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PERSONAGE IN SCIENCE

Professor V.I. Zubov

to the 80th Birthday Anniversary

A.Yu. Aleksandrov 1∗, A.A. Martynyuk 2 and A.P. Zhabko 1

1 St. Petersburg State University, Universitetskij Pr. 35, Petrodvorets, St. Petersburg,
198504, Russia

2 Institute of Mechanics National Academy of Science of Ukraine, Nesterov Str. 3, Kiev,
03057, Ukraine

The paper presents a biographical sketch and a review of scientific achievements of
Vladimir Ivanovich Zubov (1930–2000), the outstanding researcher in Control and
Stability Theory of the 20th century.

1 Brief Outline of Zubov’s Life

Vladimir Ivanovich Zubov was born on April 14, 1930 in the town of Kashira, Moscow
region, Russia. In 1945 he finished a secondary school.

At the age of 14, Vladimir suffered in the explosion accident happened when he and
his playfellows found a hand grenade. His eyes were injured and he failed eyesight soon.
In 1949 he finished the Leningrad special school for blind and visually impaired children
being the winner of the 15th Leningrad mathematical Olympiad for graduates. The
same year he entered the Mathematical and Mechanical Faculty of the Leningrad State
University. In 1953 he graduated from the university with honors and received his MSc
degree in Mathematics. In the same year he began his post-graduate studies.

Zubov was an active participant of the seminar held under the supervision of Professor
N. P. Erugin at the Department of Differential and Integral Equations of the Leningrad
State University. When discussing the state of the theory of motion stability N. P. Eru-
gin formulated a set of problems requiring constructive solutions. In particular, very
important problems were those of the Lyapunov theorems inversion and representation
of the general solution for the differential equations system in the asymptotic stability
region. V. I. Zubov obtained a number of profound results in these directions which laid
the foundation to his PhD thesis titled “Boundaries of the Asymptotic Stability Region”
defended in 1955 (with N. P. Erugin as an advisor and professors E.A. Barbashin and
N. N. Krasovskij as official opponents).

In December 1955 Zubov joined the Institute of Mathematics and Mechanics of the
Leningrad State University as a leading researcher.

∗ Corresponding author: alex@vrm.apmath.spbu.ru

c© 2010 InforMath Publishing Group/1562-8353 (print)/1813-7385 (online)/www.e-ndst.kiev.ua 1



2 A.Yu. ALEKSANDROV, A.A. MARTYNYUK AND A.P. ZHABKO

V. I. Zubov defended his Doctor of Science thesis in April 1960 at the Leningrad
Polytechnic Institute. The thesis was based on his book “The methods of A. M. Lya-
punov and their application” published in 1957. This book manifested new ideas and
fundamental results on the Lyapunov methods and gave rise to constructive approaches
for solving various practical problems.

Zubov was affiliated with the Scientific Research Institute of Mathematics and Me-
chanics of the Leningrad State University as a chief researcher since 1955 till 1962. In
1962 he became the chief of the Laboratory of Control Devices and since 1967 till the end
of his life he was the head of the Control Theory Department of the Faculty of Applied
Mathematics of the Leningrad (St. Petersburg) State University.

V.I. Zubov married Alexandra Zubova in 1953. His wife is DSc and professor. The
Zubovs have 6 children and 21 grandchildren.

2 Basic Trends of His Scientific Work

2.1 Region of asymptotic stability

One of the well known Zubov’s results is his theorem on the region of asymptotic stability.
This theorem not only solves the stated problem but is also of immense practical value for
engineers and specialists in control theory. The starting point for Zubov’s investigations
was the monograph of A. M. Lyapunov “General problem on the stability of motion”.
In the 50es of the last century Zubov and other scientists proved the existence of the
Lyapunov functions in the cases of stability, asymptotic stability and instability of unper-
turbed motions. These results ground the possibility of finding the Lyapunov functions
for solving the stability problem for various classes of differential equation systems.

V. I. Zubov was the first to solve the problem on estimation of the set of initial values
belonging to the attraction region of the asymptotically stable zero solution of ordinary
differential equations system. He deduced the equation for the Lyapunov function which
allowed the boundary of an asymptotic stability region to be found. In the analytical
case the solution for this equation can be obtained in the form of series. On this base the
numerical methods were developed for the estimation of an asymptotic stability region.
For controllable dynamical systems it was shown that the region of asymptotic stability
would be maximized when the optimal stabilizing control was used.

The development of these results was described in his monographs [1, 2, 3, 5, 31].

2.2 Stability of nonlinear systems in critical cases

V. I. Zubov proved that if the zero solution of a system of differential equations with
the homogeneous right-hand sides was asymptotically stable, then for this system there
existed an homogeneous Lyapunov function satisfying the conditions of the Lyapunov
asymptotic stability theorem. He showed that this function could be found as a solution
of a special system of partial differential equations [1, 5].

Using the results obtained he estimated the time of transients for asymptotically sta-
ble homogeneous systems. Besides, he determined the stability and the ultimate bound-
edness criteria for nonlinear systems based on the the first homogeneous approximation.
Furthermore, new stability conditions were established in the critical cases of several zero
roots and of several pairs of pure imaginary roots of characteristic equation. Moreover,
he extended the results above to the systems with generally homogeneous right-hand
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sides and to the problem of stability by generally homogeneous first approximation [1, 2,
3, 5].

V. I. Zubov also stated a problem of the stability by the first, in the broad sense,
approximation, and obtained a number of results for solution of this problem. He in-
vestigated the conditions for stability of the zero solution for the arbitrary admissible
functions included in the first approximation [27, M].

V. I. Zubov suggested an approach for the construction of solutions of systems of
nonlinear equations in a neighborhood of a regular critical point. This problem was
stated in the works by Briot and Bouquet with its special cases investigated by Poincaré
and Picard. V. I. Zubov solved completely this problem in a classical statement [1, 5].

2.3 Control theory

Zubov’s results on the theory of optimal control systems and on solution of the corre-
sponding theoretical and numerical problems of optimal stabilization are presented in his
books [2, 3, 6, 13, 17, 18, 20]. He suggested constructive analytical methods for finding
the optimal controls. V. I. Zubov established the relationship between the Lyapunov
direct method and the theory of optimal control. He introduced the notion of optimal
control with respect to the damping of a deviation measure of a transient from the pre-
assigned motion. He solved the problem of a synthesis of optimal control. In particular,
the problem on synthesis of linear controls with the aftereffect and in the presence of
intermediate control points was solved.

Zubov’s theorem on the canonical decomposition of nonlinear force fields into the
potential component and the gyroscopic one should be mentioned especially [D]. He
applied this result to the control problems for finite-dimensional holonomic mechanical
systems.

2.4 Asymptotic equilibrium states and asymptotic auto-oscillations

V. V. Nemytskij stated the problem of studying the solutions of differential equations
systems for which limit manifolds exist under unbounded increase and decrease of time,
but these limit sets are not invariant sets of the systems under consideration. V. I. Zubov
showed that in a number of cases such a behavior of motions resulted in the appearance
of asymptotic equilibrium states and investigated the conditions for this. It was proved
that asymptotic equilibrium states could occur in the systems of differential equations
subjected to perturbations tending to zero under the increase of time. Besides that, he
established that the forced oscillations arising in perturbed system could be damped if
the perturbation was characterized as an oscillatory process with frequency growing in
time. In this case the amplitudes of these perturbations can remain finite and, moreover,
they can be arbitrary large.

V. I. Zubov also investigated the problem on conservation of auto-oscillations under
the action of perturbations formulated by A. A. Andronov. He determined the conditions
under which trajectories of perturbed systems tended asymptotically to auto-oscillating
modes of the initial systems. He referred to these limiting operating modes as the asymp-
totic auto-oscillations.

The results obtained along this topic have been presented in monographs [24, 27].
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2.5 Nonlinear oscillations and stability of orbits

One of the main directions of Zubov’s investigations was the analysis of stationary os-
cillations of nonlinear systems. He studied the problems of the existence of stationary
modes, developed the methods for the construction of these modes and for the analysis
of the integral curves behavior in their neighborhoods.

In Zubov’s works the approaches for proper and forced oscillations construction for
multiple degrees-of-freedom systems were developed. In addition to the well known small
parameter method he also introduced the method of successive approximations applied
for these investigations. In a number of cases the latter enabled one to obtain more
complete results on the appearance of periodic and almost periodic motions and their
interconnection.

V. I. Zubov established a qualitative criterion of periodic and almost periodic conver-
gence for nonlinear systems. The constructive approach for the verification of conditions
of this criterion was based on the usage of special functions similar to those introduced
by A. M. Lyapunov for the stability analysis.

V. I. Zubov also developed a new method for the investigation of integral curves
behavior in the neighborhood of a periodical orbit. This method is based on the trans-
formation of the original system into a special form describing the behavior of a mapping
point on the hyperplane normal to the periodical orbit. In the framework of this approach
new results on the Lyapunov stability of periodical solutions were obtained. Furthermore,
the necessary and sufficient conditions were found for the prescribed periodical solution
to be the auto-oscillating one. Application of the Zubov method to the differential equa-
tion systems possessing several periodical orbits allowed one to simplify the solution of
analytical problems in various applications. For instance, new equations of the celestial
mechanics were deduced.

Numerous results obtained along this line were presented in monographs [2, 3, 4, 16,
24, 28].

2.6 Development of the dynamical systems theory and analytical represen-

tation of stationary oscillations

V. I. Zubov was the first to introduce the concept of a general dynamical system in metric
space. He extended the problem of stability investigation for individual trajectories to
the problem of stability analysis of invariant sets of dynamical systems. In his works the
qualitative structure of a neighborhood of a stable invariant set was studied. Also, he
extended the direct Lyapunov method to solution of the problems of stability of invariant
sets for general dynamical systems. He also developed a method for estimating the
distance from the motion to the invariant set and proved the theorem on the asymptotic
stability region for uniformly asymptotically stable and uniformly attracting invariant
sets. Furthermore, the method for the determination of boundary of asymptotic stability
region was suggested. A special attention was paid to the construction of the theory of
periodical dynamical systems. The results obtained were applied for the stability analysis
of partial differential equations systems.

One of the most important problems of the theory of dynamical systems is the analysis
of stationary oscillations. G. D. Birkhoff proved that the most general class of stationary
oscillations of dynamical systems could be described by recurrent functions. V. I. Zubov
developed the analytical theory for the representation of the ergodic classes of recurrent
functions. He showed that the space of recurrent functions was complete, but neither
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linear nor transitive. The approach suggested by Zubov was based on the decomposition
of the recurrent functions space into the isolated classes of functions possessing relatively
dense sets of common quasiperiods. To implement such a decomposition he generalized
the Kronecker theorem on the existence of common solutions for inequalities systems. For
the constructed ergodic classes of recurrent functions V. I. Zubov proved the theorem on
the approximation of functions from the given class by the trigonometric polynomials of
a special form. This theorem generalizes the well known Weierstrass theorem. Moreover,
he developed the mathematical methods for the analytical representation of the stable
Poisson motions.

The results obtained in this area appeared in [1, 4, 5, 16, 19, 20, 23, 24, 28, B, C, J].

2.7 Systems with aftereffect. Quantization of orbits

Another direction of Zubov’s investigations deals with the estimation of the finite velocity
of interactions extension or the allowance for the control signal delay in the feedback
channel [13, 18, A]. This necessitates the stability analysis of delay-differential systems.
V. I. Zubov established the representation of solutions of linear delay-differential systems
whose right-hand sides were given by the Stieltjes integrals in the form of asymptotic
series. He obtained the root criteria of exponential stability for delay systems.

V. I. Zubov formulated a universal law for the orbits quantization [22, 25, K]. This
law is based on taking into account the finiteness of interactions extension velocity by
the introduction of delays in the force fields determining the motions of the mass points
system. He showed that finiteness of the velocity of the interactions and perturbations
extension caused the quantization of orbits of individual mass points and of their con-
figurations. Moreover, the quantization also occurs for the energy levels and for the
momenta of momentum.

2.8 Conservative methods of numerical integration

V. I. Zubov developed conservative methods for numerical integration of differential
equations systems [15, 17, L, N]. These methods are based on the construction of finite-
difference schemes preserving certain properties of motions such as integrals of motion,
integral invariants and other physical and qualitative characteristics. Zubov’s approach
consists in a modification of the known numerical methods by introducing the control
in the computation process. This control is constructed with the aim to provide conver-
gence, required precision and stability for the modified numerical method and, in addi-
tion, to preserve the given properties of motion on the discrete trajectories. Although
the finite-difference equations obtained are the nonlinear and implicit ones, the advan-
tage of such schemes over the known schemes by Euler, Runge and Kutta, and Adams
et al. consists in the opportunity they provide for the qualitative behavior analysis of
trajectories of the generating differential equations.

2.9 Investigation of rotation motion of a rigid body

V. I. Zubov established that in the Euler and Lagrange cases all motions of a rigid
body are periodical or almost periodical with the exception of the motions occurring in
a special integral manifold. He determined the precise bounds of nutational oscillations
of the proper rotation axis for the dynamically asymmetric rigid body moving inertially
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around a fixed point. Furthermore, he established stability and instability conditions of
the rigid body motions with respect to axes orientation in the space.

V. I. Zubov developed the methods for the rotational motion control solving the
problem of the system transfer from one state to the other. In particular, the problem of
the body orientation in a prescribed direction and the problem of scanning the body axes
in accordance with the pre-specified program were solved. These methods are based on
finding the motions of the carried bodies which create Coriolis forces moments providing
the prescribed motion of the carrying body.

For the bodies with the liquid-filled cavities and bodies with the flexible constructions
the mathematical models based on the ordinary differential equations were suggested. For
such models the analytical constructions of controls providing given rotational motions
of the carrier were also obtained.

The development of these methods was described in [7, 13, 15, 20, 22, E].

2.10 Investigation of free and forced oscillations of gyroscopic systems

V. I. Zubov developed a precise method for the analysis of equations of gyroscopic systems
motions based on the construction of convergent functional series expansions in powers
of the angular momentum inverse. By the use of such series the solutions of linear
and nonlinear differential equations systems describing free and forced oscillations of
gyroscopic systems were obtained. Furthermore, the stability and asymptotic stability
conditions for equilibrium states of gyroscopic systems were deduced and the approach
for the numerical solution of stability problem was suggested.

The results obtained in terms of the precise Zubov method were compared with those
obtained with the aid of the approximate precession theory. The cases were detected
where the latter yielded qualitatively false conclusions on the behavior of oscillations in
gyroscopic systems. For the cases where the precession theory results were correct, the
method was suggested for the successive refinement of the quantitative results obtained
in the framework of this theory.

The results obtained along this topic have been presented in [8, 22].

2.11 Theory of charged particles beams and relativity principles

V. I. Zubov solved the inverse problem of electrodynamics: for the given velocity field of
charged particles he proposed a method for the determination of the electric and magnetic
fields strengths providing this field. He found the equations for the various fields of such
a type and established the theorem on universality of electrodynamics equations. The
results obtained were used for the design of various types of electro-physical equipment.

V. I. Zubov treated an arbitrary vector wave as a superposition of a finite number
of simple waves. From this point of view the only characteristic of a simple wave turns
out to be its phase depending on the time and space coordinates and satisfying the wave
equation. He extended Einstein’s notion of the equivalence of two coordinate systems
based on the relativity principle. This extension allowed a set of relativity principles to
be obtained.

Numerous results obtained along this line have been presented in [16, 20, 24, 27, 28,
G].
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2.12 Distribution of resources and funds

V. I. Zubov developed the theory of a support plan resulted in a subsequent software
implementation [9, 21]. The mathematical model construction permits to connect initial,
intermediate and final states of the developing branches of a national economy and to
solve problems of initial distribution of investments in urban branches of a national
economy with an opportunity for redistribution in emergency cases.

As a member of the inter-branch council of scientists V. I. Zubov created the theory
of the balanced co-development of various branches of live-stock farming with allowance
for the soil and climatic conditions and density of population in a region [20, F].

2.13 Investigation of distribution functions spaces

V. I. Zubov established that any continuous distribution function could be approximated
in the real axis with an arbitrarily given precision in the uniform metric by the mixture
of normal distributions with the distinct expected values and variances. Furthermore,
he showed that the normal distribution law is not of a unique nature. It was proved
that any continuous distribution law gave a set of sliding sums with weight coefficients
defining an everywhere dense subset in the space of all continuous distribution functions
[H, I, O].

3 Applied Investigations

Zubov’s investigations were always aimed at applications. Since 1957 he was efficiently
contributing to the development of modern technologies in the following fields:

(1) inertial navigation systems for which he solved the problem on deviation of the
gyro-system axes depending on nutational oscillations and kinematic moment of inertia
of gyro-rotors;

(2) self-guidance of cruise missiles;

(3) precision control systems of spacecraft position for the “Proton” system;

(4) control systems for the rotational motion of spacecrafts for the precision orienta-
tion of sensitive axes of devices on the base of magneto-hydrodynamic control systems
with the use of conducting fluids in feedback contours;

(5) control problems for beams of charged particles to be transported in a given
physical channel;

(6) noise stability of the information transmission methods;

(7) tactical scheme constructions for the USSR Navy to oppose aircraft carriers of a
potential enemy.

In all the above mentioned pure applied directions Zubov obtained fundamental re-
sults in control and stability theory.

On the occasion of awarding V. I. Zubov by the USSR State Prize, the president of
the Academy of Sciences of the Soviet Union M. V. Keldysh noted: “Zubov’s works are
well known in the Soviet Union and abroad. The profound researches carried out by
him on the theory of motion stability, theory of automatic control and theory of optimal
processes allow one to solve the important applied problems, in particular, in the field
of design of controlled automatic devices and stabilization of program motions. Zubov’s
methods are also effective in the application to control problems arising in industry,
mathematical economics, biology, medicine and navigation”.
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4 Science Management and Teaching Activity

Fundamental successes in the investigation of new branches of applied mathematics and
control theory resulted in the creation of the Laboratory of Control Devices in 1962, the
Control Theory Department in 1967, the Faculty of Applied Mathematics and Control
Theory in 1969 and the Research Institute of Computational Mathematics and Control
Processes at the Leningrad (St. Petersburg) State University in 1971. Furthermore,
V. I. Zubov organized the Center of Applied Mathematics and Control Processes. In
his time V. I. Zubov headed these institutions . Also, he was a permanent Chief of the
faculty Curriculum Committee and the Special Council for DSc Dissertation defenses. He
was an advisor for 20 DSc and about 100 PhD dissertations. Under Zubov’s supervision
a worldwide known school in control theory was developed in St. Petersburg.

5 Editorial Activity and International Scientific Activity

For many years V. I. Zubov was a member of the Editorial Board of the Journal of
“Differential equations”.

He was chair of the Program Committees of the International Seminars “Beam Dy-
namics & Optimization”, the International Symposium “Hydrogen Energetic, Theoretical
and Engineering Solutions”, the 11th International IFAC Seminar “Control Applications
of Optimization”.

6 Awards

In 1968 V. I. Zubov became the USSR State Prize winner for his pioneer works in Control
Theory. Twice, in 1962 and 1996 he received the Leningrad (St. Petersburg) University
Prize for scientific achievements. In 1981 he was elected as corresponding member of the
Soviet Union Academy of Sciences and in 1998 he was conferred with a title of Honored
Scientist of the Russian Federation.

In 1996 Zubov’s scientific school of “Processes of control and stability” was the winner
of the competition for the state support of the leading scientific schools of Russia.

In 2001, the Research Institute of Computational Mathematics and Control Processes
of St.Petersburg State University was named after him.

For his outstanding scientific merits Zubov’s name was perpetuated as the name of
minor planet ‘ZUBOV 10022’. This asteroid has the size of 6 km, the brightness of 13.8
magnitude, and the largest orbit semi-axis of 2.369 astronomical units.

7 Public Activities

In addition to his intensive scientific researches and tuition duties, V. I. Zubov was
involved in public social activity. He was the President of the St. Petersburg Charity
Foundation for blind and visually impaired children.

His poetic talent is evident in his books “Behest of the past generations”, St. Pe-
tersburg: “Mobil’nost Plus” Publisher, 1993 and “Poetry. Sonnets. Behest of the past
generations”, St. Petersburg: St. Petersburg State University Publisher, 2000.

V. I. Zubov is the author of about 200 publications including 31 monographs and
books. Four of his monographs were republished abroad in English and French.
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1 Nomenclature

α = Free parameter in generalized
eigenvector calculation
a = First non zero and non unity value
in the state matrix
A = State matrix
A′ = State matrix after first transfor-
mation
Â = State matrix decoupled (after sec-
ond transformation)
β = First free parameter in second
transformation matrix T2

b = Second non zero and non unity
value in the state matrix
B = Control distribution matrix
B̂ = Control distribution matrix after
transformations
γ = Second free parameter in second
transformation matrix T2

i = Complex unity
iref = Reference orbit inclination

J2 = Second order harmonic of Earth
gravitational potential field (Earth flat-
tening) [108263 × 10−8, [1]]
λ = Vector of the eigenvalues of A
LVLH = Local Vertical Local Horizontal
ω = Reference orbit angular velocity
rref = Reference orbit radius
Re = Earth mean radius
[6378.1363 km, [1]]
T = Transformation matrix
T1 = First transformation matrix
T2 = Second transformation matrix
t = Time
u = Control vector
wi, i = 1, .., 4 = Eigenvectors of A
x = Spacecraft relative state vector in
LVLH frame
x, y = Spacecraft relative position com-
ponents in LVLH frame
z = Transformed spacecraft relative
state vector
(...)

0
= Initial value (t = 0)

2 Introduction

A formal state vector transformation is presented in order to separate the two modes
characterizing the relative motion between a chaser spacecraft and a target spacecraft in
circular orbit, for both the well known unperturbed Hill–Clohessy–Wiltshire [2] model
and the more recent Schweighart–Sedwick [3] model which includes the J2 perturbation
are used. Only the in-plane part of the relative motion is here considered, being the
out-of-plane dynamics decoupled.

Our work is built upon the work of Leonard [4] who separates the dynamic of the
Hill–Clohessy–Wiltshire model by averaging the evolution in time of the state variables,
without developing a formal state transformation.

In particular, we employ a two-steps transformation into a Jordan form [5, 6] and then
into a new decoupled-natural-dynamics form by using a chain of generalized eigenvectors
in order to cope with the defectiveness of the state matrix. We obtain two transformed
system models (for the cases with and without J2) with the natural dynamics decoupled
into a double integrator and a harmonic oscillator. The present work embodies the
results of Leonard ([4], moving-ellipse formulation of Hill–Clohessy–Wilshire model) as
a particular case.

The obtained results add further insight to the description of spacecraft relative mo-
tion, and, in particular, enables the control designer to focus on either one of two critical
goals regarding the stabilization of the chaser’s motion with respect to the target: namely,
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either the stabilization into a closed elliptical relative orbit or into a separate circular
orbit with respect to the Earth center.

Furthermore, we perform the analytical integration of the transformed dynamics by
considering only along-track thrust (as proposed in recent literature to simplify mission
design, [7]–[9]).

