ := T\ {m};
otherwise, we set Tκ = T. The backward graininess ν is defined by ν := t − ρ(t). Then
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the nabla derivative of x at t, denoted by x∇(t), is defined to be the number (provided it
exists) with the property that given any ǫ > 0, there is a neighborhood U of t such that

|x(ρ(t)) − x(s) − x∇(t)(ρ(t) − s)| ≤ |ρ(t)− s|, ∀s ∈ U.

For T = R, we have x∇ = x′, and for T = Z, we have x∇(t) = ∇x(t) = x(t) − x(t − 1),
which is the backward difference operator. An introduction of Time Scales Calculus can
be found in Chapter 1 of [4], and in [5]. The domain D of L is the set of functions
x : T → R such that x is continuous on [ρ(a), σ(b)]T, x∆ is continuous on [ρ(a), b]T, and
(

p(t)x∆
)∇

is continuous on [a, b]T. Since f may have singularities with respect to t at
one or both end points, we shall assume, either f is continuous on (a, b)T × R if f is
singular at both a and b, or f is continous on (a, b]T × R if f is not singular at b, or f
is continuous on [a, b)T × R if f is not singular at a. If either f or h has a singularity
at a, we assume ρ(a) = a = σ(a), and if f or h has a singularity at b, then we assume
ρ(b) = b = σ(b). Let a and b be such that 0 ≤ ρ(a) ≤ a < b < ∞ with (a, b)T 6= φ,
and h : (ρ(a), σ(b))T → (−∞,∞) is Lebesgue ∇-integrable. Also p > 0 is continuous on
[ρ(a), σ(b)]T, and there are constants m,M such that

0 < m ≤ p(t) ≤ M.

The BVP (1.1) − (1.3) arises in chemical reactor theory [2] when we consider the
domain to be the set of real numbers. Since the function h(t) in the above BVP may
change sign we say this type of problem is semipositone. Special cases are studied in [8],
[1] and the references therein. In the applications one is interested in finding positive
solutions.

We impose the following conditions:

(H1) For any t ∈ (ρ(a), σ(b))T, f(t, 1) > 0, and there exist constants λ1 ≥ λ2 > 1 such
that for any (t, u) ∈ (ρ(a), σ(b))T × [0,∞)

cλ1f(t, u) ≤ f(t, cu) ≤ cλ2f(t, u), c ∈ [0, 1]. (1.4)

(H2) Let r := M3(σ(b)−ρ(a))
m4

∫ b

ρ(a)
h−(t)∇t > 0, where m, and M are such that 0 < m ≤

p(t) ≤ M , and h±(t) := max{±h(t), 0}, and assume

∫ b

ρ(a)

(s− ρ(a))(σ(b) − s)[f(s, 1) + h+(s)]∇s <
m2r(σ(b) − ρ(a))

M [(r + 1)λ1 + 1]
. (1.5)

Remark 1.1 Note that it is easy to see for c ≥ 1, from (1.4) that

cλ2f(t, u) ≤ f(t, cu) ≤ cλ1f(t, u) (1.6)

for any (t, u) ∈ (ρ(a), σ(b))T × [0,∞).

A solution u0 of the BVP (1.1) − (1.3) with u0(t) > 0, t ∈ (ρ(a), σ(b))T, is called
positive solution of the BVP (1.1)− (1.3).
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2 Preliminary Lemmas

We state the following lemmas which we will use later in this section.

Lemma 2.1 [7] Let X be a real Banach space, Ω be a bounded open subset of X with
0 ∈ Ω, and A : Ω̄∩P → P be a completely continuous operator, where P is a cone in X.

(i) Suppose that Au 6= λu, for all u ∈ ∂Ω ∩ P, λ ≥ 1. Then i(A,Ω ∩ P, P ) = 1.
(ii) Suppose that Au � u, for all u ∈ ∂Ω ∩ P . Then i(A,Ω ∩ P, P ) = 0.

Lemma 2.2 If f(t, u) satisfies (H1), then for any t ∈ (ρ(a), σ(b))T, f(t, u) is non-
decreasing in u ∈ [0,∞), and for any nonempty [α, β]T ⊂ (ρ(a), σ(b))T,

lim
u→∞

min
t∈[α,β]T

f(t, u)

u
= ∞.

Proof Let t ∈ (ρ(a), σ(b))T, and x, y ∈ [0,∞) be arbitrary. Without loss of generality
assume 0 ≤ x ≤ y. Now, if y = 0, then f(t, x) ≤ f(t, y) is clear. If y 6= 0, let c0 = x

y ,

then 0 ≤ c0 ≤ 1. Now by (1.4),

f(t, x) = f(t, c0y) ≤ cλ2

0 f(t, y) ≤ f(t, y).

Thus f(t, u) is non-decreasing in u on [0,∞).

Next choose u > 1. Then it follows from (1.6) that f(t, u) ≥ uλ2f(t, 1). So we get

f(t, u)

u
≥ uλ2−1f(t, 1), ∀t ∈ (ρ(a), σ(b))T.

So for any nonempty [α, β]T ⊂ (ρ(a), σ(b))T, we get

min
t∈[α,β]T

f(t, u)

u
≥ uλ2−1 min

t∈[α,β]T
f(t, 1).

Since f(t, 1) > 0 (by (H1)),

lim
u→∞

min
t∈[α,β]T

f(t, u)

u
= ∞. 2

Let X := {x ∈ C ([ρ(a), σ(b)]T,R)} with ||x|| = supt∈[ρ(a),σ(b)]T |x(t)|, and define

P :={x ∈ X : x(t) ≥ 0, t ∈ [ρ(a), σ(b)]T},

Q :={x ∈ P : x(t) ≥ ||x|| m
2(t− ρ(a))(σ(b) − t)

M2(σ(b) − ρ(a))2
, t ∈ [ρ(a), σ(b)]T},

where 0 < m ≤ p(t) ≤ M .

Then one can easily verify that X is a real Banach space, and P , Q are cones in X , and
clearly Q ⊂ P .
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Note that the Green’s function for the BVP

−(p(t)x∆)∇ = 0, t ∈ (ρ(a), σ(b))T

x(ρ(a)) = 0

x(σ(b)) = 0

can be shown to be given by (see [3] for more information)

G(t, s) =
1

∫ σ(b)

ρ(a)
1

p(τ)∆τ

{

∫ t

ρ(a)
1

p(τ)∆τ
∫ σ(b)

s
1

p(τ)∆τ , for t ≤ s;
∫ s

ρ(a)
1

p(τ)∆τ
∫ σ(b)

t
1

p(τ)∆τ , for s ≤ t.
(2.1)

Also note that

0 ≤ G(t, s) ≤ G(s, s) =

∫ s

ρ(a)
1

p(τ)∆τ
∫ σ(b)

s
1

p(τ)∆τ
∫ σ(b)

ρ(a)
1

p(τ)∆τ
≤ M(s− ρ(a))(σ(b) − s)

m2(σ(b) − ρ(a))
. (2.2)

Now set w(t) :=
∫ b

ρ(a) G(t, s)h−(s)∇s, where G(t, s) is as defined above. Then

w(t) is the unique solution of the BVP

(

p(t)x∆
)∇

+ h−(t) = 0, t ∈ (ρ(a), σ(b))T, x(ρ(a)) = 0 = x(σ(b)). (2.3)

To see that w(t) is well defined note that

w(t) =

∫ b

ρ(a)

G(t, s)h−(s)∇s

≤
∫ b

ρ(a)

G(s, s)h−(s)∇s

≤ M(σ(b)− ρ(a))

m2

∫ b

ρ(a)

h−(s)∇s

< ∞, for all t ∈ [ρ(a), σ(b)]T.

Also,

w(ρ(a)) =

∫ b

ρ(a)

G(ρ(a), s)h−(s)∇s = 0.

w(σ(b)) =

∫ b

ρ(a)

G(σ(b), s)h−(s)∇s = 0.

It remains to show that
−
(

p(t)w∆
)∇

= h−(t). (2.4)

To verify this last statement we will use the formulas [5][Theorem 5.37]

(
∫ t

a

f(t, s)∇s

)∆

=
∫ t

a f∆(t, s)∇s+ f(σ(t), σ(t));

(
∫ t

a

f(t, s)∇s

)∇

=
∫ t

a
f∇(t, s)∇s+ f(ρ(t), t).
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Note that

w(t) =
1

∫ σ(b)

ρ(a)
1

p(τ)∆τ

[

∫ t

ρ(a)

(

∫ s

ρ(a)

1

p(τ)
∆τ

∫ σ(b)

t

1

p(τ)
∆τ

)

h−(s)∇s

+

∫ b

t

(

∫ t

ρ(a)

1

p(τ)
∆τ

∫ σ(b)

s

1

p(τ)
∆τ

)

h−(s)∇s

]

Then we get,

(

∫ σ(b)

ρ(a)

1

p(τ)
∆τ

)

w∆(t) =

(

∫ t

ρ(a)

∫ s

ρ(a)

1

p(τ)
∆τ

∫ σ(b)

t

1

p(τ)
∆τ h−(s)∇s

)∆

+

(

∫ b

t

∫ t

ρ(a)

1

p(τ)
∆τ

∫ σ(b)

s

1

p(τ)
∆τ h−(s)∇s

)∆

= −
∫ t

ρ(a)

1

p(t)

∫ s

ρ(a)

1

p(τ)
∆τ h−(s)∇s

+

∫ σ(t)

ρ(a)

1

p(τ)
∆τ

∫ σ(b)

σ(t)

1

p(τ)
∇τ h−(σ(t))

+

∫ b

t

1

p(t)

∫ σ(b)

s

1

p(τ)
∆τ h−(s)∇s

−
∫ σ(t)

ρ(a)

1

p(τ)
∆τ

∫ σ(b)

σ(t)

1

p(τ)
∇τ h−(σ(t))

= −
∫ t

ρ(a)

1

p(t)

∫ s

ρ(a)

1

p(τ)
∆τ h−(s)∇s

+

∫ b

t

1

p(t)

∫ σ(b)

s

1

p(τ)
∆τ h−(s)∇s.

So,

−
(

p(t)w∆
)∇

(t) =
1

(

∫ σ(b)

ρ(a)
1

p(τ)∆τ
)





(

∫ t

ρ(a)

∫ s

ρ(a)

1

p(τ)
∆τ h−(s)∇s

)∇

−
(

∫ b

t

∫ σ(b)

s

1

p(τ)
∆τ h−(s)∇s

)∇




=
1

(

∫ σ(b)

ρ(a)
1

p(τ)∆τ
)

(

∫ t

ρ(a)

1

p(τ)
∆τ h−(t) +

∫ σ(b)

t

1

p(τ)
∆τ h−(t)

)

= h−(t).

Now we define an operator T on P by

(Tu)(t) :=

∫ b

ρ(a)

G(t, s)
[

f(s, [u− w]+(s)) + h+(s)
]

∇s, t ∈ [ρ(a), σ(b)]T.
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Claim: T : P → P .
Proof of claim: Let u ∈ P be fixed but arbitrary. Choose 0 < c < 1 such that c ||u|| < 1.
Then

c[u− w]+(s) ≤ cu(s) ≤ c ||u|| < 1

Then by (1.4), (1.6), and Lemma 2.2, we get, for all t ∈ [ρ(a), σ(b)]T,

f(t, [u− w]+(t)) ≤
(

1

c

)λ1

f(t, c[u− w]+(t)) ≤ cλ2−λ1 ||u||λ2 f(t, 1). (2.5)

So for any t ∈ [ρ(a), σ(b)]T, we get using (2.2), (2.5), and (1.5) that

(Tu)(t) =

∫ b

ρ(a)

G(t, s)[f(s, [u− w]+(s)) + h+(s)]∇s

≤
∫ b

ρ(a)

G(s, s)
[

cλ2−λ1 ||u||λ2 f(s, 1) + h+(s)
]

∇s

≤
M
(

cλ2−λ1 ||u||λ2 + 1
)

m2(σ(b) − ρ(a))

∫ b

ρ(a)

(s− ρ(a))(σ(b) − s)[f(s, 1) + h+(s)]∇s

< ∞.

Note that Tu ∈ C[ρ(a), σ(b)]T, and Tu(t) ≥ 0, ∀t ∈ [ρ(a), σ(b)]T are clear.

Thus T : P → P is well defined.

So from the definition of the operator T , we can easily prove the following theorem:

Theorem 2.1 Suppose that (H1), and (H2) hold. Then the operator T has a fixed
point in C[ρ(a), σ(b)]T iff the BVP

{

(

p(t)u∆
)∇

+ f(t, [u− w]+(t)) + h+(t) = 0 ρ(a) < t < σ(b)

u(ρ(a)) = 0 = u(σ(b))
(2.6)

has a positive solution where w is given as in (2.3).

Proof The operator T has a fixed point u,

=⇒ u(t) = (Tu)(t)′ t ∈ [ρ(a), σ(b)]T

=⇒ u(t) =

∫ b

ρ(a)

G(t, s)
[

f(s, [u− w]+(s)) + h+(s)
]

∇s, u(ρ(a)) = 0 = u(σ(b))

Now using properties of the Green’s function (the same steps that are used above to
verify (2.4)), we get

−
(

p(t)u∆
)∇

= f(t, [u− w]+(t)) + h+(t), u(ρ(a)) = 0 = u(σ(b)).

The other direction is similar. 2

Now we have the following lemma:
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Lemma 2.3 If the singular BVP (2.6) has a positive solution u(t) ≥ w(t) for all
t ∈ [ρ(a), σ(b)]T, then the BVP (1.1) − (1.3) has a C[a, b]T ∩ C2(a, b)T positive solution
y(t) = u(t)− w(t), t ∈ [ρ(a), σ(b)]T.

Proof Let u(t) = y(t)+w(t), t ∈ [ρ(a), σ(b)]T. Then by the first equation of (2.6),
it follows that

(

p(t)y∆
)∇

+
(

p(t)w∆
)∇

+ f(t, y(t)) + h+(t) = 0,

i.e.,
(

p(t)y∆
)∇ − h−(t) + f(t, y(t)) + h+(t) = 0,

i.e.,
(

p(t)y∆
)∇

+ f(t, y(t)) + h(t) = 0.

Also,

y(ρ(a)) = u(ρ(a))− w(ρ(a)) = 0,

y(σ(b)) = u(σ(b))− w(σ(b)) = 0.

Thus y(t) = u(t)− w(t) is a positive solution of the BVP (1.1)− (1.3). 2

Lemma 2.4 Assume (H1) and (H2) hold. Then T : Q → Q is a completely contin-
uous operator.

Proof For any u ∈ Q, let y(t) = Tu(t). Then y(ρ(a)) = 0 = y(σ(b)). So there exists
t0 ∈ (ρ(a), σ(b)) such that ||y|| = y(t0). Note that for any t, s ∈ (ρ(a), σ(b))T, we get

G(t, s)

G(t0, s)
≥























m(t−ρ(a))
M(t0−ρ(a)) , for t, t0 ≤ s;
m2(t−ρ(a))(σ(b)−s)
M2(s−ρ(a))(σ(b)−t0)

, for t ≤ s ≤ t0;
m(σ(b)−t)
M(σ(b)−t0)

, for t, t0 ≥ s;
m2(s−ρ(a))(σ(b)−t)
M2(t0−ρ(a))(σ(b)−s) , for t ≥ s ≥ t0;

≥ m2(t− ρ(a))(σ(b) − t)

M2(σ(b) − ρ(a))2
.

Then for all t ∈ [ρ(a), σ(b)]T,

y(t) = (Tu)(t) =

∫ b

ρ(a)

G(t, s)
[

f(s, [u− w]+(s)) + h+(s)
]

∇s

=

∫ b

ρ(a)

G(t, s)

G(t0, s)
G(t0, s)[f(s, [u− w]+(s)) + h+(s)]∇s

≥ m2(t− ρ(a))(σ(b) − t)

M2(σ(b)− ρ(a))2
y(t0)

=
m2(t− ρ(a))(σ(b) − t)

M2(σ(b)− ρ(a))2
||y|| .

Thus, Tu ∈ Q, and hence T : Q → Q.

Next we show that T : Q → Q is a completely continuous operator.



368 R. DAHAL

First we show T : Q → Q is continuous. Let {xn}∞n=0 ⊂ Q be such that xn → x0 when
n → ∞. Then there is a constant M1 > 0 such that ||xn|| ≤ M1 for all n = 0, 1, 2, · · · .
Since for any s ∈ [ρ(a), σ(b)]T,

[xn − w]+(s) ≤ xn(s) ≤ ||xn|| ≤ M1 < M1 + 1,

by (1.6), and Lemma 2.2 (since (H1) holds for f), we get

f(s, [xn − w]+(s)) + h+(s) ≤ f(s,M1 + 1) + h+(s)

≤ (M1 + 1)λ1f(s, 1) + h+(s)

≤
[

(M1 + 1)λ1 + 1
] [

f(s, 1) + h+(s)
]

.

Then using (2.2) and (1.5), we get

∫ b

ρ(a)

G(t, s)
[

f(s, [xn − w]+(s)) + h+(s)
]

∇s

≤
[

(M1 + 1)λ1 + 1
]

∫ b

ρ(a)

G(s, s)
[

f(s, 1) + h+(s)
]

∇s

≤ M
[

(M1 + 1)λ1 + 1
]

m2(σ(b)− ρ(a))

∫ b

ρ(a)

(s− ρ(a))(σ(b) − s)
[

f(s, 1) + h+(s)
]

∇s

< ∞.

Note that by the continuity of f ,

lim
n→∞

f(s, [xn − w]+(s)) = f(s, [x0 − w]+(s)).

Then by the Lebesgue Dominated Convergence Theorem [5, page 159], we get

lim
n→∞

||Txn − Tx0||

= lim
n→∞

sup
t∈[ρ(a),σ(b)]T

|Txn − Tx0|

≤ lim
n→∞

sup
t∈[ρ(a),σ(b)]T

∫ b

ρ(a)

G(t, s)
∣

∣f(s, [xn − w]+(s))− f(s, [x0 − w]+(s))
∣

∣∇s

≤ lim
n→∞

∫ b

ρ(a)

M(s− ρ(a))(σ(b) − s)

m2(σ(b) − ρ(a))

∣

∣f(s, [xn − w]+)− f(s, [x0 − w]+)
∣

∣∇s

≤ M

m2(σ(b)− ρ(a))

∫ b

ρ(a)

(s− ρ(a))(σ(b) − s) lim
n→∞

∣

∣f(s, [xn − w]+(s))

−f(s, [x0 − w]+(s))
∣

∣∇s

= 0.

Thus T : Q → Q is continuous.

Finally, we show that T : Q → Q is relatively compact.
To see this let D ⊂ Q be any bounded set. Then there exists M2 > 0 such that ||x|| ≤ M2

for all x ∈ D. So for any x ∈ D and s ∈ [ρ(a), σ(b)]T, we get

[x− w]+(s)) ≤ x(s) ≤ ||x|| ≤ M2 < M2 + 1.
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So for all s ∈ [ρ(a), σ(b)]T,

f(s, [x− w]+(s)) + h+(s) ≤ f(s,M2 + 1) + h+(s) ≤
[

(M2 + 1)λ1 + 1
] [

f(s, 1) + h+(s)
]

.

Then for all x ∈ D, and t ∈ [ρ(a), σ(b)]T, we get using (2.2) and (1.5),

|Tx(t)| =

∣

∣

∣

∣

∣

∫ b

ρ(a)

G(t, s)
[

f(s, [x− w]+(s)) + h+(s)
]

∇s

∣

∣

∣

∣

∣

≤ M
[

(M2 + 1)λ1 + 1
]

m2(σ(b)− ρ(a))

∫ b

ρ(a)

(s− ρ(a))(σ(b) − s)
[

f(s, 1) + h+(s)
]

∇s

< ∞.

