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1 Introduction

Since Lasalle first introduced the concept of practical stability in [1], it attracts much
attention in control community. Many works on practical stability have been published
with broad applications in different areas. Being much different from stability in terms
of Lyapunov functions, practical stability, which stabilizes a system into a region of
phase space, is a significant performance specification from engineering point of view,
and this idea is quite satisfactory in many applications for quality analysis. In practice,
a system is actually unstable, just because the stable domain or the domain of the
desired attractor is not large enough; or sometimes, the desired state of a system may be
mathematically unstable, yet the systemmay oscillate sufficiently near to a state, in which
the performance is still acceptable, i.e., it is stable in practice. For example, in practical
communication or digital control systems, the signals of controller states, measurement
outputs, and control inputs are quantized and then encoded for transmission. A feedback
law, which global asymptotically stabilizes a given system without quantization, will in
general fail to guarantee global asymptotic stability of the closed-loop system, which
arises in the presence of a quantizer with a finite number of values. Instead of using the
global asymptotic stability, the practice stability can be used to analyze such systems,
where there is a region of attraction in the state and the steady state converges to a
small limit cycle [2]–[6]. On the other hand, it is well known that for more than one
hundred years, Lyapunov’s direct method has been the primary technique for dealing
with stability problems in difference equations. However, the construction of Lyapunov’s
function is much more difficult for time-delay systems than for non-delay systems. Such
difficulties can be overcome via using Lyapunov functions and Razumikhin techniques.
It should be pointed out that the Razumikhin-type method can deal with the time-delay
system effectively and is easier to apply in general, therefore such a method has been a
main technique for analyzing the stability for time-delay systems [7]–[10].

Though there are several results on the practical stability for hybrid and descriptor
systems [11]–[17], to the best of our knowledge, the Razumikhin-type method on
practical stability for discrete time-delay systems has not been investigated. Motivated
by results in [9], we will study the Razumikhin-type theorem on practical asymptotic
stability for a class of discrete time-delay system in this paper. Also estimations of
the solution boundary and arrival time of the solution are discussed. Consequently,
the proposed theorems are used to study the practical controllability of a general class
of nonlinear discrete systems with input time delay. Some explicit criteria for the
uniform practical asymptotic stability are obtained via using the Lyapunov function
and Razumikhin technique.

This paper is organized as follows. In Section 2, some definitions and preliminaries
are introduced. In Section 3, some criteria for uniform practical asymptotic stability of
discrete-time systems with finite delay are derived via using the Lyapunov functions and
Razumikhin-technique. In Section 4, estimation of the solution boundary and arrival
time of the solution are investigated in terms of practical stability. In Section 5, the
proposed theorems are used to analyze the practical controllability for a general class
of nonlinear discrete systems with input time delay. In Section 6, a numerical example
is given to illustrate the effectiveness of main results obtained in Section 5. The last
section gives some conclusions.
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2 Preliminaries

To describe the main result of this paper, we include some preliminary knowledge on the
practical stability for the following general class of nonlinear discrete systems with finite
time delay:

x(k + 1) = F (k, xd(k)), k ∈ Z
+, (1)

where Z
+ is the set of nonnegative integers, d ≥ 0 is an integer, x(k) ∈ R

n, xd(k) =
(xT (k), xT (k − 1), . . . , xT (k − d))T , Rn is the n-dimensional Euclidean space. Denote

Id = {−d,−d+ 1, . . . ,−1, 0}, I1d = Id ∪ {1},

Ξ(Id,R
n) = {ξd = (ξT (0), ξT (−1), . . . , ξT (−d))T | ξ : Id → R

n},

ΞB(Id,R
n) = Ξ(Id,R

n) ∩ {ξd : ξ(s) ∈ B, s ∈ Id},

where B is an open ball. Assume F : Z
+ × ΞB(Id,R

n) → R
n with F (k, 0) = 0 for

k ∈ Z
+, and satisfies certain conditions to guarantee the global existence and uniqueness

of solutions. Thus system (1) has zero solution x(·) ≡ 0. For any k0 ∈ Z
+ and any given

initial function φ ∈ ΞB(Id,R
n), the solution of the systems (1) denoted by x(k; k0, φ)

satisfies (1) for all integers k ≥ k0, and x(k0 + s; k0, φ) = φ(s) for all s ∈ Id.
For all ξd ∈ Ξ(Id,R

n), define the norm of ξd as ‖ξd‖ = max
s∈Id

|ξ(s)|, where | · | stands

for any norm in R
n. We further assume that there exists a constant L > 0 such that for

all ξd ∈ ΞB(Id,R
n),

|F (k, ξd)| ≤ L‖ξd‖, ∀k ∈ Z
+. (2)

Now we introduce the following definitions.