The decoupled dynamics here obtained, and in particular the analytical nature of the
obtained results, have been used by Bevilacqua and Romano [10, 12] for developing a
completely analytical differential drag controller for multiple spacecraft assembly.

The paper is organized as follows: Section 3 introduces the linear models without and
with J2 perturbation. Section 4 is dedicated to the state vector transformations. Section
5 gives the analytical solution for the time evolution of the state vector for the case of
constant along-track control. Finally Section 6 concludes the paper.

3 Spacecraft Relative Motion Dynamics

The in-plane part of the motion of a chaser spacecraft with respect to a target spacecraft
in circular orbit can be represented by the following general equation, encompassing
both the Hill–Clohessy–Wiltshire [2] unperturbed model and the Schweighart–Sedwick
[3] model which includes J2 perturbation

ẋ = Ax+Bu, x =









x
y
ẋ
ẏ









, A =









0 0 1 0
0 0 0 1
b 0 0 a
0 0 −a 0









, (3.1)

where x is the “R-bar” axis, pointing from the Earth’s center to the LVLH frame’s origin
at the target spacecraft, y is the “V-bar” axis in the direction of the velocity of the target
along a circular orbit.

For the Hill-Clohessy–Wiltshire model it is

a = 2ω, b = 3ω2. (3.2)

For the Schweighart-Sedwick model it is

a = 2ω c, b =
(

5c2 − 2
)

ω2, (3.3)

where the coefficient c is given by

c =
√
1 + s, s =

3J2R
2

e

8r2ref
(1 + 3cos2iref) . (3.4)

The following substantial difference exists between the Hill–Clohessy–Wiltshire model
and the Schweighart–Sedwick model: while the state vector of the former model describes
the chaser’s position and velocity with respect to either a target spacecraft or a reference
point in circular orbit, the state vector of the latter model describes the chaser’s position
and velocity only with respect to a target spacecraft. Indeed, in the Schweighart–Sedwick
case, the evolution of the state of the chaser with respect to a reference point in circular
orbit is described by a more complicated expression, due to the J2 perturbation [3].

It is immediate to see that, if we neglect the J2 perturbation, the Schweighart–Sedwick
equations reduce to the Hill–Clohessy–Wiltshire equations. Furthermore, we underline
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the fact that the condition b < a2 holds for both models. In particular, while this is
immediately obvious for the Hill–Clohessy–Wiltshire case, for the Schweighart–Sedwick
model it translates onto the following condition for the variable s

(

5c2 − 2
)

ω2 < 4ω2c2 → |s| < 1
(3.5)

which is always true, because max (|s|) = 3J2R
2
e

2r2ref
≤ 3J2

2
= 1.624 · 10−3.

4 State Vector Transformation

The eigenvalues of the state matrix A in (3.1) are

λ =
[

0, 0,
√

b − a2,−
√

b− a2,
]T

. (4.1)

Being b < a2, the third and fourth eigenvalues in (4.1) are complex conjugated.
By observing (4.1), it is clear that a double integrator and a harmonic oscillator are

the two modes composing the natural dynamics.
Only the following three independent eigenvectors exist for the matrix A

w1 =









0
1
0
0









, w3 =























−
√
b− a2

a

1

a2 − b

a√
b− a2























, w4 =























√
b− a2

a

1

a2 − b

a

−
√
b− a2























, (4.2)

where w1 corresponds to the two multiple zero eigenvalues (Eq. (4.1)), and w3 and
w4 correspond to the two complex conjugated eigenvalues. Since the state matrix A is
defective (there are only three independent eigenvectors for the system which is of fourth
order), it cannot be diagonalized. As an alternative to diagonalization, we look for a
similarity transformation aiming to possibly represent the system with the state matrix
in the following form

Â =









0 1 0 0
0 0 0 0
0 0 0 1
0 0 −Ω2 0









. (4.3)

This new form of the system matrix, inspired by the developments of [4], is useful
because it decouples the natural dynamics into a double integrator and a harmonic
oscillator. In (4.3), Ω represents the frequency of the harmonic oscillator.

As a first step of the transformation, we build a transformation of A into the modified-
diagonal form (or Jordan form, see [5],[6]). Let us write

x = T1z
′, (4.4)

where z′ is the corresponding new state. The transformation matrix T1 is obtained as
follows

T1 =
(

w1 w2 w3 w4

)

, (4.5)
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where w2 is the generalized eigenvector found by solving the following “Jordan chain”
equation ([5])

(A− λ (1) I)w2 = w1 → Aw2 = w1 → A2w2 = Aw1, (4.6)

where λ (1) = 0, from (4.1), leading to

w2 =
[

− a/b, α, 0, 1
]T

, (4.7)

where α is an arbitrary complex parameter which is obtained form the “Jordan chain”
procedure and can be conveniently chosen, as shown in the following.

The transformation of Eq. (4.5) results in the following Jordan-form

A′ = T−1

1
AT1 =









0 1 0 0
0 0 0 0

0 0
√
b− a2 0

0 0 0 −
√
b− a2









. (4.8)

As a second step of the transformation of the system matrix toward the desired form
of Eq. (4.3), we use the following complex transformation matrix

T2 =









1 0 0 0
0 1 0 0

0 0 −β
√
a2 − b iβ

0 0 γ
√
a2 − b iγ









, (4.9)

where β and γ are arbitrary complex parameters which can be conveniently selected, as
explained later.

The final expression for the state matrix is calculated as

Â = T−1

2
A′ T2 =









0 1 0 0
0 0 0 0
0 0 0 1
0 0 b− a2 0









. (4.10)

This transformed system matrix is indeed in the desired form of Eq. (4.3) with
Ω =

√
a2 − b.

The overall transformation is given by

x = Tz, T = T2T1 =

























0 −a

b
i

(

a2 − b
)

(β + γ)

a

(β − γ)
√
a2 − b

a

1 α − (β − γ)
√
a2 − b i (β + γ)

0 0
(β − γ)

√

(a2 − b)3

a
i

(

a2 − b
)

(β + γ)

a

0 1 −i
(

a2 − b
)

(β + γ) − (β − γ)
√
a2 − b

























. (4.11)
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5 Analytical Solution of the Transformed Equations in Case of Constant

Along-Track Control

We here focus the attention on the case of a single control thrust acting along the y axis.
In this case, the initial and transformed control distribution matrices are

B =









0
0
0
1









, B̂ = T−1B =































αb

a2 − b

− b

a2 − b

1

4

i (β + γ) a2

βγ (a2 − b)
2

−1

4

(β − γ) a2

βγ (a2 − b)
3

2































. (5.1)

In order to have a control distribution matrix with real values, α,
i (β + γ)

βγ
and

(β − γ)

βγ
must all be real. The last two conditions are satisfied only if γ = −β, yielding

to (5.2)

B̂ =





































αb

a2 − b

− b

a2 − b

−1

2

Im(β) a2

‖β‖2 (a2 − b)2

1

2

Re(β)a2

‖β‖2 (a2 − b)
3

2





































. (5.2)

At this stage, looking at (5.2), we are able to impose convenient values for the arbi-

trary parameters α and β. We choose those values to be α = 0, β = −1

a
. Therefore, the

matrices in (4.11) and (5.2) become

T = T2T1 =







































0 −a

b
0 −2

√
a2 − b

a2

1 0
2
√
a2 − b

a
0

0 0 −
2

√

(a2 − b)3

a2
0

0 1 0
2
√
a2 − b

a







































, B̂ = T−1B =























0

− b

a2 − b

0

a3

2 (a2 − b)
3

2























.

(5.3)
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The expressions of (5.3) are expanded in the Appendix as functions of ω and c.
Moreover, we have

x = Tz =





































−a3z2 + 2b
√
a2 − bz4

a2b

az1 + 2
√
a2 − bz3
a

−2
√
a2 − bz3
a2

az2 + 2
√
a2 − bz4
a





































, z = T−1x =

































a2y − by − aẋ

a2 − b

−b (ax+ ẏ)

a2 − b

− a2ẋ

2 (a2 − b)
3

2

−a2 (bx+ aẏ)

2 (a2 − b)
3

2

































. (5.4)

In particular, for the Hill–Clohessy–Wiltshire dynamic model, the transformed system
with control along y is obtained by substituting the values of a and b given in (3.2) into
(4.10) and (5.3)

Â =









0 1 0 0
0 0 0 0
0 0 0 1
0 0 −ω2 0









, B̂ =









0
−3
0
4









. (5.5)

Eq. (5.5), corresponding to our new state
[

z1 z2 z3 z4
]T

, reproduces the results

of Leonard ([4], where the state, in Leonard’s notation, is
[

ȳ ˙̄y β β̇
]T

, with β
having a different meaning with respect to our notation).

Figure 5.1: Qualitative shape of the curves on the phase plane of the double integrator
subsystem (z1 vs. z2) in case of constant thrust along the y axis for both the Hill–Clohessy–
Wiltshire and the Schweighart–Sedwick models.
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Figure 5.2: Qualitative shape of the curves on the phase plane of the harmonic oscillator
subsystem (z3 vs. z4) in case of constant thrust along the y axis for both the Hill–Clohessy–
Wiltshire and the Schweighart–Sedwick models.

Analytical integration of the transformed dynamics, taking into account only a con-
stant controlling thrust along y, leads to

z1 = − b

a2 − b
uy

t2

2
+ z20t+ z10 , z2 = − b

a2 − b
uyt+ z20 ,

z3 =

(

z30 −
a3uy

2 (a2 − b)
5

2

)

cos
[(√

a2 − b
)

t
]

+
z40√
a2 − b

sin
[(

√

a2 − b
)

t
]

+
a3uy

2 (a2 − b)
5

2

,

z4 = z40 cos
[(√

a2 − b
)

t
]

−
√
a2 − b

(

z30 −
a3uy

2 (a2 − b)
5

2

)

sin
[(√

a2 − b
)

t
]

.

(5.6)
The assumption of continuous constant thrust reflects the state of the art for space

thrusters, where only a regime value for the control is available [12]. Figure 5.1 and Figure
5.2 show the phase planes for the two types of forced motion (the forced double integrator
represented by state variables z1 and z2, and the forced harmonic oscillator represented
by state variables z3 and z4) with either positive or negative constant control along y.
Arrows are indicating the paths directions according to the sign of the control. The
curves on phase plane z1 vs. z2 are parabolas with symmetry about the z2 axis for both
the Hill–Clohessy–Wiltshire and the Schweighart–Sedwick models (only the curvature

changes in the two cases, being in particular equal to −3ω2

8uy

for the Hill–Clohessy–

Wiltshire model and −a2 − b

2buy

for the Schweighart–Sedwick model). The curves on the

phase plane z3
z4√
a2 − b

are circles for both the Hill–Clohessy–Wiltshire and Schweighart-

Sedwick models. The z3 coordinates for the centers of the circles in Figure 5.2 are given
by

± a3uy

2 (a2 − b)
5

2

(5.7)
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as calculated through the analytical solution in (5.6). The position of those centers is
positive or negative according to the control sign.

Eq. (5.6) also gives the state vector evolution for coasting (control off) phases, by
simply imposing uy = 0. In particular, when the control is off, a drift parallel to the z1
axis is experienced in the z1 vs. z2 phase plane, whose direction is related to the sign of
z2 (see Eq. (5.6)), while the circles in Figure 5.2 simply evolve around the origin. Again,
the phase planes reproduce the results of [4] when the values for Hill–Clohessy–Wiltshire
equations are used for a and b.

Eq. (5.4) and Eq. (5.6) together show how the spacecraft relative motion can be
seen as an oscillation, represented by the states z3 and z4, around a virtual point, whose
evolution is given by z1 and z2 in (5.6).

6 Conclusion

We developed a linear transformation of both the Hill–Clohessy–Wiltshire model for
spacecraft relative motion nearby a circular orbit and the more recent Schweighart–
Sedwick including the J2 effect. The proposed transformation highlights the superposi-
tion of double integrator and harmonic oscillator modes. Previous results in literature,
regarding the traveling-ellipse formulation of the Hill–Clohessy–Wiltshire equations are
included as a particular case of our state vector transformation. In particular we give
analytical solution and a description of the phase planes when only along-track control
is used. The achieved dynamic separation via state transformation allows the control
designer to focus directly on either one of two critical goals regarding the stabilization
of the chaser’s motion with respect to the target: namely, either the stabilization into a
closed elliptical relative orbit or into a separate circular orbit with respect to the Earth
center.
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7 APPENDIX

Substitution of (3.3) into (5.3) leads to

T =































0 −2
c

ω (5c2 − 2)
0

i
√

ω2 (c2 − 2)

2ω2c2

1 0
−i
√

ω2 (c2 − 2)

ωc
0

0 0
i
(

c2 − 2
)√

ω2 (c2 − 2)

2c2
0

0 1 0
i
√

ω2 (c2 − 2)

ωc































,
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B̂ =

























0

−
(

5c2 − 2
)

ω2

4ω2c2 − (5c2 − 2)ω2

0

−4iω3c3

((5c2 − 2)ω2 − 4ω2c2)
3

2

























. (7.1)
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Abstract: This paper deals with the absolute stability analysis of uncertain systems
formulated in linear differential inclusion. It presents an approach based on the
representation of a polyhedral positively invariant set by its vertices, allowing to
construct the associated Lyapunov function. Efficiency of the method is discussed
through a numerical example, where the absolute stability of a third order system has
been analyzed via the construction of a Polyhedral Lyapunov Function (PLF). The
flexibility of the proposed mesh and the check procedure of Molchanov–Pyatintskii
conditions give a larger parameterized absolute stability domain than the one obtained
by others existing in the literature.
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1 Introduction

Complex systems have always been difficult in their modeling and stability analysis since
they may present nonlinearities and/or uncertainties. The problem has to do with non-
linear systems formulated in differential inclusions, where it is worth to decide about
their largest parameterized domain of variation of the non-constant gain without loss of
their stability [19]. Several criteria have been developed as a solution of this problem
such as the circle criterion [1], Popov criterion [2] and Borne and Gentina criterion [3].
However all these criteria give sufficient but not necessary conditions of stability.
The Second Lyapunov method is a powerful tool of the stability analysis for nonlinear or
uncertain system. However, its implementation is dependent on the choice and the way
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of construction of the Lyapunov function. The well-known class of quadratic functions is
the most common one [4]. However this kind of functions doesn’t lead usually to the best
solution, since the existence of a quadratic Lyapunov function is not a necessary condi-
tion of stability. Recently, a generalization of quadratic functions have been introduced
in the context of constrained control and they are called composite quadratic Lyapunov
functions [5]. Some classes of non-quadratic Lyapunov functions are introduced such as
polynomial homogenous functions [6]. The class of piecewise linear functions [7] which
is a universal class, since their construction represents necessary and sufficient condi-
tion of stability, was introduced for stability analysis and control [8]. A sub-class is the
one of polyhedral Lyapunov functions, a set-induced functions, have positively invariant
polyhedral sub-level sets [20]. Therefore, their construction is based on an operation of
scaling of the set boundary.

Several approaches have been established for the construction of polyhedral Lyapunov
functions, the plane representation of the sub-level set have been considered to determine
the absolute stability boundary of a second order system [9, 18]. The symmetric repre-
sentation of the set by its vertices is used to construct a polyhedral Lyapunov function
for third order uncertain system [10]. The technique of Ray-gridding is another issue for
scaling [11, 12] based on uniform partitions of the state space in terms of ray directions
allowing stability analysis of linear switched systems.

This paper is devoted to the stability analysis of third order uncertain systems by
constructing a polyhedral Lyapunov function. We propose to represent the positively
invariant set by its vertices obtained by a surface sphere triangulation [16]. This kind
of representation with an associated algorithm enables to enhance the set of parameters
variations, the obtained boundaries of the uncertainty are larger than those obtained
by existent approaches in the literature. The paper is organized as follows: First, we
remind some properties of the polyhedral sets and of their associated Lyapunov functions.
Then the procedure used for the computation of the Polyhedral Lyapunov Function is
presented, the efficiency of the approach is illustrated by an example. Conclusions are
summarized in the end.

2 Polyhedral Lyapunov Function

Our interest in this study is the construction of polyhedral Lyapunov functions, which are
induced by polyhedral positively invariant sets. These sets present several theoretical and
practical advantages over the ellipsoids, but they suffer from the problem of complexity
of their representation.

We remind here that a polyhedral set can be represented by:

P(F ) = {x : Fx ≤ 1̄} (2.1)

or by its dual form:
V(X) = { x = Xz, 1̄Tz ≤ 1, z ≥ 0}, (2.2)

where 1̄ = [1, 1, ..., 1]T , F and X are N × n-matrices.
The polyhedral set can be also represented by its rays, we denote by RN (λ), 0 < λ ≤ 1

the ray-polytope which is a scaled version of

RN (1̄) = conv
{

cos(
2πk

N
), sin(

2πk

N
), 0 ≤ k ≤ N

}

,

where conv{V } denotes the convex hull of a set of vertices V .
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Given a C-set S ⊂ R
n (a convex and compact subset of Rn including the origin as

interior point), it is always possible to define a function, named Minkowski function,
which is essentially the function whose sub-level sets are achieved by linearly scaling the
set S.

Definition 2.1 [8] Given a C-set S, its Minkowski function is defined by :

ψS(x) = inf{λ ≥ 0 : x ∈ λS}. (2.3)

The Minkowski function ψS satisfies the following properties [13]:

• It is positive definite : 0 ≤ ψS(x) ≤ ∞ and ψS(x) > 0 for all x 6= 0.

• It is positively homogeneous of order 1: ψS(λx) = λψS(x) for λ ≥ 0.

• It is sub-additive: ψS(x1 + x2) ≤ ψS(x1) + ψS(x2).

• It is continuous.

• Its unit ball is S = {x : ψS(x) ≤ 1}.

• It is convex.

If a polyhedral C-set is considered, the Minkowski functions deriving from the repre-
sentations (2.1) and (2.2) are:

ψP(F )(x) = max{Fx} = max
i

{Fix} (2.4)

and
ψV(X)(x) = min{1̄µ, x = Xµ, µ ≥ 0}. (2.5)

Consider a system (possibly resulting from a feedback connection) of the form:

ẋ(t) = f(x(t)). (2.6)

For a convex (possibly non-differentiable) Lyapunov function ψ(x), its Lyapunov deriva-
tive is defined by [14]:

D+ψ(x) = max
i∈I(x)

Fif(x), (2.7)

where I = {i : Fi(x) = ψP(F )(x)} andD+ denotes the upper-right Dini derivative defined
by:

D+ψ(x) = lim sup
h→0+

ψ(x+ hf(x))− ψ(x)

h
.

3 Absolute Stability Theorem

We consider the following Linear Differential Inclusion (LDI) given by:

ẋ ∈
{

Ax,A =
K
∑

i=1

αiAi, αi ≥ 0,
K
∑

i=1

αi = 1
}

. (3.1)

The matrices A1, A2, ...AK ∈ R
n×n are vertices of the matrix polytope.
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Theorem 3.1 [15] The function ψS(x) (2.3) induced by S represented as in (2.2) is a
Lyapunov function for the system (3.1) which guarantees its absolute stability (respectively
the polytope S is a positively invariant set) if and only if there exists K matrices Hi ∈
R

N×N , i = 1, 2, ...,K, each of them verifies:

h
(i)
kk +ΣN

j=1j 6=k
h
(i)
kj < 0 (3.2)

for all 1 ≤ k ≤ N , h
(i)
kj denotes the elements of the matrix Hi,

AiX = XHi (3.3)

where X = [x1, x2, ..., xN ] ∈ R
n×N is the matrix containing the vertices of S.

4 Polyhedral Lyapunov Function Construction for Third Order System

First, the computation of Polyhedral Lyapunov Function needs the definition of an arbi-
trary set. The scaling of its vertices allows to get a positively invariant set which defines
a sub-level set of the Lyapunov function.

4.1 Representation of the polyhedral set

The plane representation of the set for a third order system needs a tedious computation
complexity. We propose to represent the set by its vertices, which are obtained by a
surface triangulation of the unit sphere [16]. This triangulation is obtained by a Matlab
function which uses recursive subdivision. The first approximation is a platonic solid, an
octahedron (Figure 4.1).

Figure 4.1: Octahedron.

This shape is defined by the vertices [1, 0, 0], [−1, 0, 0], [0, 1, 0], [0,−1, 0], [0, 0, 1] and
[0, 0,−1]. Each level of refinement subdivides each triangle face by a factor of 4 (Figure
4.2).

At each level of refinement, the vertices are projected to the sphere surface. Thus we
define the arbitrary set SA (Figure 4.3).

4.2 Generation of the Lyapunov function

After the definition of the arbitrary polytope SA, the determination of the positively
invariant set (level set of the associated Lyapunov function) is based on checking the
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Figure 4.2: The octahedron obtained after two levels of refinement.

Figure 4.3: The polytope S
A obtained by a Surface Triangulation of the unit sphere.

two conditions (3.2) and (3.3) of theorem 3.1. Thus, the following linear program is
formulated:

• For each vertex xk, for all k = 1, 2, ..., N we denote by V (k) the matrix obtained
by the neighbored vertices

V (k) = [−xk, xk, x1(k), x2(k), ..., xL(k)] (4.1)

for all k = 1, 2..., N , where xl(k), for all l(k) = 1, 2, ..., L(k) are the neighbored
vertices of xk.

• We resolve the following linear program:

max FAixk
FV (k) ≤ J T (4.2)

for all k = 1, 2, ..., N , where J = [−1, 1, 1...., 1]T is a R
L(k)+2 vector. The dual of

the linear program (4.2) can be written:

min J Tλ(k),
V (k)λ(k) = Aixk

(4.3)
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where λ(k) ∈ R
L(k)+2 is a vector containing the Lagrange multipliers relative to

the linear program (4.3). We construct each column of the matrix Hi, for all
i = 1, 2, ...,K from the elements of the vectors λ(k), k = 1, 2, ..., N :

h
(i)
kk = −λ1(k), h

(i)
l(k)k = λl(k)+2(k). (4.4)

All the other components of Hi are equal to zero. With such a construction of Hi,
i = 1, 2, ...,K, the condition (3.3) is well satisfied.

The computation of the matrices Hi, for all i = 1, 2, ...,K followed by an operation
of scaling the vertices of SA leads to the construction of the modified polytope SD

with vertices contained in XD. This operation consists in replacing the matrix X by
XD = XD−1 where D = diag(d1, d2, ..., dN ) is a diagonal matrix. The vector d =
[d1, d2, d3, ..., dN ]T is obtained by solving the following linear program:

min z,










|H1|T
|H2|T

...
|HK |T











d− 1z ≤ 0, d ≥ 0, z ≥ −100
(4.5)

where |Hi| is the matrix obtained from Hi by replacing only the off-diagonal elements by
their absolute values. 1 denotes the vector of appropriate dimension, of which all entries
are equal to one.