Thus T (D) is uniformly bounded.

Again by the Lebesgue Dominated Convergence Theorem,

|Tx(t1)− Tx(t2)| ≤
∫ b

ρ(a)

|G(t1, s)−G(t2, s)|
[

f(s, [x− w]+(s)) + h+(s)
]

∇s

≤
[

(M2 + 1)λ1 + 1
]

∫ b

ρ(a)

|G(t1, s)−G(t2, s)|
[

f(s, 1) + h+(s)
]

∇s

−→ 0 as t1 → t2.

Since this is true for any t1, t2 ∈ [ρ(a), σ(b)]T and the RHS is independent of x, T (D)
is equicontinuous on [ρ(a), σ(b)]T. Then by the Arzela-Ascoli Theorem, T : Q → Q is
relatively compact.

Thus, T : Q → Q is a completely continuous operator. 2

Lemma 2.5 Assume (H1) and (H2) hold. Let Qr = {x ∈ Q : ||x|| < r}, and

∂Qr = {x ∈ Q : ||x|| = r}, where r := M3(σ(b)−ρ(a))
m4

∫ b

ρ(a)
h−(t)∇t as defined in (H2).

Then i(T,Qr, Q) = 1.

Proof Assume that there exist z0 ∈ ∂Qr, µ ≥ 1 such that µz0 = Tz0. Then z0 =
1
µTz0, and 0 < 1

µ ≤ 1. Since z0 ∈ ∂Qr,

[z0 − w]+(s) ≤ z0(s) ≤ ||z0|| = r < r + 1,

then for s ∈ (ρ(a), σ(b))T, we get

f(s, [z0 − w]+(s)) + h+(s) ≤
[

(r + 1)λ1 + 1
] [

f(s, 1) + h+(s)
]

.

Now

r = ||z0|| =

∣

∣

∣

∣

∣

∣

∣

∣

1

µ
Tz0

∣

∣

∣

∣

∣

∣

∣

∣

≤ ||Tz0||

= sup
t∈[ρ(a),σ(b)]

∣

∣

∣

∣

∣

∫ b

ρ(a)

G(t, s)
[

f(s, [z0 − w]+(s)) + h+(s)
]

∇s

∣

∣

∣

∣

∣

≤
∫ b

ρ(a)

G(s, s)
[

f(s, [z0 − w]+(s)) + h+(s)
]

∇s

≤ M [(r + 1)λ1 + 1]

m2[σ(b)− ρ(a)]

∫ b

ρ(a)

(s− ρ(a))(σ(b) − s)[f(s, 1) + h+(s)]∇s.



370 R. DAHAL

This implies,

∫ b

ρ(a)

(s− ρ(a))(σ(b) − s)[f(s, 1) + h+(s)]∇s ≥ m2r(σ(b) − ρ(a))

M [(r + 1)λ1 + 1]

which is a contradiction to (1.5). So Tz0 6= µz0 for all z0 ∈ ∂Qr, µ ≥ 1.
Then by Lemma 2.1, i(T,Qr, Q) = 1. 2

Lemma 2.6 Assume (H1) holds. Then there exists a constant R > r such that
i(T,QR, Q) = 0 where QR := {x ∈ Q : ||x|| < R}, and ∂QR := {x ∈ Q : ||x|| = R}.

Proof Assume x � Tx for all x ∈ ∂QR is false. Then there exists y1 ∈ ∂QR such
that y1 ≥ Ty1.

Choose constants α, β so that [α, β]T ⊂ (ρ(a), σ(b))T, and K such that

K >
2M2(σ(b) − ρ(a))2

m2(α− ρ(a))(σ(b) − β)maxt∈[ρ(a),σ(b)]T

∫ β

α G(t, s)∇s
. (2.7)

From Lemma 2.2 there exists R1 > 2r such that when t ∈ [α, β]T, and x ≥ R1, we get

f(t, x)

x
≥ K

That is,
f(t, x) ≥ Kx, t ∈ [α, β]T, x ≥ R1.

Let

R ≥ 2R1M
2(σ(b)− ρ(a))2

m2(α− ρ(a))(σ(b) − β)
. (2.8)

Then clearly R > R1 > 2r, and so r
R < 1

2 .

Now for the above mentioned y1, we have for all t ∈ [α, β]T,

y1(t)− w(t) = y1(t)−
∫ b

ρ(a)

G(t, s)h−(s)∇s

≥ y1(t)−
M(t− ρ(a))(σ(b) − t)

m2(σ(b)− ρ(a))

∫ b

ρ(a)

h−(s)∇s

= y1(t)−
m2(t− ρ(a))(σ(b) − t)

M2(σ(b)− ρ(a))2
r

≥ y1(t)−
y1(t)

||y1||
r = y1(t)−

r

R
y1(t)

≥ y1(t)−
1

2
y1(t) =

1

2
y1(t)

≥ 1

2
||y1||

m2(t− ρ(a))(σ(b) − t)

M2(σ(b) − ρ(a))2
(as y1 ∈ Q)

≥ 1

2
R
m2(α− ρ(a))(σ(b) − β)

M2(σ(b)− ρ(a))2
(2.9)

≥ R1 > 0. (using (2.8))
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So,

R = ||y1|| ≥ y1(t)

≥ Ty1(t) =

∫ b

ρ(a)

G(t, s)
[

f(s, [y1 − w]+(s)) + h+(s)
]

∇s

≥
∫ β

α

G(t, s)
[

f(s, (y1(s)− w(s)) + h+(s)
]

∇s

≥
∫ β

α

G(t, s)f(s, (y1(s)− w(s)))∇s

≥
∫ β

α

G(t, s)K(y1(s)− w(s))∇s

≥
∫ β

α

G(t, s)K
1

2
R
m2(α − ρ(a))(σ(b) − β)

M2(σ(b)− ρ(a))2
∇s (using (2.9))

=
1

2
KR

m2(α− ρ(a))(σ(b) − β)

M2(σ(b) − ρ(a))2

∫ β

α

G(t, s)∇s, ∀t ∈ [ρ(a), σ(b)]T

≥ 1

2
KR

m2(α− ρ(a))(σ(b) − β)

M2(σ(b) − ρ(a))2
max

t∈[ρ(a),σ(b)]T

∫ β

α

G(t, s)∇s

⇒ K ≤ 2M2(σ(b)− ρ(a))2

m2(α− ρ(a))(σ(b) − β)maxt∈[ρ(a),σ(b)]T

∫ β

α G(t, s)∇s

which is a contradiction to our choice of K above.

Thus x � Tx for all x ∈ ∂QR, so by Lemma 2.1, we get

i(T,QR, Q) = 0. 2

3 Main Result

Now we state and prove our main result.

Theorem 3.1 Suppose that (H1), and (H2) hold. Then the BVP (1.1) − (1.3) has
at least one C[a, b]T ∩ C2(a, b)T positive solution u0(t), and there exists k > 0 such that
u0(t) ≥ k(t− ρ(a))(σ(b) − t), t ∈ [ρ(a), σ(b)]T.

Proof By Lemmas 2.5, 2.6, and by a property of the fixed point index, we get

i(T,QR \ Q̄r, Q) = i(T,QR, Q)− i(T,Qr, Q)

= 0− 1

= −1 (6= 0).

So T has a fixed point z0 in QR \ Q̄r, with r < ||z0|| < R.



372 R. DAHAL

Then for all t ∈ [ρ(a), σ(b)],

z0(t)−w(t) ≥ ||z0||
m2(t− ρ(a))(σ(b) − t)

M2(σ(b)− ρ(a))2
−
∫ b

ρ(a)

G(t, s)h−(s)∇s

≥ ||z0||
m2(t− ρ(a))(σ(b) − t)

M2(σ(b)− ρ(a))2
− M(t− ρ(a))(σ(b) − t)

m2(σ(b) − ρ(a))

∫ b

ρ(a)

h−(s)∇s

= ||z0||
m2(t− ρ(a))(σ(b) − t)

M2(σ(b)− ρ(a))2
− r

m2(t− ρ(a))(σ(b) − t)

M2(σ(b)− ρ(a))2

=
m2(t− ρ(a))(σ(b) − t)

M2(σ(b)− ρ(a))2
[||z0|| − r]

= k(t− ρ(a))(σ(b) − t) where k :=
m2[||z0|| − r]

M2(σ(b) − ρ(a))2
> 0

≥ 0, t ∈ [ρ(a), σ(b)]T.

Now let u0(t) := z0(t)−w(t), t ∈ [ρ(a), σ(b)]T. Then from Lemma 2.3, it follows that
u0(t) is a positive solution of the BVP (1.1)− (1.3), and there exists a k > 0 such that
u0(t) ≥ k(t− ρ(a))(σ(b) − t), t ∈ [ρ(a), σ(b)]T. The proof is now completed. 2

4 Examples

In this section we give two examples as applications of Theorem 3.1.

Example 4.1 Let T =
{

1
qn

}∞

n=0
∪ {0, 2}, q > 1. Then we claim the BVP

{

u∆∇ + u3/2

5t − 1√
t
= 0, t ∈ (0, 2)T,

u(0) = 0 = u(2)
(4.1)

has a positive solution.

First note that the BVP (4.1) is of the from (1.1)− (1.3) with a = 0, b = 1 and

p(t) ≡ 1, f(t, u) =
u3/2

5t
, h−(t) =

1√
t
, h+(t) = 0.

Also note that f and h have a singularity at t = 0, and m = M = 1. Then since q > 1,

r =
M3(σ(b)− ρ(a))

m4

∫ b

ρ(a)

h−(t)∇t

= 2

∫ 1

0

1√
t
∇t

= 2

[

1

(

1− 1

q

)

+
√
q

(

1

q
− 1

q2

)

+
√

q2
(

1

q2
− 1

q3

)

+ · · ·
]

= 2

[

1 +
1√
q

]

.

Take λ1 = λ2 = 3/2, then (H1) is satisfied.
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For (H2) note that,

∫ b

ρ(a)

(s− ρ(a))(σ(b)− s)
[

f(s, 1) + h+(s)
]

∇s

=
1

5

∫ 1

0

(2 − s)∇s =
2 + q

5 + 5q
.

Also note that,

m2r(σ(b) − ρ(a))

M((r + 1)λ1 + 1)
≥ 2r

(r + 1)2 + 1
=

2q + 2
√
q

5q + 6
√
q + 2

.

Now, it is easy to see that 2+q
5+5q <

2q+2
√
q

5q+6
√
q+2 for q > 1.

Thus, (H2) is also satisfied. Hence the existence of a positive solution is now guaran-
teed from Theorem 3.1.

Example 4.2 Let T = The Cantor Set. (See pages 18−19 of [4] for more information
regarding this time scale.)

Consider the following BVP for k > 20
7 ,

{

u∆∇ + u2

k(1−t) − 1√
t+
√

ρ(t)
= 0, t ∈ (0, 1)T

u(0) = 0 = u(1).
(4.2)

Again we apply Theorem 3.1. First note that

r =
M3(σ(b) − ρ(a))

m4

∫ b

ρ(a)

h−(t)∇t

=

∫ 1

0

1√
t+
√

ρ(t)
∇t

=

∫ 1

0

(
√
t)∇ ∇t = 1.

Take λ1 = λ2 = 2, then (H1) is satisfied.

In [6] the authors show that
∫ 1

0

t∆t =
3

7
,

where t ∈ T, and T is the Cantor set. Using similar arguments we get that

∫ 1

0

t∇t =
4

7

which we use below.
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To see that (H2) holds, note that

∫ b

ρ(a)

(s− ρ(a))(σ(b) − s)
[

f(s, 1) + h+(s)
]

∇s

=

∫ 1

0

s(1− s)
1

k(1− s)
∇s

=
1

k

∫ 1

0

s∇s =
4

7k
.

Now it is clear that

4

7k
<

m2r(σ(b) − ρ(a))

M [(r + 1)λ1 + 1]
=

r

(r + 1)2 + 1
=

1

5
for k > 20

7 .

Thus (H2) is also satisfied. Hence the existence of a positive solution is now guaran-
teed from Theorem 3.1.
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1 Introduction

Analysis of chaotic vibrations is a subject of intensive investigations during the last
decades. One of the principal scenarios of the transient to chaotic behavior is a cascade
of bifurcations of the period doubling. Two approaches exist to predict the chaotic be-
havior. Both these approaches hang one upon other. In the first approach, intersections
of invariant manifolds, which lead to appearance of Smale horseshoe, are investigated
to predict the chaotic dynamics. In the second approach, bifurcations of periodic and
almost periodic vibrations are investigated to determine regions of the chaotic behavior.
The subharmonic Melnikov–Morozov theory [1, 2 et al], which is considered in Section
2 of this paper, is related to the second approach. The methods, which are considered
in Sections 3-6, are related to the first group of approaches. In particular, in Section 3
the Melnikov function is used to determine the region, where the heteroclinic structure
exists in nonlinear mechanical systems under the action of almost-periodic excitation.
Formation of homo- and heteroclinic trajectories (HT) in phase place is a criterion of the
chaotic behavior in dynamical systems [1, 2 et al]. Methods, based on investigation of
the HT formation, are related to the first group of approaches. (Note that the small dis-
sipation leads to the complicated behavior near a separatrix of the Hamiltonian systems.
Solutions that cross the separatrix due to the dissipation, were analyzed, for example,
in [3]). The closed HT formation is possible in dynamical systems with dissipation and
external periodic excitation. To construct the HT in such dynamical systems it is neces-
sary to determine some important parameters. Namely, in such single-DOF system, it is
necessary to know corresponding initial conditions of HT, and the functional dependence
of the system parameters. For example, it may be a dependence of the external excitation
amplitude on the dissipation parameter. In most cases the authors of the last and recent
publications on HT construction make use of the well-known Melnikov function for the
analysis of homoclinic structure [4-7], which gives a single equation for determination
of unknown parameters. As a result, in the Melnikov condition, separatrix trajectories
of the unperturbed autonomous equations are used. A problem of effective analytic ap-
proximation of HT of non-autonomous system is difficult and it is not solved up to now.
Here a new approach for the HT construction in the nonlinear dynamical systems with
phase space of dimensions equal to two is proposed and used. Pade approximants (PA)
[8] and quasi-Pade approximants (QPA) are used to construct the HT in the dynami-
cal system phase space and for the corresponding time history solution. Note that QPA
which contain both powers of some parameter, and exponential functions were considered
in Ref. [9]. Convergence condition were used earlier in the theory of non-linear normal
vibration modes [10-12] as well as the conditions at infinity. This made possible to solve
the boundary-value problem formulated for the HT and evaluate initial amplitude values
with admissible precision. We suppose that the HT construction criterion of the chaos
beginning proposed in this paper is more exact than the generally accepted Melnikov
criterion, because it is not necessary to use separatrix trajectories of the Hamiltonian
equations.

This work is structured as follows. First, the subharmonic Melnikov–Morozov theory
and its application to parametric dynamics of beams are considered in Section 2. The
method for determination of domains of chaos in mechanical systems under the action
of quasiperiodic forces is considered in Section 3. The Pade approximants convergence
condition is discussed in Section 4, and the HT boundary values problem is formulated
in this Section. The approach proposed here was realized for the homoclinic solution of
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the non-autonomous Duffing equation. Corresponding results are presented in Section 5.
Construction of the homo- and heteroclinic orbits for the different dynamical systems is
discussed in Section 6.

2 Subharmonic Melnikov–Morozov Theory and its Applications to

Dynamics of Beam

Subharmonic Melnikov function analysis is carried out on the example of beam vibrations
analysis. This beam is presented in Figure 2.1. Mass M is attached to the end of
the beam. Transverse beam motions W (s, t) induce displacements η(t) of the mass M .
Therefore, linear viscous damping force RL = cLη̇ acts on the mass M . The nonlinear
curvature and nonlinear inertia are taken into account in the model, so the equation of
the beam parametric oscillations has the following form [13]:

EJw′′′′ + EJ
2

(

w′′w′2
)′′

+

{

P0 + Pt cos(Ω̄t) − M
2

l
∫

0

(w′2)′′ttds − cL

2

l
∫

0

(w′2)′tds

}

w′′

+cẇ + µẅ − (Nw′)′ = 0,

N = µ
2

l
∫

s

ds1

s1
∫

0

(w′2)′′ttds2,

(2.1)
where ẇ = w′

t; w
′ = w′

s; µ is the mass per unit of length; ẇ is the material damping; the
term w′′′ ′ + 1

2 (w′′w′2)
′′

describes the beam curvature. The nonlinear inertia is presented

by the term (Nw′)
′
in equation (2.1). The following dimensionless parameters are used:

εδ =
l2

√
EJµ

; εδL =
cLw2

∗

2l
√

EJµ
; ε Γt =

l2Pt

EJ
; Γ0 =

P0l
2

EJ
; ε γ =

w2
∗

2l2
; m =

M

µl
;

u =
w

w∗

; τ =

√

EJ

µl4
t; ξ =

s

l
; Ω =

Ω̄l2
√

µ
√

EJ
; w∗ =

l2
√

2

π

√

P0

P∗

− 1,

(2.2)

where ε << 1; P∗ is the buckling force; w∗ is the static deflection at s = l
2 . Equation

(2.1) is rewritten in the dimensionless form:

u′′′′ + Γ0u
′′ + ü + α(u′′u′2)′′ + ε

[

−mγu′′
1
∫

0

(u′2)̈dξ − γ

(

u′
1
∫

ξ

dη
η
∫

0

(u′2 )̈dh

)′

+

+δ u̇ + Γtos(Ωτ)u′′ − δLu′′
1
∫

0

(u′2)̇dξ

]

= 0,

(2.3)

where α = 0.5 w2
∗l

−2; u′ = u′
ξ; u̇ = u′

τ . Dimensionless fundamental frequencies of the

corresponding linearized system (2.1) are the following: pk = k2π2. The frequency
Ω is varied in the next range: 0.5 < Ω < 4. Therefore, one mode approximation,
u = q(t) sin(πξ), accurately describes the beam dynamics. The following differential
equation is derived by the Galerkin method:

q̈ + λ(q3 − q) + ε
[

γρπ4q(q̇2 + qq̈) + δq̇ − Γtπ
2q cos(Ωτ) + δLπ4q̇q2

]

+ O(ε2) = 0, (2.4)

λ = Γ0π
2 − π4; ρ = m +

1

3
−

3

8π2
. (2.5)
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Figure 2.1: Transverse parametric oscillations of beam.

Figure 2.2: The saddle-node bifurcations curves of the subharmonic oscillations of orders
1,2,3,4. The curves are denoted by the same numbers. The calculations were performed with
the following parameters: ε = 0.01; εδ = εδL = 0.18; εγ = 1.84 · 10−3; ρ = 3.4.
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The equation (2.4) can be presented as

q̈ + λ(q3 − q) + ε
[

−γρλπ4(q5 − q3) + γρπ4qq̇2 + δ q̇ − Γtπ
2q cos(Ωτ) + δLπ4q̇q2

]

= 0.
(2.6)

We stress that, for ε=0 the system (2.6) is a nonlinear conservative one.
In the future calculations the beam dynamics is considered with the following param-

eters [14]:

E = 2.013 · 1011 N

m2
; ρ = 7.80 · 103 Kg

m3
; l = 558mm; b = 11.95mm; h = 1mm;

M = 0.162Kg; µ = 9.3 · 10−2 Kg

m
; P∗ = 6.39N ; P0 = 6.42N ; c = 7.8 · 10−2 Kg

s
;

EJ = 0.201Nm2; w∗ = 3.4 × 10−2m.

