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Abstract: We model a dynamic monopoly with environmental externalities, in-
vestigating the adoption of a tax levied on the firm’s instantaneous contribution to
the accumulation of pollution. The latter process is subject to a shock, which is i.i.d.
across instants. We prove the existence of an optimal tax rate such that the monopoly
replicates the same steady state welfare level as under social planning. Yet, the corre-
sponding output level, R&D investment for environmental friendly technologies and
surplus distribution necessarily differ from the socially optimal ones.
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1 Introduction

A lively debate is currently taking place on the need to preserve the environment from the
negative consequences of pollution generated by industrial activities ? . A crucial aspect
is the lack of incentives on the part of profit-seeking firms to carry out R&D projects to
generate new environmental-friendly technologies.

To this effect, policy makers may adopt several forms of regulation and taxa-
tion/subsidization policies to induce firms to internalize externalities and invest accord-
ingly. The standard approach to this problem consists in introducing a Pigouvian tax
or subsidy rule whereby firms pay or receive an amount of money proportional to the
aggregate current stock of pollutants generated by the industry as a whole. We propose
an alternative policy design, where the tax is levied on the marginal contribution to the

∗ Corresponding author: mailto:luca.lambertini@unibo.it
? For an exhaustive account, see [12] and [6].
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accumulation process followed by pollution. Accordingly, this policy is close in spirit to
the adoption of a quality standard, such as the use of filters capturing CO2, in order to
decrease the amount of pollutants emitted by a car per mile.

We evaluate this perspective in a simple optimal control model where the market is
monopolistic. To add a realistic feature to our framework, we allow for the presence of a
stochastic shock affecting the accumulation of pollution, in such a way that the resulting
optimal tax rate depends on the expected value of the shock. Our main result is that
there exists a tax policy (i) inducing the firm to invest in R&D for a greener technology
and (ii) yielding the same steady state social welfare as under social planning. However,
the two allocations characterizing, respectively, the regulated monopoly and the first
best differ under all remaining respects, i.e., price, output, R&D investment and surplus
distribution.

The remainder of the paper is structured as follows. The model is laid out in Section
2. Section 3 contains the analysis of the regulated monopoly. The first best allocation
is described in Section 4, while Section 5 investigates the optimal design of taxation.
Concluding remarks are in Section 6.

2 The Setup

Consider a monopolistic single-product firm facing the instantaneous demand function
p(t) = a − q(t), where a > 0 is the reservation price and q(t) ∈ [0, a− c] is the output
level. The production cost is linear in q(t) with unit cost c ∈ (0, a). The production
process involves a negative environmental externality S(t), that accumulates according
to the dynamics

Ṡ(t) = b(t)q(t) −
δS(t)

θ(t)
. (1)

This evolutionary structure features a depreciation rate δ > 0, which is also affected by
a stochastic shock on its slope, in the form of a random variable θ(t), i.i.d. over time,
with mean E(θ) = 1 and variance V ar(θ) = σ2

θ > 1. For future reference, we define
the mean of the reciprocal as E(θ−1) = w > 1, by Jensen’s inequality ?. Our way of
modelling uncertainty admittedly differs from the standard approach taken in the existing
literature on stochastic differential games, where usually a Wiener process appears (for
an overview, see [4], 2000, ch. 8). In place of a Wiener process, we consider the presence
of a shock that, being i.i.d. across instants, allows us to take the necessary conditions on
the expected value of the Hamiltonian function. Accordingly, by applying Pontryagin’s
maximum principle to the expected value of the Hamiltonian, one has that the mean
and variance of the shock enter the necessary conditions as parameters. That is, this
way of formalising the presence of uncertainty has no procedural bearings on the solution
techniques needed to characterise the resulting steady state equilibrium. In particular,
when deriving the control equations, we will see that these contain the parameters of the
distribution of the shock, but not the shock itself as a function of time.

The assumption that the dynamics of the stock of pollution is subject to shocks has
been introduced to capture the idea, largely discussed in the current debate on global
warming and the anthropic responsibility in its evolution, that our knowledge of this
matter is still incomplete and subject to natural factors beyond human control. In
particular, our way of modelling (1) refers to uncertainty affecting measures of the rate

? For examples of analogous approaches in literature on industrial organization, see [8] or [10].
Systems of equations with random parameters have also been investigated by [11].
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at which the atmosphere can absorb and eliminate CO2-equivalent emissions, especially
if one takes into account deforestation ?.