5 Numerical Example

We consider the following system with nonlinear feedback gain defined by Figure 5.1. If
we consider an output linear gain, we can prove that the stability condition is a positive
unlimited gain. But where the gain is non-constant, we have to determine the largest

domain [kmin, kmax] in which the nonlinear gain σ(y,t)
y

may vary without loss of the system
stability:

kmin ≤ σ(y, t)

y
≤ kmax, y 6= 0. (5.1)

The absolute stability of the considered system is equivalent to that of the Linear Dif-
ferential Inclusion defined by the two vertices of the matrix polytopes:

A1 =





−10 −10kmin −10kmin

1 0 0
0 1 0



 , A2 =





−10 −10kmax −10kmax

1 0 0
0 1 0



 . (5.2)

Let us set kmin = 0.2. The problem is to determine kmax such that the system is
absolutely stable. As long as the linear program (4.5) is feasible, we get an optimal
solution zopt = −100, which gives the associate scaling vector d > 0. Then the associated
Lyapunov function is ψSD (x) = inf{µ ≥ 0 : x ∈ µSD}.

With N = 66 vertices, the obtained upper boundary is kmax = 2.24 which is upper
than the values obtained by other developed criteria and approaches. Indeed the Circle
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Figure 5.1: The studied system.

criterion leads to kmax = 0.5467. The representation of the polytope with 6402 vertices
[10], gives kmax = 1 and the application of the ray-gridding technique [12] provides
kmax = 1.5. This comparison study shows the importance of the proposed procedure of
PLF construction from the point of view of the width of the absolute stability domain
and the reduction of the number of vertices which simplifies the computation complexity.

6 Conclusion

In this paper, we have dealt with the problem of the construction of a polyhedral lyapunov
function for the absolute stability analysis of uncertain systems formulated on linear
differential inclusion. It has been proved that the choice of a flexible representation
of the polytope and the application of a suitable technique of scaling adjust its shape
to some demands. The representation of the polytope by its vertices obtained by the
proposed surface triangulation of the unit sphere associated with a suitable technique
of scaling allows a convenient application of the Molchanov–Pyatintskii theorem. The
comparison of the proposed procedure with other criteria and approaches has shown its
availability and its efficiency.
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Abstract: In this paper, we have obtained some special solutions of rotating strati-
fied Boussinesq equations and reduced these equations into the system of six coupled
nonlinear ODEs. Further, in absence of strain field we have proved that the reduced
system of six coupled ODEs is completely integrable.
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1 Introduction

The stratified Boussinesq equations form a system of PDEs modelling the movements of
planetary atmospheres. It may be noted that the Boussinesq approximation in the litera-
ture is also referred to as the Oberbeck–Boussinesq approximation for which, the reader is
referred to an interesting article of Rajagopal et al [1] providing a rigorous mathematical
justification as perturbations of the Navier–Stokes equations. Majda & Shefter [2] have
chosen certain special solutions of this system of PDEs to demonstrate onset of instability
when the Richardson number is less than 1/4. In their study of instability in stratified
fluids at large Richardson number, Majda & Shefter [2] have obtained the exact solutions
to stratified Boussinesq equations neglecting the effects of rotations and viscosity. In his
monograph Majda [3] has obtained the special solution of rotating stratified Boussinesq
equations excluding the effects of viscosity and finite rotation. Whereas, in this paper we
include the effect of rotation. And then we systematically deploy the procedure of Majda
& Shefter [2] (as well as the procedure applied by Craik & Criminale in their paper [4])
to obtain the exact solutions of rotating stratified Boussinesq equations and derive the
system of six coupled ODEs. Further, in the absence of strain field we proved that the
reduced system of ODEs is completely integrable and admits the similar results obtained
by Srinivasan et all [5]. For the similar kind of work reader may refer Maas [8, 9].
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2 Nondimensional Rotating Stratified Boussinesq Equations

We consider the motion of an incompressible flow of fluid in the atmosphere and in the
ocean where the flow velocities are too slow to account for compressible effects, the flow
of fluid is governed by the following rotating Boussinesq equations (we ignore the effects
of viscosity and heat dissipation) that involves the interaction of gravity with density
stratification about the reference state.

Dv

Dt
+ f(ê3 × v) = −∇ p̃

ρb
− gρ

ρb
ê3,

divv = 0,

Dρ̃

Dt
= 0,

(2.1)

where D/Dt = ∂/∂t + v · ∇, the unit vector in vertical direction is ê3 = (0, 0, 1), the
space variable x = (x1, x2, x3) and fluid velocity is given by v = (v1, v2, v3). For the
local behavior of incompressible fluid the density ρ̃ is the sum of mean density ρb and
perturbations ρ about the mean density, that is ρ̃(x, t) = ρb + ρ(x, t). The pressure is
denoted by p̃ and f is a rotation frequency.

Now we nondimensionalize the Boussinesq equations (2.1) with the following scales
for length, time, velocity, density, and pressure:

L : horizontal length scale,
v∗ : mean advective velocity,
Te =

L
v∗

: eddy turnover time,
TR = f−1 : rotation time,
TN = N−1 : buoyancy time,
ρb : mean density,
p : mean pressure,
N : buoyancy frequency.

(2.2)

In this scale of nondimensionalization we introduce the following nondimensional vari-
ables

x′ =
x

L
, t′ =

t

Te

, v′ =
v

v∗
, ρ̃′ =

ρ̃

ρbB
, p′ =

p̃

p
. (2.3)

The numerical factor B in the density equation is positive. Applying equations (2.3)
to equations (2.1) and dropping the primes finally we get the nondimensional rotating
stratified Boussinesq equations

Dv

Dt
+

1

R0

u = −P∇p− Γρê3,

divv = 0,

Dρ̃

Dt
= 0.

(2.4)

Here, we have u = (u1, u2, u3) = ê3 × v, Γ = BgL
v∗2 the nondimensional number, R0 = v∗

Lf

the Rossby number and P = p

ρbv∗2 the Euler number. Nondimensional density function

is ρ̃(x, t) = ρb+ρ(x, t). The more elaborate discussion about the nondimensional analysis
of rotating stratified Boussinesq equations is given by Majda in his monograph [3]. In
the following section we have obtained the special solutions to (2.4).
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3 Special Solutions

In this section we investigate the special solutions to (2.4) in large scale part. We are
looking for the local behavior of an incompressible fluid, and we expand the smooth
velocity field and density function in a Taylor’s series about some point x0:

v(x, t) = v(x0, t) +∇v|(x0,t)(x − x0) +O(|x − x0|2),

ρ̃(x, t) = ρb +∇ρ̃|(x0,t)(x− x0) +O(|x− x0|2),
(3.1)

where ∇v is a 3 × 3 matrix whose (i, j)th entry is ∂vi

∂xj
, i = 1, 2, 3, j = 1, 2, 3. The

following equation (3.2) is the decomposition of the matrix ∇v as a sum of symmetric
and skew-symmetric matrices and such kind of decomposition is unique:

∇v|(x0,t) =
(

∇v+(∇v)
T

2

)

+
(

∇v−(∇v)
T

2

)

= D(x0, t) + Ω(x0, t),
(3.2)

where D is the symmetric part of ∇v and is called the deformation matrix, it has the
property that the trace of matrix D is equal to the divergence of vector field v. Whereas,
Ω is a skew symmetric part of matrix ∇v and satisfy the following equation (3.3).

Ωh =
1

2
w × h, (3.3)

for any vector h ∈ R
3. The vector w is vorticity vector that is w = ∇×v = (w1, w2, w3).

Hence, from equation (3.2) we get

∇v|(x0,t)h = D(x0, t)h+
1

2
w(x0, t)× h. (3.4)

The decomposition of a vector v as in equations (3.1) by mean of equation (3.4) has a sim-
ple physical interpretation namely, every incompressible velocity field is a sum of trans-
lation, stretching and rotation. We may deprive the translation part by a Galilean trans-
formation, for this one may refer to Majda & Bertozzi [10]. We assume that v(x0, t) = 0.

We take advantage of the local representation to determine certain special solutions to
the rotating stratified Boussinesq equation (2.4). We derive now an equation for gradient
of velocity

(vixk
)t +

∑

j

vj(vixk
)xj

+
∑

j

∂vj

∂xk

∂vi

∂xj

+
1

R0

(ui
xk
) = −P (pxi

)xj
− Γ

∂ρ

∂xk

δk3, (3.5)

where δ is the Kronecker delta. Then, we introduce the notations V = (vixk
) and P̂ =

P (pxi
)xk

for the Hessian matrix of the pressure P̂ . With this notation we can rewrite
equation (3.5) in the matrix form as follows

DV

Dt
+ V 2 +

1

R0

(ui
xk
) = −P̂ − Γê3(∇ρ)T . (3.6)

A matrix (ui
xk
) can uniquely be expressed as (ui

xk
) = S+Q, where the symmetric matrix
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S and skew symmetric matrix Q are as given below

S =
1

2











−2 ∂v1

∂x1

∂v1

∂x1

− ∂v2

∂x2

− ∂v2

∂x3

∂v1

∂x1

− ∂v2

∂x2

2 ∂v1

∂x2

∂v1

∂x3

− ∂v2

∂x3

∂v1

∂x3

0











, Q =
1

2











0 − ∂v2

∂x2

− ∂v1

∂x1

− ∂v2

∂x3

∂v2

∂x2

+ ∂v1

∂x1

0 ∂v1

∂x3

∂v2

∂x3

− ∂v1

∂x3

0











.

(3.7)
For any h ∈ R

3, a skew symmetric matrix Q satisfies the equation

Qh = −1

2

∂v

∂x3

× h. (3.8)

From equation (2.4), we have the density function ρ̃ = ρb+ ρ and Dρ̃
Dt

= 0. Therefore, we
have ∇ρ̃ = ∇ρ. Now differentiating the density equation partially with respect to xk we
get

∂

∂t
(ρ̃xk

) +
∑

j

∂vj

∂xk

∂ρ̃

∂xj

+
∑

j

vj
∂2ρ̃

∂xk∂xj

= 0 (3.9)

which may be recast as
D

Dt
(∇ρ̃) + V T (∇ρ̃) = 0. (3.10)

Since D and Ω are symmetric and skew symmetric parts of ∇v a simple calculation gives

V 2 = D2 +Ω2 +DΩ + ΩD. (3.11)

The symmetric part of V 2 is D2 + Ω2 and DΩ + ΩD is the skew-symmetric part. We
proceed to decompose equation (3.6) into symmetric and skew symmetric parts. The
symmetric part is easily seen to be

DD
Dt

+D2 +Ω2 +
1

R0

S = −P̂ − Γ

2

[

ê3(∇ρ̃)T + (∇ρ̃)ê3
T
]

. (3.12)

The skew symmetric part of equation (3.6) is discussed in the following Proposition 3.1.
Before proceeding to the proposition here we insert a simple lemma and one may find
the proof of this lemma in the monograph of Majda [3].

Lemma 3.1 w · ∇v = w · (∇v)T .

Proof For any h ∈ R
3, we have by identification (3.3)

0 =
1

2
w · (w × h) =

1

2
w ·

(

((∇v) − (∇v)T )h
)

=
1

2
w ·

(

(∇v) − (∇v)T
)

h

from which the result follows since h is arbitrary. 2

Proposition 3.1 The evolution of the vorticity w = ∇×v is governed by the equation

Dw

Dt
= w · ∇v + Γ









− ∂ρ̃

∂x2

∂ρ̃

∂x1

0









+
1

R0

∂v

∂x3

. (3.13)
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Proof Equating the skew symmetric part of equation (3.6) we get

DΩ

Dt
+DΩ + ΩD +

1

R0

Q = −Γ

2









0 0 − ∂ρ̃

∂x1

0 0 − ∂ρ̃
∂x2

∂ρ̃

∂x1

∂ρ̃

∂x2

0









. (3.14)

So that for arbitrary h ∈ R
3

1

2

Dw

Dt
× h+ (DΩ + ΩD)h− 1

2R0

∂v

∂x3

× h =
Γ

2





− ∂ρ̃

∂x2

∂ρ̃

∂x1

0



× h. (3.15)

Here, Ω and D are given by

Ω =
1

2





0 −w3 w2

w3 0 −w1

−w2 w1 0



 , D =





d11 d12 d13
d12 d22 d23
d13 d23 d33





and the elements dij of matrix D are expressible in terms of partial derivatives ∂kv
l with

the relation d11 + d22 + d33 = 0. A simple calculation gives

DΩ+ ΩD =
1

2





0 −c12 c13
c12 0 −c23
−c13 c23 0



,

c =





c23
c13
c12



 =





−w1d11 − w2d12 − w3d33
−w1d12 − w2d22 − w3d23
−w1d13 − w2d23 − w3d33



 = −Dw = −w · D.

Therefore,

(DΩ + ΩD)h =
1

2





0 −c12 c13
c12 0 −c23
−c13 c23 0



h =
1

2





c23
c13
c12



× h.

Hence, we can recast equation (3.15) as

1

2

Dw

Dt
× h− 1

2
w · D × h− 1

2R0

∂v

∂x3

× h =
Γ

2









− ∂ρ̃
∂x2

∂ρ̃

∂x1

0









× h. (3.16)

Now w · D = 1

2
(w · (∇v) + w · (∇v)T ) = w · ∇v, substituting this into (3.16) and

simplifying we get (3.13). Hence the proof of the proposition. 2

Remark 3.1 From equation (3.13) we see that the infinitesimal vorticity elements
are advected with the fluid and get amplified with interaction of velocity gradients and
density gradients and also with addition term of rate of change of fluid velocity in vertical
direction, which causes the effects of rotation. Due to this additional term caused by
effect of rotation we have proved in the following Theorem 3.1 the component of vorticity
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along with the density gradient advected with fluid is increased according to the rate of
change of velocity in vertical direction and get amplified with density gradient. This is
the extension of Ertel’s theorem allowing the forcing term due to the rotation effect and
neglecting the dissipation. One may refer to Majda ([3], p. 14) for the details of Ertel’s
theorem.

Theorem 3.1 The advective rate of change of vorticity component along with density
gradient is given by

D

Dt
(w · ∇ρ̃) =

1

R0

∂v

∂x3

· ∇ρ̃. (3.17)

Proof Consider the advective rate of change of vorticity along with density gradient.
We get

D

Dt
(w · ∇ρ̃) =

Dw

Dt
· ∇ρ̃+w · D(∇ρ̃)

Dt
. (3.18)

Applying equations (3.10), (3.13) and lemma (3.1) to equation (3.18) we get the result.
2

As we claim earlier we have obtained the special solutions to (2.4), these solutions
are given in the form of the following Theorem 3.2. The more interesting part of these
solutions is that it reduces the PDEs of rotating stratified Boussinesq equations (2.4)
into the system of six coupled nonlinear ODEs.

Theorem 3.2 The rotating stratified Boussinesq equations (2.4) admit the special
solutions of the form

v(x, t) = D(t)x + 1

2
w(t)× x,

ρ̃ = ρb + b(t) · x,

Pp = 1

2
P̂ (t)x · x,



















(3.19)

where P is a nondimensional number as defined in (2.4), D(t) is a symmetric matrix
with zero trace; when w(t) = ∇× v and b(t) = ∇ρ̃ satisfy the ODEs

dw

dt
= D(t)[w(t) + 1

R0

ê3] + Γê3 × b(t)− 1

2R0

ê3 ×w(t),

db

dt
= −D(t)b(t) + 1

2
w(t)× b(t),











(3.20)

and matrix P̂ (t) is given by

−P̂ =
dD
dt

+D2 +Ω2 +
1

R0

S +
Γ

2
(ê3b

T + bê3
T ), (3.21)

where the matrix Ω is as defined in (3.2) through the linear map given by (3.3) and the
matrix S is given by (3.7).

Proof We proceed to show that the Ansatz (3.19), (3.20) does indeed furnish so-
lutions to (2.4). The condition divv = 0 follows from the fact that matrix D has zero
trace. To verify that the momentum equation, note that v is linear in x say v = V x,
where V = D+Ω is a function of time alone. Therefore, ∇ρ̃ = ∇ρ = b(t) and advection
term is

(v · ∇)v = (V x · ∇)V x = V (x1

∂

∂x1

+ x2

∂

∂x2

+ x3

∂

∂x3

)V x = V 2x,
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so that Dv

Dt
= dD

dt
x+ dΩ

dt
x+ V 2x. Also, equation (3.12) can be recast as

dD
dt

+D2 +Ω2 +
1

R0

S = −P̂ − Γ

2
(ê3b

T + bê3
T ) (3.22)

and equation (3.13) that is equation for vorticity is equivalent to the first equation in
(3.20). The equation for skew symmetric part equivalent to (3.14) is as given below

dΩ

dt
+DΩ + ΩD +

1

R0

Q = −Γ

2





0 0 −b1
0 0 −b2
b1 b2 0



 , (3.23)

where Q is skew symmetric matrix as defined in (3.7). Inserting (3.23) and eliminating
dD
dt

using (3.21) we find that

Dv

Dt
= −P̂x−D2x− Ω2x− Γ

2





0 0 b1
0 0 b2
b1 b2 2b3



x− 1

R0

Sx

−(DΩ+ ΩD)x + Γ

2





0 0 b1
0 0 b2

−b1 −b2 0



x− 1

R0

Qx+ V 2x.

(3.24)

Since the term (V 2 −D2 − Ω2 −DΩ− ΩD)x vanishes, (3.24) simplifies as

Dv

Dt
= −P̂x− Γ





0
0

b · x



− 1

R0

(S +Q)x. (3.25)

As the fluid velocity is defined by (3.19), then we see that

1

R0

(S +Q)x =
1

R0

(ê3 × v).

The pressure term in (3.19) enables us to write (3.25) as

Dv

Dt
+

1

R0

u = −P∇p− Γρê3.

Finally we verify the Boussinesq equation for density

Dρ̃

Dt
=

D

Dt
(b · x)

=
db

dt
· x+ (v · ∇)(b · x)

=
db

dt
· x+ v · b.

(3.26)

Using (3.20), we substitute db
dt

and v = (D +Ω)x into (3.26), we get

Dρ̃

Dt
= −(Db) · x+

1

2
(w × b) · x+ [(D +Ω)x] · b

= −(Db) · x+
1

2
(w × b) · x+ (Dx) · b+

1

2
(w × x) · b

= 0

(3.27)
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completing the proof of the theorem. 2

Following are the examples of special solutions of rotating stratified Boussinesq equa-
tions (2.4) in the form of (3.19).

Example 3.1 Consider a two dimensional time independent flow for which the con-
stant vorticity vector w = (0, 0, w0), density gradient vector b = (0, 0, b0) and deforma-
tion matrix is given by

D =





λ 0 0
0 −λ 0
0 0 0



 .

Then, we see that vectors w and b satisfy the system of ODEs (3.20) and a solution of
the system of PDEs (2.4) is given below.

v(x, t) = (λx1 − w0

2
x2,

w0

2
x1 − λx2, 0),

ρ̃ = ρb + b0x3,

Pp = 1

2

[

(−λ2 +
w2

0

4
+ w0

2R0

)(x2

1 + x2

2) + Γb0x
2

3 − 2λ
R0

x1x2

]

.

Example 3.2 Now we consider a two dimensional time dependent flow; let

the vorticity vector be w(t) =
(

w10 cos(t/R0) + w20 sin(t/R0), −w10 sin(t/R0) +

w20 cos(t/R0), 0
)

= (−a2(t), a1(t), 0) with the initial condition w(0) = (w10, w20, 0) and

the density gradient vector be b(t) = (0, 0, b0), where b0 is an arbitrary constant. The
deformation matrix D is

D =





0 0 a1(t)
0 0 a2(t)

a1(t) a2(t) 0



 .

Then, we see that the vectors w, b satisfy the system of ODEs (3.20) with ini-
tial conditions w(0), b(0). The velocity and density are then given by v(x, t) =
(a1(t)x3, a2(t)x3, 0), ρ̃ = ρb + b0x3. The pressure p will be computed by using equa-
tions (3.19) and (3.21).

4 Integrable System

In the above section we see that the rotating stratified Boussinesq equations (2.4) admit
the special solutions in the form of (3.19) provided that w and b satisfy the system of
ODEs (3.20). Further, in the absence of strain field D = 0 we have the following reduced
system of six coupled nonlinear ODEs

ẇ = Γê3 × b− 1

2R0

ê3 ×w,

ḃ = 1

2
w × b.

}

(4.1)

We see the system of equations (4.1) is divergence free and admits the following four
functionally independent first integrals

|b|2 = c1, ê3 ·w = c2, |w|2 + 4Γ(ê3 · b) = c3, w · b+
1

R0

ê3 · b = c4. (4.2)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 10(1) (2010) 29–38 37

Hence, by Liouville’s theorem on integral invariant and theorem of Jacobi [11] there
exists an additional first integral. That is an autonomous system of six coupled ODEs
admitting the five global functionally independent first integrals proving the complete
integrability of the system (4.1). Also, we see from (4.2) that |b| and |w| remain bounded
so that the invariant surface (4.2) is compact and flow of vector field (w,b) is complete.
It is easy to verify that the system (4.1) admits all the similar kind of results obtained
by Srinivasan et all in their paper [5]. Also, we find that the system of equations (4.1)
is similar to the system discussed by Desale [6]. For the bifurcation analysis near the
degenerate critical point one may refer to [7].

5 Conclusion

In Section 1, we gave a brief introduction to the work and put up a literature survey.
Then in Section 2, we present the rotating stratified Boussinesq equations (2.1) and
consequently we put it into the nondimensional form (2.4). In Section 3, we obtained the
special solutions to the system (2.4) in the form of (3.19). Due to the inclusion of rotating
term in the equations (2.4), the special solutions obtained here are the improvement of
the solutions obtained by Majda & Shefter [2]. In this link we present the Proposition
3.1, Theorem 3.1 and in Theorem 3.2, we present special solutions provided that the
vorticity and density gradients satisfy the system of ODEs (3.20). Also, in that section
we gave the examples of two dimensional flows. In the last Section 4, we proved that the
system of six coupled nonlinear ODEs (4.1), which is obtained by neglecting the strain
field is an integrable system.
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1 Introduction

We continue our studies initiated in [3] in which we modeled an antagonistic stochastic
game by two marked Poisson processes

A : =
∑

j≥1

djεrj and B : =
∑

k≥1

zkεwk
(1.1)

on a filtered probability space (Ω,F(Ω),Ft, P ) specified by
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Ee−uA(·) = eλA|·|[hA(u)−1], hA(u) = Ee−ud1 , Re(u) ≥ 0, (1.2)

Ee−vB(·) = eλB |·|[hB(v)−1], hB(v) = Ee−vz1 , Re(v) ≥ 0, (1.3)

representing casualties incurred to players A and B. The game starts with hostile actions
initiated by one of the players A or B at times r1 or w1 (whichever comes first). The
players can exchange with several more strikes before the information is first noticed by
an observer at time t0 ≥ max{r1, w1}. The observation of the game continues after t0 in
accordance with a point renewal process S =

∑

i≥1
εti and it is further extrapolated to

the past moment t−1 : = min{r1, w1} thereby forming an extended observation process
T = {t−1, t0, t1, . . .}. The entire information on the game is available only upon T and
thus the game is reduced to its embedding AT ⊗BT . We stop the game when one of the
players is ruined, and of all paths of the game we focused on those where player A loses
to player B.