Let us analyze the application of the Melnikov–Morozov method [1, 2, 4] for the saddle-
node bifurcations analysis. It is known, that for ε=0 the system (2.6) allows the following
periodic motions:

(q0, q̇0) =

{

√

2

2 − k2
dnτ ; −

k2
√

2λ

2 − k2
snτcnτ

}

; τ = t

√

λ

2 − k2
, (2.7)

where k is the elliptic integral modulus; dn; sn; cn are elliptic functions [15]. The equa-
tion: H = λ(k2 − 1)(2− k2)−2 connects the Hamiltonian H of system (2.6) for ε=0 with
the modulus of the elliptic integral. Let us consider motions of the system (2.6) meeting
the resonance conditions:

T (k) = mT ; T = 2π/Ω; T (k) = 2K

√

2 − k2/

λ, (2.8)

where K is the complete elliptic integral of the first kind; T (k) is the period of the
unperturbed system (ε=0) orbits. The subharmonic Melnikov–Morozov method permits
to determine the subharmonic oscillations of a single DOF system with essential nonlinear
unperturbed part. The simple roots of the subharmonic Melnikov function define these
subharmonic oscillations. If the subharmonic Melnikov function roots meet the equation
|sin(Ωt0)| = 1, the saddle-node bifurcation set is taken place. The subharmonic Melnikov
function of system (2.6) is derived as

M̄
m/1
1 = −δ

√
λJ1(k) + Γtπ

2J3(k) sin(Ωt0) − δLπ4
√

λJ2(k), (2.9)

where

J1(k) =
1
√

λ

mT
∫

0

q̇2
0dt =

4

3

[

(2 − k2)E − 2k′2K
]

(2 − k2)−3/2;

J2(k) =
1
√

λ

mT
∫

0

q̇2
0q

2
0dt =

8

15

[

2(k4 + k′2)E + (k2 − 2)k′2K
]

(2 − k2)−5/2;

J3 sin(Ωt0) =

mT
∫

0

q0q̇0 cos(Ωτ + Ωt0)dτ =
Ω2π

λsh
(

mπK′

K

) sin(Ωt0).

(2.10)
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Note that E is the complete elliptic integral of the second kind.
From the equation (2.9) the parametric set of saddle-node bifurcations is derived as

Γt = ±

√
λ

π2J3(k)

[

δLπ4J2(k) + δJ1(k)
]

. (2.11)

Figure 2.2 shows the saddle-node bifurcations curves on the parametric plane (Ω, Γt).
The bifurcations curves of the subharmonic oscillations of orders 1,2,3,4 are denoted by
the same numbers on this figure

(q0, q̇0) =

{

√

2k2

2k2 − 1
cnτ ;−

k
√

2λ

2k2 − 1
snτdnτ ;

}

, τ =

√
λt

√
2k2 − 1

. (2.12)

In this case, the equation H = k2k′2λ(2k2 − 1)−2 connects the Hamiltonian H with
the elliptic integral modulus k. The subharmonic Melnikov function of these motions has
the following form:

M̄
m/1
1 = −δ

√
λĴ1(k) + Γtπ

2Ĵ3(k) sin(Ωt0) − δLπ4
√

λĴ2(k), (2.13)

Ĵ1(k) =
8

13

{

k′2K − (1 − 2k2)E
}

(2k2 − 1)−3/2;

Ĵ2(k) =
16

15

{

Kk′2(k2 − 2) + 2E(k′2 + k4)
}

(2k2 − 1)−5/2; Ĵ3(k) =
2Ω2π

λsh
(

lπK′

K

) .

where m = 2l; l = 1, 2, ... If Ji(i = 1, 3) is replaced with Ĵi in formula (2.9), the equation
of saddle-node bifurcations of the motions outside homoclinic orbit is obtained. Fig-
ure 2.3 shows the saddle-node bifurcations curves of subharmonic oscillations outside the
homoclinic orbits of orders m=2; m=4; m=6 for the system parameters from Section
1. The periodic motions of system (2.6) for ε=0 outside the homoclinic orbit have the
form:

Now the saddle-node bifurcations on the plane (δL,Γt) is considered. We study the
limit cycles of the right homoclinic orbit on the system parametric plane. The equation
(2.11) is rewritten as:

Γt = ±π2
√

λJ2(k)J−1
3 (k) [δL − δ∗L(m)] , (2.14)

where δ∗L(m) = −δJ1(k)π−4J−1
2 (k). Following [16], the values δ∗L(m) are called the reso-

nance numbers. Figure 2.4 shows qualitatively the bifurcations curves (2.14). As the el-
liptic integral modulus k satisfies the resonance condition (2.8), the following inequalities
are true: k(2.1) ≺ k(2.2) ≺ ... ≺ k(∞) = 1. Note that the resonance numbers δ∗L(m) sat-
isfy the following relations: δ∗L(∞) = −1.25δπ−4; lim

k→0
δ∗L(m) = −δπ−4. From the analysis

of the resonance numbers the following inequality is obtained: d
dk δ∗L(k) < 0; k ∈ [k1; 1] .

Therefore, integer number m∗ can be selected, that the following inequalities are meet:
−1.25δπ−4 = δ∗L(∞) < ... < δ∗L(m∗ + 1) < δ∗L(m∗).

The intersections of the invariant manifolds of the saddle point are considered now.
It is well known, that these intersections are the necessary condition for the existence of
chaos [1, 2]. The homoclinic Melnikov function of beam has the following form:

M(t0) = −
4
√

λδ

3
+

Γtπ
3Ω2

λsh
(

πΩ
2
√

λ

) sin(Ωt0) −
16

15
δLπ4

√
λ. (2.15)
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Figure 2.3: The saddle-node bifurcations curves of the subharmonic oscillations of orders m=2,
m=4, m=6. The calculations are produced with the following parameters: ε = 0.01; εδ = εδL =
0.18; εγ = 1.84 · 10−3; ρ = 3.4.

Figure 2.4: The qualitative behavior of the saddle-node bifurcation curve on the plane (δL,Γt).
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The function M and subharmonic Melnikov function M̄
m/1
1 satisfy the following lim-

its:

lim
m→∞

M̄
m/1
1 = M . (2.16)

Thus, the saddle-node bifurcations are obtained. However, the periodic motions,
which undergo these bifurcations, are not studied. It is clear that these cycles may
undergo others bifurcations. Here the Melnikov–Morozov method, which is considered
in [4, 17], is used to study other bifurcations of parametric oscillations of beams.

The system (2.6) with respect to the action-angle coordinates (I,θ) can be written in
the next form [17]:

İ = εF (I, θ, t); θ̇ = ΩΣ(I) + εG(I, θ, t), (2.17)

where Ω∑ (I) is the frequency of the system (2.6) for ε=0. Let us consider the following
motions:

I = Im,1 +
√

εh(t); θ = ΩΣ(Im,1)t + φ, (2.18)

where the values Im,1 are obtained from the resonance conditions (2.8). Following [17],
the oscillations I = Im,1 +

√
εh(t) are called the motions close to the resonance energetic

level. The aim of the present study is an analysis of the topology of the Poincare sections
close to the resonance energetic levels. Then the equations of the motions have the
following form [1, 2]:

˙̄h =

√
ε

2π
M̄

m/1
1

(

φ̄

ΩΣ(Im,1)

)

+ εF̄ ′
I h̄; ˙̄φ =

√
ε
∂Ω(Im,1)

∂I
h̄ + ε

[

Ω′′(Im,1)

2
h̄2 + Ḡ(φ̄)

]

.

(2.19)
The system (2.19) can be rewritten in the following form:

ḣ =
1

2π

(

−∆1π
4
√

λJ2 + Γtπ
2J3 sin mφ

)

+ εh
[

χ(∆1) + Γtπ
2K3 sin mφ

]

;

φ̇ = Ω′
Σh +

√
ε

[

Ω′′
Σ

2
h2 −

Γtπ
2K3

m
cosmφ

]

,
(2.20)

where ∆1 = δL − δ∗L; χ = δ
√

λ
Ω(2 − k2)2σ(k)

60πmλk3J2
− ∆1π

4
√

λK2;

σ(k) = 80(2−k2)E2(k)−160k′2K(k)E(k)−32(k4 +k′2)K(k)E(k)+16k′2(2−k2)K2(k);

K3 =
Ωπ

λsh
(

mπK′

K

)

[

(2 − k2)3Ω2π

8λk4K2k′2
cth

(

mπK ′

K

)

+ ω(k)

]

;

K2 =
2EΩ

λπm
√

2 − k2
+

ω(k)

Ω
J2; Ω

′
Σ = −

√
λπ2(2 − k2)[(2 − k2)E − 2k′2K]

2K3k′2k4
;

Ω′′
Σ = −

√
λπ3

(

2 − k2
)5/2

4k8k′4

[

2E(k′6 + 3k′2 + k4)

K4
+

k′2

K3
(4k′2 − k4) −

3E2

K5
(2 − k2)2

]

.

The fixed points of the system (20) are the following:

(φν , hν) =

(

(−1)ν

m
arcsin(a) +

πν

m
; 0

)

+ O(ε); ν ∈ Z, a =

√
λ

Γtπ2J3
(δJ1 + δLπ4J2).

(2.21)
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If a > 0(a < 0), then ν is changed as: ν = 0, ..., 2m − 1(ν = 1, ..., 2m).
Let us study these fixed points stability. System (20) is linearized and the eigenvalues

λ of the constant matrix of the linear system are derived. The values λ of the saddle
fixed points are the following:

λ
(A)
1,2 = ±

√

ε

2
|Ω′

Σ|ΓtπJ3m
√

1 − a2 + O(ε). (2.22)

The other group of the fixed points is denoted by B. The values λ of these fixed points
are the following:

λ
(B)
1,2 =

1

2
tr(Ã) ± i

√

ε

2
|Ω′

Σ|ΓtπJ3m
√

1 − a2, (2.23)

where tr(Ã) is the trace of matrix [Ã], which meets the following limit:

lim
k→1

tr(Ã) = lim
k→1

ε

√
λ(δLπ4J2 + δJ1)

2mTk′2K(k)
. (2.24)

Motions close to the resonance energetic levels have values k near 1. Using (2.24) we
conclude that if

δL < δ∗L(m)(δL > δ∗L(m)), (2.25)

the fixed points B are stable (unstable), respectively. From the inequality (2.25) the
following parameter is introduced:

α(k) = δ
√

λ
Ω(2 − k2)2σ(k)

60π m λk3J2
+ ∆1π

4
√

λ

(

2K3
J2

J3
− K2

)

.

Figure 2.5: The curves of the saddle-node bifurcations and the heteroclinic bifurcations are
shown. (QZ) and (RS) are the heteroclinic bifurcations curves. The letters denote the regions
of the different dynamical behavior.

Then the inequality (2.25) can be rewritten as α < 0 (α > 0). Therefore, if α < 0
(α > 0), the fixed point B is stable (unstable), respectively. Therefore, the bifurcation set
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Figure 2.6: The phase portraits of dynamical system.
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satisfies the equation α=0. This equation describes the bifurcation curve H (Figure 2.5)
on the parameter plane (δL,Γt)∈R2, which can be written as

∆1 = ∆
(H)
1 (k); lim

k→1
∆

(H)
1 (k) =

15δ

8π4
√

λ

[

Ωπ

λ
cth(

Ωπ

2
√

λ
) + 1

]−1

lim
k→1

k′2K2. (2.26)

The bifurcation behavior of the system (20) is considered. The bifurcation structure
on the parametric plane (δL, Γt) is qualitatively presented in Figure 2.5. In the regions
A and B the motions are qualitatively different, as saddle-node bifurcation line (GZ)
separates them. The phase trajectories of the region B are shown qualitatively in Fig-
ure 2.6b. Here, the saddle fixed point α, the stable fixed point β and stable periodic
motions L1 take place. As a result of the saddle- node bifurcation (GZ) these fixed
points are coupled and disappeared. Therefore, there are no fixed points in the region A
(Figure 2.5). In this case, only the stable periodic motions L1 take place (Figure 2.6a).
The same bifurcation behavior is observed in E −F region transitions. The saddle-node
bifurcation (RN) separates these regions.

Heteroclinic orbits of the system (20) are considered. The following values of δ1 are
chosen:

δ1 = δ∗(m) +
√

ε∆; ∆ = O(2.1). (2.27)

The equations (2.27) are substituted into (20) and the Hamiltonian of the system
(20) is the following:

H =

√
ε

2

∂ω

∂I
h̄2 +

√
εΓπ J3

2m
cosmφ̄. (2.28)

The dynamical system (2.28) has the following fixed points: centers (φ̄ν , h̄ν) =
(

2ν

m
π; 0

)

; ν=0;±1. . . ; and saddles (φ̄ν , h̄ν) =

(

2ν + 1

m
π; 0

)

. The heteroclinic orbits

joint the saddles fixed points. Taking into account (2.28), the heteroclinic orbits in
dissipative dynamical system (20) are calculated by means of the following Melnikov
function:

M̄ = −

√
ε

2

∂ω

∂I
∆π3

√
λJ2

∞
∫

−∞

h̄dt +
√

ε
∂ω

∂I
χ|∆=0

∞
∫

−∞

h̄2dt. (2.29)

Integration in the equation (2.29) is performed taking into account the Hamiltonian
(2.28). Then the heteroclinic bifurcations take place, if the system parameters satisfy
the following equation:

∆ = ±
4 χ|∆=0

J2

√
λ

√

2ΓJ3

mπ7
∣

∣

∂ω
∂I

∣

∣

. (2.30)

The heteroclinic bifurcations sets (ZQ) and (RS) are presented qualitatively in Fig-
ure 2.5. Let us consider the bifurcations, when the system passes from the region B to the
regions C and D. The periodic motions L1 are observed in the region B (Figure 2.6b).
These periodic motions are connected with the heteroclinic orbit. Note, that this hetero-
clinic trajectory is observed on the bifurcation curve (ZQ). There are no periodic motions
in the region C (Figure 2.6c). The heteroclinic trajectory is observed on the bifurcation
curve (RS). Moreover, the periodic motion L2 is born from this heteroclinic trajectory.
These periodic motions take place in the region D (Figure 2.6d).

The system (20) having the homoclinic trajectory was obtained by the averaging
method. This method is applied to nonautonomous systems, which is derived from the
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system (2.17) using the change of the variables (2.18). At some system parameters,
the homoclinic trajectory of the autonomous system (20) corresponds to the separatrix
manifolds intersections of saddle periodic motions in nonautonomous equations. The
Smale horseshoes arise due to these intersections in phase space. Such phenomenon for
the Duffing–Van-der-Pol oscillator is considered in the paper [16]. The intersections of
invariant manifolds in the system (2.6) are not considered in this paper.

3 Domains of Chaotic Frictional Vibrations Under the Action of Almost

Periodic Excitation

One degree- of- freedom system (Figure 3.1) is considered in this section. The Duffing
oscillator under the action of almost periodic force interacts with moving belt. The
vibrations of the discrete mass is described by the general coordinate x. It is assumed,
that the belt moves with constant velocity v∗, interacting with oscillator due to the dry
friction f(vR), where vR is relative velocity of rubbing surfaces. The nonlinear spring is
described by the restoring force: R = cx + c3x

3. The system vibrations are excited by
the following almost periodic force:

p(t) = Γ1 cosω1t + Γ2 cosω2t.

Figure 3.1: The Duffing oscillator interacting with moving belt.

The equation of the system motions has the following form:

mẍ + cx + c3x
3 = Γ1 cosω1t + Γ2 cosω2t − f(ẋ − v∗); (3.1)

f(ẋ − v∗) = θ0sign(ẋ − v∗) − A(ẋ − v∗) + B(ẋ − v∗)
3. (3.2)

We use the next dimensionless variables and parameters:

εµγ2 =
Γ2

cx∗

; α =
Aω0x∗

θ0
; β =

Bω3
0x

3
∗

θ0
;

x = x∗ξ(t); τ = ω0t; Ω1 =
ω1

ω0
; Ω2 =

ω2

ω0
; ελ =

c3x
2
∗

c
; εµθ̃ =

θ0

cx∗

; εγ1 =
Γ1

cx∗

, (3.3)

where µ, ε are two independent small parameters:0 ≺ ε ≺≺ µ ≺≺ 1. The mechanical
system (3.1) with respect to dimensionless variables and parameters is written in the
form:

ξ′′ + ξ = ε
{

−λξ3 + γ1 cosΩ1τ+ µ
[

γ2 cosΩ2τ − θ̃P (ξ′ − vB)
]}

; (3.4)
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P (ξ′ − vB) = sign(ξ′ − vB) − α(ξ′ − vB) + β(ξ′ − vB)3.

The second small parameter µ points, that the friction force is essentially smaller
than the nonlinear part of the restoring force and the amplitude of the harmonic γ1 is
significantly larger than the amplitude µ γ2.

In the future analysis the vibrations are treated for the resonance case:

Ω1 = 1 + εσ; Ω2 = Ω1 + ε ∆, (3.5)

where σ, ∆ are two independent detuning parameters. Note, that in the case of the
resonance (3.5) the external force is almost periodic. Using the multiple scales method
[18], the following system of modulation equations is derived:

ρ′ =
√

ρ
γ1
√

2
sin θ + µ

{

ρ θ̃(α − 3βv2
B) − θ̃α1

√

2ρ −
3

2
θ̃ β ρ2+

+
√

ρ
γ2√
2

sin θ cos∆T1 +
√

ρ
γ2√
2

cos θ sin ∆T1

}

;
(3.6)

θ′ = σ −
3λ

4
ρ +

γ1

2
√

2ρ
cos θ + µ

γ2

2
√

2ρ
(cos θ cos∆T1 − sin θ sin ∆T1); (3.7)

α1(ρ) =

{

0; vB >
√

2ρ;

2
π

√

1 −
v2

B

2ρ ; vB <
√

2ρ,

where (·)′ = d(·)
dT1

; T1 = ετ. Note, that the dynamical system (36, 37) has small param-
eter µ.

The general coordinate ξ of the system (3.4) and the modulation variables (ρ, θ) are
connected as

ξ =
√

2ρ cos(Ω1τ − θ) + O(ε). (3.8)

Figure 3.2: The phase portraits of the Hamiltonian system (3.9).

Unperturbed system (36, 37) (µ=0 ) has the following Hamiltonian:

H = −
√

2ρ
γ1

2
cos θ +

3λ

8
ρ2 − σρ. (3.9)

The system with Hamiltonian (3.9) has two groups of fixed points (θ1, ρ1) and (θ2, ρ2),
which satisfy the next cubic equation:

σ −
3λ

4
ρ1,2 ±

γ1

2
√

2ρ1,2

= 0; θ1 = 0; θ2 = ±π. (3.10)
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These fixed points are shown in Figure 3.2. They are two types of the points:
centers and saddles. The saddle fixed points are connected by heteroclinic orbits
Γ−(ρ−(T1); θ−(T1)) and Γ+(ρ+(T1); θ+(T1)) (Figure 3.2). The trajectories Γ− and Γ+

correspond to upper and lower heteroclinic orbit, respectively. From the equation (3.7)
at µ=0, it is derived:

θ±(τ) = arcsin

( √
2ρ′±

γ1
√

ρ±

)

.

This equation is substituted into (3.6) assuming that µ=0. As a result one has:

ρ′2 =

(

γ1
√

ρ
√

2
+ σρ −

3λ

8
ρ2 + Hs

)(

γ1
√

ρ
√

2
− σρ +

3λ

8
ρ2 − Hs

)

. (3.11)

The equation (3.11) is solved using the change of the variables

ρ(T1) = ρ
(2.1)
2 + r(T1);

and the initial conditions

θ±(0) = 0; ρ±(0) = ρ
(2.1)
2 + r̃±, r̃± = 2(k ±

√

2kρ
(2.1)
2 ); k =

4σ

3λ
− ρ

(2.1)
2 .