To create an incentive for the monopolist to invest in R&D so as to make its produc-
tive technology more environmental-friendly, the government imposes an instantaneous
Pigouvian taxation. Usually, the Pigouvian tax is levied on the total amount of the
externality (see [7], or [1],[2], inter alia). Here, we propose an alternative policy design,
whereby the firm is subject to an instantaneous tax equal to τb (t) , i.e., what is being
taxed is indeed the rate b (t) at which a unit of final product contributes to the increase in
the stock of pollution. The coefficient b(t) is thus a further state variable whose dynamic
equation is a linear one:

ḃ(t) = −k(t) + ηb(t), (2)

with η > 0, and decreasing in k (t) ≥ 0, which is the instantaneous R&D effort carried out
by the firm. A plausible economic interpretation of b (t) is to see it as the environmental
obsolescence rate of technology, measuring the growth rate of the external damage in-
volved by the use of technologies that become increasingly more polluting as time goes
by.

The R&D technology used by the firm involves an instantaneous cost measured by
Γ(t) = zk2(t), where z is a positive constant. The problem for the monopolistic firm
consists in maximizing w.r.t controls k(t) and q(t) the expected value of the following
payoff functional:

J ≡

∫

∞

0

e−ρt((p(t) − c)q(t)− Γ(t)− τb(t))dt, (3)

subject to:


























ḃ(t) = −k(t) + ηb(t),

Ṡ(t) = b(t)q(t)−
δS(t)

θ(t)
,

b(0) = b0 > 0,

S(0) = S0 > 0.

(4)

This is a modified (monopolistic) version of a dynamic oligopoly game with environmental
effects examined in [5]. The main differences consist in (i) the presence of a shock
affecting the accumulation of the environmental externality; (ii) the functional form
of the dynamics of b(t), linear in this case; (iii) the tax is levied on the monopolist’s
contribution to pollution and not on the overall stock of pollution itself.

3 The Monopoly Optimum

The current value Hamiltonian function reads as:

H(·) = (a− c− q(t))q(t) − zk2(t)− τb(t)+ (5)

+λ(t)(−k(t) + ηb(t)) + µ(t)

(

b(t)q(t) −
δS(t)

θ(t)

)

,

where λ(t) is the costate variable associated with the state b(t) and µ(t) is the one
associated with the other state S(t). Because of the aleatory effect, the monopolist is

? According to the Department of Economics and Social Affairs of UNO, “ongoing deforestation
accounts for about 8% of the world’s annual carbon emissions” (see [3], 2009, p. 86).



120 D. DRAGONE, L. LAMBERTINI, G. LEITMANN AND A. PALESTINI

supposed to maximize the expected value of the Hamiltonian E(H). From now on, we
will drop the time argument for brevity.

What follows is the list of the necessary conditions for the maximization of E(H),
adjoint equations and transversality conditions (an application of Pontryagin’s Maximum
Principle in a stochastic framework can be found in [9]) ?:

∂E(H)

∂k
= −2zk− λ = 0, (6)

∂E(H)

∂q
= a− c− 2q + µb = 0, (7)

λ̇ = ρλ−
∂E(H)

∂b
= (ρ− η)λ− µq + τ, (8)

µ̇ = ρµ−
∂E(H)

∂S
= (ρ+ δw)µ, (9)

lim
t−→∞

e−ρtλ(t) = 0, lim
t−→∞

e−ρtµ(t) = 0. (10)

Note that in (9) we make use of the expected value E(θ−1) = w. On this basis, we are
going to write the control equations as well as the state equations in expected value.
By differentiating (6) and (7) w.r.t. time, (4), (8) and (9) amount to the following
state-control dynamical system:































































E
(

ḃ
)

= −k + ηb,

E
(

Ṡ
)

= bq − δwS,

E
(

k̇
)

= (ρ− η)k −
(a− c− 2q)q

2zb
−

τ

2z
,

E (q̇) =
1

2

(

−a+ c+ 2q

b

)

[−k + (η + ρ+ δw)b].

(11)

Proposition 3.1 The model admits a unique steady state P ∗ = (b∗, S∗, k∗, q∗),
whose coordinates are, respectively,

b∗ =
τ

2η(ρ− η)z
, S∗ =

τ(a − c)

4η(ρ− η)zδw
, k∗ =

τ

2(ρ− η)z
, q∗ =

a− c

2
.

Proof Solving (11) yields a unique stationary point P ∗, whose coordinates are all
strictly positive if ρ− η > 0.