Given independent sub-σ-algebras FA,FB,FS ⊆ F(Ω) we assume that the processes
A, B, and S are, respectively, measurable. Let ξi and ηi be the corresponding iid incre-
ments of damages to A and B and ∆j = tj − tj−1 ∈ [∆] (an equivalent class of r.v.’s),
j = 1, 2, . . . , with

g(u, v, θ) : = Ee−uξj−vηj−θ∆j , Re(u) ≥ 0, Re(v) ≥ 0, Re(θ) ≥ 0, j ≥ 1, (1.4)

presumably known. The initial observation is defined as t0 = max{r1, w1} +∆0, where
∆0 ∈ [∆] and ∆0 is independent from the rest of the ∆’s. The random exit indices are

µ : = inf {j ≥ 0 : αj = α0 + ξ1 + . . .+ ξj > M}, (1.5)

ν : = inf {k ≥ 0 : βk = β0 + η1 + . . .+ ηk > N}, (1.6)

with α0 and β0 being the casualties to A and B at t0, and M and N are respective
tolerance thresholds. Related on µ and ν are the following r.v.’s:

tµ is the nearest observation epoch when player A’s damages exceed threshold M .

tν is the first observation of T when player B’s damages exceed threshold N .
Apparently, αµ and βν are the respective cumulative damages to players A and B at
their ruin times. We will be concerned, however, with the ruin time of player A and thus
restrict our game to the trace σ-algebra F(Ω) ∩ {µ < ν}. Accordingly, we studied in [3],
among other things,

ϕµ = ϕµ(u, v, ϑ) = E[e−uαµ−vβµ−θtµ1{µ<ν}] (1.7)

and obtained

ϕµ = LC−1

xy

(

φ0(x, 0, 0, u, v+y, θ)−φ0(0, 0, 0, u+x, v+y, θ)
1− g(u, v + y, θ)

1− g(u+ x, v + y, θ)

)

, (1.8)

where LC−1 is the inverse of the two-dimensional Laplace–Carson transform

LCpq(·)(x, y) : = xy

∫

∞

p=0

∫

∞

q=0

e−xp−yq(·)d(p, q), Re(x) > 0, Re(y) > 0, (1.9)

According to [3],
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φ0(x, 0, 0, u, v, θ) = E[e−xα−1−uα0−vβ0−θt0 ]

=
λAλBδ(θ

∗)

θ + λA + λB

( 1

θA + λB

hA(x+ u)hB(v) +
1

θB + λA

hA(u)hB(v)
)

, (1.10)

φ0(0, 0, 0, u, v, θ) = E[e−uα0−vβ0−θt0 ]

=
λAλBδ(θ

∗)

θ + λA + λB

( 1

θA + λB

hA(u)hB(v) +
1

θB + λA

hA(u)hB(v)
)

, (1.11)

and

θ∗
0
: = θ + λA(1− hA(u)) + λB(1− hB(v)), δ(θ) : = Ee−θ∆, (1.12)

θA : = θ − λA(hA(u)− 1), θB : = θ − λB(hB(v)− 1). (1.13)

The involvement of the inverse of the Laplace–Carson transform in (1.8) at first does
not look like the above formulas are analytically tractable. We demonstrate that this
is not the case and consider a number of special cases (of independent interest) which
are all Laplace–Carson invertible and thus provide the first vivid argument for analytical
tractability of the results obtained in [3]. They are shown to be numerically tame and
as such are rendered by trivial computational procedures. Most of them are reduced
to definite integrals of the modified Bessel functions. In one case an explicit marginal
probability density function is obtained. The original MATLAB routine is also attached.

2 A Special Case

We assume that the intervals ∆0,∆1, . . . between the successive observation times
t0, t1, . . . , are exponentially distributed with parameter δ, i.e.

δ(θ) : = Ee−θ∆0 =
δ

δ + θ
. (2.1)

Furthermore, we assume that the marks in the processes A and B specified by hA and
hB in (1.2) and (1.3), respectively, are exponential with parameters h and H , i.e.

hA(u) =
h

h+ u
and hB(v) =

H

H + v
. (2.2)

(1.8) for this special case reduces to a form for which we can find the Laplace–Carson
inverse explicitly. We start with the first factor, φ0(x, 0, 0, u, v + y, θ) of (1.10):

φ0(x, 0, 0, u, v + y, θ)

=
λAλBhB(v + y)

θ + λA + λB

× δ(θ + λA(1− hA(u)) + λB(1− hB(v + y)))

×
( 1

θ + λB − λA(hA(u)− 1)
hA(u + x) +

1

θ + λA − λB(hB(v + y)− 1)
hA(u)

)

.

(2.3)

Continuing with calculations, after some algebra, we arrive at
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φ0(x, 0, 0, u, v + y, θ)

=
λAλBhH

θ + λA + λB

× δ(h+ u)

(H + v + y)[(δ + θ)(h+ u) + λAu+ λB(h+ u)]− λBH(h+ u)

×
( 1

(θ + λB)(h+ u) + λAu
+

−x

(θ + λB)(h+ u) + λAu
· 1

h+ u+ x

+
H + v + y

(θ + λA + λB)(H + v + y)− λBH
· 1

h+ u

)

.

(2.4)

Now we apply the Laplace–Carson inverse to (2.4):

LC−1

xy (φ0(x, 0, 0, u, v + y, θ))(p, q)

or proceed with L−1

xy being the two-dimensional Laplace inverse, in the form

= L−1

xy (
1

xy
· φ0(x, 0, 0, u, v + y, θ))(p, q)

(by Fubini’s Theorem, we can apply single-variate Laplace inverses first in x and later
on in y)

= L−1

y

{

λAλBhHδ(h+ u)

˜θG1

· 1
y
· 1

H + v + y − λBH(h+u)

G1

×
( 1

G2

+
−1

G2

· e−p(h+u) +
1

˜θ(h+ u)
+

λBH

˜θ
2

(h+ u)
· 1

H + v + y − λBH

θ̃

)

}

(q),

then

=
λAλBhHδ

˜θ
· 1

(H + v)G1 − λBH(h+ u)

×
(

h+ u

G2

+
H + v

˜θ(H + v)− λBH
− h+ u

G2

· e−p(h+u)

+
{−λBH

˜θ
· 1

˜θ(H + v)− λBH
+

−G1

˜θG3

}

e
−q(H+v−

λBH

θ̃
)

+
{−(h+ u)

G2

+
h+ u

G3

+
h+ u

G2

· e−p(h+u)
}

e
−q(H+v−

λBH(h+u)

G1
)

)

,

(2.5)

where
˜θ = θ + λA + λB , (2.6)

G1 = (δ + ˜θ)(h+ u)− λAh, G2 = ˜θ(h+ u)− λAh, (2.7)

G3 = δ(h+ u)− λAh. (2.8)

We turn to the second term φ0(0, 0, 0, u+x, v+ y, θ) 1−g(u,v+y,θ)

1−g(u+x,v+y,θ)
of (1.8). Continuing

with similar but more tedious calculations, we have its Laplace-Carson inverse in variable
x :
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LC−1

x

{

φ0(0, 0, 0, u+ x, v + y, θ)
1− g(u, v + y, θ)

1− g(u+ x, v + y, θ)

}

(p)

= Λ
(

1− g(u, v + y, θ)
)

· y

×
[

( −1

λAh
· 1

˜θ(H + v)− λBH
+
{1

˜θ
+

G2

λAh˜θ
+

h+ u

G2

} 1

G2(H + v)− λBH(h+ u)

)1

y

+
1

λAh
· 1

˜θ(H + v)− λBH
· 1

H + v + y − λBH

θ̃

−
{1

˜θ
+

G2

λAh˜θ
+

h+ u

G2

} 1

G2(H + v)− λBH(h+ u)
· 1

H + v + y − λBH(h+u)

G2

+
1

λBHG2

· 1
y
· e−p(h+u−

λAh

θ̃
)

+

[

( −1

λBHG2

+
1

λAh
· 1

˜θ(H + v)− λBH

+
{−1

˜θ
+

−G2

λAh˜θ
+

−(h+ u)

G2

} 1

G2(H + v)− λBH(h+ u)

)1

y

+
−1

λAh
· 1

˜θ(H + v)− λBH
· 1

H + v + y − λBH

θ̃

+
{1

˜θ
+

G2

λAh˜θ
+

h+ u

G2

} 1

G2(H + v)− λBH(h+ u)

× 1

H + v + y − λBH(h+u)

G2

]

e
−p(h+u+

D(y)

C′(y)
)

]

, (2.9)

where

Λ =
λAλBhHδ

˜θ
, C′(y) = ˜θ(H + v + y)− λBH, D(y) = −λAh(H + v + y). (2.10)

Now, we will apply the single-variate Laplace-Carson inverse in y to (2.9). We will
use the following formula for the Laplace inverse (cf. [1, 2]):

L−1

y (
1

y + b2
· e

a
y+b1 )(q) = e−b1qI0(2

√
aq)

+ (b1 − b2) · e−b2q

∫ q

z=0

e(b2−b1)zI0(2
√
az)dz,

(2.11)

where I0 is the modified Bessel function of order zero. Using (2.11) in (2.9) in combination
with (2.5), we finally have

ϕµ(u, v, θ) : = E
[

e−uαµ−vβµ−θtµ1{µ<ν}

]

= L−1

xy (φ0(x, 0, 0, u, v + y, θ))(p, q)

−L−1

xy

(

φ0(0, 0, 0, u+ x, v + y, θ)
1− g(u, v + y, θ)

1− g(u+ x, v + y, θ)

)

(p, q)
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=
−λAλBhHδ

˜θG2

· h+ u

(H + v)G1 − λBH(h+ u)
· e−p(h+u)(1 − e

−q(H+v−
λBH(h+u)

G1
))

+
(−λAhδ

˜θ
· H + v

(H + v)G1 − λBH(h+ u)
+

λAλBhHδ

˜θG2

· h+ u

(H + v)G1 − λBH(h+ u)

)

× e
−p(h+u−

λAh

θ̃
)

+
(−λAhδ

˜θG1

+
λAhδ

˜θ
· H + v

(H + v)G1 − λBH(h+ u)

− λAλBhHδ

˜θG2

· h+ u

(H + v)G1 − λBH(h+ u)

)

· e−p(h+u−
λAh

θ̃
) · e−q(H+v−

λBH(h+u)

G1
)

+
λAhδ

˜θG1

· e−p(h+u−
λAh

θ̃
) · e−q(H+v−

λBH

θ̃
)I0(2

√

λAλBhHpq

˜θ
2

)

+
λAhδ

˜θ
· (H + v)2

(H + v)G1 − λBH(h+ u)
· e−p(h+u−

λAh

θ̃
)

×
∫ q

z=0

e
−(H+v−

λBH

θ̃
)zI0(2

√

λAλBhHpz

˜θ
2

)dz

+
(λAλBhHδ(h+ u)

˜θG2

1

+
−λAλBhHδ(h+ u)

˜θG1

· H + v

(H + v)G1 − λBH(h+ u)

)

× e
−p(h+u−

λAh

θ̃
) · e−q(H+v−

λBH(h+u)

G1
)

×
∫ q

z=0

e
(
λBHG3

θ̃G1

)zI0(2
√

λAλBhHpz

˜θ
2

)dz, (2.12)

where G1, G2, G3 are defined in (2.7-2.8).

3 Marginal Functionals

Our next goal is to get marginal transforms. This can be directly obtained from
ϕµ(u, v, θ) of (2.12).

Special case 1, with v = θ = 0 we have the marginal Laplace-Stieltjes transform of
the amount of casualties to player A (who is supposed to lose) at the exit of the game:

ϕµ(u, 0, 0) : = E
[

e−uαµ1{µ<ν}

]

. (3.1)

Correspondingly, we modify the above components in (2.12) to

˜θ = λA + λB , (3.2)

G1 = (δ + λA + λB)(h+ u− λAh

δ + λA + λB

), (3.3)

G2 = (λA + λB)(h+ u− λAh

λA + λB

), (3.4)

h+ u− λAh

˜θ
= u+

λBh

λA + λB

, (3.5)
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H + v − λBH(h+ u)

G1

=
H(δ + λA)

δ + λA + λB

+
−λAλBhH

(δ + λA + λB)2
· 1

u+ (δ+λB)h

δ+λA+λB

, (3.6)

H + v +
λBH

˜θ
=

λAH

λA + λB

, (3.7)

λBHG3

˜θG1

=
λBHδ

(λA + λB)(δ + λA + λB)

+
−λAλBhH

(δ + λA + λB)2
· 1

u+ (δ+λB)h

δ+λA+λB

,
(3.8)

1

(H + v)G1 − λBH(h+ u)
=

1

H(δ + λA)
· 1

h+ u− λAh
δ+λA

, (3.9)

˜θ(H + v)− λBH = λAH. (3.10)

Substituting (3.2-3.10) into (2.12), we arrive at

ϕµ(u, 0, 0) =

( −λAλBhδ

(λA + λB)2(δ + λA)
· 1

h+ u− λAh
λA+λB

· h+ u

h+ u− λAh
δ+λA

· e−p(h+u)

)

×
[

1− exp
(

− q
( H(δ + λA)

δ + λA + λB

+
−λAλBhH

(δ + λA + λB)2
· 1

u+ (δ+λB)h

δ+λA+λB

)

)

]

+

( −λAhδ

(λA + λB)(δ + λA)
· 1

h+ u− λAh
δ+λA

+
λAλBhδ

(λA + λB)2(δ + λA)
· 1

h+ u− λAh
λA+λB

· h+ u

h+ u− λAh
δ+λA

)

· e−p(u+
λBh

λA+λB
)

+

( −λAhδ

(λA + λB)(δ + λA + λB)
· 1

h+ u− λAh
δ+λA+λB

+
λAhδ

(λA + λB)(δ + λA)
· 1

h+ u− λAh
δ+λA

+
−λAλBhδ

(λA + λB)2(δ + λA)
· 1

h+ u− λAh
λA+λB

· h+ u

h+ u− λAh
δ+λA

)

· e−p(u+
λBh

λA+λB
)

× exp
(

− q
( H(δ + λA)

δ + λA + λB

+
−λAλBhH

(δ + λA + λB)2
· 1

u+ (δ+λB)h

δ+λA+λB

)

)

+
λAhδ

(λA + λB)(δ + λA + λB)
· 1

h+ u− λAh
δ+λA+λB

× e
−p(u+

λBh

λA+λB
) · e−q(

λAH

λA+λB
)I0(2

√

λAλBhHpq

(λA + λB)2
)

+
λAhHδ

(λA + λB)(δ + λA)
· 1

h+ u− λAh
δ+λA

· e−p(u+
λBh

λA+λB
)

×
∫ q

z=0

e
−(

λAH

λA+λB
)zI0(2

√

λAλBhHpz

(λA + λB)2
)dz
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+

(

λAλBhHδ

(λA + λB)(δ + λA + λB)2
· h+ u

(h+ u− λAh
δ+λA+λB

)2

+
−λAλBhHδ

(λA + λB)(δ + λA)(δ + λA + λB)
· 1

h+ u− λAh
δ+λA+λB

· h+ u

h+ u− λAh
δ+λA

)

× e
−p(u+

λBh

λA+λB
)
exp

(

− q
( H(δ + λA)

δ + λA + λB

+
−λAλBhH

(δ + λA + λB)2
· 1

u+ (δ+λB)h

δ+λA+λB

)

)

×
∫ q

z=0

exp

[

( λBHδ

(λA + λB)(δ + λA + λB)
+

−λAλBhH

(δ + λA + λB)2
· 1

u+ (δ+λB)h

δ+λA+λB

)

z

]

× I0(2
√

λAλBhHpz

(λA + λB)2
)dz. (3.11)

Special case 2. Setting u = θ = 0 gets us to the marginal Laplace-Stiltjes transform
of the casualties to player B at the exit of the game to be lost by player A:

ϕµ(0, v, 0) : = E
[

e−vβµ1{µ<ν}

]

. (3.12)

The Laplace inverse formula (cf. [1, 2]) that we will use along with (2.11) is:

L−1

y (
e

a
y+b

(y + b)2
)(q) =

√

q

a
· e−bqI1(2

√
aq), (3.13)

where I1 is the modified Bessel function of order one. After setting u = θ = 0 in (1.8),
we arrive at

(i) Case δ 6= λA,

ϕ1

µ(0, v, 0) =
−λAHδ

λA + λB

· 1

Hδ + (δ + λB)v
· e−ph

+
λAHδ

λA + λB

· 1

Hδ + (δ + λB)v
· e−ph · e−q(v+ Hδ

δ+λB
)

+

( −λAδ

λA + λB

· v

Hδ + (δ + λB)v

+
−λAHδ2

(λA + λB)(δ + λB)
· 1

Hδ + (δ + λB)v
· e−q(v+ Hδ

δ+λB
)

)

· e−p(
λBh

λA+λB
)

+
λAδ

(λA + λB)(δ + λB)
· e−p(

λBh

λA+λB
) · e−q(v+

λAH

λA+λB
)I0(2

√

λAλBhHpq

(λA + λB)2
)

+
λAδ

λA + λB

· (H + v)2

Hδ + (δ + λB)v
· e−p(

λBh

λA+λB
)

∫ q

z=0

e
−(v+

λAH

λA+λB
)zI0(2

√

λAλBhHpz

(λA + λB)2
)dz

+
−λAλ

2

BH
2δ

(λA + λB)(δ + λB)2
· 1

Hδ + (δ + λB)v
· e−p(

λBh

λA+λB
) · e−q(v+ Hδ

δ+λB
)

×
∫ q

z=0

e
(

λBH(δ−λA)

(λA+λB)(δ+λB )
)zI0(2

√

λAλBhHpz

(λA + λB)2
)dz. (3.14)
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(ii) Case δ = λA,

ϕ2

µ(0, v, 0) =

( −λ2

AH

λA + λB

· 1

λAH + (λA + λB)v

+
λ2

AH

λA + λB

· 1

λAH + (λA + λB)v
· e−q(v+

λAH

λA+λB
)

)

· e−ph

+

( −λ2

Av

λA + λB

· 1

λAH + (λA + λB)v

+
−λ3

AH

(λA + λB)2
· 1

λAH + (λA + λB)v
· e−q(v+

λAH

λA+λB
)

)

· e−p(
λBh

λA+λB
)

+
λ2

A

(λA + λB)2
· e−p(

λBh

λA+λB
) · e−q(v+

λAH

λA+λB
)I0(2

√

λAλBhHpq

(λA + λB)2
)

+
λ2

A

λA + λB

· (H + v)2

λAH + (λA + λB)v
· e−p(

λBh

λA+λB
)

×
∫ q

z=0

e
−(v+

λAH

λA+λB
)zI0(2

√

λAλBhHpz

(λA + λB)2
)dz

+
−λ2

Aλ
2

BH
2

(λA + λB)2
· 1

λAH + (λA + λB)v

√

q

λAλBhHp
· e−p(

λBh

λA+λB
) · e−q(v+

λAH

λA+λB
)

× I1(2
√

λAλBhHpq

(λA + λB)2
). (3.15)

Special case 3, with u = v = 0 look into the Laplace-Stieltjes transform of the exit
time of the game to be lost by player A:

ϕµ(0, 0, θ) : = E
[

e−θtµ1{µ<ν}

]

. (3.16)

Proceeding similarly as special case 1, we have

ϕµ(0, 0, θ) =
−λAλBδ

˜θ(θ + λB)(δ + θ)
· e−ph +

λAλBδ

˜θ(θ + λB)(δ + θ)
· e−ph · e−q(

(δ+θ)H

δ+θ+λB
)

+
−λAδθ

˜θ(θ + λB)(δ + θ)
· e−p(

(θ+λB )h

θ̃
)

+
−λAλBδ

2

˜θ(θ + λB)(δ + θ)(δ + θ + λB)
· e−p(

(θ+λB)h

θ̃
) · e−q(

(δ+θ)H

δ+θ+λB
)

+
λAδ

˜θ(δ + θ + λB)
· e−p(

(θ+λB )h

θ̃
) · e−q(

(θ+λA)H

θ̃
)I0(2

√

λAλBhHpq

˜θ
2

)

+
λAHδ

˜θ(δ + θ)
· e−p(

(θ+λB )h

θ̃
)

∫ q

z=0

e
−(

(θ+λA)H

θ̃
)zI0(2

√

λAλBhHpz

˜θ
2

)dz

+
−λAλ

2

BHδ

˜θ(δ + θ)(δ + θ + λB)2
· e−p(

(θ+λB )h

θ̃
) · e−q(

(δ+θ)H

δ+θ+λB
)

×
∫ q

z=0

e
(
λBH(δ−λA)

θ̃(δ+θ+λB )
)zI0(2

√

λAλBhHpz

˜θ
2

)dz. (3.17)
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4 The Explicit Distribution of the Casualties Value to Player A

Now, we can find the pdf of the exit value of casualties to player A (special case 1) by
taking the inverse Laplace transform w.r.t. variable u. We distinguish two cases which
are δ 6= λB and δ = λB , respectively. The Laplace inverse formulas that we will use
along with (2.11) are:

L−1

y (e−αy · 1

y + b
)(q) = e−b(q−α)1(α,∞)(q), (4.1)

L−1

y (e−αy · 1

(y + b)2
)(q) = (q − α)e−b(q−α)1(α,∞)(q), (4.2)

L−1

y (e−αy · e
a

y+b

y + b
)(q) = e−b(q−α)I0(2

√

a(q − α))1(α,∞)(q), (4.3)

L−1

y (e−αy · e
a

y+b1

y + b2
)(q) = e−b1(q−α)I0(2

√

a(q − α))1(α,∞)(q)

+ (b1 − b2) · e−b2(q−α)

∫ q−α

z=0

e(b2−b1)zI0(2
√
az)dz1(α,∞)(q),

(4.4)

L−1

y (e−αy · e
a

y+b

(y + b)2
)(q) =

√

q − α

a
· e−b(q−α)I1(2

√

a(q − α))1(α,∞)(q), (4.5)

L−1

y (e−αy · e
a

y+b1

(y + b2)2
)(q) = e−b2(q−α)

∫ q−α

z=0

e(b2−b1)zI0(2
√
az)dz1(α,∞)(q)

+ (b1 − b2) · e−b2(q−α)

∫ q−α

z=0

(q − α− z) · e(b2−b1)zI0(2
√
az)dz1(α,∞)(q).