As a result it is derived:

ρ±(T1) = ρ
(2.1)
2 ±

2r̃−r̃+

(r̃+ − r̃−)ch(ãT1) ± (r̃+ + r̃−)
, (3.12)

where ã = 3λ
8

√
−r̃−r̃+, ρ

(2.1)
2 is coordinate of the saddle fixed point.

The intersections of the invariant manifolds take place in the perturbed system (36,
37). The theory of such intersections is treated in books [1,2 ]. The Smale horseshoe,
which is the simplest mathematical pattern of chaotic vibrations, appears due to such
heteroclinic structure. The Melnikov function [1] is used to determine the region, where
the heteroclinic structure exists. The method for these functions calculations is consid-
ered in [1]. Here this approach is used to determine the region of heteroclinic orbits
existence in the system of modulation equations (36, 37). The heteroclinic Melnikov
function of the system (36, 37) has the following form:

M̃ =
∞
∫

−∞

{

−γ1γ2

4 sin θ cos(∆t − ∆t0 + θ)+ γ2√
2

√
ρ sin(∆t − ∆t0 + θ)×

×
(

σ − 3
4λρ + γ1

2
√

2ρ
cos θ

)}

dt +
∞
∫

−∞

P(ρ)
(

σ − 3
4λρ + γ1

2
√

2ρ
cos θ

)

dt,
(3.13)

where P(ρ) = −θ̃α1

√
2ρ + ρθ̃(α − 3β v2

B) − 3
2 θ̃βρ2. The integrals (3.13) are determined

using the heteroclinic trajectories of the system (36, 37) at µ=0. On performing the in-
tegration (3.13), the following equations are taken into account:ρ(T1) = ρ(−T1); θ(T1) =
−θ(−T1). As a result of the transformations, the Melnikov function is derived in the
following form:

M̃ = γ2

2 sin(∆t0)

{

∞
∫

−∞

(

−σ
√

2ρ cos θ + 3λ
4 ρ

√
2ρ cos θ − γ1

2

)

cos(∆t)dt+

+σ
∞
∫

−∞

√
2ρ sin θ sin(∆t)dt − 3λ

4

∞
∫

−∞

ρ
√

2ρ sin θ sin(∆t)dt

}

+

+
∞
∫

−∞

P(ρ)
(

σ − 3
4λρ + γ1

2
√

2ρ
cos θ

)

dt.

(3.14)
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Conclusively, the Melnikov function is written in the form:

M̃±(t0) =
γ2

2
A± sin(∆t0) + D±. (3.15)

The parameter D± is derived as:

D± = ∓
(

3β v2
B − α

)

θ̃
16

3λ

(

σθ±0 ∓
9λ

16
ρ̃

)

+ θ̃β

{

14ρ̃σ

λ
∓ θ±0

[(

9ρ
(1)
2 −

4σ

λ

)

×

×

(

4σ

λ
− 2ρ

(1)
2

)

+
7σ(r̃+r̃−)

λ

]}

+ θ̃
9λ

16
J

(±)
2 + θ̃

(

9

8
λρ

(1)
2 −

σ

2

)

J
(±)
1 ,

where θ+
0 = θ0; θ

−
0 = π − θ0; θ0 = arccos

(

r̃++r̃−

r̃+−r̃−

)

; ρ̃ =
√
−r̃+r̃−.

The parameters J
(±)
2 and J

(±)
1 are not presented here for brevity. The values A± are

determined as:

A±(∆, λ, γ1, σ) =
9λ2

16γ1
K±

3 −
9λ

8γ1
(2σ −

3

2
ρ
(1)
2 λ)K±

2 −

−
1

2γ1

[

9

4
γ1λ

√

2ρ
(1)
2 − σ(4σ − 3λρ

(1)
2 )

]

K±
1 −

3λ

2γ1
L±

1 +

(

2σ

γ1
−

3λ

2γ1
ρ
(1)
2

)

L±
0 ,

(3.16)

where

K±
n =

∞
∫

−∞

rn
±(t) cos(∆t)dt; L±

n =

∞
∫

−∞

rn
±(t)ṙ±(t) sin(∆t)dt; n = 1, 2, 3. (3.17)

The integrals (3.17) satisfy the following equations:

L0 = −∆K1; K2 = −
2

∆
L1. (3.18)

Values of the integrals are determined using the residuals. As a result, the f ollowing
parameters are calculated:

K±
1 = ∓

16π sh(∆′θ±0 )

3λsh(∆′π)
; K±

2 =
16πρ̃

3λ

[

∆′ ch(∆′θ±0 )

sh(∆′π)
∓ ctgθ0

sh(∆′θ±0 )

sh(∆′π)

]

;

K±
3 = ∓

8πρ̃2

3λsh(∆′π)

{

sh(∆′θ±0 )(1 + 3ctg2θ0+ ∆′2) ∓3∆′ctgθ0ch(∆′θ±0 )
}

; ;

L±
0 = ±

16∆π sh(∆′θ±0 )

3λsh(∆′π)
; L±

1 = −
8∆πρ̃

3λ

[

∆′ ch(∆′θ±0 )

sh(∆′π)
∓ ctgθ0

sh(∆′θ±0 )

sh(∆′π)

]

,

where ∆′ = 8∆
3ρ̃λ . Then, finally, the value of A±(∆, λ, γ1, σ) has the following form:

A±(∆, λ, γ1, σ) = cos ech

(

8∆π

3ρ̃λ

){

∓

[

8π∆

3λγ1

(

3

2
λρ̃ctgθ0 − 2

[

2σ −
3

2
λρ

(1)
2

])

+

2π

3λγ1

{

27

4
λ2ρ̃2ctg2θ0− 9λρ̃(2σ −

3

2
ρ
(1)
2 λ)ctgθ0 − 9γ1λ

√

2ρ
(1)
2 +

+8σ(2σ − 3
2ρ

(1)
2 λ) + 9

4λ2ρ̃2
}

+ π∆232
3γ1λ

]

sh(∆′θ±0 )+

+

[

∆2π32

3γ1λ
+

8π∆

λγ1

{

3

2
ρ̃λ ctgθ0 − 2(2σ −

3

2
ρ
(1)
2 λ)

}]

ch(∆′θ±0 )
}

.

(3.19)
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Figure 3.3: The boundaries of the regions of chaotic vibrations.

As shown in the book [1], the intersections of invariant manifolds are described by
the simple roots of the equation: M̃±(t0) = 0. The homoclinic structure is observed in
the region, where the following inequality is met:

∣

∣D±A−1
±

∣

∣ < 0.5γ
(±)
2 . (3.20)

The region of chaotic vibrations (3.20) is studied numerically. The following param-
eters of the mechanical system (3.1) are used in the future analysis [19]:

m = 0.981kg; c = 9.81 · 103 N

m
; c3 = 1.67 · 103 N

m3
; Γ1 = 100N ; θ0 = 4.9N ;

A = 0.2
kg

s
; B = 3 · 10−6 kg · s

m2
.

Then dimensionless parameters (3.3) have the following values:

ε = 0.01; µ = 0.1; λ = 17; θ̃ = 0.5; γ1 = 1.02; α = 4.08; β = 0.61; σ = 10; νB = 4.

Figure 3.3a, b shows boundaries of the chaotic vibrations regions, γ
(+)
2 (∆) and

γ
(−)
2 (∆), for the above-presented system parameters. The heteroclinic structures of the

modulation equations (36, 37) take place above these boundaries.
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4 Boundary Values Problem for the HT Construction

4.1 Convergence condition

Let us assume that there are local expansions of solution obtained at small and large
values of a parameter c (for example, the parameter is an amplitude value or initial
energy of the system). For small values of c the local expansion can be determined as
a power series in c, while for large values of c it can be determined as a power series in
c−1:

y(0) = α0 + α1c + α2c
2 + ..., y(∞) = β0 + β1c

−1 + β2c
−2 + ... (4.1)

In order to join local expansions (4.1), fractional rational diagonal two-point PA [8]
can be used. Let us consider the PA of the form:

PAs =

s
∑

j=o

aj cj

s
∑

j=o

bj cj

=

s
∑

j=o

aj cj−s

s
∑

j=o

bj cj−s

, s = 1, 2, , .... (4.2)

By comparison of expressions (4.1) and (4.2) and retaining only terms with the order
of r (−s ≤ r ≤ s), one obtains a system of 2(s+1) linear algebraic equations for the
determination of coefficients aj , bj (j = 0, . . . , s). Since generally the determinant of the
system ∆s, is not equal to zero, the system has a single trivial exact solution. But we
need in PA corresponding to the retaining terms in Eq. (2.1) having non-zero coefficients
aj , bj . Without loss of generality it can be assumed that b0 =1. Now, the system
of algebraic equations for determination of aj , bj becomes overdetermined. All of the
unknown coefficients can be determined from (2s+1) equations while the “residual” of
this approximate solution can be obtained by substitution of all the coefficients into the
remaining equation. Obviously, the residual (or “error”) is determined by the value of
∆s (it can be proved), since the non-zero solution for coefficients and consequently PA
will be obtained in the given approximation by c only in the case when ∆s= 0. Hence
the following is a necessary condition for convergence of the succession of PAs in the
form (2.2) at s → ∞ to the fractional rational function which gives us a presentation of
the solution for all values of the parameter c [10-12]. Namely,

lim
s→∞

∆(i)
s = 0 (i = 2, 3, ..., n) . (4.3)

It is possible to generalize the necessary condition for convergence (4.3) to quasi-
PAs which contain both powers of some unknown parameter, and exponential functions
[9]. Besides, it is possible to utilize the condition (4.3) for obtaining some unknown
parameters which are contained in local expansions [20].

4.2 Potentiality condition and condition at infinity

It is assumed that along the closed HT the dynamical system energy is saved in average.
For the single-DOF dynamical system of the form,

ẍ + f(x, ẋ, t) = 0,

Multiplying the last equation by ẋ(t) and integrating within limits from t = 0 to
t = ±∞, (or from t = −∞ to t = +∞) along the HT one has the following:

∮

f(x, ẋ, t) ẋ dt = 0. (4.4)
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Note that such condition is used in many problems of the perturbation theory [18] to
construct periodic solutions. In this case the integration is made by the solution period.
This condition for periodic solution is called the periodicity one.

Additionally we are going to find the solution x(t) as an analytic function along the
HT satisfying the next condition:

(x(t), ẋ(t)) −→
t→±∞

(b0, 0) . (4.5)

That is we suppose that HT tends to the equilibrium point (saddle point) at infinity.
The convergence condition (4.3), and conditions presented in this subsection, permit

to solve uniquely the boundary-value problem for the HT. It is possible to construct both
this trajectory and the corresponding solution in time.

5 Non-autonomous Duffing Equation

5.1 Analytical construction of the homoclinic trajectory

One considers in details the construction of HT for the well-known non-autonomous
Duffing equation. In general case this equation has a form

ÿ + δẏ − β y + α y3 = f cosω t, (5.1)

A lot of papers are devoted to the investigation of this equation and systems described
by it [1, 4-7, 22-24]. Chaotic behavior of solutions can be observed at different choices
of elastic characteristics, namely for soft elasticity (β < 0, α < 0) [21], rigid one (β <
0, α > 0) [22], with zero (k = 0, γ > 0) [23] or negative (β > 0, α > 0) [5, 24] linear
elasticity.

Here the last variant, namely, β > 0, α > 0, δ > 0, δ << 1, f << 1, is considered. In
this case the unperturbed system has three equilibrium positions, namely one unstable

saddle point (0, 0) and two stable nods
(

±
√

β/α, 0
)

. To simplify notations let us do the

change of variables y = λx, t = µτ to make coefficients of x and x3 equal to -1 and 1,
correspondingly. Then equation (2.1) can be rewritten as

y′′ + δ y′ − y + y3 = f cosω t. (5.2)

A problem of effective analytic approximation of HT in non-autonomous system is not
solved up to now. Here PA and QRA [8, 9] are used for the HT and the corresponding
time solution construction in the case of small dissipation.

To construct the HT in this system we should determine values of the system param-
eters δ, ω, f , corresponding to this trajectory and the coordinates of the shifted saddle
point (b0, 0). The coordinates of the initial point for this trajectory (a0, a1) are also
required. Thus we have to construct system of four equations to find unknowns. The
condition (4.5) at infinity will be used.

Thus, we can consider the next expansion of the solution of equation (5.2) in Taylor
series at zero:

y = a0 + a1t + a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 + . . . , (5.3)

where a0, a1 are arbitrary constants. After substitution of (5.3) to the equation (t) and
equating the coefficients at equal powers of variable t, we get the following expressions
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for series coefficients:

a2 = −(a3
0 − a0 − f + δ a1)/2, a3 = (a1 − 3a2

0a1 − 2δ a2)/6,
a4 = (2a2 − fω2 − 6δ a3 − 6a2

1a0 − 6a2a
2
0)/24, . . .

Multiplying the equation (5.2) by y′(t) and integrating within limits from t = 0 to
infinity along the homoclinic trajectory, we have the following:

−
b2
0

2
+

a2
0

2
+

b4
0

4
−

a4
0

4
−

a2
1

2
+

±∞
∫

0

(δ y′ − f cos ω t) y′ dt = 0. (5.4)

Let us consider the integral
T
∫

0

(δ y′ − f cos ω t) y′dt. After substitution instead of

y(t) its Taylor series and integration one obtains:

T
∫

0

(δ y′ − f cos ω t) y′dt = A T + B T 2 + C T 3 + D T 4 + E T 5 + · · · , (5.5)

where

A = (δ a1 − f)a1, B = (2(δ a1 − f)a2 + 2δ a2a1)/2,
C =

(

3(δ a1 − f)a3 + 4δ a2
2 + (fω2/2 + 3δ a3)a1

)/

3,
D =

(

4(δ a1 − f)a4 + 4δ a4a1 + 6δ a2a3 + 2(fω2/2 + 3δ a3)a2

)/

4, . . .

It is desirable to get presentation of the integral at infinity. For this the QPA is used as
a form of analytical continuation of the expansion (5.5):

A T + B T 2 + C T 3 + · · · → PAp
3 =

α1T + α2T
2 + α3T

3

1 + β1T + β2T 2 + β3T 3
. (5.6)

From here one has the following:

α1 = A,

α2 = −
−ADC2 − DA2E + 2AD2B + FA2C − AFB2 + B3E − 2B2DC + BC3

AEC − AD2 − B2E + 2BDC − C3
,

α3 = (−A2E2 + 2AEC 2 + 2AEBD − 2ACD 2 − 2ACBF + DFA 2

−2CB 2E + 3BDC 2 − D 2B 2 + FB 3 − C 4)/(AEC − AD2 − B2E + 2BDC − C3),

β2 = −
AE2 − EC2 − EBD + CD2 + CBF − DFA

AEC − AD2 − B2E + 2BDC − C3
,

β3 =
−BDF + BE2 − 2DCE + C2F + D3

AEC − AD2 − B2E + 2BDC − C3
.

Passing on to infinity in the fractional presentation (5.6), we can rewrite the equation
(5.4) as:

−
b2
0

2
+

a2
0

2
+

b4
0

4
−

a4
0

4
−

a2
1

2
+

α3

β3
= 0. (5.7)
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Additional equation could be obtained from the convergence condition for the PA
(5.6):

−2D2BF + 2DBE2 − 3D2CE + 2DC2F + D4 − AE3 + E2C2 − 2ECBF+
2EDFA − F 2AC + F 2B2 + GAEC − GAD2 − GB2E + 2GBDC − GC3 = 0.

(5.8)

In similar way we can construct the analytical continuation of the solution at infinity
by means of quasi-rational approximation. This QPA is chosen in the form similar to the
solution of autonomous Duffing equation (separatrix solution), namely:

y = a0 + a1t + a2t
2 + a3t

3 + . . . → e−t α0 + α1e
t + α2e

2t + α3e
3t

1 + β2e2t
. (5.9)

It follows from (5.9) that

b0 =
α3

β2
, (5.10)

where coefficients αi, βj in (5.9) can be found as it is described below.
Final equation being the convergence condition for the approximation (5.9) is

24a 5a 3 + 2a 5a 1 + 12a 5a 2 − 24a 2
4 − 4a 1a 4 −

4

15
a 1a 2 −

7

10
a 1a 3−

−
1

10
a 2

1 − 8a 2a 4 +
5

6
a 2

2 + 4a 2a 3 + 6a 2
3 − 12a 4a 3 = 0.

(5.11)

The system of algebraic equations (5.7), (5.8), (5.10) and (5.11) determines the un-
known values a0, a1, b0 and f = f(δ) while ω is fixed. They can be obtained from
the essentially nonlinear system by means of the Newton method. Several examples of
obtained phase trajectories are presented in Figure 5.1 and Figure 5.2. Figure 5.1 shows
trajectories constructed by Runge–Kutta procedure with initial points obtained from the
system. Here two sets of parameters are chosen, namely:

a) δ = 0.001, a0 = 1.21508, a1 = 0.621819, b0 = 0.00058, f = 0.00087; ω = 1;
b) δ = 0.01, a0 = 1.21609, a1 = 0.621943, b0 = 0.0058 , f = 0.00878, ω = 1.

Figure 5.1: Trajectories constructed by Runge–Kutta procedure with initial points obtained

from the system (5.7), (5.8), (5.10) and (5.11).

Figure 5.2 gives comparison of trajectories constructed with the same initial point
obtained from the system but in different ways, namely by means of Runge–Kutta method
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(solid line) and by the QPA (5.9) (dash line). Values of parameters are taken as for the
previous figure.

Figure 5.3 and Figure 5.4 present parameter dependences corresponding to the HT
creation, i.e. chaos onset. The solid lines show curves obtained by the proposed approach,
but dash lines show the same curves obtained by the Melnikov method. Numerical
investigation of chaos onset in the system under consideration shows that our curve is
more exact.

Figure 5.2: Comparison of the trajectories constructed with the obtained initial point by
Runge–Kutta method (solid line) and by means of quasi-rational approximation (dash line).

Figure 5.3: Dependence between the amplitude of external force and dissipation coefficient
for ω = 1.

Introduction of the phase ϕ permits to choose the point (a0, 0) as the HT initial point
instead of such point (a0, a1) as was made earlier. The corresponding HT construction
is not presented here, and it can be found in [25].
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Figure 5.4: Dependence (ω, f) corresponding to HT appearance.

5.2 Comparison of analytical construction and numerical simulation

The obtained analytical results can be compared with numerical simulation. The nu-
merical construction of the manifolds was fulfilled to find the moment of the separatrix
branches touching, which corresponds to the chaos onset. The method of Latte [26] was
used for this. The main idea of this approach is to consider quadratic approximation of
manifolds:

y − y0 = α (x − x0) = α±
1 (x − x0) +

α±
2

2
(x − x0)

2
+ O

(

|x − x0|
3
)

,

where “+” corresponds to unstable manifold but “–” corresponds to stable one. Here
(x0, y0) is saddle point in phase space. Figure 5.5 and Figure 5.6 present the fulfilled
investigation and demonstrate the accuracy of the obtained above analytic results (val-
ues of parameters corresponding to manifold touching are the same as obtained above
analytically).

Value of the force amplitude corresponding to a point of the HT formation obtained
by the analytical approach is equal to 0.004465 for some fixed values of ω and δ. The
same result is observed in Figure 5.5.