Clearly, if ρ ∈ [0, η) , then τ must be negative in order for the vector (b∗, S∗, k∗, q∗)
to be economically meaningful. In this range, the fact that discounting is lower than the
environmental obsolescence rate entails that the only feasible policy takes the form of a
subsidy. Conversely, for all ρ > η, τ must be positive, i.e., the regulator has to tax the
firm to induce the entrepreneur to carry out a positive amount of R&D.

? We omit the explicit exposition of second order conditions for a maximum as they are satisfied by
construction.
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Note that, while k∗ is a function of τ, q∗ is not. This immediately implies that, by
adopting this policy, the regulator is providing the firm with an incentive to carry out
R&D while leaving unaffected the choice of the optimal monopoly output (and therefore
the corresponding price level).

As a clear consequence of the dynamics of the model, the only coordinate affected
by uncertainty is S∗, i.e., the steady state level of the pollution stock is a function of w.
The Jacobian matrix of (11) evaluated at P ∗ is:

J(P ∗) =



























η 0 −1 0

a− c

2
−δw 0

τ

2η(ρ− η)z

0 0 ρ− η
η(a− c)(ρ− η)

τ

0 0 0 ρ+ δw



























.

Proposition 3.2 P ∗ is a saddle point for the system (11).

Proof J(P ∗) has the negative eigenvalue λ1 = −δw, and the positive eigenvalues
λ2 = ρ + δw, λ3 = η and that is sufficient to deduce that P ∗ represents a saddle point
equilibrium for (11).

Note that, if ρ > η, the stable subspace E(P ∗) is spanned by the vector (0, 1, 0, 0),
that is, on the S-axis the time trajectory of the stock of pollution asymptotically heads
towards the level S∗.

Since the model features a single agent, there obviously exists a unique feedback
stationary strategy coinciding with the open-loop solution. In particular, the related
optimal value function V (b, S) satisfying the Hamilton-Jacobi-Bellman equation is linear-
quadratic in b and linear in S.

3.1 Welfare and profit assessment

Let E (π∗), E (CS∗) and E (SW ∗) be the profit, the consumer surplus and the social
welfare functions evaluated at the steady state P ∗. We have that:

E (π∗) = (a− c− q∗)q∗ − z(k∗)2 − τb∗ =
(a− c)2

4
−

τ2(3η − 2ρ)

4η(ρ− η)2z
, (12)

independent of w.

Proposition 3.3 1. If ρ >
3η

2
, then E (π∗) > 0 for every τ .

2. If 0 < ρ <
3η

2
, then E (π∗) > 0

∀ τ ∈

(

min

{

∓(a− c)(ρ− η)

√

ηz

3η − 2ρ

}

,max

{

∓(a− c)(ρ− η)

√

ηz

3η − 2ρ

})

.

Proof Trivially, the expression (12) is strictly positive irrespective of the value of

τ if ρ >
3η

2
, whereas if ρ <

3η

2
, the positivity is ensured if τ belongs to the interval

(−τ1, τ1), where τ1 = max±(a− c)(ρ− η)

√

ηz

3η − 2ρ
.
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The consumer surplus at equilibrium reads:

E (CS∗) =
(q∗)2

2
+ τb∗ =

(a− c)2

8
+

τ2

2η(ρ− η)z
.

Finally, the social welfare at equilibrium follows:

E (SW ∗) = E (CS∗ − S∗ + π∗) =
3(a− c)2

8
−

τ2

4(ρ− η)2z
−

τ(a − c)

4η(ρ− η)zδw
.

Proposition 3.4 E (SW ∗) > 0 for every τ belonging to the interval:

(

min

{

−
(a− c)(ρ− η)

2

(

1

ηδw
∓ z

√

1

η2z2δ2w2
+

6

z

)}

,

max

{

−
(a− c)(ρ− η)

2

(

1

ηδw
∓ z

√

1

η2z2δ2w2
+

6

z

)})

.

Proof It suffices to solve the inequality E(SW ∗) > 0 with respect to τ .