(4.6)

Equations (4.4) and (4.6) can be readily proved, while the rest of the above formulas can
be found in references [1, 2].
After that, we apply the Laplace inverse in (3.11), arriving at

(i) Case δ 6= λB,

L−1

u

{

ϕ1

µ(u, 0, 0)

}

(s) =
λAλBhδ

(λA + λB)2(δ − λB)
· e−

λBhs

λA+λB

(

1− e
−

λAhp

λA+λB

)

1(p,∞)(s)

+
( λAλBhδ

(λA + λB)(δ + λA)(δ − λB)
· e−ph +

−λAhδ
2

(λA + λB)(δ + λA)(δ − λB)
· e−

λBhp

λA+λB

)

× e
−

hδ(s−p)

δ+λA 1(p,∞)(s)

+
( λAλBhδ

(λA + λB)2(δ + λA)
· e−ph +

−λAλBhδ
2

(λA + λB)2(δ + λA)(δ + λA + λB)
· e−

λBhp

λA+λB

)

× e
−

Hq(δ+λA)

δ+λA+λB · e−
h(δ+λB )(s−p)

δ+λA+λB I0(2
√

λAλBhHq(s− p)

(δ + λA + λB)2
)1(p,∞)(s)

+
λ2

AλBh
2δ2

(λA + λB)3(δ − λB)(δ + λA + λB)
· e−

λBhs

λA+λB · e−
Hq(δ+λA)

δ+λA+λB

(

e
−

λAhp

λA+λB − 1
)

×
∫ s−p

w=0

e
(

λBh

λA+λB
−

(δ+λB)h

δ+λA+λB
)wI0(2

√

λAλBhHqw

(δ + λA + λB)2
)dw1(p,∞)(s)
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+
( −λ2

Aλ
2

Bh
2δ

(λA + λB)(δ + λA)2(δ − λB)(δ + λA + λB)
· e−ph

+
λ2

AλBh
2δ2

(λA + λB)(δ + λA)2(δ − λB)(δ + λA + λB)
· e−

λBhp

λA+λB

)

· e−
hδ(s−p)

δ+λA

× e
−

Hq(δ+λA)

δ+λA+λB

∫ s−p

w=0

e
(

hδ
δ+λA

−
(δ+λB)h

δ+λA+λB
)wI0(2

√

λAλBhHqw

(δ + λA + λB)2
)dw1(p,∞)(s)

+
λAhδ

(λA + λB)(δ + λA + λB)
· e−

λBhp

λA+λB · e−
λAHq

λA+λB · e−
h(δ+λB )(s−p)

δ+λA+λB

× I0(2
√

λAλBhHpq

(λA + λB)2
)1(p,∞)(s)

+
λAhHδ

(λA + λB)(δ + λA)
· e−

λBhp

λA+λB · e−
hδ(s−p)

δ+λA

×
∫ q

z=0

e
−

λAHz

λA+λB I0(2
√

λAλBhHpz

(λA + λB)2
)dz1(p,∞)(s)

+

∫ q

z=0

[

( −λAλ
2

BhHδ

(λA + λB)(δ + λA)(δ + λA + λB)2
I0(2

√

λAλBhH(q − z)(s− p)

(δ + λA + λB)2
)

+
λ2

AλBh
2Hδ

(λA + λB)(δ + λA + λB)2

√

s− p

λAλBhH(q − z)

× I1(2
√

λAλBhH(q − z)(s− p)

(δ + λA + λB)2
)
)

· e−
λBhp

λA+λB · e−
Hq(δ+λA)

δ+λA+λB

× e
−

h(δ+λB )(s−p)

δ+λA+λB · e
λBHδz

(λA+λB)(δ+λA+λB)I0(2
√

λAλBhHpz

(λA + λB)2
)1(p,∞)(s)

+
−λ2

AλBh
2Hδ

(λA + λB)(δ + λA)2(δ + λA + λB)
· e−

λBhp

λA+λB · e−
hδ(s−p)

δ+λA · e−
Hq(δ+λA)

δ+λA+λB

× e
λBHδz

(λA+λB)(δ+λA+λB)I0(2
√

λAλBhHpz

(λA + λB)2

∫ s−p

w=0

e
(

hδ
δ+λA

−
(δ+λB )h

δ+λA+λB
)w

× I0(2
√

λAλBhH(q − z)w

(δ + λA + λB)2
) dw1(p,∞)(s)

]

dz. (4.7)

(ii) Case δ = λB,

L−1

u

{

ϕ2

µ(u, 0, 0)

}

(s) =
( −λ2

AλBh

(λA + λB)3
+

λ2

Aλ
2

Bh
2(s− p)

(λA + λB)4
+

−λAλ
2

Bh

(λA + λB)3
· e−

λAhp

λA+λB

+
−λ2

Aλ
2

Bh
2(s− p)

(λA + λB)4
· e−

λAhp

λA+λB

)

· e−
λBhs

λA+λB 1(p,∞)(s)

+
λAλBh

(λA + λB)(λA + 2λB)
· e−

λBhp

λA+λB · e−
λAHq

λA+λB · e−
2λBh(s−p)

λA+2λB I0(2
√

λAλBhHpq

(λA + λB)2
)1(p,∞)(s)
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+
( λAλ

2

Bh

(λA + λB)3
· e−ph +

−λAλ
3

Bh

(λA + λB)3(λA + 2λB)
· e−

λBhp

λA+λB

)

× e
−

Hq(λA+λB)

λA+2λB · e−
2λBh(s−p)

λA+2λB I0(2
√

λAλBhHq(s− p)

(λA + 2λB)2
)1(p,∞)(s)

+
λAλBhH

(λA + λB)2
· e−

λBhs

λA+λB

∫ q

z=0

e
−

λAHz

λA+λB I0(2
√

λAλBhHpz

(λA + λB)2
)dz1(p,∞)(s)

+
( −2λ2

Aλ
3

Bh
2

(λA + λB)4(λA + 2λB)
+

λ2

Aλ
2

Bh
2(λA + 3λB)

(λA + λB)4(λA + 2λB)
· e−

λAhp

λA+λB

)

· e−
λBhs

λA+λB

× e
−

Hq(λA+λB)

λA+2λB

∫ s−p

w=0

e
(

λBh

λA+λB
−

2λBh

λA+2λB
)wI0(2

√

λAλBhHqw

(λA + 2λB)2
)dw1(p,∞)(s)

+
( −λ3

Aλ
3

Bh
3

(λA + λB)5(λA + 2λB)
+

λ3

Aλ
3

Bh
3

(λA + λB)5(λA + 2λB)
e
−

λAhp

λA+λB

)

× e
−

λBhs

λA+λB · e−
Hq(λA+λB)

λA+2λB

×
∫ s−p

w=0

(s− p− w) · e(
λBh

λA+λB
−

2λBh

λA+2λB
)wI0(2

√

λAλBhHqw

(λA + 2λB)2
)dw1(p,∞)(s)

+

∫ q

z=0

[

( −λAλ
3

BhH

(λA + λB)2(λA + 2λB)2
· e−

2λBh(s−p)

λA+2λB I0(2
√

λAλBhH(q − z)(s− p)

(λA + 2λB)2
)

+
λ2

Aλ
2

Bh
2H

(λA + λB)(λA + 2λB)2

√

s− p

λAλBhH(q − z)
· e−

2λBh(s−p)

λA+2λB

× I1(2
√

λAλBhH(q − z)(s− p)

(λA + 2λB)2
)

+
−λ2

Aλ
2

Bh
2H

(λA + λB)3(λA + 2λB)
· e−

λBh(s−p)

λA+λB

×
∫ s−p

w=0

e
(

λBh

λA+λB
−

2λBh

λA+2λB
)wI0(2

√

λAλBhH(q − z)w

(λA + 2λB)2
)dw

)

· e−
λBhp

λA+λB

× e
−

Hq(λA+λB)

λA+2λB · e
λ2

B
Hz

(λA+λB)(λA+2λB) · I0(2
√

λAλBhHpz

(λA + λB)2
)

]

dz1(p,∞)(s). (4.8)

5 The Loss Probability

A further special case is to get the probability that player A loses to player B. This can
be directly obtained from

ϕµ(u, v, θ) = E
[

e−uαµ−vβµ−θtµ1{µ<ν}

]

(5.1)

by setting u = v = θ = 0:

ϕµ(0, 0, 0) : = E[1{µ<ν}] = P{µ < ν} = P{tµ < tν}. (5.2)
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With u = v = θ = 0 in (1.8), we have
(i) Case δ 6= λA,

ϕ1

µ(0, 0, 0) =
−λA

λA + λB

· e−ph +
λA

λA + λB

· e−ph · e−q( Hδ
δ+λB

)

+
−λAδ

(λA + λB)(δ + λB)
· e−p(

λBh

λA+λB
) · e−q( Hδ

δ+λB
)

+
λAδ

(λA + λB)(δ + λB)
· e−

λBhp

λA+λB · e−q(
λAH

λA+λB
)I0(2

√

λAλBhHpq

(λA + λB)2
)

+
λAH

λA + λB

· e−
λBhp

λA+λB

∫ q

z=0

e
−(

λAH

λA+λB
)zI0(2

√

λAλBhHpz

(λA + λB)2
)dz

+
−λAλ

2

BH

(λA + λB)(δ + λB)2
· e−

λBhp

λA+λB · e−q( Hδ
δ+λB

)

×
∫ q

z=0

e
(

Hδ
δ+λB

−
λAH

λA+λB
)zI0(2

√

λAλBhHpz

(λA + λB)2
)dz. (5.3)

(ii) Case δ = λA,

ϕ2

µ(0, 0, 0) =
−λA

λA + λB

· e−ph +
λA

λA + λB

· e−ph · e−q(
λAH

λA+λB
)

+
−λ2

A

(λA + λB)2
· e−

λBhp

λA+λB · e−q(
λAH

λA+λB
)

+
λ2

A

(λA + λB)2
· e−

λBhp

λA+λB · e−q(
λAH

λA+λB
)I0(2

√

λAλBhHpq

(λA + λB)2
)

+
λAH

λA + λB

· e−
λBhp

λA+λB

∫ q

z=0

e
−(

λAH

λA+λB
)zI0(2

√

λAλBhHpz

(λA + λB)2
)dz

+
−λAλ

2

BH

(λA + λB)2

√

q
λAλBhHp

· e−
λBhp

λA+λB · e−q(
λAH

λA+λB
)I1(2

√

λAλBhHpq

(λA + λB)2
). (5.4)

6 Numerical Results

Since the above formulas may look a little bulky, some numerical results can well illustrate
them and add to their credibility. They also show how changing input parameters alters
the trend of the game. For the full completion of the demonstration we bring here a
detailed MATLAB routine, which can be utilized for anyone wanting to run their own
input parameters such as λA, λB, h, H , p, q and δ.

%The probability that player A loses to player B when delta is not equal to
%lambda A.
%A=lambda A, B=lambda B, d=delta

syms z
A=18, B=20, h=14, H=16, p=20, q=24, d=500;
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f11=-A/(A+B)*exp(-p*h)+A/(A+B)*exp(-p*h)*exp(-q*H*d/(d+B))
-A*d/((A+B)*(d+B))*exp(-p*B*h/(A+B))*exp(-q*H*d/(d+B))
f12=A*d/((A+B)*(d+B))*exp(-p*B*h/(A+B))*exp(-q*A*H/(A+B))
*double(besseli(0,2*sqrt(A*B*h*H*p*q/(A+B)ˆ2)))
f13=A*H/(A+B)*exp(-p*B*h/(A+B))*double(int(exp(-A*H*z/(A+B))
*besseli(0,2*sqrt(A*B*h*H*p*z/(A+B)ˆ2)),0,q))
f14=-A*Bˆ2*H/((A+B)*(d+B)ˆ2)*exp(-p*B*h/(A+B)) *exp(-q*H*d/(d+B))
*double(int(exp((H*d/(d+B)-A*H/(A+B))*z)
*besseli(0,2*sqrt(A*B*h*H*p*z/(A+B)ˆ2)),0,q))

Probability A Loses B 1=f11+f12+f13+f14

%The probability that player A loses to player B when delta is equal to
%lambda A.
%A=lambda A, B=lambda B

syms z
A=10, B=5, h=24, H=12, p=30, q=25;

f21=-A/(A+B)*exp(-p*h)+A/(A+B)*exp(-p*h)*exp(-q*A*H/(A+B))
-Aˆ2/(A+B)ˆ2*exp(-p*B*h/(A+B))*exp(-q*A*H/(A+B))
f22=Aˆ2/(A+B)ˆ2*exp(-p*B*h/(A+B))*exp(-q*A*H/(A+B))
*double(besseli(0,2*sqrt(A*B*h*H*p*q/(A+B)ˆ2)))
f23=A*H/(A+B)*exp(-p*B*h/(A+B))*double(int(exp(-A*H*z/(A+B))
*besseli(0,2*sqrt(A*B*h*H*p*z/(A+B)ˆ2)),0,q))
f24=-A*Bˆ2*H/(A+B)ˆ2*sqrt(q/(A*B*h*H*p))*exp(-p*B*h/(A+B))
*exp(-q*A*H/(A+B))*double(besseli(1,2*sqrt(A*B*h*H*p*q/(A+B)ˆ2)))

Probability A Loses B 2=f21+f22+f23+f24

The program utilizes (5.3) and (5.4) and the calculations are put in the tables below.

λA 18 18 18 18 18
λB 20 20 20 20 20
h 20 18 17 16 14
H 16 16 16 16 16
p 20 20 20 20 20
q 24 24 24 24 24
δ 100 100 100 100 100

Probability of A losing 0.0733 0.3448 0.5591 0.7622 0.9711

λA 18 18 18 18 18
λB 20 20 20 20 20
h 14 14 14 14 14
H 16 14 13 12 10
p 20 20 20 20 20
q 24 24 24 24 24
δ 100 100 100 100 100

Probability of A losing 0.9711 0.7474 0.5070 0.2556 0.0181
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λA 18 18 18 18 18
λB 20 20 20 20 20
h 14 14 14 14 14
H 16 16 16 16 16
p 28 26 24 22 20
q 24 24 24 24 24
δ 100 100 100 100 100

Probability of A losing 0.1064 0.3060 0.6027 0.8555 0.9711

λA 18 18 18 18 18
λB 20 20 20 20 20
h 14 14 14 14 14
H 16 16 16 16 16
p 20 20 20 20 20
q 24 24 24 24 24
δ 1 2 4 10 18

Probability of A losing 0.8904 0.9432 0.9605 0.9677 0.9695

λA 18 18 18 18 18
λB 20 20 20 20 20
h 14 14 14 14 14
H 16 16 16 16 16
p 20 20 20 20 20
q 24 24 24 24 24
δ 50 100 500 1,000 10,000

Probability of A losing 0.9708 0.9711 0.9714 0.9715 0.9715

λA 20 20 20 20 20
λB 18 18 18 18 18
h 10 12 13 14 16
H 14 14 14 14 14
p 24 24 24 24 24
q 20 20 20 20 20
δ 50 50 50 50 50

Probability of A losing 0.9811 0.7389 0.4864 0.2475 0.0278

λA 20 20 20 20 20
λB 18 18 18 18 18
h 16 16 16 16 16
H 14 16 17 18 20
p 24 24 24 24 24
q 20 20 20 20 20
δ 50 50 50 50 50

Probability of A losing 0.0278 0.2332 0.4350 0.6498 0.9247
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λA 20 20 20 20 20
λB 18 18 18 18 18
h 16 16 16 16 16
H 14 14 14 14 14
p 24 24 24 24 24
q 20 20 20 20 20
δ 1 2 4 10 20

Probability of A losing 0.0124 0.0175 0.0218 0.0254 0.0269

where

λ−1

A = The frequency of strikes to player A by player B,

λ−1

B = The frequency of strikes to player B by player A,

h−1 = The average of magnitude of strikes to player A by player B,

H−1 = The average of magnitude of strikes to player B by player A,

p = The threshold of player A,

q = The threshold of player B,

δ−1 = The observations frequency.

Concluding Remarks

In this paper, we continued our studies on fully antagonistic stochastic games of two
players (A and B) (initiated in [3]), modeled by two independent marked Poisson pro-
cesses. We investigated the paths in which player A loses the game. In this paper, we
render calculation for a variety of special cases. The latter are presented either as fully
explicit Laplace–Stieltjes joint transforms of the exit time and casualties to both players
upon the exit or explicit probabilities and probability density functions, mostly in terms
of modified Bessel functions. The results are illustrated by many numerical examples,
and a MATLAB routine for calculation is attached.
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duction networks of autonomous work systems with delays in the capacity changes.
The system under consideration does not share information between work systems
and the work systems adjust capacity with the objective of maintaining a desired
amount of local work in progress (WIP). Attention is focused to derive explicit suffi-
cient delay-dependent stability conditions for the network using properties of matrix
norm. Finally, numerical results are provided to demonstrate the proposed approach.

Keywords: stability analysis; production networks; autonomous systems; delay.

Mathematics Subject Classification (2000): 34K50, 37B55, 39A11, 90C06.

1 Introduction

Production networks are emerging as a new type of cooperation between and within
companies, requiring new techniques and methods for their operation and management
[1]. Coordination of resource use is a key challenge in achieving short delivery times and
delivery time reliability. These networks can exhibit unfavourable dynamic behaviour as
individual organizations respond to variations in orders in the absence of sufficient com-
munication and collaboration, leading to recommendations that supply chains should be
globally rather than locally controlled and that information sharing should be extensive
[2, 3]. However, the dynamic and structural complexity of these emerging networks in-
hibits collection of the information necessary for centralized planning and control, and
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Figure 1.1: Production network consisting of a group of autonomous work systems.

decentralized coordination must be provided by logistic processes with autonomous ca-
pabilities [4].

A production network with several autonomous work systems is depicted in Figure
1.1. The behaviour of such a network is affected by external and internal order flows,
planning, internal disturbances, and the control laws used locally in the work systems to
adjust resources for processing orders [5]. In prior work, sharing of capacity information
between work systems has been modelled [6] along with the benefits of alternative control
laws and reducing delay in capacity changes [7, 8]. Several authors have described both
linear and nonlinear dynamical models for control of variables such as inventory levels
and work in progress (WIP), including the use of pipeline flow concepts to represent
lead times and production delays [9, 10]. Delivery reliability and delivery time have
established themselves as equivalent buying criteria alongside product quality and price
(see [1, 11]). High delivery reliability and short delivery times for companies demand high
schedule reliability and short throughput times in production. In order to manufacture
economically under such conditions, it is necessary to minimize WIP levels in production
and utilize operational resources in the best possible way.

Production Planning and Control (PPC) has become more challenging as manufac-
turing companies adapt to a fast changing market [12–14]. Current PPC methods often
do not deal with unplanned orders and other types of turbulence in a satisfactory manner
[15]. Assumptions such as infinite capacity and fixed lead time are often made, leading
to a static view of the production system may not be valid because WIP affects lead time
and performance, while capacity is finite and varies both according to plan and due to
unplanned disturbances such as equipment breakdowns, worker illness, market changes
etc. Understanding the dynamic nature of production systems requires new approaches
for the design of PPC based on company’s logistics [16]. The controllers implicitly in-
teract to adjust capacity to eliminate backlog as the system maintains its planned WIP
level [15]. A discrete closed-loop PPC model was developed and analyzed by Duffie and
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Falu [17] in which two discrete controllers, one for backlog and one for WIP, with differ-
ent periods between adjustments of work input and capacity, respectively, were selected
and evaluated using transfer function analysis and time-response simulation. A second
architecture for continuous WIP control and discrete backlog control, with delay capacity
adjustment, was developed and analyzed by Ratering and Duffie for cases of high and
low WIP [18].

On the other hand, delay differential systems are assuming an increasingly important
role in many disciplines like economics, mathematics, science, and engineering. For
instance, in economic systems, delays appear in a natural way since decisions and effects
are separated by some time interval. The delay effects problem on the stability of systems
is a problem of recurring interest since the delay presence may induce complex and
undesired behaviors (oscillation, instability, bad performance) for the schemes [19–23].
Over the past few decades, discrete-time systems with time-delay have received little
attention compared with its continuous-time counterpart [24–27]. The stability of time-
delay systems is a fundamental problem because of its importance in the analysis of such
systems. With regard to the stability analysis issue, Verriest and Ivanov in [28] studied
the sufficient conditions for the asymptotic stability of the discrete-time state delayed
systems by using an algebraic matrix inequality approach. The basic method for stability
analysis is the direct Lyapunov method, and by this method, strong results have been
obtained. But finding Lyapunov functions for nonautonomous delay difference systems
is usually a difficult task. In contrast, many methods different from Lyapunov functions
have been successfully applied to establish stability results for difference equations with
delay, for example, [29–31]. Recently, in [32] a computational method was presented
using Haar wavelets to determine the piecewise constant feedback controls for a finite-
time linear optimal control problem of a time-varying state-delayed system.

In this paper, we contribute to the problem of stability analysis for a class of pro-
duction networks of autonomous work systems with delays in the capacity changes. The
system under consideration does not share information between work systems and the
work systems adjust capacity with the objective of maintaining a desired amount of WIP.
Attention is focused to derive explicit sufficient delay-dependent stability conditions for
the network using properties of matrix norm. Finally, numerical results are provided to
demonstrate the proposed approach.

2 Model of Autonomous Work Systems

A linear discrete-time dynamic approach for modeling the flow of orders into, out of,
and between work systems was chosen because it promotes straightforward calculation
of fundamental dynamic properties such as characteristic times and damping. Assume
that there are N work systems in a production network, as shown in Figure 1.1, and that
vector i(nT ) is the rate at which orders are input to the N work systems from sources
external to the production network, which is constant over time nT ≤ t < (n + 1)T ,
where n = 1, 2, · · · , and T is a time period between capacity adjustments (for example,
1 shop-calendar day [scd]). The total orders that have been input to the work systems
up to time (k + 1)T then can be represented as the vector [5]

wi((n+ 1)T ) = wi(nT ) + T (i(nT ) +RT (nT )ca(nT )), (2.1)

where vector ca(nT ) is the rate at which orders are output from the N work systems
during time nT ≤ t < (n + 1)T (the actual capacity of each work system) and R is a
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matrix in which element approximates the fraction of the flow out of work system j that
flows into work system k.

The total number of orders that have been output by the work systems up to time
nT ≤ t < (n+ 1)T can be represented by the vector

wo((n+ 1)T ) = wo(nT ) + Tca(nT ) (2.2)

while the rate at which orders are output from the network during time nT ≤ t < (n+1)T
is

o(nT ) = Ro(nT )ca(nT ), (2.3)

where Ro(nT ) is a diagonal matrix in which non-zero diagonal elements represent the
fraction of orders flowing out of work systems that flow out of the network during time
nT ≤ t < (n+ 1)T . Ro(nT ) is assumed to be constant during this period, and

Roii(nT ) +

N
∑

j=1,j 6=i

Roij (nT ) = 1, (2.4)

R(nT ) and Ro(nT ) represent the structure of order flow in the network. The WIP in the
work systems is

wipa(nT ) = wi(nT )− wo(nT ) + wd(nT ), (2.5)

where wd(nT ) represents local work disturbance, such as rush order, that affects the
work system. Furthermore, the actual capacity of each work system depends on three
components as follows:

ca(nT ) = cp(nT ) + cm((n− d)T )− cd(nT ), (2.6)

where cd(nT ) represents local capacity disturbances such as equipment failures, cp(nT )
denotes planned capacities of the work systems and cm(nT ) represents local capacity
adjustments to maintain the WIP in each work system in the vicinity of the planned
levels wipp(nT ) using gain kc and is described in the form of

cm(nT ) = kc(wipa(nT )− wipp(nT )). (2.7)

It is assumed that a delay dT exists in the capacity changes cm(nT ) for logistic reasons
such as operator work rules. In this network, the work systems do not share information
regarding the expected physical flow of orders between them. A capacity plan is required
for each work system. For constants R(nT ) and Ro(nT ), the transfer functions relating
wipa(z) and ca(z) to the inputs i(z), wd(z), wipp(z), cp(z) and cd(z) are:

wipa(z) = ((1 − z−1)I + kcT (I −RT )z−(d+1))−1(Tz−1i(z) + (1− z−1)wd(z)

+kcT (I −RT )z−(d+1)wipp(z)− T (I − RT )z−1cp(z) + T (I −RT )z−1cd(z)) (2.8)

and

ca(z) = ((1− z−1)I + kcT (I −RT )z−(d+1))−1(kcTz
−(d+1)i(z) + kc(1− z−1)z−dwd(z)

−kc(1 − z−1)z−dwipp(z)− (1− z−1)cp(z)− (1− z−1)cd(z)). (2.9)

Our purpose is to investigate the stability of the network (2.1)–(2.7) with respect to the
delay parameter and the controller gain which is characterize by the roots of

det((1− z−1)I −Az−(d+1)) = 0 (2.10)

with A = −kcT (I −RT ).
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3 Stability Analysis

In this section, sufficient conditions for the stability of the network (2.1)–(2.7) with
respect to the delay parameter and the controller gain are proposed using characteristic
equation.