Figure 5.6 presents phase portraits when ω = 2, δ = 0.001 and δ = 0.01. Correspond-
ing analytic results are f = 0.0018 and f = 0.018.

6 Construction of the HT in Different Dynamical Systems

6.1 The Van der Pol–Duffing equation

One considers the model which describes, in particular, the panel flatter in the supersonic
air flow [25]:

ẍ + δ
(

α − βx2
)

ẋ − x + x3 = 0, (6.1)

where α, β > 0, δ is the small parameter (0 < δ << 1).
To construct the HT, the procedure presented in the previous Section, is used here.

At first, local expansions near the unstable equilibrium point are selected. These expan-
sions, corresponding to stable and unstable branches, can be obtained by using the small
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Figure 5.5: Phase portraits for Duffing equation when δ = 0.005, ω = 1.
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Figure 5.6: Phase portraits of Duffing system in the vicinity of the saddle point.

parameter method:

x = c0e
k1t − c3

0

1 − k1δβ

9k2
1 + 3δαk1 − 1

e3k1t + . . . , t → +∞; (6.2)

x = c1e
k2t − c3

1

1 − k2δβ

9k2
2 + 3δαk2 − 1

e3k2t + . . . , t → −∞, (6.3)

here k1 =
−δα −

√
δ2α2 + 4

2
, k2 =

−δα +
√

δ2α2 + 4

2
are roots of the characteristic

equation k2 + δα k−1 = 0, and c0, c1 are arbitrary constants. One writes too the Taylor
series for a solution x(t) at point t = 0:

x = a0 + a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 + . . . , (6.4)

where a0 is an arbitrary constant, a2 =
a0 − a3

0

2
, a3 = −

δ
(

−α + βa2
0

)

a0

(

a2
0 − 1

)

6
, . . .

Thus, to construct the HT it is necessary to find values of the three pointed out
arbitrary constants, c0, c1, a0. Respectively, three algebraic equations to obtain these
constants must be constructed.

Multiplying the equation (6.2) by ẋ(t) and integrating within limits from t = 0 to
infinity along the homoclinic trajectory, we have the following:

a2
0

2
−

a4
0

4
+ δ

±∞
∫

0

(

α − βx2
)

ẋ2 dt = 0.

Using in this integral the local expansion (6.4), and rebuilding the obtained expression
to the Pade approximation, we can write the following:

t
∫

0

(

α − βx2
)

ẋ2 dt = At3 + Bt4 + Ct5 + . . . =
α3t

3 + α4t
4

1 + β1t + β2t2 + β3t3 + β4t4
,
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One has in the limit at t → ±∞:

a2
0

2
−

a4
0

4
+ δ

α4

β4
= 0. (6.5)

Taking into account the local expansions at infinity (6.2) (6.3), it is possible to match
these expansions with the expansion (6.4) by using the QPA of the form

P+∞ = ek1t α0 + α2e
2k1t + α4e

4k1t

1 + β2e2k1t + β4e4k1t
, P−∞ = ek2t α0 + α2e

2k2t + α4e
4k2t

1 + β2e2k2t + β4e4k2t
, (6.6)

where coefficients of approximations P+∞, P−∞ are calculated by comparing them with
the expansions (6.2), (6.4) (6.3), (6.4), respectively.

So, there are two solution presentations for positive and for negative values of the
variable t, and we can obtain two additional equations which are the convergence condi-
tions (4.3) for approximations P+∞, P−∞. These equations together with the condition
of potentiality (6.5) form a system of nonlinear algebraic equations to determine unknown
constants presented in local expansions.

Figure 6.1:

In Figure 6.1 the examples of HT determined by the Runge–Kutta method are shown
for different values of the parameter δ, namely: a) δ = 0.05; b) δ = 0.1; c) δ = 0.2;
d) δ = 0.4, where the initial values determined from the algebraic equations are used.
Figure 6.2 presents a comparison of the HT, obtained by the Runge–Kutta method (line
a) and the QPA (6.6) (i.e. P−∞(line b) and P+∞(line c)) for δ = 0.01.

6.2 Equation of a parametrically excited damped pendulum

Let us use the same technique to investigate the behavior of pendulum with periodically
excited point of pendulum suspension [27]. This system is governed by the following
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Figure 6.2:

equation:
x′′ + δ x′ + (1 + f cosω t) sin x = 0, (6.7)

where x is an angle of deviation from the vertical line. We rewrite this equation (6.7) in
the form

y′′ + δ y′ − (1 + f cosω t) sin y = 0, (6.8)

after change y = x + π. This system possesses infinite number of saddle points
(2π n, 0) (n ∈ Z), therefore we will consider heteroclinic trajectory construction as crite-
rion of chaos onset. We make the same assumptions as for Duffing equation and obtain
the following:

∞
∫

0

(y′′ + δ y′ − (1 + f cosω t) sin y) y′dt =

= −
a2
1

2
+ cos (b0) − cos (a0) +

∞
∫

0

( δ y′ − f cosω t sin y) y′dt = 0.

∞
∫

0

( δ y′ − f cosω t sin y) y′dt =
(

A t + B t2 + C t3 + D t4 + E t5 + · · ·
)∣

∣

∞

0
,

where A = a1 (δa1 − f sin a0), B = a1 (2δa2 − fa1 cos a0)/2 + a2 (δa1 − f sin a0) , . . .
For analytic continuation we use the quasi-rational approximation:

A t + B t2 + C t3 + D t4 + E t5 + · · · →
α1t + α2t

2

1 + β1t + β2t2
, (6.9)

where α1 = A, α2=(–2ABC+DA2 + B3)/(B2–AC ), β1=(DA–BC )/(B2–AC ),
β2=(BD–C2)/(AC–B2).

Thus we have:

−
a2
1

2
+ cos (b0) − cos (a0) +

α2

β2
= 0. (6.10)
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To simplify the problem we accept b0 = 0. Additionally we continue the Taylor series
of solution in quasi-rational approximation:

y = a0 + a1t + a2t
2 + a3t

3 + . . . → e−t α0 + α1e
t + α2e

2t

1 + β2e2t
. (6.11)

The following two algebraic equations are obtained from existence condition for (76)
and (78):

2CBD − C3 − D2A + EAC − EB2 = 0, (6.12)

6a1a2 − 72a2a3 + 42a2
1 − 30a1a3 + 3a0a1 − 18a0a3 + 36a4a0+

+72a4a1 + 72a4a2 − 72a2
3 − 3a2a0 − 6a2

2 = 0.
(6.13)

Figure 6.3: Dependences between parameters corresponding to HT creation.

Equations (6.10), (79), (80) form the system of nonlinear algebraic equations to de-
termine parameters of (6.8) and a0, a1 while ω is fixed. Figure 6.3 demonstrates the
dependences between parameters obtained from constructed system.

At values of force amplitude f less then 0.2, the instability domain is observed only
in vicinity of heteroclinic trajectory but at rising of f the domain enlarges as well.

Figure 6.4 demonstrates the results of manifolds construction for the system (6.8) for
δ = 0.001 and ω = 1. Figure 6.5 presents the same construction for δ = 0.001 and ω = 2.

Analytic results obtained above by proposed approach are f = 0.00243 (ω = 1)
and f = 0.0038 (ω = 2). So, comparing the obtained analytical results with the phase
portraits we can observe a good accuracy of the analytical results and efficiency of the
proposed approach.

Similar equations with parametric periodic excitation can be obtained in a problem
of the elastic oscillations absorption by using the snap-through truss as absorber. It was
shown that the snap-through truss can be used for effective absorption of longitudinal
oscillations of some elastic solid [28]. In this case a big part of the energy of elastic
oscillations is transferred to the truss, which has a capacity to jump. But it was shown
too [29] that the chaotic behavior, which is not appropriate for this absorption, can
appear in this system.

7 The One-degree-of-freedom Weakly Forced Oscillator with Nonlinear Dis-

sipation Forces

Mechanical system with a small periodic external excitation, nonlinear dissipation forces
and the Duffing type stiffness is governed by the following second order differential equa-



402 Yu.V. MIKHLIN, K.V. AVRAMOV AND G.V. RUDNYEVA

Figure 6.4: Phase portrait of (6.8) in the vicinity of saddle point (0, 0) for ω = 1.

Figure 6.5: Phase portrait of (2.15) in the vicinity of saddle point (0, 0) for ω = 2.
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tion:

y′′ − y + y3 = f cos (ωt + ϕ) − θ (y′ − ν∗) , (7.1)

where θ (y′ − ν∗) = T0sign (y′ − ν∗)− α (y′ − ν∗) + β (y′ − ν∗)3 is the nonlinear dissipa-
tion characteristic.

To construct a homoclinic trajectory we need to know the initial point (a0, 0), the
phase φ corresponding to a moment t= 0, and the relation of the system parameters ω,
fand θ corresponding to HT appearing. Thus we should construct the algebraic system
to determine the unknown values.

Let us make some assumption like for the previous systems. One assumes that
(y, y′) −→

t→±∞
(0, 0) . We will construct the analytical approximation for the sought solu-

tion. First, we can consider the Taylor expansion at zero of the solution y(t):

y = a0 + a2t
2 + a3t

3 + a4t
4 + a5t

5 + a6t
6 + . . . , (7.2)

where a0 is an arbitrary constant, and aj = aj (a0, ϕ, f, T0, α, β)
(

j = 2,∞
)

Then multiplying the equation (7.1) by y′(t) and integrating within the limits from
t = 0 to t = +∞ and from t = 0 to t = −∞, one has the following equations where several
integrals are calculated along the separatrix zero approximation (for θ = 0, f = 0),
y0 =

√
2/ch(t):

a2
0

2 −
a4
0

4 −
(

αν∗ − βν∗3 − T0

)

a0 −
2α
3 + 8β

35 + 4
√

2βν∗

5 + 2βν∗2+

+f sinϕ
+∞
∫

0

sin ω t y′
0 dt − f cosϕ

+∞
∫

0

cos ω t y′
0 dt = 0;

(7.3)

a2
0

2 −
a4
0

4 −
(

αν∗ − βν∗3
)

a0 + 2α
3 − 8β

35 + 4
√

2βν∗

5 − 2βν∗2 − f sinϕ
+∞
∫

0

sin ω t y′
0 dt−

−f cos ϕ
+∞
∫

0

cosω t y′
0 dt − T0

0
∫

−∞

sign (y′
0 − ν∗) y′

0 dt = 0.

(7.4)

Here
+∞
∫

0

sinω t y′
0dt =

0
∫

−∞

sin ω t y′
0dt = −

ω
√

2π

2
·

1

chωπ
2

;

+∞
∫

0

cosω t y′
0dt = −

0
∫

−∞

cosω t y′
0dt = −

√
2 + ω

√
2

(

−
π

2
th

ωπ

2
+ 4ω

∞
∑

k=0

1

ω2 + (1 + 4k)
2

)

.

The integral
0
∫

−∞

sign (y′
0 − ν∗) y′

0 dt is evaluated as a function of the parameter ν∗

computationally.

For the continuation of the local expansion at infinitum we rebuild it to QPA:

y = a0 + a2t
2 + a3t

3 + a4t
4 + a5t

5 + . . . → e−t α0 + α1e
t + α2e

2t

1 + β1et + β2e2t
. (7.5)
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So, the additional equation may be obtained by means of the convergence equation
(4.3) for the QPA (7.5).

72a5a1a3 + 72a5a2a1 + 12a5a1a0 − 144a4a2a3 − 72a4a1a3−
−60a4a2a1 − 72a5a3a0 − 72a4a

2
2 + 72a2a

2
3 + 72a5a

2
2+

+30a5a
2
1 + 30a3a

2
2 + 72a3

3 + 3/5a1a1a3 − 12a0a4a2+

+72a2
4a0 −

1

10
a0a

2
1 +

1

2
a0a

2
2 − 6a4a

2
1 −

11

10
a2a

2
1−

−
9

10
a2
1a3 +

9

10
a1a

2
2 +

1

3
a3
1 + 6a3

2 + 72a2
4a1 = 0.

(7.6)

Figure 7.1: Boundaries of the chaotic behavior regions in planes ω, f and δ, f , for ν
∗=0.5,

δ = 0.001 (solid line), δ = 0.005 (“point-dash” line), δ = 0.01 (dash line).

Figure 7.2: Haotic behavior boundaries in parameter spaces and the homoclinic trajectories
in phasespace while ν

∗=0.5, T0 = α = β=0.001.

Nonlinear algebraic equations (7.3), (7.4) and (7.6) form the system which allows to
determine unknown parameters a0, ϕ and the relation f = f(ω) while the dissipation
parameters T0, α, β are fixed.
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Figure 7.1 shows the dependences between the parameters of the system correspond-
ing to HT and the one obtained by the method proposed here.

Also the example of homoclinic trajectory and comparison of the trajectory evaluated
by Runge-Kutta method (when it is used the initial values, obtained from the obtained
above algebraic equations) and by means of QPA (7.5) are presented in Figure 7.2.

8 Concluding Remarks

The methodologies presented in this work is sufficiently general to be applicable to other
types of non-linear dynamical systems. The subharmonic Melnikov–Morozov theory is
utilized to describe a sequence of the saddle-node bifurcations in the process of transition
to the chaotic behavior in some mechanical systems. An appearance of heteroclinic
structures in mechanical systems under the almost-periodic excitation, is described too by
using the Melnikov functions. The multiple-scale method is used here successfully. Other
approach of detection of the chaotic behavior is a construction of homo- or heteroclinic
trajectories (HT) by using the Pade- and quasi-Pade approximants. It seems more exact
that the generally used Melnikov function approach. The presented approach realizes
the analytical continuation of the local expansions connected with these HT, to infinity.
The necessary condition of convergence of the PA or QPA, as well additional conditions
at infinity permit to solve corresponding boundary-value problem for the closed HT.
Checking of numerical calculations of the HT with initial amplitudes values obtained by
using the analytical approach, shows an acceptable precision of the proposed analytical
procedure.
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Abstract: In order to study the changing dynamics of solutions of a dynamic equa-
tion on time scales as the time scales change, we must determine appropriate topolo-
gies on the set of time scales and the set of solutions of dynamic equations. As a first
step, we prove a natural characterization of the Fell topology on the space of time
scales.
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1 Introduction

Dynamic equations on times scales were introduced by S. Hilger in [10] in 1988. A
thorough introduction is contained in [2]. A time scale is a nonempty closed subset of
R. Hilger’s ∆-derivative is defined for a real-valued function f whose domain is a time
scale T and is denoted by f∆(t) at any t ∈ T, where t < sup T .

By design, f∆(t) mimics the standard right-hand derivative f ′(t) when there ex-
ists a strictly decreasing sequence convergent to t in T and a scaled difference operator
otherwise. In particular, f∆(t) = f ′(t) on R and f∆(t) = ∆f(t) on Z. While the ∆-
derivative is a “forwards” operator, an analogous “backwards” operator exists called the
∇-derivative.

Generalizing differential and difference equations are dynamic equations, which in-
volve ∆-derivatives (or ∇-derivatives, etc.). Given a dynamic equation, say the initial
value problem

x∆ = f(t, x), x(t0) = x0, (1.1)

the solution inherently depends on the time scale. Broadly, we would like to examine
how the solution of (1.1) depends on the time scale that is its domain.

∗ Corresponding author: oberstevorth@marshall.edu
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1.1 An example

The following illustrative example has been considered in [4], [8], [12], and [14]. Consider
the initial value problem:

x∆ = 4x
(

3
4 − x

)

, x(0) = x0.

Over the eulerian time scales µZ+ for 0 < µ ≤ 1, the solution is found by iterating

Lµ(x) = 4µx
(

3µ+1
4µ − x

)

.

starting from x(0) = x0. When µ = 1, the difference equation is solved by iteration of

L1(x) = 4x (1 − x)

over Z+. On the other hand, as µ → 0, the solutions appear to tend towards the solution
of the logistic differential equation over R+.

The dynamics of the quadratic polynomial Lµ is easily understood: Lµ is topologically
conjugate to

Qc(x) = x2 + c, where c =
1

4
(1 − 9µ2).

Every value of µ ∈ (0, 1] corresponds exactly to one value of c ∈
[

−2, 1/4
)

, with µ = 1
corresponding to c = −2 and c → 1/4 as µ → 0.

Note that the real interval
[

−2, 1/4
]

is the real part of the Mandelbrot set for the
family Qc. Hence, passing through the time scales µZ+—from a difference equation when
µ = 1 towards a differential equation as µ → 0—all of the interesting dynamics of real
quadratic polynomials, including all of their bifurcations, are displayed! (Of course, the
issue of µZ+ converging to R+ must be dealt with also.)

1.2 The goal

In the example of subsection 1.1, we have realized the domain of the solutions on eulerian
time scales as a parameter of a family of dynamical systems. This is a simple case. We
do not know what happens when non-eulerian time scales are used in this example. Also,
we have not dealt with an equation that has non-unique solutions.

As indicated in [14], we propose the following project. For any given initial value
problem, treat the time scales as a parameter. Let A denote the set of all time scales
and let B denote the set of all solutions of the initial value problem on all possible time
scales. Consider the canonical projection:

B




y

π

A

(1.2)

That is, an element of B, a solution f : T → R, projects to its domain, T. What can
be said about this projection? Hopefully, this approach will help explain the changes in
dynamics of solutions caused by changes in time scales and make for better modeling of
applications.

In Section 2, we examine the Fell topology on the space of time scales. We prove
a recent conjecture in [14] giving a natural characterization of convergence in the Fell
topology.
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Section 3 considers the compatible topology on the space of partial mappings, i.e.,
continuous function on time scales.

The first natural example, that of equations with unique solutions, is treated in
Section 3.3. Of course, the projection is a homeomorphism onto its image in this case.

2 Convergence of Sets in Terms of Convergence of Their Elements

A hyperspace is a set of closed subsets of a topological space X . The set of all closed
subsets of X is denoted CL(X). See [11] for an introduction. For example, CL(R) is the
set of all time scales.

Hausdorff (for metrizable X), Vietoris, and Fell defined topologies on hyperspaces in
[9], [15], and [6], respectively. These are all equivalent on a compact metrizable space.
However, the Vietoris and Fell topologies are not metrizable on CL(R).

2.1 The Fell topology on CL(X)

We set the following notation that will assist in defining the Fell topology on CL(X).
For any E ⊂ X , let

E− = {A ∈ CL(X)|A ∩ E 6= ∅}

and

E+ = {A ∈ CL(X)|A ⊂ E}

= {A ∈ CL(X)|A ∩ (X − E) = ∅}.

We say that every A ∈ E− hits E and every A ∈ E+ misses X − E; E− and E+ are
called hit and miss sets, respectively. Note that E+ ⊂ E− for every E. Also, we call a
subset of X cocompact if its complement is compact.

The Fell, as well as the Vietoris, topologies are defined by hit and miss sets; these
topologies are called hit-and-miss topologies. (In fact, the Hausdorf metric topology is
also a hit-and-miss topology. See [13].) The Fell topology, denoted by τ(F ), is generated
by the hit sets U− for all open subsets U of X and the miss sets V + for all cocompact
subsets V of X . The Vietoris topology, denoted by τ(V ), is similarly generated except
that the V ’s need only be open. (If X is Hausdorff, then the Vietoris topology is finer
than the Fell topology.)

Remark 2.1 By convergence in CL(X), we will mean convergence with respect to
the Fell topology on CL(X) unless otherwise indicated.

2.2 Convergence through a sequence in CL(X)

In [14], we defined another kind of convergence. (This was also discussed in [12] and it
inspired [3] and [4].)