4 The First Best

Now we briefly expose the first best solution that would be attained if the firm were run
by a benevolent planner maximizing the discounted flow of social welfare w.r.t. q and k.
The planner’s Hamiltonian is:

HP (·) = (a− c− q)q −
q2

2
− S − zk2 + λ(−k + ηb) + µ

(

bq −
δS

θ

)

. (13)

Taking the necessary conditions on the expected value of HP (·) and following the same
procedure as in the previous section, we obtain the following steady state coordinates
(the subscript P stands for planner):

bP =
(a− c) (ρ+ δw)

1 + 2ηz (ρ+ δw)
2
(ρ− η)

,

SP =
2 (a− c)

2
η (ρ− η) (ρ+ δw)

3
z

δw
[

1 + 2ηz (ρ+ δw)2 (ρ− η)
]2

,

kP =
(a− c) (ρ+ δw) η

1 + 2ηz (ρ+ δw)
2
(ρ− η)

,

qP =
2 (a− c) η (ρ− η) (ρ+ δw)

2
z

1 + 2ηz (ρ+ δw)
2
(ρ− η)

.

(14)

Note that all of these coordinates are affected by the shock. The associated profits and
consumer surplus are:

E (πP ) =
(a− c)

2
η (2ρ− 3η) (ρ+ δw)

2
z

[

1 + 2ηz (ρ+ δw)2 (ρ− η)
]2

, (15)
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E (CSP ) =
1

2

[

2 (a− c) η (ρ− η) (ρ+ δw)2 z

1 + 2ηz (ρ+ δw)
2
(ρ− η)

]2

. (16)

Hence, the resulting social welfare level is E (SWP ) = E (πP + CSP − SP ) . Before pro-
ceeding any further, it is worth stressing the following straightforward result:

Proposition 4.1 If ρ >
3η

2
, then πP > 0.

We are now in a position to address the following question, i.e., whether the policy
maker regulating the behaviour of a profit-maximizing monopolist can design an optimal
tax rate τ so as to replicate the same welfare performance associated to the first best
allocation we have just sketched. This must be done under the non-negativity constraint
concerning the firm’s profits, as established in Proposition 3.3.1. In doing so, we shall
confine our attention to the parameter range ρ > 3η/2, in order for the planning equi-
librium to be sustainable under our partial equilibrium approach, i.e., in absence of any
other industrial sector that could be taxed to raise the money necessary for the survival
of the public monopoly for all ρ ∈ [0, 3η/2) .

5 Designing the Optimal Taxation

The policy maker’s problem consists in solving

∆E (SW ) = E (SWP − SW ∗) = 0 (17)

w.r.t. τ, with

∆E (SW ) =
1

8

[

2τ2

(ρ− η)2 z
+

2 (a− c) τ

δη (ρ− η)wz
− 3 (a− c)

2
+Ψ

]

, (18)

where

Ψ ≡
8η (a− c)

2
(ρ+ δw)

2
z
[

2δη (ρ− η)
2
w (ρ+ δw)

2
z − 2ρ (ρ− η)− δηw

]

δ
[

1 + 2ηz (ρ+ δw)
2
(ρ− η)

]

w
. (19)

Equation (17) has two real roots in τ, τ− < 0 < τ+
?. On this basis, we can state our

final result:

Proposition 5.1 For all ρ >
3η

2
, there exists a tax (τ+) allowing the policy maker

to replicate at the monopoly equilibrium the social welfare performance associated with
the first best.

The negative solution must be discarded in view of Proposition 4.1. As a last remark,
again recollecting Proposition 3.1, it is worth pointing out that such a policy can only
reproduce the aggregate surplus created by this industry, while the output and the R&D
effort will necessarily differ across regimes. To see this, it’s sufficient to compare q∗

against qP : while the former is constant (and coincides with the standard output that we
usually observe in a monopoly equilibrium with the same demand and cost functions), the
latter clearly accounts for the shock affecting the accumulation of pollution. Additionally,
one may observe that k∗ = kP obtains in correspondence of a value of τ that does not
solve (17).

? We omit the lengthy expressions of the two roots for the sake of brevity.
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6 Conclusion

In a dynamic monopoly model with environmental externalities, we have investigated
the possibility of using a tax taylored on the firm’s instantaneous contribution to the
accumulation of pollution, which is subject to a shock, the latter being i.i.d. across
instants. There exists an optimal tax rate such that the industry exactly replicates the
same steady state welfare performance as in the first best. However, the corresponding
expected values of output level, R&D investment for green technologies and surplus
distribution necessarily differ from those characterising social planning.

An interesting extension of the foregoing analysis is the design of the same kind of
policy in an oligopoly game where each single firm might refrain from investing in envi-
ronmental friendly technologies due to the usual free riding incentive usually associated
with strategic interplay. This is left for future research.
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