Definition 2.1 [9] A wedge function is a continuous strictly increasing function W :
R

+ → R
+ with W (0) = 0.

Definition 2.2 System (1) is said to be:

Practically Stable (P.S.): For given (α, β) with 0 < α < β and some k0 ∈ Z
+, if

‖φ‖ < α then |x(k; k0, φ)| < β, k ≥ k0;

Uniformly Practically Stable (U.P.S.): If P.S. holds for all k0 ∈ Z
+;

Practically Asymptotically Stable (P.A.S.): If P.S. holds, and for each ε ∈ (0, β),
there exists a positive number K = K(k0, α, ε) such that ‖φ‖ < α implies
|x(k; k0, φ)| < ε, k ≥ k0 +K;

Uniformly Practically Asymptotically Stable (U.P.A.S.): If P.A.S. holds for all
k0 ∈ Z

+.

Definition 2.3 For a function V : Z+ × R
n → R

+, define:

∆V (k, x(k)) , V (k + 1, x(k + 1))− V (k, x(k)).
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3 Razumikhin-type Theorems

In this section we will prove some Razumikhin-type theorems with the aim of analyzing
the uniform practical asymptotical stability (U.P.A.S.) for a general class of nonlinear
discrete systems with finite time delay. We first denote the balls B0, B1 and B2 as the
following forms, which will be used in main theorems:

B0 = {x(k) : V (k, x(k)) < W2(α)};

B1 = {x(k) : V (k, x(k)) < W1(β)};

B2 = {x(k) : V (k, x(k)) < W1(ε)}.

Theorem 3.1 Given positive scalars α and β. Assume that scalars $1, $2, $3 with
0 < $1 ≤ $2, $3 > 0 are all arbitrary. If there exist a scalar η > 0, a Lyapunov function
V : Z+ × R

n → R
+, and wedge functions Wi(·)(i = 1, 2, 3), such that

(i) W1(|x(k)|) ≤ V (k, x(k)) ≤ W2(|x(k)|);

(ii) ∆V (k, x(k)) ≤ −W3(|x(k + 1)|) +$3 for ε0 ≤ ‖xd‖ ≤ ρ0,

provided ε0 ≤ ρ0, V (k + s, x(k + s)) ≤ min{$2, V (k + 1, x(k + 1)) + η} for s ∈ I1d , and
$1 ≤ V (k + 1, x(k + 1)). Here ε0 = L−1α, ρ0 = max{β,W−1

1 (W2(α))}, L is defined by
(2). Then, we have (1) B0 is an invariable set; (2) If W2(α) < W1(β), then B1 is an
invariable set and there exists a positive number K = K(α, β) such that for any k0 ∈ Z,
φ ∈ ΞB1

(Id,R
n) implies ∀ k ≥ k0 +K, x(k; k0, φ) ∈ B0.

Proof (1) For each φ ∈ ΞB0
(Id,R

n), we have x(k; k0, φ) ∈ B0 for k0 − d ≤ k ≤ k0.
Now we claim that for all k ≥ k0, x = x(k; k0, φ) ∈ B0.

Suppose this is not true. Then there exist some k1 ≥ k0 such that x ∈ B0 for all
k0 − d ≤ k ≤ k1, and

V (k1 + 1, x(k1 + 1)) ≥ W2(α), (3)

and consequently,

∆V (k1, x(k1)) = V (k1 + 1, x(k1 + 1))− V (k1, x(k1)) > 0.

On the other hand, by condition (i), we have W1(|x(k)|) < W2(α) for k0 − d ≤ k ≤ k1,
which implies ‖xd(k)‖ ≤ ρ0 for k0 ≤ k ≤ k1. It follows from (2), (3) and condition (i)
that α ≤ |x(k1 + 1)| ≤ L‖xd(k

1)‖ ≤ Lρ0, which implies ε0 ≤ ‖xd(k
1)‖ ≤ ρ0, ε0 ≤ ρ0.