Let {Tn} be a sequence in CL(X) and let t ∈ X . t is called a sequential limit point

of the sequence {Tn} if there exists a sequence {tn} such that tn ∈ Tn for all n ∈ N

and tn converges to t in X . Analogously, t is called a subsequential limit point of the
sequence {Tn} if t is a sequential limit point of a subsequence {Tni

}. We denote the set
of all sequential limit points of {Tn} by T and the set of all subsequential limit points of
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{Tn} by T′. We say that {tn} converges to a sequential limit point t through the Tn’s.

Similarly, {tni
} converges to a subsequential limit point t through the Tni

’s.

It is always the case that T ⊂ T′. Two obvious questions are whether T is in CL(X)
and whether T is the limit of the sequence Tn.

Lemma 2.1 If X is metrizable, then T is closed in X.

Proof Choose a metric d on X . Suppose that a sequence {si} in T converges to t in
X . We wish to show that t ∈ T.

Since the sequence {si} converges to t, for every n ∈ N, there exists a natural number
Nn such that

d(si, t) <
1

2n
(2.1)

whenever i ≥ Nn.
Since, for each i ∈ N, si ∈ T, there exist sequences {ti,j} converging to si through the

Tj ’s. Set M0 = 1. For all i ∈ N, there exists a natural number Mi such that Mi > Mi−1

and

d(ti,j , si) <
1

2i
(2.2)

whenever j ≥ Mi.
We wish to construct a sequence {tj} converging to t through the Tj ’s. For each i,

for Mi−1 ≤ j < Mi, set tj = ti,j .
Take an arbitrary ε > 0. When i > 1/ε and i ≥ Nn, by (2.2) and (2.1),

d(tj , t) ≤ d(tj , si) + d(si, t)

<
1

2i
+

1

2n
< ε.

Therefore, the sequence {tj} converges to t through the Tj ’s and t ∈ T. 2

Remark 2.2 Therefore, in the setting of a metric space X , the sequential limit set of
a sequence in CL(X) is either empty or in CL(X). For example, the sequence of singleton
sets {{n}} in CL(R) has empty sequential limit set and ∅ /∈ CL(R) by definition.

2.3 A characterization of the Fell topology on CL(X)

In [14], it was conjectured that a sequence is convergent in CL(R) if and only if the
sequential and subsequential limit sets of the sequence are equal. We prove this in the
more general setting of a metric space X .

Theorem 2.1 Let X be metrizable. Let {Tn} be a sequence in CL(X). {Tn} con-

verges in CL(X) if and only if T = T′ 6= ∅. Moreover, in this situation, {Tn} converges

to T.

Proof Choose a metric d on X . First, let us suppose that T = T′ 6= ∅. We consider
two cases of subbasic open sets containing T in order to prove that {Tn} converges to T.

Case 1: Let U ⊂ X be open such that T ∈ U−. Choose t ∈ T ∩ U and ε > 0
sufficiently small such that

Bε(t) = { b ∈ X | d(b, t) < ε } ⊂ U.
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Since t ∈ T is a sequential limit point, there exists a sequence {tn} that converges to t
through the Tn’s. Therefore, there exists N such that tn ∈ Bε(t) ⊂ U for all n ≥ N .
Hence, Tn ∩ U 6= ∅ and Tn ∈ U− for all n ≥ N .

Case 2: Let K ⊂ X be compact such that V = X − K and T ∈ V +. Assume that
there is no N such that Tn ∈ V + for all n ≥ N . So there exists a subsequence {Tni

} such
that Tni

/∈ V +. Therefore, for each i, there exists ti ∈ Tni
∩ K. If the set {ti} is finite,

then {ti} has a constant subsequence {t} for some t ∈ K. Alternatively, the infinite set
{ti} has a limit point t in the compact set K. In either case, t ∈ T′, but t /∈ T. This
contradicts the fact that T = T′.

Therefore, T = T′ 6= ∅ implies that {Tn} converges to T, which is in CL(X) by
Lemma 2.1.

Conversely, let us suppose that {Tn} converges to S in CL(X). We know that S 6= ∅
since S ∈ CL(X). We wish to show that S ⊂ T ⊂ T′ ⊂ S. We know that T ⊂ T′. It
remains to show that S ⊂ T and T′ ⊂ S.

First, we choose s ∈ S. For every m ∈ N, let

Um = B1/m(s) =

{

u ∈ X

∣

∣

∣

∣

d(u, s) <
1

m

}

.

For every m, S ∈ U−
m since s ∈ S∩Um. Since {Tn} converges to S, for every m, there exists

an integer Nm such that Tn ∈ U−
m whenever n ≥ Nm. If necessary, adjust the sequence

{Nm} to be increasing. For every m and every integer n such that Nm ≤ n < Nm+1,
choose tn ∈ Tn ∩ Um. This yields a sequence {tn} that converges to s through the Tn’s.
Therefore, S ⊂ T.

Next, we choose t ∈ T′. Thus, there exists a sequence tni
that converges to t through

the Tni
’s. Assume that t /∈ S. Choose a cocompact V such that S ⊂ V and choose ε > 0

such that
Bε(t) ∩ V = { u ∈ X |d(u, t) < ε } ∩ V = ∅.

Since {Tn} converges to S, there exists N such that Tn ∈ V + whenever n ≥ N . For
every n ≥ N and for every t′ ∈ Tn,

d(t′, t) ≥ ε > 0.

This contradicts that {tni
} converges to t through the Tni

’s. Therefore, T′ ⊂ S. 2

Remark 2.3 In particular, Theorem 2.1 characterizes convergence in CL(R), the
space of all time scales.

2.4 Examples

Example 2.1 The sequence of singleton sets {{n}} does not converge since its se-
quential limit set is empty. While we could say the sequence converges to the empty set,
we do not include the empty set in CL(X). Similarly, the sequence of intervals {[n, n+1]}
fails to converge.

Example 2.2 The sequence of intervals {[−n, n]} converges to its sequential limit set
R. This fails to converge in the Hausdorff topology since the distance between {[−n, n]}
and R is bounded away from 0. (See [14].) How about in the Vietoris topology?

Let us see if the proof of Theorem 2.1 holds for {[−n, n]} in the Vietoris topology
rather than the Fell topology. That is, we allow V to just be open rather than cocompact.
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The sequential limit set is R. If R ∈ V +, then V = R. But then {[−n, n]} ∈ V + for
every n and the convergence holds in the Vietoris topology.

Example 2.3 The sequence {Z + 1
n} converges to its sequential limit set Z. It also

converges in the Hausdorff topology, but not in the Vietoris topology. Here the proof
would break down for

V =

∞
⋃

k=1

(

k −
1

k
, k +

1

k

)

,

which is not cocompact. (See [14].)

Example 2.4 The sequence 1
nZ+ converges to its sequential limit set R+.

2.5 Properties of the Fell topology on CL(X)

Many properties of the Fell topology on CL(X) for a metrizable space X may be found
in [1], wherein references to primary sources can be found.

The Fell topology on the one-point compactification of CL(X)—extended to include
the empty set—is compact Hausdorff; we denote this by CL(X). The Fell topology on
CL(X) is locally compact Hausdorff. For example, this implies that the Fell topology on
CL(X) is completely regular.

Since CL(X) is compact, every sequence {Tn} in CL(X) or CL(X) must have a
convergent subsequence. So the subsequential limit set in CL(X) is never empty, but
may be {∅}.

Giving a subset S ⊂ CL(X), the induced topology, the Hausdorff, Vietoris, and Fell
topologies always agree if X is a compact metric space. So, when considering uniformly
bounded time scales, we can revert to Hausdorff metric.

3 The Topology on The Solution Spaces

Recall that for Hausdorff spaces X and Y , a subbasis for the compact-open topology on
the set, C(X, Y ), of continuous functions from X to Y is given by

S(K, U) = {f ∈ C(X, Y ) | K ⊂ X is compact, U is open in Y , and f(K) ⊂ U}.

If Y is a metric space, this is the topology of compact convergence, i.e., sequences
converge if and only if they converge uniformly on compact subsets. If X is compact and
Y is a metric space, this is the topology of uniform convergence.

3.1 The space of continuous functions on time scales

Since we are interested in function spaces over variable domains, we must unite the
standard function spaces.

For a closed subset K of X , a function f : K → Y can be thought of as a partial

function from X to Y —the domain of definition is K rather than X . By a partial

mapping, we will mean a continuous partial function. (See [7].) The set of all partial
mappings from X to Y is

CF (X, Y ) = ∪{C(K, Y ) |K ∈ CL(X) } .
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The subscript “F” is a reminder that we will be using the Fell topology to build a
compatible topology on this set. E.g., CF (R, R) is the set of all continuous real-valued
functions on time scales.

Suppose that X and Y are metric spaces. So X × Y is metrizable. We wish to give
a topology on CF (X, Y ) that is consistent with the compact-open topology on C(X, Y ).

Consider the function Gr : CF (X, Y ) → CL(X × Y ) that sends each partial mapping
to its graph. Since Gr is injective, we can pull back the Fell topology on CL(X × Y )
to give a topology on CF (X, Y ): S is open in CF (X, Y ) if and only if Gr(S) is open in
Gr(CF (X, Y )) as a subspace of CL(X × Y ).

Following [7], Theorem 3.1 follows from the facts that projection from X × Y to X
is continuous and induces a continuous mapping from CL(X × Y ) to CL(X).

Theorem 3.1 The canonical projection π : CF (X, Y ) → CL(X) is continuous.

3.2 The case of unique solutions

Recall the goal proposed in subsection 1.2. We examine the case of a dynamic equation
whose solutions are always unique (for example, x∆ = 0).

Let S denote the set of all solutions of a given initial value problem over all possible
time scales. Consider the restriction of the projection π:

πS : S → CL(R).

That is, an element of S, a solution f : T → R of the initial value problem, projects
to its domain, T. Since all solutions are unique on their domains, πS is a bijection onto
its range. The construction of the topology on CF (X, Y ) now shows the following:

Corollary 3.1 πS is a homeomorphism onto its range.

3.3 Open problem: the case of non-unique solutions

In the non-unique case, the projection πS may be far more interesting. Hopefully, the
topology will tell us something about the dynamics. A question to whet one’s appetite:
can there be monodromy ? Can we lift a loop with a base point in the space of time
scales so that we start and end at different solutions?

Acknowledgments

Many thanks to Bonita Lawrence, who listened to my discourse on this subject and made
important suggestions concerning Lemma 2.1.

Independent of this paper, Esty and Hilger have concluded, in [5], that the Fell topol-
ogy is best suited for the space of time scales. They give an interesting characterization
of the Fell topology that extends the topologies induced by the Hausdorff metric on com-
pact sets. The present paper seeks to extend the same topologies from the viewpoint
of the Vietoris topology as a hit-and-miss topology. This seems to be somewhat more
natural and dynamic. Probably that is because of the similarity of the hit-and-miss
constructions of the Vietoris and Fell topologies; it is far less natural to think of the
Hausdorff topology as a hit-and-miss topology.
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1 Introduction

Because of the rapid development of chaos–based cryptography in secure communication,
chaotic synchronization has become an active research area. Many results on all kinds of
chaotic synchronization and its applications have been systematically summarized in [1].
Synchronization is ubiquitous in many natural and engineering systems. Synchroniza-
tion literally means two identical, near-identical or even different chaotic systems tend to
move at the same state, velocity, acceleration and phase, if one of them is coupled or both
coupled with each other. The relevant research on synchronization can be dated back
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to Huygens who investigated frequency locking between two clocks, which is perhaps
the first synchronization phenomenon observed. Chaotic synchronization has become
an active research in nonlinear dynamics [2, 3] since the early 1990s when researchers
realized that chaotic dynamical systems can be synchronized and recognized its potential
applications to the secure communication. In addition to the classical complete synchro-
nization [3, 4], there are some other new types of synchronization, such as Pecora–Carroll
synchronization [5], phase synchronization [6], frequency synchronization [7], anticipat-
ing synchronization [8, 9], quasiperiodic synchronization [10], lag synchronization [11],
inverse synchronization [12] and generalized synchronization [13].

Synchronization of chaotic dynamical systems has received a lot of attention in recent
years. The potential application of chaotic synchronization to signal masking and private
communication [14, 15, 16, 17, 18, 19] is very interesting. Chaos in nonlinear dynamical
system is a well–established discipline in physics, chemistry, power, electronics, biology,
ecology, economics, etc in the meantime. Chaotic behavior can be found in systems
described by ordinary differential equations(ODE), discrete dynamical systems and delay
differential equations(DDE), etc [20]. In other words, chaos is a multidisciplinary research
field and ubiquitous phenomenon. The main property of chaotic dynamics is its critical
sensitivity to initial conditions in the systems’ evolution. For many years this property
made chaos unpredictable, since the sensitivity to initial conditions reduces the long-
terme predictability of such chaotic dynamical systems. But the recent investigations
have shown, in fact, this property of chaotic dynamical systems could practically be very
beneficial [21].

Time delay does also widely exist in the natural world and the human society. Finite
signal transmission, switching speeds and memory effects make it ubiquitous in nature,
technology and society [8]. Therefore the study of the effect of time delay on the systems’
dynamics is of considerable practical importance. Time–delayed dynamical systems are
also interesting since they have infinite-dimensional state spaces and the number of their
positive Lyapunov exponents can be made arbitrarily large because of the existence of
the time delay. From this point of view, such systems are especially appealing for secure
communication scheme [1].

The objective of this paper is to apply the Generalized Hamiltonian forms and ob-
server approach developed in [22] to the synchronization of some chaotic dynamical sys-
tems. Besides the observer perspective on synchronization, some works, such as the con-
cept of synchronization is revisited in the light of the classical notion of observers from
(non)linear control theory, are obtained in [23, 24]. As described in [25] this method
has several advantages over the exiting synchronization methods: (1) it enables syn-
chronization achieved in a systematic way; (2) it can be successfully applied to several
well–known chaotic or hyperchaotic oscillators; (3) it does not require the computation
of any Lyapunov exponent; (4) it does not require initial conditions belonging to the
same basin of attraction. In Section 2, the Generalized Hamiltonian forms and observer
approach [22, 25] are first introduced. Then the synchronization of some kinds of chaotic
dynamical systems such as Lü system, Van der Pol-Duffing system, Genesio system and
SMIB power system, which without time delay, employed by the Generalized Hamilto-
nian forms and observer approach is considered in Section 3. That of the delayed chaotic
dynamical systems, i.e., SMIB power system and Van der Pol–Duffing system, is also
investigated in Section 4. At last, the conclusion and discussion are presented.
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2 The design in Generalized Hamiltonian system

Consider a smooth nonlinear system given in the following “Generalized Hamiltonian”
canonical form,

ẋ = J (x)
∂H

∂x
+ S(x)

∂H

∂x
+ F(x), x ∈ Rn, (2.1)

where H(x) denotes a smooth energy function which is globally positive definite in Rn.
The column gradient vector of H(x), denoted by ∂H/∂x, is assumed to exist everywhere.
We usually use quadratic energy function H(x) = 1

2xTMx with M being a, constant,
symmetric positive definite matrix. So ∂H/∂x = Mx. The square matrices J (x) and
S(x) satisfy for all x ∈ Rn, the properties: J (x) + J T (x) = 0, and S(x) = ST (x). The
vector field J (x)∂H/∂x exhibits the conservative part of the system and it is also referred
to as the workless part, or workless forces of the system; and S(x) depicts the working
or nonconservative part of the system. For certain systems, S(x) is negative definite
or negative semi–definite. If, on the other hand, S(x) is positive definite, positive semi–
definite, or indefinite, it clearly represents, respectively, the global, semi–global, and local
destabilizing part of the system. And where F(x) is a locally destabilizing vector field.
Consider now the following dynamical system

ẋ = f(x, t). (2.2)

It can be rewritten as

ẋ = A
∂H

∂x
+ F(x, t). (2.3)

Since A = A−AT

2 + A+AT

2 , we have

ẋ =
A − AT

2

∂H

∂x
+

A + AT

2

∂H

∂x
+ F(x, t), (2.4)

Let J (x) = A−AT

2 ,S(x) = A+AT

2 . The equation (2.2) can be written in the Generalized
Hamiltonian canonical form (2.1). This form is not only used for autonomous systems,
but also for non-autonomous systems and delay differential equations.

In the context of observer design, we consider a special class of Generalized Hamilto-
nian systems with destabilizing vector field and liner output map, y(t), given by











ẋ = J (y)
∂H

∂x
+ (I + S)

∂H

∂x
+ F(y), x ∈ Rn,

y = C
∂H

∂x
, y ∈ Rm,

(2.5)

where S is a constant symmetric matrix, the matrix I is a constant skew symmetric
matrix. The vector variable y(t) is referred to as the system output. The matrix C is a
constant matrix.

We denote the estimate of the state vector x by ξ, and consider the Hamiltonian
energy function H(ξ) to be the particularization of H in terms of ξ. Similarly, we denote
by η the estimated output, computed in terms of the estimated state ξ. The gradient
vector ∂H/∂ξ is, naturally, of the formMξ with M being a constant symmetric positive
definite matrix.
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A dynamic nonlinear state observer for (2.5) is obtained as











ξ̇ = J (y)
∂H

∂ξ
+ (I + S)

∂H

∂ξ
+ F(y) + K(y − η), ξ ∈ Rn,

η = C
∂H

∂ξ
, η ∈ Rm,

(2.6)

where K is a constant matrix, known as the observer gain. The state estimation error,
defined as e = x− ξ and the output estimation error, defined as ey = y− η, are governed
by











ė = J (y)
∂H

∂e
+ (I + S − KC)

∂H

∂e
, e ∈ Rn,

ey = C
∂H

∂e
, ey ∈ Rm,

(2.7)

where the vector, ∂H/∂e actually stands, with some abuse of notation, for the gradient
vector of energy function, ∂H/∂e = ∂H/∂x− ∂H/∂ξ = Me. When needed, set I + S =
W .

Definition 2.1 (Synchronization) [1] We say that the receiver dynamics (2.6) syn-
chronizes with the transmitter dynamics (2.5), if

lim
t→∞

‖x(t) − ξ(t)‖ = 0, (2.8)

no matter which initial conditions x(0) and ξ(0) have.

Theorem 2.1 (Stability of the estimation/synchronization error [22])The state x of

the nonlinear system (2.5) can be globally exponentially asymptotically estimated by the

state ξ of the nonlinear observer (2.6) if and only if there exists a constant matrix K
such that the symmetric matrix

[W − KC] + [W − KC]T = [S − KC] + [S − KC]T = 2[S −
1

2
(KC + CT KT )]

is negative definite.

In the latter synchronized programs, we mainly use Theorem 2.1. Most time we only
consider the matrix S, but not the matrix I + S.

And a sufficient but not necessary condition based on the observability condition for
asymptotical stability of the synchronization was obtained.

Theorem 2.2 [22] The state x(t) of the nonlinear system (2.5) can be globally expo-

nentially asymptotically estimated by the state ξ of the nonlinear observer (2.6), if the

pair of matrices (C,W) or the pair (C,S), is either observable or, at least, detectable.

3 Synchronization of some chaotic systems

3.1 Lü system

Consider Lü system [26]






ẋ1 = a(x2 − x1),
ẋ2 = −x1x3 + cx2,
ẋ3 = x1x2 − bx3.