The characteristic equation (2.10) can be represented in the form of

det(A+ Izd − Izd+1) = 0 (3.1)

and (3.1) is corresponding to the characteristic equation of the following system

xn = xn−1 +Axn−d−1. (3.2)

Levitskaya in [30] established that (3.2) is asymptotically stable if and only if any eigen-
value of the matrix A lies inside the oval of the complex plane bounded by a curve

Γ =

{

z ∈ C : z = 2 i sin
( ϕ

2d+ 1

)

eiϕ, |ϕ| ≤ π

2

}

. (3.3)

Remark 3.1 Let λi be eigenvalues of the matrix A = −kcT (I −RT ). The equation
(3.2) is asymptotically stable if and only if

|λi| < 2 sin
( π

2(2d+ 1)

)

. (3.4)

Theorem 3.1 If the system (3.2) is asymptotically stable, then all eigenvalues of A
lie inside the unit disk.

Proof It is sufficient to consider the stability ovals (3.3) and to remark that
2 sin(π/2(2d+ 1)) ≤ 1 for k > 1. 2

In the sequel, we will obtain the necessary and sufficient condition in terms of the
eigenvalues location of the matrix A for the asymptotic stability of the equation (3.2).

Lemma 3.1 [29] If
∑k

i=1
‖Ai‖ < 1, then the linear system xn =

∑k

i=1
Aixn−i is

asymptotically stable.

Theorem 3.2 If
‖A+ I‖+ d ‖A‖2 < 1, (3.5)

then (3.2) is asymptotically stable.

Proof The equation (3.2) is rewritten as

xn = (A+ I)xn−1 −A(xn−1 − xn−d−1)

= (A+ I)xn−1 −A

d
∑

i=1

(xn−i − xn−i−1)

= (A+ I)xn−1 −A

d
∑

i=1

Axn−i−d−1. (3.6)

According to Lemma 3.1, from (3.6) we conclude (3.5). 2

Now, we introduce an additional stability condition for (3.2) depending on whether
the delay d is odd or even.
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Theorem 3.3 If
∥

∥I + (−1)dA
∥

∥+ d ‖A‖ (2 + ‖A‖) < 1, (3.7)

then (3.2) is asymptotically stable.

Proof If d is even the equation (3.2) is rewritten as

xn = (A+ I)xn−1 −A(xn−1 − xn−d−1)

= (A+ I)xn−1 −A

d
∑

i=1

(−1)i+1(2Ixn−i−1 +Axn−k−i) (3.8)

and if d is odd we have

xn = (I −A)xn−1 +A(xn−1 − xn−d−1)

= (I −A)xn−1 +A

d
∑

i=1

(−1)i+1(2Ixn−i−1 +Axn−k−i). (3.9)

Similar to the proof of Theorem 3.2, the inequality (3.7) is concluded. 2

4 Numerical Results

Consider the case of a supplier of components to the automotive industry and for which
production data documents orders are flowing between five work systems over a 162-day
period. These work systems and the order-flow structure over this period is illustrated in
Figure 4.1. In this network, all order flows are unidirectional; therefore, the fundamental
dynamic properties of capacity adjustment in the individual work systems are indepen-
dent. Then, the internal flow of orders is approximated using the following matrix [5],

R =













0 106/341 235/341 0 0
0 0 0 188/401 204/401
0 0 0 100/236 129/236
0 0 0 0 268/295
0 0 0 0 0













in which element Rij is the total number of orders that went from work system i to work
system j divided by the total number of orders that left work system i.

Consider the sampling time T = 1 scd. It is clear that the condition in Lemma 3.1
cannot be applied. Applying all of the Theorems derived, the conditions of maximum
controller gain for the asymptotic stability of the network are shown in Table 4.1. The
result from Table 4.1 guarantees the asymptotic stability of system under consideration.

5 Conclusion

The problem of stability analysis for a class of production networks of autonomous work
systems with delays in the capacity changes was investigated in this paper. The system
under consideration does not share information between work systems and the work
systems adjust capacity with the objective of maintaining a desired amount of local work
in progress (WIP). In terms of properties of matrix norm some explicit sufficient delay-
dependent stability conditions were derived for the network. Finally, numerical results
were provided to demonstrate the proposed approach.
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Theorem 3.1 Theorem 3.2 Theorem 3.3
d = 1 1.0000 0.8500 0.8650
d = 2 0.6180 0.6250 0.6850
d = 3 0.4450 0.4750 0.4875
d = 4 0.3473 0.3845 0.3950

Table 4.1: Controller gain kc w.r.t. d.

Figure 4.1: A production network consisting of five work systems.
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Appendix

‖.‖ is any matrix norm which satisfies the following conditions:

(i) ‖A‖ ≥ 0, and ‖A‖ = 0 if and only if A = 0,

(ii) for each c ∈ ℜ, ‖cA‖ = |c| ‖A‖,

(iii) ‖A+B‖ ≤ ‖A‖+ ‖B‖,
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(iV) ‖AB‖ ≤ ‖A‖ . ‖B‖ for all m×m matrices A,B.

In addition, matrix norm should be concordant with the vector norm ‖.‖
∗
, that is,

‖Ax‖
∗
≤ ‖A‖ . ‖x‖

∗

for all x ∈ ℜm and any m×m matrix A. For real m×m matrix A, we define, as usual,

‖A‖
1
= max

1≤j≤m

m
∑

i=1

|aij | and ‖A‖
∞

= max
1≤i≤m

m
∑

j=1

|aij | .
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1 Introduction

The use of artificial neural network is an approach that has its origins in the study of
nervous tissue. In fact, the operation of an artificial neuron is by analogy with that of
the nerve cell.

Neural network consists of a set of artificial neurons interconnected by weights whose
values affect the behaviours of the whole structure. The rules under which the adjustment
operation is carried out connections characterize the learning algorithm of network. Due
to the massively parallel structure and ability to reproduce arbitrary behaviours from
examples, neural networks are an interesting tool for solving various problems [1–4].
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Since this learning phase is the basis of a good run, we will focus on it. Once the
architecture of a neural network has been chosen, it is necessary to make learning to
determine the values of weight allowing the output of the neural network to be as close as
possible to the target. This learning takes place through the minimization of a function,
called cost function, based on examples of the learning basis and the neural network
output. This function determines the goal. This minimization can be done through
several algorithms called learning algorithms.

In this work, we will mainly focus on the backpropagation algorithm and try to
improve their learning process by using a new approach called Hierarchical Genetic Al-
gorithms. This approach will operate to leave the local minima which is the disadvantage
of the backpropagation algorithm. Then we move to the implementation of such NN for
modeling and controlling an unit of water level regulation. The results of their imple-
mentation are compared and the advantage of HGA over backpropagation is released.

2 Description of the Water Level Regulation Unit

The process that will be used throughout the experiments, the block diagram of which
is given in Figure 2.1, is made mainly of two tanks (T 1 and T 2), a drain valve which is
manually controlled, a sensor level placed inside tank T 2 and a pump controlled directly
through computer.

Figure 2.1: Description of the studied process.

The pump draws the liquid in the Tank to be conveyed to Tank T 2 with a flow rate
of [0, 2.31]l/mn. Depending on the liquid level H in Tank T 2, the DC motor, which
controls the pump, receives an order to advance the flow of entry Qe. The command
signal of the pump ranges from 0 to 12v; the conversion from analog to digital signal
produces a value between 0 and 255 [8].

3 Presentation of Training Algorithms Used

3.1 Backpropagation algorithm

The learning process of the backpropagation algorithm is an iterative procedure that
aims to find the weight of connections minimizing the mean square error cost function J



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 10(1) (2010) 65–76 67

committed by the network throughout the learning date; the cost function J is given by:

J =
1

2

N
∑

k=1

[y − ym]2 (3.1)

with:
N : Number of examples,
k: samples k, k = 1, 2, . . . , N,
y: output of the process,
ym: NN output.

W1 define the weight matrix that characterizes the connection between input and
hidden layer and W2 the matrix of weight between the output layer and hidden layer.
The neuronal model is governed by the following equation:

S(k) = h(W2g(W1.E(k)) (3.2)

with :
ym(k) : output vector number k,
h : activation function of exit neurons layer,
g: activation function of hidden layer,
E(k) : entry vector or stimulus number k.
We have:
S(k) = g(W1.E(k))
Neural network weights are up to date as following :

Wnew = Wold − µ
∂J

∂W
, (3.3)

where µ is the step of learning.
Variation of weight in matrix W1 et W2 is defined by :

∂J

∂W2

=
∂J

∂ym(k)
.
∂ym(k)

∂Ei(k)
.
∂Ei(k)

∂W2

, (3.4)

∂J

∂W2

= [ym(k)− y(k)].
∂h(Ei(k))

∂Ei(k)
.
∂Ei(k)

∂W2

, (3.5)

∂J

∂W1

= [ym(k)− y(k)].
∂h(Ei(k))

∂Ei(k)
.
∂Ei(k)

∂Si

.
∂g(Ej(k))

∂Ej(k)
.
∂Ej(k)

∂W1

. (3.6)

This algorithm remains questionable since its convergence is not proven. Its use can
lead to deadlock in a local minimum of the error surface. Its effectiveness depends mostly
on a large number of parameters to be fixed by the user: the step gradient, the parameters
of sigmoid functions, network architecture (number of layers, number of neurons per layer
... ), initialization of weights ...

This learning method has limitations, including:

– The topology of NN must be defined firstly;

– Very sensitive to local minima.
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3.2 Hierarchical genetic algorithm

The HGA is used to optimize parameters and topology of NN. The advantage of this
approach is that genes of chromosome are classified into two categories (hierarchy). This
approach is ideal to represent the relations between:

– NN layers number;
– neurons in hidden layers;
– synaptic weights associated with genes on a chromosome.
We start by building a HGA that selects a structure of a MLP (number of neurons in

the hidden layer) and then make learning. Therefore, in contrast with RPG, the HGA
will go through several different structures and will make learning. To do so, it will be
an evaluation function called fitness (or cost). This function is to minimize the same
criterion of the backpropagation algorithm:

J =
1

2

N
∑

k=1

[y − ym]2. (3.7)

Figure 3.1 illustrates the principle of operation of the new strategy.

Figure 3.1: Principle of the new strategy.

Concerning the chromosome coding, we used a matrix instead of a vector. The first
matrix’s line is encoded with a sequence of ”0” and ”1” which indicate the existence or
not of the neuron in the hidden layer. The remaining lines contain the real numbers that
represent all the input connections and output neurons in the hidden layer (weights).

Example of a chromosome coding and its equivalent in NN:

Consider the following chromosome (Figure 3.2).

Figure 3.2: The chromosome Code.
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Correspondence between Neurons network and chromosome is given by Figure 3.3.

Figure 3.3: Translation of the chromosome toward NN.

Different genetic operators used later will allow the determination of a new structure
and a new redistribution of weight.

4 Modeling Process

The use of learning techniques in process control can overcome the difficulties caused by
the strong non-linearity. The main interest in neural networks for control is their ability
to easily model non-linear systems by learning.

According to the control structure, direct model and inverse model of the process
are necessary. We present in this section direct and inverse model of the unit water
level regulation. These models will be used in determining the control law based on the
internal model [2–4].

To obtain both the direct and inverse model of the regulation water level unit, we
have excited the system by a rich signal frequency and with an amplitude that varies
between 0 and 2 l/min in order to obtain an output that varies between 0 and 0.4 m.
This is the sequence of learning.

We divide the database into two parts,one of which serves to learning and the other
in the neuronal model validation, Figure 4.1 shows the sequence that has been used.[8]

4.1 Direct Neural Model (DNM)

The DNM builds a non-linear function that estimates the outputs of the process through
old data of its inputs and outputs. In the following (Figure 4.2), a DNM is presented
to be used in the sequel. The learning process of a DNM is presented, first through the
backpropagation algorithm and secondly by adding our HGA.

For the backpropagation algorithm we are forced to give in advance the architecture
of neural network. After several tests, we considered a non-looped network of 2 layers
with 2 inputs, 10 hidden neurones in sigmoid activation function and a linear output
neuron.

For HGA, we generated randomly some individuals for the first generation in which we
injected the backpropagation solution. This injection has the primary effect of prohibit
divergence and expulsion of the solution space.

Figure 4.3 shows the generalization error between the actual output of the process
and the output of the model developed in the two cases considered. This error has the
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Figure 4.1: Sequence of training and test.

Figure 4.2: Direct model training.

maximum value 0.2 for backpropagation with fluctuations greater than that of HGA.
Indeed, we can conclude that the result given by our HGA has considerably improved
the backpropagation. So we will keep the direct model developed by our HGA.

4.2 Inverse neural model (INM)

The goal is to identify inverse model parameters through learning process; that is to find
weights that render the behavior of the NN as close as possible to the desired control
signal. The inverse NN model of the process is built using a NN made of 3 inputs, 10
hidden neurones with a sigmoid activation function and one neurone linear output. The
learning algorithm used is the backpropagation algorithm. Most of the algorithms in NN
used for learning the inverse neural model, determine the control error (uref -ur), that is
the difference between the desired reference uref and the obtained control for the inverse
model ur. For learning the INM of level regulation unit, we applied a technique of direct
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Figure 4.3: Variation of the error for the two methods of direct training.

Figure 4.4: Prediction error after the use of backpropagation and HGA.
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supervised training which minimizes the following cost criterion:

J =
1

2

N
∑

k=1

[uref − ur]
2 (4.1)

with
N : number of samples,
uref : control signal desired,
ur : output of neural model.

The learning process of the NN is performed using the backpropagation algorithm.
This algorithm assures a convergence to a minimum, it is however worth to notice that
this minimum can not be a global one. To overcome this obstruction, we will introduce
the HGA.

Validation of the INM.

In order to test the validity of the model immediately after its learning, we apply a
sequence of tests to the NN then we compare the resulted tests to the desired output.
Figure 4.4 shows the obtained results and the prediction error to evaluate the performance
of the NN.

As for the direct model, the HGA has improved the results provided by the back-
propagation.

5 System Neural Control

In this section, we aim to control the water-level system regulation by using the generated
neural models. We will make use of the INM for the direct control of the inverse model
and then we apply simultaneously the INM and DNM for the control of internal model.

Figure 5.1: Water level control by INM (backpropagation).

5.1 Direct control of the inverse model

The principle of the control law designed for the regulation process of the water-level is
to calculate every sampling step of the pump flow to reach the desired level. The inverse
model, previously presented, receives reference inputs for the water level, it should then
generate the appropriate control law for the pump. In the first experiment, we used
the INM that we found after learning process through the method of backpropagation.
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Figure 5.2: Control signal by INM (backpropagation).

Figure 5.3: Water level control by INM (HGA).

Figure 5.4: Control signal by INM (HGA).

Figure 5.5: IMC structure.
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Figure 5.6: Water level control by IMC (backpropagation).

Figure 5.7: Control signal by IMC (backpropagation).

Figure 5.8: Water level control by IMC (HGA).

Figure 5.9: Control signal by IMC (HGA).
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Figure 5.1 illustrates the evolution of the reference input and the output and Figure 5.2
gives the control signal generated for water level regulation.

In the second experiment, we used the INM that we established after learning process
through the HGA. Figure 5.3 illustrates the evolution of the references input and the
output and Figure 5.4 shows the control signal generated for the system to regulate
water level.

This experience confirms even more improvements brought by the HGA with respect
to the results given by the backpropagation algorithm. The first improvement is made
in the modeling (a more appropriate model) and the second is confirmed at the control
level, overshoot and fluctuations are less important (reduced).

5.2 Internal model control (IMC)

The internal model control structure, applied to our control system requires the use of
inverse model as a controller and the direct model as internal model. These models
are established in the previous paragraphs and are generated by two different learning
algorithms, the backpropagation and HGA. When using the control law based internal
model, the controller is placed in cascade with the control system, whereas the direct
model is placed in parallel. The block diagram of the control law is shown in Figure 5.5.

We show the results of the simulations for the choice of the filter transfer function
bellow: F (z) = 0,2

z−0,8
. This filter is used to eliminate fluctuations. As the first result, we

present the IMC of which the INM and the DNM are generated through learning process
using the backpropagation algorithm. Figure 5.6 illustrates the evolution of the reference
and the output. Figure 5.7 plots the control signal generated by the IMC. Finally, we
apply the inverse model control law which uses the INM and the DNM that are generated
by learning through HGA. Figure 5.8 illustrates the evolution of the reference input and
the output. Figure 5.9 shows the control signal generated by the IMC for our control
system.

We note that the output of the control process in the case of learning through the
HGA (Figure 5.8) is better than that of the backpropagation (Figure 5.6). This is
evident since the HGA further minimizes the error output (y ∗ (t) − y(t)) compared to
backpropagation. We can say that the HGA has allowed us to leave the local minimum
found by backpropagation. Indeed, we note that the response of the internal model does
not oscillate, but small peak on each variation of the reference input.

6 Conclusion

This validation on a real system has allowed us to show that we have achieved our main
objective, which is overcoming the defects of the backpropagation algorithm using a new
algorithm and approach that is the HGA. Indeed this algorithm can take into account
a large number of MLP and make the learning process by implementing its various
operators. So we conclude that HGA meets our needs.
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1 Introduction

In the present paper, we study the following semilinear integrodifferential equation with
a nonlocal Cauchy problem:

u′(t) = A[u(t) +

∫ t

t0

F (t− s)u(s)ds] + f(t, u(t)) +

∫ t

t0

k(t− s)h(s, u(s))ds, (1.1)

u(t0) + g(t1, · · · , tn, u(t1), · · · , u(tn)) = u0 ∈ E, t ∈ [t0, T ], (1.2)

where t0 < t1 < t2 < . . . < tn ≤ T, (n ∈ N), A : D(A) := D ⊂ E → E is a linear
operator and generates the strongly continuous semigroup S(t), the nonlinear maps f, h
are defined as f, h : [t0, T ] × E → E, g : InT × En → E, F (t) ∈ B(E), t ∈ IT ,
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F (t) : Y → Y where Y is the Banach space D(A), endowed with the graph norm, and
the kernel k is defined on [t0, T ] to R.

We consider the following semilinear equation

u′(t) = Au(t) + f(t, u(t)), t ∈ [t0, T ], (1.3)

u(t0) = u0, (1.4)

in a Banach space E where A : D(A) := D ⊂ E → E is a linear operator and generates
a strongly continuous semigroup {S(t) : t ≥ 0} and f : [t0, T ] × E → E, u0 ∈ E are
given. Problem (1.3)-(1.4) is referred to as an abstract initial value problem, or a Cauchy
problem. For applications to certain physical problems many researchers, for instance,
Byszewski [5], Byszewski and Lakshmikantham [12], Jackson [15] and references therein,
have considered the study of the existence and uniqueness of a mild solution and a
classical solution to the following nonlocal Cauchy problem

u′(t) = Au(t) + f(t, u(t)), (1.5)

u(t0) + g(t1, t2, . . . , tn, u(t1), u(t2), · · · , u(tn)) = u0, t ∈ [t0, T ], (1.6)

where t0 < t1 < t2 < . . . < tn ≤ T, (n ∈ N), A is the generator of a C0 semigroup
{S(t) : t ≥ 0} on a Banach space E, f : [t0, T ]× E → E, and g : [t0, T ]

n × En → E are
the given functions. A possible example for a function g is

g(t1, t2, . . . , tn, u(t1), u(t2), · · · , u(tn)) =
n
∑

i=1

ciu(ti). (1.7)

The main advantage to use a nonlocal condition (1.6) is that it may be applied to a
physical problem with a better effect than the classical condition (1.4) as (1.6) is generally
more practical for the physical measurements as compared to the classical condition (1.4).

Recently Lin and Liu [16] have dealt with the following semilinear integrodifferential
equation

u′(t) = A[u(t) +

∫ t

0

F (t− s)u(s))ds] + f(t, u(t)), t ∈ [0, T ], (1.8)

u(0) + g(t1, · · · , tn, u(t1), · · · , u(tn)) = u0, (1.9)

in a Banach space E with A being the generator of a strongly continuous semigroup and
F (t) being a bounded linear operator for t ∈ [0, T ], by generalizing the results of (1.5)-
(1.6). We note that the method used to study (1.5)-(1.6) is to first establish the existence
of a mild solution using a fixed point theorem when f satisfies a Lipschitz condition in
the second argument, where a mild solution is defined to be a solution of the following
integral equation:

u(t) = S(t− t0)[u0 − g(t1, t2, . . . , tn, u(t1), u(t2), · · ·u(tn))]

+

∫ t

t0

S(t− s)f(s, u(s))ds, t0 ≤ t ≤ T, (1.10)

with S(t) being the semigroup generated by A. Then a mild solution is shown to be a
classic solution if f ∈ C1([t0, T ]× E, E).

Similar approach has been used to study (1.8)–(1.9) by Lin and Liu [16] who have
shown the existence and uniqueness of a mild solution by showing the existence and
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uniqueness of a solution of the following integral equation (generally known as variation
of constants formula):

u(t) = R(t)[u0 − g(t1, t2, . . . , tn, u(t1), u(t2), · · ·u(tn))]

+

∫ t

0

R(t− s)f(s, u(s))ds, 0 ≤ t ≤ T, (1.11)

where the semigroup S(t) is replaced by the resolvent operator R(t), the counterpart of
the semigroup S(t) for the integrodifferential equations. Then a mild solution is shown
to be a classical solution if f ∈ C1([0, T ]× E, E).

For the initial works on existence, uniqueness and stability of various types of solutions
of different kinds of differential equations, we refer to [6]–[10] and the references cited in
these papers.

Our aim is to use the properties of the resolvent operator R(t) studied in [13]–[17]
and the techniques of Pazy [18] and Byszewski [5] for proving the existence, uniqueness,
representation of solutions by variation of constants formula.