(3.1)
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The system (3.1) can be easily written in the following Generalized Hamiltonian form,





ẋ1

ẋ2

ẋ3



 =









0
a

2
0

−
a

2
0 −x1

0 x1 0









∂H

∂x
+









−a
a

2
0

a

2
c 0

0 0 −b









∂H

∂x
, (3.2)

where H(x) is the Hamiltonian energy scalar function

H(x) =
1

2
[x2

1 + x2
2 + x2

3], (3.3)

we choose y = [x1, x2]
T =

(

1 0 0
0 1 0

)

∂H
∂x as the output signal to be transmitted. The

matrices C, S, I, and J (y) are given by

C =

(

1 0 0
0 1 0

)

,S =









−a
a

2
0

a

2
c 0

0 0 −b









, I =









0
a

2
0

−
a

2
0 0

0 0 0









,J (y) =





0 0 0
0 0 −x1

0 x1 0



 .

Using Theorem 2.2 [22], the pair (C,W) or (C,S) already constitutes a detectable, but
not observable pair for the chaotic parameters a = 36, b = 3, c = 20. Because the output
contains two states, namely, x1 and x2, so the gain parameters should be chosen as K1,
. . . ,K6, this results in the receiver





ξ̇1

ξ̇2

ξ̇3



 =









0
a

2
0

−
a

2
0 −x1

0 x1 0









∂H

∂ξ
+









−a
a

2
0

a

2
c 0

0 0 −b









∂H

∂ξ
+





K1 K2

K3 K4

K5 K6



 (y − η),

(3.4)

where η = C ∂H
∂ξ . One may now choose the gain vector K =

(

K1 K3 K5

K2 K4 K6

)T

. The

synchronization error, corresponding to this receiver, is





ė1

ė2

ė3



 =





0 a
2 − K2

2 + K3

2
K5

2

−a
2 + K2

2 − K3

2 0 −x1 + K6

2

−K5

2 x1 −
K6

2 0





∂H

∂e

+





−a − K1
a
2 − K2

2 − K3

2 −K5

2
a
2 − K2

2 − K3

2 c − K4 −K6

2

−K5

2 −K6

2 −b





∂H

∂e
. (3.5)

From Theorem 2.1, the following expression is obtained

2[S −
1

2
(KC + CT KT )] =





−2a − 2K1 −K2 − K3 + a −K5

−K2 − K3 + a −2K4 + 2c −K6

−K5 −K6 −2b



 ,

we may prescribe K1, K2, K3, K4, K5 and K6 in order to ensure asymptotic stability of
zero of the synchronization error. By applying the Sylvester’s Criterion–which provides
a test for definite negativity of a matrix–thus, this is achieved by setting
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K1 > −a,
(K2 + K3 − a)2 < 4(K1 + a)(K4 − c),
(K1 + a)[4b(K4 − c) − K2

6 ] − (K2 + K3 − a)[b(K2 + K3 − a) − K5K6]
−K5(K4 − c) > 0.

Figure 3.1 shows the performance of the designed receiver with the following param-
eter values and for the constant gains a = 36, b = 3, c = 20, K1 = 0, K2 = 3, K3 =
3, K4 = 30, K5 = 0, K6 = 2. From Figure 3.1, it can be easily known that after a very
short time, Lü system is synchronized.

3.2 Van der Pol–Duffing system

The initial mathematical model is Van der Pol–Duffing system with external excitation
given by

ẍ + ω2
0x − (α − γx2)ẋ + βx3 = k cos(Ωt). (3.6)

By setting x1 = x, x2 = ẋ1, we can write the system (14) in the following form

{

ẋ1 = x2,
ẋ2 = (α − γx2

1)x2 − ω2
0x1 − βx3

1 + k cos(Ωt).
(3.7)

Taking as a Hamiltonian energy function the scalar function

H(x) =
1

2
[x2

1 + x2
2], (3.8)

we write the system in Generalized Hamiltonian canonical form as

(

ẋ1

ẋ2

)

=

(

0
1+ω2

0

2

−
1+ω2

0

2 0

)

∂H

∂x
+

(

0
1−ω2

0

2
1−ω2

0

2 α

)

∂H

∂x

+

(

0
−γx2

1x2 − βx3
1 + k cosΩt

)

. (3.9)

The destabilizing vector requires two signals for complete cancellation at the receiver,
namely, the variables, x1 and x2. The output is then chosen as the vector y = [x1, x2]

T .
The matrices C, S and I are given by

C =

(

1 0
0 1

)

, S =

(

0
1−ω2

0

2
1−ω2

0

2 α

)

, I =

(

0
1+ω2

0

2

−
1+ω2

0

2 0

)

,

the pair (C,S) is observable, and hence detectable. In order to achieve chaotic behavior,
we should choose suitable parameters. The receiver would then be designed as follows

(

ξ̇1

ξ̇2

)

=

(

0
1+ω2

0

2

−
1+ω2

0

2 0

)

∂H

∂ξ
+

(

0
1−ω2

0

2
1−ω2

0

2 α

)

∂H

∂ξ

+





0

−γx2
1x2 − βx3

1 + k cosΩt



+

(

K1 K2

K3 K4

)

(y − η), (3.10)
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Figure 3.1: The synchronization of the Lü systems (3.2) and (3.4) with the following parameter
values and for the constant gains a = 36, b = 3, c = 20, K1 = 0, K2 = 3, K3 = 3, K4 =
30, K5 = 0, K6 = 2 and the initial conditions x(0) = (0.01, 0.1, 1)T

, ξ(0) = (1, 0.5, 2)T .
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where η = C ∂H
∂ξ , the synchronization error dynamics is governed by

(

ė1

ė1

)

=

(

0 1
2 + 1

2ω2
0 + K3

2 − K2

2

− 1
2 − 1

2ω2
0 + K2

2 − K3

2 0

)

∂H

∂e

+

(

−K1
1
2 − 1

2ω2
0 − K2

2 − K3

2
1
2 − 1

2ω2
0 − K2

2 − K3

2 −K4 + α

)

∂H

∂e
, (3.11)

we could prescribe K1, K2, K3, and K4, in order to ensure asymptotic stability of zero
of the synchronization error. By applying the Sylvester’s Criterion , this is achieved by
setting
K1 > 0,
K4 > α + 1

4K1
(K2 + K3 + ω2

0 − 1)2.

Figure 3.2 shows the synchronization of the systems (3.9) and (3.10), the chosen

parameters were set as following[27], α = 1, γ = 1, ω2
0 = 1, β = 0.01, k = 5, Ω = 2.463,

with receiver parameter gains K1 = 1, K2 = 0, K3 = 0, K4 = 9.
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Figure 3.2: The synchronization of the van der Pol–Duffing systems (3.9) and (3.10) with the
following parameter values and for the constant gains α = 1, γ = 1, ω

2

0 = 1, β = 0.01, k = 5, Ω =
2.463, K1 = 1, K2 = 0, K3 = 0, K4 = 9 and the initial conditions x(0) = (0.1, 0.5)T

, ξ(0) =
(2, 0.1)T .
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3.3 Genesio system

Genesio system, proposed by Genesio and Tesi [28], is one of paradigms of chaos since
it captures many features of chaotic systems. It includes a simple square part and three
simple ordinary differential equations that depend on three negative parameters.

The dynamic equations of the system is given by







ẋ1 = x2,
ẋ2 = x3,
ẋ3 = ax1 + bx2 + cx3 + x2

1,
(3.12)

where x1, x2, x3 are state variables, indeed





ẋ1

ẋ2

ẋ3



 =





0 1
2 −a

2

− 1
2 0 1−b

2
a
2 − 1−b

2 0





∂H

∂x
+





0 1
2

a
2

1
2 0 1+b

2
a
2

1+b
2 c





∂H

∂x
+





0
0
x2

1



 , (3.13)

taking the Hamiltonian energy function

H(x) =
1

2
[x2

1 + x2
2 + x2

3], (3.14)

the destabilizing vector field and the lacking damping in x2 variable, call for y = [x1, x2]
T

to be used as the output of the transmitter. The matrices C,S are found to be

C =

(

1 0 0
0 1 0

)

,S =





0 1
2

a
2

1
2 0 1+b

2
a
2

1+b
2 c



 , I =





0 1
2 −a

2

− 1
2 0 1−b

2
a
2 − 1−b

2 0



 .

The pair (C,S) is observable, and hence detectable. The receiver would then be
designed as





ξ̇1

ξ̇2

ξ̇3



 =





0 1
2 −a

2

− 1
2 0 1−b

2
a
2 − 1−b

2 0





∂H

∂ξ
+





0 1
2

a
2

1
2 0 1+b

2
a
2

1+b
2 c





∂H

∂ξ

+





0
0
x2

1



+





K1 K2

K3 K4

K5 K6



 (y − η), (3.15)

where η = C ∂H
∂ξ .

The synchronization error evolves according to





ė1

ė2

ė3



 =





0 1
2 − K2

2 + K3

2 −a
2 + K5

2

− 1
2 + K2

2 − K3

2 0 1
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2 + K6

2
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2 − 1
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2 − K6

2 0
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∂e

+





−K1
1
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2 − K3

2
a
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2
1
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2 − K3

2 −K4
1
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2 − K6

2
a
2 − K5

2
1
2 + b

2 − K6

2 c





∂H

∂e
. (3.16)
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Figure 3.3: The synchronization of the Genesio systems (3.13) and (3.15) with the follow-
ing parameter values and for the constant gains a = −6, b = −2.92, c = −1.2, K1 =
2, K2 = 1, K3 = 1, K4 = 5, K5 = −6, K6 = −1.92 and the initial conditions x(0) =
(4, 0.1, 0.8)T , ξ(0) = (0.2, 1, 6)T .
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To guarantee asymptotic stability of zero of the error dynamics, we should choose
suitable K1, K2, K3, K4, K5, K6.By applying the Sylvester’s Criterion , this is achieved
by setting
K1 > 0,
(K2 + K3 − 1)2 < 4K1K4,
2K1[−4cK4 − (K6 − b − 1)2] + 2c(K2 + K3 − 1)2

+2(K5 − a)(K2 + K3 − 1)(K6 − b − 1) − 2K4(K5 − a)2 > 0.
Figure 3.3 shows the synchronization of the systems (3.13) and (3.15). The chosen

parameters were set, following [21], as a = −6, b = −2.92, c = −1.2, with receiver
parameter gains K1 = 2, K2 = 1, K3 = 1, K4 = 5, K5 = −6, K6 = −1.92.

3.4 SMIB power system

Consider SMIB power system [29], called swing equation






ẋ1 = x2,
ẋ2 = −cx2 − β sinx1 + f sin x3,
ẋ3 = ω.

(3.17)

Taking as a Hamiltonian energy function the scalar function

H(x) =
1

2
[x2

1 + x2
2 + x2

3], (3.18)

we write the system in Generalized Hamiltonian canonical form as




ẋ1

ẋ2

ẋ3



 =





0 1
2 0

− 1
2 0 0

0 0 0





∂H

∂x
+





0 1
2 0

1
2 −c 0
0 0 0





∂H

∂x
+





0
−β sin x1 + f sin x3

ω



 .(3.19)

The destabilizing vector field requires two signals for complete cancellation at the
receiver. Namely, the variables, x1 and x2. The output is then chosen as the vector
y = [y1, y2]

T = [x1, x3]
T , the matrices C, S and I are given by

C =

(

1 0 0
0 0 1

)

, S =





0 1
2 0

1
2 −c 0
0 0 0



 , I =





0 1
2 0

− 1
2 0 0

0 0 0



 .

The pair (C,S) is observable, and hence detectable, S is therefore of indefinite sign.
The receiver would then be designed as follows





ξ̇1

ξ̇2

ξ̇3



 =





0 1
2 0

− 1
2 0 0

0 0 0





∂H

∂ξ
+





0 1
2 0

1
2 −c 0
0 0 0





∂H

∂ξ

+





0
−β sin x1 + f sin x3

ω



+





K1 K2

K3 K4

K5 K6



 (y − η), (3.20)

where η = C ∂H
∂ξ , the synchronization error, corresponding to this receiver, is found to be





ė1

ė2

ė3



 =





0 K3+1
2

K5−K2

2

−K3+1
2 0 −K4

2
K2−K5

2
K4

2 0





∂H

∂e
+





−K1
1−K3

2 −K2+K5

2
1−K2

2 −c −K4

2

−K2+K5

2 −K4

2 −K6





∂H

∂e
,

(3.21)
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Figure 3.4: The synchronization of the SMIB power systems (3.19) and (3.20) with the
following parameter values and for the constant gains c = 1, β = 3, f = 5, ω = 1, K1 =
0.5, K2 = 1.5, K3 = 1, K4 = 0.1, K5 = −1.5, K6 = 0.75 and the initial conditions x(0) =
(1, 0.2, 3)T , ξ(0) = (0.2, 3, 0.1)T .
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we can easily know that x3 and ξ3 are synchronized with each other, so we only concern
the synchronization of other variables,this was achieved by setting
K1 > 0, (K3 − 1)2 < 4cK1,
K1(4cK6 − K2

4) + K4(K3 − 1)(K2 + K5) − K6(K3 − 1)2 − c(K2 + K5)
2 > 0

Figure 3.4 shows the performance of the designed receiver with the following param-
eter values for the system and for the constant gains: c = 1, β = 3, f = 5, ω = 1, K1 =
0.5, K2 = 1.5, K3 = 1, K4 = 0.1, K5 = −1.5, K6 = 0.75.

4 Synchronization of Time–Delay Chaotic Systems

Following [22], that the time–delay system, a mathematic description by a delay differ-
ential equation (DDE), which in its simplest form of a single fixed time–delay τ is given
by

ẋ = f(x, x(t − τ)), x ∈ Rn, (4.1)

can be written in the Generalized Hamiltonian canonical form,

ẋ = J
∂H

∂x
+ S(x)

∂H

∂x
+ F(x, x(t − τ)), x ∈ Rn. (4.2)

The properties of J ,S and F(x, x(t− τ)) as before in Section 2. The observer design
is also similar to (2.6). Now we use two examples to describe it.

4.1 Delayed Duffing–Van der Pol system

The system under consideration is a nonlinear oscillator governed by equation

{

ẋ1 = x2,
ẋ2 = −α(1 − x2

1)x2 + F cos(ωt) − βx3
1 + γx1(t − τ),

(4.3)

taking H(x) = 1
2 [x2

1 + x2
2] as the Hamiltonian energy function, we write the system in

Generalized Hamiltonian form as

(

ẋ1

ẋ2

)

=

(

0 1
2

− 1
2 0

)

∂H

∂x
+

(

0 1
2

1
2 −α

)

∂H

∂x

+

(

0
αx2

1x2 + F cos(ωt) − βx3
1 + γx1(t − τ)

)

. (4.4)

The destabilizing vector field requires for complete cancelation at the receiver, namely,
the variables x1 and x2. Then the output is chosen as y = [y1, y2]

T = [x1, x2]
T , the

matrices C, S and I are given by

C =

(

C1

C2

)

=

(

1 0
0 1

)

, S =

(

0 1
2

1
2 −α

)

, I =

(

0 1
2

− 1
2 0

)

.

The pair (C,S) is observable, and hence detectable. But we can observe that the
pair of matrices (C1,S) is also a detectable pair. An injection of the synchronization
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error e1 = x1 − ξ1 suffices to have an asymptotically stable trajectory convergence. The
receiver would then be designed, exploiting this last observation, as follows

(

ξ̇1

ξ̇2

)

=

(

0 1
2

− 1
2 0

)

∂H

∂ξ
+

(

0 1
2

1
2 −α

)

∂H

∂ξ

+

(

0
αx2

1x2 + F cos(ωt) − βx3
1 + γx1(t − τ)

)

+

(

K1

K2

)

(y − η),(4.5)

where η = C1
∂H
∂ξ corresponding to this receiver, we can obtain the synchronization error
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Figure 4.1: Delayed Duffing–Van der Pol system (4.4) and (4.5) with the following param-
eter values and for the constant gains α = 1.2, β = 0.75, F = 0.2, γ = 0.4, ω = 0.5, τ =
25, K1 = 5, K2 = 2.5. and the initial conditions x(0) = (0.1, 0.5)T , ξ(0) = (1, 0.2)T .

as
(

ė1

ė1

)

=

(

0 1
2 + K2

2

− 1
2 − K2

2 0

)

∂H

∂e
+

(

−K1
1
2 − K2

2
1
2 − K2

2 −α

)

∂H

∂e
. (4.6)

We could prescribe K1, and K2, in order to ensure asymptotic stability of zero of the
synchronization error. By applying the Sylvester’s Criterion, this is achieved by setting
K1 > 0, 2K1α > (K2 − 1)2.
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Figure 4.1 shows the synchronization of the systems (4.4) and (4.5), the chosen pa-
rameters are set as the following α = 1.2, β = 0.75, F = 0.2, γ = 0.4, ω = 0.5, τ = 25,
with receiver parameter gains K1 = 5, K2 = 2.5.

4.2 Delayed SMIB power system

Let’s also consider the classical SMIB power system (3.17) with a time–delay τ ,






ẋ1 = x2,
ẋ2 = −cx2 − β sin x1 + f sin x3 + ǫ sin(Rx1(t − τ)),
ẋ3 = ω,

(4.7)

taking as a Hamiltonian energy function the scalar function

H(x) =
1

2
[x2

1 + x2
2 + x2

3], (4.8)

we write the system in the Generalized Hamiltonian canonical form as




ẋ1

ẋ2

ẋ3



 =





0 1
2 0

− 1
2 0 0

0 0 0





∂H

∂x
+





0 1
2 0

1
2 −c 0
0 0 0





∂H

∂x

+





0
−β sin x1 + f sinx3 + ǫ sin(Rx1(t − τ))

ω



 . (4.9)

Following the analysis in Section 3.4, taking the variable y = [y1, y2]
T = [x1, x3]

T as
the output, then the matrices C, S and I are given by

C =

(

1 0 0
0 0 1

)

, S =





0 1
2 0

1
2 −c 0
0 0 0



 , I =





0 1
2 0

− 1
2 0 0

0 0 0



 ,

the receiver would then be designed as follows




ξ̇1

ξ̇2

ξ̇3



 =





0 1
2 0

− 1
2 0 0

0 0 0





∂H

∂ξ
+





0 1
2 0

1
2 −c 0
0 0 0





∂H

∂ξ
+





0
−β sin x1 + f sin x3 + ǫ sin(Rx1(t − τ))

ω



+





K1 K2

K3 K4

K5 K6



 (y − η), (4.10)

Figure 4.2 shows the performance of the designed receiver with the following param-
eter values of the system and the constant gains: c = 2, β = 6, f = 9, R = 50, ω = 1, ǫ =
10, τ = 0.6, K1 = 0.5, K2 = 1.5, K3 = 1, K4 = 0.1, K5 = −1.5, K6 = 0.75.

5 Conclusion

In this paper, we have considered the problem of synchronization of several famous chaotic
dynamical systems, including two types of synchronization which are respectively the dy-
namical systems with time–delay and that without any time–delay, from the perspective
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Figure 4.2: The synchronization of the SMIB power systems (4.9) and (4.10) with the
following parameter values and for the constant gains c = 1, β = 3, f = 5, ω = 1, K1 =
0.5, K2 = 1.5, K3 = 1, K4 = 0.1, K5 = −1.5, K6 = 0.75 and the initial conditions x(0) =
(1, 0.2 , 3)T , ξ(0) = (0.2, 3, 0.1)T .
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of Generalized Hamiltonian systems (developed by Sira–Ramı́rez and Cruz[22]. Several
chaotic dynamical systems, consisting of ones which are without any time–delay and that
with time–delay, are analyzed from this perspective and their synchronization were both
confirmed. The six figures show that the chaotic systems under consideration achieved
synchronization with their receivers immediately, respectively.

In the course of applying this method to the synchronization of some dynamical sys-
tems, we confront one problem: for some systems as we choose one variable as the output
signal, we can’t find suitable values of Ki, i = 1, 2, · · · , for the receiver to synchronize
with the master. In order to overcome such problem we add one or more output signals,
to increase the number of the constants Ki, i = 1, 2, · · · , and extend the flexibility of
the constants to be chosen, easily we obtain the synchronization. But a small problem
is that the computation may be a little more complex.

Acknowledgements

The authors acknowledge the helpful advices and suggestions of the reviewers and ap-
preciate the support of National Natural Science Foundation of China (NOs. 10702065
and 10472083).

References

[1] Boccalatti, S, Kurths, J, Osipov, G, Vallabares, D.L. and Zhou C.S. The sychronization of
chaotic systems. Phys. Rep. 366 (2003) 1–101.

[2] Pecora, L.M., Caorrol, T.L., Johnson, G.A., Mar, D.J. and Heagy, J.F. Fundamentals of
synchronization in chaotic system, concepts and application. Chaos 7 (1997) 520–543.

[3] Blekhman, I.I. Synchronization in science and technology. New York: ASME press, 1988.

[4] Blekhman, I.I., Landa, P.S. and Rosenblum, M.G. Synchronization and chaotization in
interacting dynamical system. Appl. Mech. Rev. 48 (1995) 733–752.

[5] Pecora, L.M. and Carroll, T.L. Synchronization in chaotic system. Phys. Rev. Lett. 64
(1990) 821–823.

[6] Rosenblum, M.G., Pikovsky, A.S. and Kurths, J. Phase synchronization of chaotic oscilla-
tors. Phys. Rev. Lett. 76 (1996) 1840–1847.

[7] Asisbchen, V.S., Silchenko, A.N. and Khovan, I.A. Synchronization of switching processes
in coupled Lorenz systems. Phys. Rev. E 57 (1998) 316–322.

[8] Voss, H. Anticipating chaotic synchronization. Phys. Rev. E 61 (2000) 5115–5119.

[9] Masoller, C. Anticipation in the synchronization of chaotic time-delay systems. Physica A

295 (2001) 301–304.

[10] Hohl, A., Gavrielides, A., Erneux, T., and Kovanis1, V. Quasiperiodic synchronization for
two delay-coupled semiconductor lasers. Phys. Rev. A 59 (2000) 27–28.

[11] Shahverdiev, E.M., Sivaprakasam, S. and Shore, K.A. Lag synchronization in time–delayed
systems. Physics Letters A 292 (2002) 320–324.

[12] Shahverdiev, E.M., Hashimovc, R.H., Nurieva, R.A., Hashimovaa, L.H., Huseynovaa, E.M.
and Shore, K.A. Inverse chaos synchronization in linearly and nonlinearly coupled systems
with multiple time–delays. Chaos, Solitons and Fractals 29 (2006) 838–844.

[13] Rulkov, V.S., Sushchik, M, Tsimring, L.S. and Abarbamel, H.D.I. Generalized synchro-
nization of chaos in directionally coupled chaotic system. Phys. Rev. E 51 (1995) 980–994.



432 L.J. PEI AND S. H. LIU

[14] Hasler, M. Synchronization of chaotic systems and transmission of information. Int. J.

Bifurcat. Chaos 8(4) (1998) 647–659.

[15] Tao Yang. Chaotic Communication Systems. Nova Biomedical Publishers, Inc., Huntington,
New York, 2001.

[16] Kennedy, M.P., Rovattiy, R. and Setti, G. Chaotic Electronics in Telecommunications. CRC
Press LLC, Boca Raton, Florida, 2000.

[17] Cruz–Hernández, C. and Romero–Haros, N. Communication via synchronized time–delay
Chua’s Circuit. Communications in Nonlinear Science and Numerical Simulation 13(3)
(2008) 645–659.

[18] Aguilar-Bustos, A.Y., Cruz-Hernández, C., López-Gutiérrez, R.M. and Posadas-Castillo,
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Abstract: We address the problem of real-time estimation of the excitation current
into a cell. The membrane voltages can be measured experimentally, even in vivo.
On the other hand, a direct measurement of the current into a cell interferes with
the voltage activity. We propose a method to estimate the current input into a cell
using the measured voltage and an observer based residual generator scheme. Our
approach can be applied to all cell models of the Hodgkin-Huxley type.
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1 Introduction

The paper addresses a measurement problem from cell biology. In particular, the po-
tential on the membrane of a cell such as a neuron can be recorded directly via voltage
measurement. The electrophysiological behaviour of the cell, especially the membrane
voltage dynamics, is influenced by ionic channels which allow ions to move through the
cell’s membrane.

Voltage clamp is a standard method to measure ionic currents across a membrane [1,
2]. The technique developed by Cole [3] uses two electrodes. One electrode is used
to measure the intracellular voltage relative to ground. This voltage is amplified and
compared with a given reference voltage. The difference of these signals is amplified
again and feed back via the second electrode. With this feedback the potential on the
membrane is hold at a specific level. The current injected into the cell by this feedback
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structure compensates the ionic current, i.e., the output current of the second amplifier
has equal value but opposite sign of the ionic current.

During the last decades, several more advanced measurement techniques such as
patch clamp [4] have been developed, see [5,6] and references cited there. Unfortunately,
most measurement methods have at least one the following disadvantages: measurement
inferences with the cell’s activities, or requirement of very specific laboratory conditions
(limiting the applicability in vivo), or expensive measurement devices, or slow dynamics.

The author suggests a new technique for a real-time estimation of the current input
into a cell. The paper extends preliminary results published in [7, 8]. Our approach
requires a dynamical model describing the interaction between the membrane voltage and
the different kinds of current. To estimate the input current we use an observer based
residual generator. The usage of an observer to estimate quantities which are not directly
available for measurement is quite common in system and control theory [9]. Originally,
residual generators are used to detect the occurence of faults in a given system [10]. Here,
we apply such a generator to reconstruct the input current quantitatively.

In Section 2 we present a large class of cell models. An observer based method to
estimate the current input into a cell is derived in Section 3. Our estimation scheme is
used in Section 4 to reconstruct the input current for the Hudgkin–Huxley model of a
neuron.

2 Cell Models

2.1 Conductance-based models

Important aspects of the biophysical behaviour of an excitable cell such as a neuron can
be represented by an equivalent circuit model. The dynamics of the membrane voltage V
is governed by a differential equation

CV̇ = I −
∑

j

g̃j (V − Vj) (2.1)

with a capacitance C > 0. The current I is injected into the cell, either from a coupling
with other cells, or by an electrode. The sum in (2.1) represents the ionic currents, that is
the leak current and the currents flowing through ionic channels. The reversal potential
of the ith channel is denoted by Vi. The ionic channels, which describe the concentrations
of certain ions, have two states: open and closed. The probability of a channel to be
open is represented by a so-called gating variable. In particular, the conductances g̃j

may depend on some gating variables. The dynamics of the gating variables w1, . . . , wp

is governed by differential equations of the form

ẇi = αi(V ) (1 − wi) − βi(V )wi for i = 1, . . . , p (2.2)

with functions αi and βi. These functions result from the Markov model of the associated
ionic channel (see [11]). More precisely, the functions αi and βi are the transition rates
for opening and closing an channel. Furthermore, we have αi(V ), βi(V ) > 0 for all V .

2.2 Hodgkin–Huxley model

The most well-known simulation model for excitable cells such as neurons and cardiac
myocytes was developed by Hodgkin and Huxley [12]. Originally, the model describes
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the ionic mechanisms underlying the initiation and propagation of action potentials in
the squid giant axon. The model takes the concentrations of sodium ions (Na+) and
potassium ions (K+) into account. In this case, Eq. (2.1) becomes

CV̇ = I − INa − IK − IL (2.3)

with C = 1µF/cm2. The ionic currents INa and IK , and the leak current IL are given
by

INa = gNam
3h(V − VNa),

IK = gKn4(V − VK),
IL = gL(V − VL),

(2.4)

with constant conductances gNa = 120mS/cm2, gk = 36mS/cm2, gL = 0.3mS/cm2, the
potentials VNa = 50mV, VK = −77mV, VL = −54.4mV and the gating variables m, h, n.
The gating variables are governed by differential equations of the form (2.2), namely

ṁ = αm(V )(1 − m) − βm(V )m,

ḣ = αh(V )(1 − h) − βh(V )h,
ṅ = αn(V )(1 − n) − βn(V )n,

(2.5)

with the normalized functions

αm(V ) = 0.1(V + 40)/(1 − exp(−(V + 40)/10)),
βm(V ) = 4 exp(−(V + 65)/18),
αh(V ) = 0.07 exp(−V + 65)/20,
βh(V ) = 1/(1 + exp(−(V + 35)/10)),
αn(V ) = 0.01(V + 55)/(1 − exp(−(V + 55)/10)),
βn(V ) = 0.125 exp(−(V + 65)/80).

(2.6)

The voltage V in Eq. (2.6) is in mV. The gating variables as well as the function values
of the transition rates (2.6) are dimensionless.

2.3 Similar models

There are many other models of cells and fibers that are based on the Hodgkin-Huxley
formalism. One of the most well-know models of this type, namely the Morris-Lecar
model [13], arose from studies of the excitability of the barnale muscle fiber. The model
takes ionic currents resulting from potassium ions (K+) and calcium ions (Ca+) into
account. The channels’ behaviour is modelled by p = 2 gating variables. Overall, the
model has the dimension n = 3. Under some circumstances, the model can be reduced
further to the dimension n = 2 (see [13]).

Several system-theoretical approaches have been used to reduce the dimension of
the Hodgkin–Huxley model. For example, FitzHugh [14] observed that the spike-like
oscillations of the Hodgkin-Huxley model are similar to oscillations generated by the
Bonhoeffer-van der Pol equation [15]. An equivalent circuit model using a tunnel diode
was derived in [16]. As a whole, the FitzHugh–Nagumo model has the dimenion n = 2.

In the past, the low dimensional models have been simulated on analog comput-
ers. Today fast digital computers allow the simulation of significantly more complicated
models. During the last decades, several advanced models have been developed. The
Connor–Stevens model [17] takes p = 5 gating variables into account and is there-
fore 6-dimensional. Another widely used model was derived by Traub [18, 19] and is
5-dimensional. Further informations on the modelling of excitable cells etc. can be found
in [11, 20, 21].
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3 Observer Based Residuum Generation

3.1 Observer structure

The 4-dimensional Hodgkin–Huxley model (2.3)-(2.5) can be written as

V̇ = f(V, w) + 1
C I, (3.1a)

ẇ = g(V, w) (3.1b)

with smooth nonlinear maps f : R × R3 → R, g : R × R3 → R3, and w = (m, h, n)T .
To estimate the unknown input current I via the measured voltage V we consider the
following dynamic system:

˙̂
V = f(V̂ , ŵ) + k(V − V̂ ), (3.2a)
˙̂w = g(V, ŵ), (3.2b)

Ṽ = V − V̂ . (3.2c)

The first part (3.2a),(3.2b) is a high-gain observer for (3.1), where the constant observer
gain k > 0 acts only on the first subsystem (3.2a). A difference to standard high-gain ob-
servers is the direct injection of the measured voltage V into the second subsystem (3.2b).
The output of (3.2) is the observation output error Ṽ given in Eq. (3.2c). As a whole,
system (3.2) has the structure of an observer based residual generator used for fault
detection (see [9] and references cited there). The observation error is governed by the
error dynamics

˙̃V = f(V, w) − f(V̂ , ŵ) − kṼ + 1
C I, (3.3a)

˙̃w = g(V, w) − g(V, ŵ), (3.3b)

Ṽ = V − V̂ , (3.3c)

where w̃ = w − ŵ.

3.2 Passivity

For a given initial value of (3.1) and a bounded input I, the trajectories of the original
system stay in a compact subset X ⊂ R

n. Since the map f is continuousely differentiable
(see Eqs. (2.3) and (2.4)), it is also Lipschitz continuous on X. We assume that there
exist constants L1, L2 > 0 such that

∣

∣

∣
f(V, w) − f(V̂ , ŵ)

∣

∣

∣
≤ L1

∣

∣

∣
V − V̂

∣

∣

∣
+ L2 ‖w − ŵ‖

holds on (V, w), (V̂ , ŵ) ∈ X, where | · | is the absolute value and ‖·‖ is the euclidean norm.

In contrast to classical observer design we are not directly interested in the stability of
the error dynamics (3.3), but in its input-output behaviour. Instead, we will describe the
input-output behaviour qualitatively using the concept of passivity [22]. The candidate
storage function

S(Ṽ , w̃) =
C

2
Ṽ 2 +

1

2

p
∑

i=1

w̃2
i
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is positive definite and radially unbounded. The derivative along the error dynamics (3.3)
reads as

Ṡ(Ṽ , w̃)
∣

∣

∣

(3.3)
= CṼ ˙̃V +

p
∑

i=1

w̃i
˙̃wi. (3.4)

For the first summand of (3.4) we obtain

CṼ ˙̃V = CṼ
(

f(V, w) − f(V̂ , ŵ) − kṼ + 1
C I

)

≤ CṼ
∣

∣

∣
f(V, w) − f(V̂ , ŵ)

∣

∣

∣
− CkṼ 2 + Ṽ I

≤ CL1Ṽ
∣

∣

∣
Ṽ

∣

∣

∣
+ CL2Ṽ ‖w̃‖ − CkṼ 2 + Ṽ I

≤ CL1Ṽ
2 + θCL2Ṽ

2 + CL2θ
−1 ‖w̃‖

2
− CkṼ 2 + Ṽ I

= C (L1 + θL2 − k) Ṽ 2 + CL2θ
−1 ‖w̃‖

2
+ Ṽ I

for any θ > 0 because ab ≤ θa2 + θ−1b2 for all a, b ∈ R. Taking the special form (2.2) of
subsystem (3.3b) into account, the second summand of (3.4) is bounded by

p
∑

i=1

w̃i
˙̃wi = −

p
∑

i=1

(αi(V ) + βi(V )) w̃2
i ≤ −µ ‖w̃‖

2
(3.5)

with

µ := inf
i,V

(αi(V ) + βi(V )) > 0

since the functions αi and βi are positive and the measured voltage in bounded. Alto-
gether we obtain

Ṡ(Ṽ , w̃)
∣

∣

∣

(3.3)
≤ −C (k − L1 − θL2) Ṽ 2 −

(

µ − CL2θ
−1

)

‖w̃‖
2
+ IṼ

≤ −ρṼ 2 − ν ‖w̃‖
2
+ IṼ ,

where ρ := C(k−L1−θL2) and ν := µ−CL2θ
−1. Choosing θ > CL2/µ and k > L1+θL2

yields ρ, ν > 0. For I = 0, the scalar field S is a Lyapunov function, i.e., the point Ṽ = 0,
w̃ = 0 is a globally asymptotically stable equilibrium. However, we also have

Ṡ(Ṽ )
∣

∣

∣

(3.3)
≤ −ρṼ 2 + IṼ ,

which implies that the error system (3.3) is not only passive, but also output feedback
passive [22] with respect to the input I and the output Ṽ . Physically, the supply rate
IṼ is the difference of electric power of systems (3.1) and (3.2) provided by the input
current source, i.e., the rate of increase of energy is not bigger than the input power.

3.3 Input reconstruction

The residual Ṽ generated by (3.2) describes the degree of consistency between the
model (3.1) and the observer scheme (3.2). Since the input current is missing in (3.2a),
one would expect that the residual Ṽ is somehow related to the unknown input I. In
the classical application of residual generators, namely in fault detection, the residual is
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only used qualitatively to indicate that a fault occurred (and which one). Here, we want
to use the residual Ṽ quantitatively to obtain an estimate of the input current I.

From Eq. (3.5) we conclude that the equilibrium w̃ = 0 of subsystem (3.3b) is globally
asymptotically stable (uniform in V ). After the transient oscillations of (3.3) we can
expect w̃ ≈ 0, i.e., w ≈ ŵ. To ensure the passivity of (3.3), we have to choose k > 0
sufficiently large. This implies

∣

∣

∣
f(V, w) − f(V̂ , w)

∣

∣

∣
≪ k

∣

∣

∣
Ṽ

∣

∣

∣
for t ≫ 0, (3.6)

which means that the observer correction term is much stronger than the difference
between the two systems (3.1) and (3.2).

Next, we consider Eq. (3.3a) near an equilibrium point, i.e., ˙̃V ≈ 0. From (3.6) we
conclude that

0 ≈ −k Ṽ +
1

C
I.

Hence, an estimate of the input current I can be obtained from Ṽ by

I ≈ k C Ṽ . (3.7)

If the current input I exceeds a certain level, the original system (3.1) oscillates.
These oscillations can also be seen at the output Ṽ of (3.2), although the oscillations are
better suppressed using a large observer gain k. Therefore, we will smooth the current
estimate from (3.7) by a mth order low-pass with the continuous time transfer function

F (s) =
1

(1 + sT )m

with a time constant T > 0. For simplicity, the transfer function used here has a multiple
real pole at −1/T . However, one could also choose from several other filter design
techniques (e.g. Bessel, Butterworth or Cauer filter). Combining time and frequency
domain as well as taking the scaling (3.7) into account, the final estimate Î of I results
from

Î(t) =
k C

(1 + sT )m
◦ Ṽ (t). (3.8)

The whole estimation scheme is given in Fig. 3.1.

4 Simulation Results

For the simulation of the Hudgkin–Huxley model (2.3)-(2.6) we used the initial values
V (0) = 65mV, m(0) = 0.1, h(0) = 0.6 and n(0) = 0.3. The input current was chosen as
follows:

I(t) =







10µA/cm2 for 0ms ≤ t < 80ms,
25µA/cm2 for 80ms ≤< 140ms,
15µA/cm2 for t ≥ 140ms.

(4.1)

The simulation was carried out by the scientific software package Scilab [23]. The gen-
erated output trajectory is shown in Fig. 4.1. The membrane voltage shows spike-like
oscillations, whose amplitude and frequency vary according to the current in the specific
time interval.
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Figure 3.1: Current Estimation Scheme.

Figure 4.1: Output voltage of the Hudgkin–Huxley model (2.3)-(2.6).
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Figure 4.2: Trajectories of the gating variables and its estimates.

Figure 4.3: Estimated current Î according to Eq. (3.8).
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For the observer (3.2a) we have chosen the initial value V̂ (0) = V (0) = 65mV to
be consistent with the measurement (see [24, Section 3.3]). Since we have no further
information on the state of the gating variables we used the 3-dimensional zero vector
as initial value of (3.2b), i.e., m̂(0) = ĥ(0) = n̂(0) = 0. The transient behaviour of the
observer (3.2b) for the gating variables is shown in Fig. 4.2. We used solid lines for the

original gating variables m, n, h and dashed lines for its estimates m̂, ĥ, n̂ generated by
the observer (3.2b). Note that Fig. 4.2 has a different time domain as Fig. 4.1, i.e., we
only show the first 20ms in Fig. 4.2. After that, the gating variables and its estimates
basically coincide, i.e., they cannot be separated visually.

The observer scheme (3.2) with the gain k = 1000 yields the residual Ṽ . To obtain an
estimate Î for the current I we have to scale and filter this voltage difference according
to Eq. (3.8), where we used the normalized filter time constant T = 0.1. The result is
shown in Fig. 4.3. After some transient oscillations the estimated current matches the
input current (4.1) almost perfectly.

5 Conclusions

We suggested a new approach to estimate the current input into a (possibly living) cell.
This method requires a reasonable precise model of the cell under consideration. In
contrast to voltage and patch clamp techniques, our approach cannot be used to analyze
new cell types or cells with significant anomalies. However, our measurement technique
can be used to verify given models and to study the interaction of cells (such as neurons
interconnected by synapses).
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