We first prove the existence and uniqueness of a mild solution to (1.1), using the fixed
point argument under a Lipschitz condition on the nonlinear maps and an integrability
condition on the kernel k. Where by a mild solution to (1.1) we mean a function u ∈
C(IT , E) satisfying the following integral equation

u(t) = R(t− t0)[u0 − g(t1 . . . tn, u(t1), · · · , u(tn)] +
∫ t

t0

R(t− s)[f(s, u(s))ds

+

∫ s

t0

k(s− τ)h(τ, u(τ))dτ ]ds, t ∈ [t0, T ], (1.12)

where the semigroup S(t) in (1.12) is replaced by the resolvent operator R(t) used in
(1.11). Then a mild solution is shown to be a classical solution under certain differentia-
bility condition on the nonlinear maps.

The organization of this paper is as follows. In Section 2, we give some basic results,
assumptions on the resolvent operator R(t) and on the variation of parameters formula.
Then in Section 3 we will study the nonlocal Cauchy problem (1.1) using the results
given in Section 2.

2 Preliminaries and Assumptions

In this section we give some basic definitions, notations and results. Let E be a Banach
space with the norm ‖.‖ and let t0 < T ≤ ∞, and throughout the paper we denote [t0, T ]
by IT . We will use in this paper the following Banach spaces of functions (endowed with
their usual norms):

• C(IT ;E) : the space of all continuous functions u : IT → E.

• Cn(IT ;E) : the space of all n times continuously differentiable functions
u : IT → E.

• Lp(IT ;E) : the space of all measurable functions u : IT → E. such that
‖u(.)‖ ∈ Lp(IT ); 1 ≤ p < ∞.
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In the following, for a linear operator A on a Banach space E, we denote by Y the Banach
space D(A) endowed with the graph norm. By L(E,F ), we denote the set of all linear
operators from E to F . By B(E), we denote the set of all bounded linear operators from
E to E itself.

We will make the following assumptions used in [16], [14] and [17] :

(D1) A generates a strongly continuous semigroup in E,

(D2) F (t) ∈ B(E), t ∈ IT , F (t) : Y → Y and for u : IT → Y continuous, AF (.)u(.) ∈
L1(IT , E). For u ∈ E, F ′(t)u is continuous in t ∈ IT .

Now, we define resolvent operator for (1.1) as follows.

Definition 2.1 (see [17]) R(.) is a resolvent operator of (1.1) with f, g, h ≡ 0 if
R(t) ∈ B(E) for t ∈ IT and satisfies

1. R(0) = I (the identity operator on E),

2. for all u ∈ E, R(t)u is continuous for t ∈ IT ,

3. R(t) ∈ B(E), t ∈ IT . For y ∈ Y,R(.)y ∈ C1(IT , E) ∩ C(IT , Y ) and

d

dt
R(t− t0)y = A[R(t− t0)y +

∫ t

t0

F (t− s)R(s)yds]

= R(t− t0)Ay +

∫ t

t0

R(t− s)AF (s)yds, t ∈ IT . (2.1)

Definition 2.2 u(., u0) ∈ C(IT , E) is a mild solution of (1.1) if it satisfies

u(t) = R(t− t0)[u0 − g(t1 . . . tn, u(t1), · · · , u(tn)] +
∫ t

t0

R(t− s)[f(s, u(s))ds

+

∫ s

t0

k(s− τ)h(τ, u(τ))dτ ]ds, t ∈ [0, T ]. (2.2)

Definition 2.3 A classical solution u(., u0) of (1.1) is a function u ∈ C(IT , Y ) ∩
C1(IT , E) which satisfies (1.1) on IT .

Now we state here some results about the existence and uniqueness of the resolvent
operators, already proved in [16] and [17].

Theorem 2.1 ([16]) Let (D1) and (D2) be satisfied. Then (1.1) with f, g, h ≡ 0 has
a unique resolvent operator.

We also state a result about the classical solution to the (1.1) for the particular case,
i.e. f(t, u) ≡ f(t).

Theorem 2.2 ([17]) Let assumptions (D1) and (D2) be satisfied and assume that
f(t, u) ≡ f(t), g, h ≡ 0, u0 ∈ D, and f ∈ C1(IT , E). Then (1.1) has a unique classical
solution.

Finally, we state a theorem about the variation of constants formula for (1.1).
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Theorem 2.3 ([13],[17]) Let f ∈ C(IT , E) and R(t) be the resolvent operator for
(1.1) with g, h ≡ 0. If u is a classical solution of (1.1) with g, h ≡ 0, then it satisfies the
following integral equation:

u(t) = R(t− t0)u(t0) +

∫ t

t0

R(t− s)f(s)ds, t ∈ IT . (2.3)

This is also known as variation of constant formula for (1.1).

3 Main Results

In this section we give the sufficient conditions for the existence and uniqueness of so-
lutions to (1.1). We first prove the local existence and uniqueness of mild solution to
(1.1) under the assumptions (D1)-(D2), f(t, u), h(t, u) are continuous in t and satisfy
the certain local Lipschitz condition in u with Lipschitz constants depending on t and
‖u‖E and k ∈ Lp(IT ), 1 < p < ∞. Finally, we show that (1.1) has a classical solution
provided f and g are continuously differentiable from IT × E → E.

We have the following result for a mild solution of (1.1).

Theorem 3.1 Let (D1) and (D2) hold. Let f, g : IT ×E → E be continuous in t on
IT and satisfy the following conditions.

(H1) There exists a constant L1 > 0 such that

‖f(t, u)− f(t, v)‖ ≤ L1‖u− v‖, u, v ∈ E.

(H2) For almost every t ∈ IT and u, v ∈ E there exists a nonnegative function
L2 ∈ LP (IT ), 1 < P < ∞ such that

‖h(t, u)− h(t, v)‖ ≤ L2‖u− v‖.

(H3) t0 < t1 < t2 < · · · < tn = T, (n ∈ N) and g : InT × En → E and ∃ G, a constant
such that

‖g(t1, · · · , tn, u(t1), · · · , u(tn))− g(t1, · · · , tn, v(t1), · · · , v(tn))‖
≤ G‖u− v‖C(IT ,E).

(H4) The real valued map k is in Lq(0, T ), where 1 < q < ∞ with 1

p
+ 1

q
= 1.

(H5) The constants M and M0 are defined as:

M = max
τ∈IT

‖R(τ)‖,

M0 = M [L1 + ‖k‖Lq(IT )‖L2‖Lp(IT )] (3.1)

and satisfy the following inequality

MG+ (T − t0)M0 < 1. (3.2)

Then for every u0 ∈ E the nonlocal semilinear problem (1.1) has a unique mild solution
u ∈ C(IT , E), Moreover, the mild solution depends continuously on initial data on IT .
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Proof We fixed u0 ∈ E. Define a map X : C(IT , E) → C(IT , E) as:

(Xu)(t) = R(t− t0)[u0 − g(t1, t2, · · · , tn, u(t1), u(t2), · · · , u(tn))]

+

∫ t

t0

R(t− s)[f(s, u(s)) +

∫ s

t0

k(s− τ)h(τ, u(τ))dτ ]ds. (3.3)

Now, for u, v ∈ C(IT , E), we have

‖(Xu)(t)− (Xv)(t)‖ ≤ ‖R(t− t0)[g(t1, t2, · · · , tn, v(t1), v(t2), · · · , v(tn))
−g(t1, t2, · · · , tn, u(t1), u(t2), · · · , u(tn))]‖

+‖
∫ t

t0

R(t− s)[{f(s, u(s))− f(s, v(s))}

+

∫ s

t0

k(s− τ){h(τ, u(τ)) − h(τ, v(τ))}dτ ]ds‖

≤ ‖R(t− t0)‖‖g(t1, t2, · · · , tn, v(t1), v(t2), · · · , v(tn))
−g(t1, t2, · · · , tn, u(t1), u(t2), · · · , u(tn))‖

+

∫ t

t0

‖R(t− s)‖[‖f(s, u(s))− f(s, v(s))‖

+‖
∫ s

t0

k(s− τ){h(τ, u(τ)) − h(τ, v(τ))}dτ‖]ds

‖(Xu)(t)− (Xv)(t)‖E ≤ MG+M0(T − t0)‖u− v‖C(IT ,E). (3.4)

By (3.2) and the well known extension of the Banach contraction principle X has a
unique fixed point u ∈ C(IT , E). This u satisfies (2.2) and hence it is a unique mild
solution to (1.1) on IT .

To show the continuous dependence of a mild solution u to (1.1) on the initial data,
we will show the Lipschitz continuity of the map u0 → u. The arguments for this are as
follows: Let v be a mild solution of (1.1) on IT with the initial value v(t0) = v0, then

‖u(t)− v(t)‖E ≤ M(‖u0 − v0‖E −G‖u(t)− v(t)‖E) +M0

∫ t

t0

‖u− v‖C(Is,E)ds. (3.5)

Thus for η ∈ It, we have

‖u(η)− v(η)‖E ≤ M̃(‖u0 − v0‖E) + M̃0

∫ η

t0

‖u− v‖C(Is,E)ds (3.6)

with M̃ = M
1+MG

, M̃0 = M0

1+MG
. Thus taking the supremum over It, we have

‖u− v‖C(IT ,E) ≤ M̃(‖u0 − v0‖E) + M̃0

∫ t

t0

‖u− v‖C(Is,E)ds. (3.7)

Applying Gronwall’s inequality and taking the supremum over IT , we get

‖u− v‖C(IT ,E) ≤ M̃ exp{M̃0T }‖u0 − v0‖E. (3.8)

The inequality (3.8) proves the uniqueness and continuous dependence of a mild solution
to (1.1) on the initial data on IT . Thus, proof of Theorem (3.1) is complete.

The proof of Theorem 3.1 can be modified to get the following result.
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Corollary 3.1 Let A, f, h and k be as in Theorem 3.1. Let r ∈ C(IT̃ , E). Then the
integral equation

w(t) = r(t) +

∫ t

t0

R(t− s)[f(s, w(s)) +

∫ s

t0

k(s− τ)h(τ, w(τ))dτ ]ds, t ∈ IT̃

has a unique solution in C(IT̃ , E).

Now we show that, if we assume the conditions of differentiability on the nonlinear
maps f, h, we have the regularity result, which proves the existence and uniqueness of
classical solution to (1.1), given as follows.

Theorem 3.2 Let (D1),(D2),(H1)–(H2),(H5) be satisfied. If f, h : IT × E → E are
continuously differentiable from their domain into E, g : InT × En → E satisfies the
condition (H3) and k is continuous on IT satisfying (H4), then the mild solution u to
(1.1) obtained in Theorem 3.1, with u0 ∈ D(A) is a unique classical solution to (1.1) on
IT .

Proof If f, h are continuously differentiable from IT × E into E then for any
compact subinterval IT̃ of IT , f, h are continuous in t on IT̃ and satisfy (H1)-
(H2). Therefore, (1.1) has a unique mild solution u on IT̃ such that u(t0) = u0 −
g(t1, t2, · · · , tn, u(t1), u(t2), · · · , u(tn)). To show that it is also a classical solution of
(1.1), we have to show that u is continuously differentiable on IT̃ .

Let

B1(t) =
∂

∂u
f(t, u), (3.9)

B2(t) =
∂

∂u
h(t, u), (3.10)

r(t) = A[R(t− t0)u(t0) +

∫ t

t0

F (t− s)R(s)u(t0)ds]

+ R(t− t0)f(t0, u(t0)) +

∫ t

t0

R(t− s)k(s− t0)h(t0, u(t0))

+

∫ t

t0

R(t− s)[
∂

∂s
f(s, u(s)) +

∫ s

t0

k(s− τ)
∂

∂τ
h(τ, u(τ))dτ ]ds. (3.11)

Consider the integral equation

w(t) = r(t) +

∫ t

t0

R(t− s)[B1(s)w(s) +

∫ s

t0

k(s− τ)B2(τ)w(τ)dτ ]ds. (3.12)

Conditions assumed on f, h imply that r is continuous on IT̃ and Bi(t)u are continuous
in t from IT̃ into E and uniformly Lipschitz continuous in u. From Corollary 3.1, it
follows that (3.12) has a unique mild solution w on IT̃ . Now from the assumption on f

and h we have

f(s, u(s+ △))− f(s, u(s)) = B1(s)[u(s+ △)− u(s)] + ω1(s,△), (3.13)

h(s, u(s+ △))− h(s, u(s)) = B2(s)[u(s+ △)− u(s)] + ω2(s,△), (3.14)

f(s+ △, u(s+ △))− f(s, u(s+ △)) =
∂

∂s
f(s, u(s+ △)) △ +ω3(s,△), (3.15)

h(s+ △, u(s+ △))− h(s, u(s+ △)) =
∂

∂s
h(s, u(s+ △)) △ +ω4(s,△), (3.16)
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where △
−1 ‖ωi(s,△)‖E → 0 as △→ 0 uniformly on IT̃ , for i = 1, 2, 3, 4.

Let

w△(t) =
u(t+ △)− u(t)

△
− w(t), t ∈ IT̃ . (3.17)

Then

w△(t) = [
1

△
(R(t+ △ −t0)u(t0)−R(t− t0)u(t0))

+A{R(t− t0)u(t0) +

∫ t

t0

F (t− s)R(s)u(t0)ds}]

+ [
1

△

∫ t0+△

t0

R(t+ △ −s)[f(s, u(s)) +

∫ s

t0

k(s− τ)h(τ, u(τ))dτ ]ds

− R(t− t0)f(t0, u(t0))−
∫ t

t0

R(t− s)k(s− t0)h(t0, u(t0))ds]

+
1

△
[

∫ t+△

t0+△

R(t+ △ −s)[f(s, u(s)) +

∫ s

t0

k(s− τ)h(τ, u(τ))dτ ]ds

−
∫ t

t0

R(t− s)[f(s, u(s)) +

∫ s

t0

k(s− τ)h(τ, u(τ))dτ ]ds]

−
∫ t

t0

R(t− s)[
∂

∂s
f(s, u(s)) +

∫ s

t0

k(s− τ)
∂

∂τ
h(τ, u(τ))dτ ]ds

−
∫ t

t0

R(t− s)[B1(s)w(s)) +

∫ s

t0

k(s− τ)B2(τ)w(τ))dτ ]ds. (3.18)

Consider

∫ t+△

t0+△

R(t+ △ −s)[f(s, u(s)) +

∫ s

t0

k(s− τ)h(τ, u(τ))dτ ]ds. (3.19)

Putting s = η+ △ in (3.19), and then replacing η by s, we have

=

∫ t

t0

R(t− η)[f(η+ △, u(η+ △)) +

∫ η+△

t0

k(η+ △ −τ)h(τ, u(τ))dτ ]dη.

=

∫ t

t0

R(t− s)[f(s+ △, u(s+ △))

+

∫ s+△

t0

k(s+ △ −τ)h(τ, u(τ))dτ ]ds. (3.20)

Again, in the inner integral on the right of (3.20), putting τ = γ+ △ and then replacing
γ by τ , we get

∫ t

t0

R(t− s)[f(s+ △, u(s+ △)) +

∫ s+△

t0

k(s+ △ −τ)h(τ, u(τ))dτ ]dη

=

∫ t

t0

R(t− s)[f(s+ △, u(s+ △)) +

∫ s

t0−△

k(s− τ)h(τ+ △, u(τ+ △))dτ ]ds.
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The last term can be rewritten as

=

∫ t

t0

R(t− s)[f(s+ △, u(s+ △)) +

∫ s

t0

k(s− τ)h(τ+ △, u(τ+ △))dτ ]ds

+

∫ t

t0

∫ t0

t0−△

R(t− s)k(s− τ)h(τ+ △, u(τ+ △))dτds. (3.21)

Now, using (3.21) in (3.18) we have

w△(t) = [
1

△
(R(t+ △ −t0))u(t0)−R(t− t0)u(t0)

+A{R(t− t0)u(t0) +

∫ t

t0

F (t− s)R(s)u(t0)ds}]

+ [
1

△

∫ t0+△

t0

R(t+ △ −s)[f(s, u(s) +

∫ s

t0

k(s− τ)h(τ, u(τ))dτ ]ds

− R(t− t0)f(t0, u(t0))−
∫ t

t0

R(t− s)k(s− t0)h(t0, u(t0))ds]

+
1

△
{[
∫ t

t0

R(t− s)[f(s+ △, u(s+ △)) (3.22)

+

∫ s

t0

k(s− τ)h(τ+ △, u(τ+ △))dτ ]ds

−
∫ t

t0

R(t− s)[f(s, u(s+ △) +

∫ s

t0

k(s− τ)h(τ, u(τ+ △))dτ ]ds]

+ [

∫ t

t0

R(t− s)[f(s, u(s+ △) +

∫ s

t0

k(s− τ)h(τ, u(τ+ △)dτ ]ds

−
∫ t

t0

R(t− s)[f(s, u(s)) +

∫ s

t0

k(s− τ)h(τ, u(τ))dτ ]ds]

+

∫ t

t0

∫ t0−△

t0

R(t− s)k(s− τ)h(τ+ △, u(τ+ △))dτds}

−
∫ t

t0

R(t− s)[
∂

∂s
f(s, u(s)) +

∫ s

t0

k(s− τ)
∂

∂τ
h(τ, u(τ))dτ ]ds

−
∫ t

t0

R(t− s)[B1(s)w(s)) +

∫ s

t0

k(s− τ)B2(τ)w(τ))dτ ]ds. (3.23)

Now, using (3.13)-(3.16) in (3.23) and readjusting the terms, we have

w△(t) = [
1

△
(R(t+ △ −t0))u(t0)−R(t− t0)u(t0)

+A{R(t− t0)u(t0) +

∫ t

t0

F (t− s)R(s)u(t0)ds}]

+[
1

△

∫ t0+△

t0

R(t+ △ −s)[f(s, u(s+ △))
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+

∫ s

t0

k(s− τ)h(τ, u(τ))dτ ]ds −R(t− t0)f(t0, u(t0))]

+
1

△

∫ t

t0

R(t− s)[ω1(s,△) + ω3(s,△)

+

∫ s

t0

k(s− τ){ω2(s,△) + ω4(s,△)}dτ ]ds

+

∫ t

t0

R(t− s)[{ ∂

∂s
f(s, u(s+ △))− ∂

∂s
f(s, u(s))} (3.24)

+

∫ s

t0

k(s− τ){ ∂

∂τ
h(τ, u(τ+ △))− ∂

∂τ
h(τ, u(τ))}dτ ]ds

−
∫ t

t0

R(t− s)[
1

△

∫ t0

t0−△

k(s− τ)h(τ+ △, u(τ+ △))dτ + k(s− t0)h(t0, u(t0))]ds

+

∫ t

t0

R(t− s)[B1(s)w△(s) +

∫ s

t0

k(s− τ)B2(τ)w△(τ)dτ ]ds. (3.25)

Since the norms in E of all but the term in the last line of ( 3.25) tend to zero as △→ 0,
we have

‖w△‖C(It,E) ≤ ǫ(△) +D(T̃ )

∫ t

t0

‖w△‖C(Is,E)ds, (3.26)

where ǫ(△) → 0 as △→ 0 and

D(T̃ ) = max{‖R(t− s)‖B(E)[‖B1(s)‖B(E) + ‖k‖Lp(IT )‖B2(s)‖B(E)] : s ∈ IT̃ }.

Applying Gronwall’s inequality in (3.26), we obtain

‖w△‖C(It,E) ≤ ǫ(△) exp{D(T̃ )T̃ }. (3.27)

Therefore ‖w△(t)‖E) → 0 as △→ 0. Hence u is differentiable on IT̃ and its derivative is
w on IT̃ . Since w ∈ C(IT̃ , E), u ∈ C1(IT̃ , E). Finally, to show that u is the required
classical solution of problem (1.1), assumptions on f, h and u ∈ C1(IT̃ , E) imply that
the maps s → f(s, u(s)) and s → h(s, u(s)) are continuously differentiable on IT̃ .

v(t) = R(t− t0)[u0 − g(t1, t2, · · · , tn, u(t1), u(t2), · · · , u(tn))]

+

∫ t

t0

R(t− s)[f(s, u(s)) +

∫ s

t0

k(s− τ)h(τ, u(τ))dτ ]ds,

v(t0) = u0 − g(t1, t2, · · · , tn, u(t1), u(t2), · · · , u(tn)) (3.28)

is a unique solution to

dv

dt
= Av(t) + f(t, u(t)) +

∫ t

t0

k(t− s)h(s, u(s))ds, t ∈ IT̃ . (3.29)

By definition, u is a mild solution to (3.29) on IT̃ . By uniqueness of a mild solution to
(3.29), we have u = v on IT̃ . Thus u satisfies (3.29) and therefore u is a unique classical

solution (1.1) on IT̃ . Since T̃ , t0 < T̃ < T, arbitrary, u is a classical solution to (1.1) on
IT . This completes the proof.
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4 Modified Results

In this section, we study the special case when ‖R(t)‖B(E) ≤ Me−αt, 0 ≤ t ≤ T for
some constant α ≥ 0 and when the nonlocal condition (1.2) is given by (1.7). Since we
are going to assume a weaker condition and so we hope to get improved conditions in
assumption (3.2) in Theorem 3.1. To find those improved conditions we move as follows:
We first prove the existence and uniqueness of mild solution u(., v) of Cauchy problem

u′(t) = A[u(t) +

∫ t

o

F (t− s)u(s)ds] + f(t, u(t)) +

∫ t

0

k(t− s)h(s, u(s))ds,

u(0) = v, 0 ≤ t ≤ T.

for any v ∈ E, and then we define an operator along the curve of u(., v) and show that the
operator is a contraction, and finally conclude that operator gives rise to a mild solution
of (1.1)-(1.2) by finding its fixed point.

To prove the desired result we need to assume the following (see [16]):

(H6) For some constant α > 0, the resolvent operator of (1.1) with f ≡ 0 satisfies

‖R(t)‖B(E) ≤ Me−αt, 0 ≤ t ≤ T. (4.1)

(H7) Nonlocal condition (1.2) is given by (1.7) and

β ≡ α−M0 > 0, M

p
∑

i=1

|ci|e−β(ti−t0) < 1. (4.2)

(M0 from 3.1, α, M from 4.1.)

Remark 4.1 Note that conditions given in (H7) are better than conditions given in
(H5) in some situations.

We need the following inequality to find our results.

Lemma 4.1 [11] Let u(t) and b(t) be non negative continuous functions for t ≥ α,

and let

u(t) ≤ ae−γ(t−α) +

∫ t

α

e−γ(t−s)b(s)u(s)ds, t ≥ α, (4.3)

where α ≥ 0 and γ are constants. Then

u(t) ≤ ae(−γ(t−α)+
∫

t

α
b(s)ds), t ≥ α, (4.4)

We will use Lemma 4.1 to prove the uniqueness of a mild solution of (1.1)-(1.2). The
result is as follows:

Theorem 4.1 Let assumptions (H1)–(H4), (H6) and (H7) be satisfied. Then for
every u0 ∈ E (1.1)–(1.2) has a unique mild solution.
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Proof Let u0 ∈ E be fixed. Then for any v ∈ E, define an operator
X : C([0, T ], E) → C([0, T ], E) by

(Xu)(t) = R(t− t0)v +

∫ t

t0

R(t− s)[f(s, u(s)) +

∫ s

t0

k(s− τ)h(τ, u(τ))dτ ]ds. (4.5)

Then for u,w ∈ C([0, T ], E), t ∈ [0, T ], we have

‖(Xu)(t)− (Xw)(t)‖ ≤ ‖
∫ t

t0

R(t− s)[{f(s, u(s))− f(s, w(s))}

+

∫ s

t0

k(s− τ){h(τ, u(τ)) − h(τ, w(τ))}dτ ]ds‖

≤
∫ t

t0

‖R(t− s)‖[‖f(s, u(s))− f(s, w(s))‖

+‖
∫ s

t0

k(s− τ){h(τ, u(τ)) − h(τ, w(τ))}dτ‖]ds

and hence

‖(Xu)(t)− (Xw)(t)‖E ≤ (M0(t− t0))‖u− w‖C(IT ,E). (4.6)

with M0, defined in (3.1). Using (4.5) and repeated application of the inequality (4.6),
we have

‖(Xnu)(t)− (Xnw)(t)‖E ≤ [M0(t− t0)]
n

n!
‖u− w‖C(IT ,E). (4.7)

Therefore, we have

‖(Xnu)− (Xnw)‖C(IT ,E)) ≤
[M0T − t0)]

n

n!
‖u− w‖C(IT ,E). (4.8)

For n large enough [M0(T−t0)]
n

n!
< 1 and by the well known extension of the Banach

contraction principle X has a unique fixed point u(., v). This u satisfies (2.2) and hence
it is a unique mild solution to (1.1) on IT with u(t0) = v.

Next, define an operator X1 : E → E by

X1v = u0 −
p

∑

i=1

ciu(ti), (4.9)

where u(.) = u(., v) is the unique fixed point of (4.5). Let ui(.) = ui(., vi), i = 1, 2, be
the unique fixed point of (4.5) with ui(t0) = vi. Now, we have:

‖X1v1 −X1v2‖E ≤
p

∑

i=1

|ci|(‖u1(ti)− u2(ti)‖E . (4.10)
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Let w(.) ≡ u1(.)− u2(.), then we can rewrite (4.5) as

‖w(t)‖E ≤ ‖R(t− t0)‖B(E)‖v1 − v2‖E

+

∫ t

t0

‖R(t− s)‖[‖f(s, u1(s))− f(s, u2(s))‖

+‖
∫ s

t0

k(s− τ){h(τ, u1(τ)) − h(τ, u2(τ))}dτ‖]ds

≤ M‖v1 − v2‖Ee−α(t−t0) +

∫ t

t0

M0e
−α(t−s)‖u1(s)− u2(s)‖Eds

≤ M‖v1 − v2‖Ee−α(t−t0) +

∫ t

t0

M0e
−α(t−s)‖w(s)‖Eds, t ∈ [t0, T ].

Thus by the lemma (4.1),

‖w(t)‖E ≤ M‖v1 − v2‖Ee−(α−M0)(t−t0) (4.11)

= M‖v1 − v2‖Ee−β(t−t0), t ∈ [t0, T ]. (4.12)

By use of (4.12), we can rewrite (4.10) as:

‖X1v1 −X1v2‖E ≤ (M

p
∑

i=1

|ci|e−β(ti−t0)‖v1 − v2‖E . (4.13)

By (H7), X1 is a contraction operator on E and so X1 has a unique fixed point v0 ∈ E.

So, for the unique fixed u(., v0) of (4.5) with to u(t0) = v0, we obtain

u(t0, v0) = v0 = u0 −
p

∑

i=1

ciu(ti, v0). (4.14)

This implies that

u(t, v0) = R(t− t0)[u0 −
p

∑

i=1

ciu(ti, v0)] +

∫ t

t0

R(t− s)f(s, , u(s, v0))ds, t ∈ [t0, T ],

and hence, u(., v0) is a mild solution of (1.1-1.2). At last, we show that mild solutions of
(1.1)-(1.2) are unique. Since if u(.) is a mild solution of (1.1)-(1.2) with (1.2) given by
(1.7), then

u(t0) = u0 −
p

∑

i=1

ciu(ti)

and u(.) is also the mild solution of (1.1) with v = u(t0).
However, X1 is the contraction map operator and so (4.7) implies that u(t0) is

uniquely determined by X1. X is also a contraction operator and fixed point of (4.5)
is uniquely determined by v = u(t0). Therefore, it is clear that mild solutions of (1.1)
with (1.7) are unique. This completes the proof.

Similar to Theorem 3.1, we have the following result for the classical solution provided
that f, h : IT × E → E are continuously differentiable.
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Theorem 4.2 Let the assumptions (H1)-(H4), (H6) and (H7) be satisfied and let u(.)
be the unique mild solution of (1.1) and (1.2) guaranteed by Theorem 3.1 with (1.2) being
given by (1.7). Assume further that

u0 ∈ D(A),

p
∑

i=1

ciu(ti) ∈ D(A), f, h ∈ C1([t0, T ]× E,E). (4.15)

Then u(.) gives rise to a unique classical solution of (1.1) with (1.7).

5 Application

1. The case in which k, F, g ≡ 0 was considered by I. Segal [4]. Different forms
of solutions in this particular case have been considered by Pazy [18] and R. H.
Martin [3]. The case when k, F ≡ 0 was considered by Ludwik Byszewski [5]. The
case when F, g ≡ 0 has been considered in D. Bahuguna [2]. Also in the case when
F ≡ 0, existence and uniqueness results for a solution to 1.1, have been analyzed
in [1]. Therefore, our results presented here for the problem (1.1) generalizes the
results given in [1]–[5] and [18].

2. Consider the following integrodifferential equation termed as classical heat equation
for a material with a memory. Let u be the internal energy and

f(t, u(t, x)) +

∫ t

t0

k(t− s)h(s, u(s, x))ds

be the external heat with



















α(t, x) = −ux(t, x) −
∫ t

t0
b(t− s)ux(s, x)ds, Heat flux

ut(t, x) =
∂
∂x

α(t, x) + f(t, u(t, x))

+
∫ t

t0
k(t− s)h(s, u(s, x))ds, Balance equation

u(t0, x) +
∑n

i=1
u(ti, x) = u0(x).

(5.1)

We can rewrite (5.1) as

ut(t, x) =
∂2

∂x2
[u(t, x) +

∫ t

t0

b(t− s)u(s, x)ds] + f(t, u(t, x))

+

∫ t

t0

k(t− s)h(s, u(s, x))ds, (t, x) ∈ [t0, T ]× [0, 1], (5.2)

u(t0, x) +

n
∑

i=1

u(ti, x) = u0(x).

This is of the type of (1.1) with A = ∂2

∂x2 on H2[0, 1]∩H1

0
[0, 1] which generates the

strongly continuous semigroup on L2[0, 1] and b(t) is a continuous function. It can
be verified that the conditions of Theorem 3.1 are satisfied and thus our analysis
ensures existence and uniqueness of a solution to (5.1).
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Abstract: Let Ω ⊂ R
n be a domain (not necessarily bounded) with smooth bound-

ary ∂Ω. Let 1 ≤ n ≤ 6 and f ∈ C
0,α(Ω) ∩ L

2(Ω) be a given function with f < 0. In
the present study, we prove that the following BVP

−∆u = u
2 + f in Ω, u = 0 on ∂Ω,

has a solution u ∈ H
1

0 (Ω) and satisfies u ≤ 0 in Ω.

Keywords: monotone iteration method; maximum principle; unbounded domain.
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1 Introduction

Let Ω ⊂ R
n be a domain (i.e open and connected) with smooth boundary ∂Ω. Let

1 ≤ n ≤ 6 and f ∈ C0,α(Ω) ∩ L2(Ω) be a nonzero given function. We consider the BVP

−∆u = u2 + f in Ω, (1.1)

u = 0 on ∂Ω. (1.2)

The variational or the weak formulation of (1.1) and (1.2) is to find u ∈ H1

0
(Ω) such that

∫

Ω

∇u.∇v =

∫

Ω

u2v +

∫

Ω

fv, for all v ∈ H1

0
(Ω). (1.3)

∗ Corresponding author: rasmita@iitk.ac.in
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For a bounded domain Ω and f < 0, monotone iteration technique has been used to
prove the existence of a solution of (1.1) and (1.2). For details of the proof, we refer to
the book by Kesavan, S. [3, p.227]. The Rellich–Kondrasov theorem has been used. The
present study deals with the existence of a solution of the BVP when Ω is an unbounded
domain with smooth boundary.

We assume Ω =
⋃

∞

i=1
Ωi, where Ωi is a bounded domain with smooth boundary ∂Ωi,

for i = 1, 2, 3.... with Ωi ⊆ Ωi+1. Before we proceed, as a consequence of embedding
theorem, we note that u2 ∈ L3/2(Ω) if u ∈ H1

0 (Ω) for n ≤ 6, and so

∣

∣

∣

∫

Ω

u2v
∣

∣

∣ ≤ |u|20,3,Ω|v|0,3,Ω ≤ c ‖u‖21,Ω‖v‖1,Ω,

which shows that u ∈ H−1(Ω). Here c is a generic constant, ‖.‖1,Ω denotes the norm in
H1

0 (Ω) and |.|0,Ω denotes the norm in L2(Ω). Hence, the integrals on the right side of
(1.3) exist.

2 The Main Results

Let G be a bounded domain in R
n, n ≤ 6, with smooth boundary ∂G, f ∈ C0,α(G) ∩

L2(Ω) and f < 0. Let w ∈ H1

0
(G) be the smooth solution of

−∆u = f in G, u = 0 on ∂G. (2.1)

The following result is proved in the book [3, p. 227].

Lemma 2.1 Let G be a bounded domain in R
n, n ≤ 6 with smooth boundary ∂G .

Let f ∈ C0,α(G) ∩ L2(Ω) with f < 0. Then, there exists, u ∈ H1

0
(G) satisfying

∫

G

∇u.∇v =

∫

G

u2v +

∫

G

fv, for every v ∈ H1

0
(G)

such that w ≤ u ≤ 0 in G and

‖u‖1,G ≤ c (|f |0,G + |w|0,G). (2.2)

Remark 2.1 By Lemma 9.17 [1, p. 242], we obtain |w|0,G ≤ c |f |0,G, where c

depends only on n and G and (2.2) reduces to

‖u‖1,G ≤ c|f |0,G, (2.3)

where c > 0 depends on n and G only. Let n ≤ 6 and Ω =
⋃

∞

i=1
Ωi, where Ωi is a bounded

domain in R
n with smooth boundary ∂Ωi, for each i ≥ 1. Let f ∈ C0,α(Ω) ∩ L2(Ω). By

Lemma 2.1, for i ≥ 1 there exists a sequence ui such that

∫

Ωi

∇ui.∇vi =

∫

Ωi

u2

i vi +

∫

Ωi

fivi, for all vi ∈ H1

0 (Ωi), (2.4)

‖ui‖1,Ωi
≤ c|f |0,Ω, (2.5)

where c depends on Ωi and n. Here fi = f |Ωi
is the restriction of f on Ωi, i ≥ 1.

With these preliminaries, we have the main result stated below.
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Theorem 2.1 Let Ω =
⋃

∞

i=1
Ωi, Ωi ⊆ Ωi+1 be open bounded domains in Ω. We

suppose that f ∈ L2(Ω)∩C0,α(Ω). Then (1.1) and (1.2) have a solution u ∈ H1

0
(Ω) with

u ≤ 0 a.e in Ω.

Proof A part of the following proof is similar to the one found in [2]. Let M be any
fixed (but arbitrary) bounded domain such that M ⊆ Ω. Then there exists an integer i
such that M ⊆ Ωj for j ≥ i. Let ũj (for j ≥ i) denote the extension of uj by zero outside
Ωj . We continue to denote ũj by uj . By a lemma [4, p.124] and (2.4),(2.5) of Remark
2.1, there exists a positive constant k > 0 depending on α, n and M such that

‖uj‖H1

0
(M) ≤ k, for all j ≥ i,

where k is independent of j ≥ i. Since {uj} is a bounded sequence in H1

0
(M), {uj}

has a weakly convergent subsequence in H1

0
(M), which we still denote by {uj}. A little

computation shows that u2

j ⇀ u2 weakly in H1
0 (M). Since M is an arbitrary bounded

domain in Ω, we have

∫

Ω

∇u.∇v =

∫

Ω

u2v +

∫

Ω

fv, for every v ∈ H1

0 (Ω)

which completes the proof of the theorem. 2

Remark 2.2 When f > 0, (1.1) and (1.2) may not admit a solution even in bounded
domain. We refer to example 5.4.1 in the book [3, p. 230].
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Abstract: In this paper, we establish some new sufficient conditions under which
all solutions of nonlinear third order differential equations of the form

x
′′′ + ψ(x, x′)x′′ + f(x, x′) = p(t, x, x′

, x
′′)

are bounded. For illustrations, an example is also given on the bounded solutions.
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Lyapunov’s second method.
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1 Introduction

In a recent paper, Omeike [5] considered the following nonlinear third order differential
equation:

x′′′ + ψ(x, x′)x′′ + f(x, x′) = 0. (1.1)

He introduced a Lyapunov function and then discussed the global asymptotic stability
of zero solution x(t) = 0 of this equation. By this work, the author proved under less
restrictive conditions the stability result obtained by Qian [6] for equation (1.1). The
Lyapunov function introduced in that paper, [5], raised this case. It should be noted that,
first in 1970, Barbashin [2] proved some results related to the qualitative behaviors of
solution of some systems of third order differential equation. Later, based on the results
of Barbashin [2], some results have been improved concerning the qualitative behaviors of
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solutions of (1.1) and various nonlinear third order differential equations in the literature
(see Omeike [5], Qian [6], Tunç [7, 8] and the references thereof). At the same time, for
some papers published on the qualitative behaviors of solutions of various nonlinear third
order differential equations and the stability and boundedness of nonlinear systems, we
refer the reader to the papers of Aleksandrov and Platonov [1], Barbashin and Tabueva
[3, 4], Tunç [9, 10, 11], Tunç and Ateş [12] and the references thereof. Now, we consider
the following nonlinear third order differential equation

x′′′ + ψ(x, x′)x′′ + f(x, x′) = p(t, x, x′, x′′). (1.2)

This equation can be stated as the following equivalent system:

x′ = y, y′ = z,

z′ = −ψ(x, y)z − f(x, y) + p(t, x, y, z), (1.3)

where ψ ∈ C (ℜ × ℜ, ℜ), f ∈ C (ℜ× ℜ, ℜ) and p ∈ C ([0,∞)×ℜ ×ℜ× ℜ, ℜ). We also
assume that the functions ψ, f and p depend only on the arguments displayed explicitly,
and the primes in equation (1.2) denote differentiation with respect to t; the derivatives

∂ψ(x, x′)

∂x
≡ ψx(x, x

′),
∂f(x, x′)

∂x
≡ fx(x, x

′)

exist and are also continuous. The motivation for the present paper has been inspired
basically by the papers of Barbashin [2], Omeike [5], Qian [6] and Tunç [7, 8] and the
papers mentioned above. The principal aim of this paper is to improve the result achieved
in Omeike [5] on the boundedness of solutions of nonlinear differential equation (1.2). It
should also be noted that we prove our main result here by using the Lyapunov’s second
method.

2 Boundedness of Solutions

Our main result is the following theorem.

Theorem 2.1 In addition to the basic assumptions imposed on the functions ψ, f
and p appearing in equation (1.2), we assume that there exist positive constants a, b and
c such that the following conditions hold:

(i) f(x,0)

x
≥ c, (x 6= 0), fy(x, θy) ≥ b, 0 ≤ θ ≤ 1, ψ(x, y) ≥ a and

a[f(x, y)− f(x, 0)−
y

∫

0

ψx(x, v)vdv]y ≥ y

y
∫

0

fx(x, v)dv;

(ii) |p(t, x, y, z)| ≤ q(t), where q ∈ L1(0,∞), L1(0,∞) is a space of integrable Lebesgue
functions.

Then, there exists a finite positive constant K such that every solution (x(t), y(t), z(t))
of system (1.3) satisfies

|x(t)| ≤
√
K, |y(t)| ≤

√
K, |z(t)| ≤

√
K.
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Proof The proof of this theorem depends on a scalar differentiable Lyapunov’s func-
tion V = V (x, y, z). This function and its time derivative satisfy some fundamental
inequalities. We use here the Lyapunov’s function V introduced in [5]:

V =

x
∫

0

f(u, 0)du+

y
∫

0

ψ(x, v)vdv + a−1

y
∫

0

f(x, v)dv +
1

2a
z2 + yz. (2.1)

This function, (2.1), can be rearranged as follows:

V = (1 + a−1)

x
∫

0

f(u, 0)du+

y
∫

0

ψ(x, v)vdv + a−1

y
∫

0

fv(x, θv)vdv +
1

2a
z2 + yz

since

fv(x, θv) =
f(x, v) − f(x, 0)

v
, (v 6= 0, 0 ≤ θ ≤ 1),

that is
f(x, v) = fv(x, θv)v + f(x, 0), (v 6= 0, 0 ≤ θ ≤ 1).

This arrangement implies

V = (1 + a−1)

x
∫

0

[

u−1f(u, 0)− c
]

udu+ a−1

y
∫

0

[fv(x, θv) − b] vdv

+

y
∫

0

[ψ(x, v)− a] vdv +
1

2a
(z + ay)2 +

b

2a
y2 +

(1 + a−1)c

2
x2. (2.2)

Obviously, it follows from (2.2) that there exist some positive constants Di, (i = 1, 2, 3),
such that

V ≥ 1

2a
(z + ay)2 +

b

2a
y2 +

(1 + a−1)c

2
x2

≥ D1x
2 +D2y

2 +D3z
2

≥ D4(x
2 + y2 + z2),

where D4 = min {D1, D2, D3}. Now, let (x, y, z) = (x(t), y(t), z(t)) be any solution of
system (1.3). Differentiating the function V, (2.1), along system (1.3) with respect to the
independent variable t, we have

d

dt
V (x, y, z) = f(x, 0)y + y

y
∫

0

ψx(x, v)vdv + a−1y

y
∫

0

fx(x, v)dv + z2

−a−1ψ(x, y)z2 − f(x, y)y + (y + a−1z)p(t, x, y, z)

= −[f(x, y)− f(x, 0)− y

y
∫

0

ψx(x, v)vdv] + a−1y

y
∫

0

fx(x, v)dv

−[a−1ψ(x, y)− 1]z2 + (y + a−1z)p(t, x, y, z). (2.3)
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Making use of assumption (i) of the theorem, we obtain

d

dt
V (x, y, z) ≤ (y + a−1z)p(t, x, y, z).

By using assumption (ii) of the theorem, the inequality 2 |uv| ≤ u2 + v2 and the fact

y2 + z2 ≤ x2 + y2 + z2 ≤ D−1

4
V (x, y, z), (2.4)

one can easily obtain that

d

dt
V (x, y, z) ≤

(

|y|+ a−1 |z|
)

q(t)

≤ D5 (|y|+ |z|) q(t)

≤ D5

(

2 + y2 + z2
)

q(t).

≤ D5

(

2 +D−1

4
V (x, y, z)

)

q(t)

= 2D5q(t) +D5D
−1

4
V (x, y, z)q(t), (2.5)

where D5 = min{1, a−1}. Integrating (2.5) from 0 to t, using the assumption q ∈
L1(0,∞) and the Gronwall–Reid–Bellman inequality, we have

V (x, y, z) ≤ V (0, 0, 0) + 2D5A+D5D
−1

4

t
∫

0

(V (x(s), y(s), z(s)))q(s)ds

≤ (V (0, 0, 0) + 2D5A) exp



D5D
−1

4

t
∫

0

q(s)ds





= (V (0, 0, 0) + 2D5A) exp
(

D5D
−1

4
A
)

= K1 <∞, (2.6)

where K1 > 0 is a constant, K1 = (V (0, 0, 0) + 2D5A) exp
(

D5D
−1

4
A
)

and A =
∞
∫

0

q(s)ds.

In view of inequalities (2.4) and (2.6), we get

x2(t) + y2(t) + z2(t) ≤ D−1

4
V (x, y, z) ≤ K,

where K = K1D
−1

4
. Aforementioned inequality implies that

|x(t)| ≤
√
K, |y(t)| ≤

√
K, |z(t)| ≤

√
K

for all t ≥ t0 ≥ 0. Hence,

|x(t)| ≤
√
K, |x′(t)| ≤

√
K, |x′′(t)| ≤

√
K

for all t ≥ t0 ≥ 0. Thus, the proof of theorem is now complete.2
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Example 2.1 We consider nonlinear third order scalar differential equation:

x′′′+(x′ sinx+(x′)2+4)x′′+(x′)3+x′+x+
x

1 + x2
=

1

1 + t2 + x2 + (x′)2 + (x′′)2
. (2.7)

Now, it can be seen that differential equation (2.7) has the form of (1.2), and its equivalent
system is

x′ = y,

y′ = z,

z′ = −{(sinx)y + y2 + 4}z − y3 − y − x− x

1 + x2
+

1

1 + t2 + x2 + y2 + z2
. (2.8)

Clearly, by comparing (2.8) with (1.3) and taking into account the assumptions of the
theorem, it follows:

f(x, y) = x+
x

1 + x2
+ y + y3,

f(x, 0)

x
= 1 +

1

1 + x2
≥ 1 = c,

fx(x, y) = 1 +
1− x2

(1 + x2)2
,

fy(x, y) = 1 + 3y2 ≥ 1 = b;

ψ(x, y) = (sinx)y + y2 + 4 ≥ − |sinx| |y|+ y2 + 4

≥ − |y|+ y2 + 4 =

(

|y| − 1

2

)2

+
15

4
> 3 = a,

ψx(x, y) = (cos x)y;

a[f(x, y)− f(x, 0)−
y

∫

0

ψx(x, v)vdv]y = 3[y + y3 −
y

∫

0

(cosx)v2dv] y

= 3[y + y3 − (cos x)
y3

3
] y

= 3[y2 + y4 − (cosx)
y4

3
];

y

y
∫

0

fx(x, v)dv = y

y
∫

0

[

1 +
1− x2

(1 + x2)2

]

dv

=

[

1 +
1− x2

(1 + x2)2

]

y2

= y2 +
y2

(1 + x2)2
− x2y2

(1 + x2)2
,

Now, we observe

3
[

y2 + y4 − (cosx)
y4

3

]

≥ y2 +
y2

(1 + x2)2
− x2y2

(1 + x2)2
.
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That is,

a[f(x, y)− f(x, 0)−
y

∫

0

ψx(x, v)vdv]y ≥ y

y
∫

0

fx(x, v)dv.

Finally, we have

p(t, x, y, z) =
1

1 + t2 + x2 + y2 + z2
≤ 1

1 + t2

and
∞
∫

0

q(s)ds =

∞
∫

0

1

1 + s2
ds =

π

2
<∞,

that is, q ∈ L1(0,∞).

Hence, the above whole discussion shows that all the conditions of the theorem hold.
Thus, one can conclude that all solutions of equation (2.7) are bounded.
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