Let 0 < $1 ≤ W2(α) ≤ W2(Lρ0) ≤ $2, and 0 < $3 < W3(α). Then, it follows from (3)
that $1 ≤ V (k1 + 1, x(k1 + 1)), and for η > 0, ∀ s ∈ I1d ,

{

V (k1 + s, x(k1 + s)) < $2

V (k1 + s, x(k1 + s)) < V (k1 + 1, x(k1 + 1)) + η

=⇒ V (k1 + s, x(k1 + s)) ≤ min{$2, V (k1 + 1, x(k1 + 1)) + η}.

By condition (ii), we have ∆V (k1, x(k1)) ≤ −W3(|x(k
1 + 1)|) + $3 < 0. This is a

contradiction. Thus for all k ≥ k0, x(k) ∈ B0, i.e., B0 is an invariable set.
(2) If W2(α) < W1(β), we first prove that B1 is an invariable set. In fact, ρ0 = β,
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and ε0 = L−1α < L−1W−1
2 (W1(β)). Similar to the proof of (1), one can derive that,

φ ∈ ΞB1
(Id,R

n) implies x(k) ∈ B1 for all k ≥ k0.
Next, we will find an integer K = K(α, β) > 0 such that for all k0 ∈ Z

+, φ ∈
ΞB1

(Id,R
n) implies x(k; k0, φ) ∈ B0 for all k ≥ k0 +K.

Assume that 0 < $1 ≤ W2(α) < W1(β) ≤ $2, 0 < $3 < (1/2)W3(α). Let Nη be the
first positive integer satisfying

W1(β) < W2(α) + ηNη. (4)

For each i ∈ {0, 1, . . . , Nη}, let ki = k0 + i(d +

[

W1(β)
$3

]

), where [·] denotes the greatest

integer function, η is dependent on $1 and $3. We show that for all i ∈ {0, 1, . . . , Nη},

V (k, x(k)) < W2(α) + η(Nη − i), ∀ k ≥ ki. (5)

Obviously, it follows (4) that (5) holds for i = 0 since x(k) ∈ B1 for all k ≥ k0. Suppose
(5) holds for some i ∈ {0, 1, . . . , Nη − 1}, we aim to show that (5) also holds for i + 1,
i.e.,

V (k, x(k)) < W2(α) + η(Nη − i− 1), ∀ k ≥ ki+1.

Next we present proof in two steps for clarity.
Step 1. We show that there does exist some k′ ∈ [ki + d, ki+1] such that

V (k′, x(k′)) < W2(α) + η(Nη − i− 1). (6)

Suppose this is not true, for all k ∈ [ki + d, ki+1], we would have

V (k, x(k)) ≥ W2(α) + η(Nη − i− 1). (7)

Noting the assumption that (5) holds for some i ∈ {0, 1, . . . , Nη − 1}, then, for all
k ∈ [ki + d, ki+1 − 1], s ∈ I1d , from (7) we have

V (k + s, x(k + s)) < W2(α) + η(Nη − i) ≤ V (k + 1, x(k + 1)) + η.

On the other hand, for all k ∈ [ki + d, ki+1 − 1], it follows from condition (i), (2) and (7)
thatW2(α) ≤ V (k+1, x(k+1)) ≤ W2(|x(k+1)|), which implies that α ≤ |x(k+1)| ≤ Lρ0,
ε0 ≤ ‖xd(k)‖ ≤ ρ0, ε0 ≤ ρ0. Then, for all k ∈ [ki + d, ki+1 − 1], V (k + s, x(k + s)) ≤ $2,
s ∈ I1d , and it follows from (7) that V (k + 1, x(k + 1)) ≥ $1. By condition (ii), for all
k ∈ [ki + d, ki+1 − 1],

∆V (k, x(k)) ≤ −W3(|x(k + 1)|) +$3 < −$3.

Hence, we have

V (ki+1, x(ki+1)) ≤ V (ki + d, x(ki + d))−$3(ki+1 − ki − d)

< W1(β)−$3

[

W1(β)

$3

]

< 0.

This is a contradiction to the definition of Lyapunov function V (k, x(k)). Thus, there
does exist some k′ ∈ [ki + d, ki+1] such that (6) holds.
Step 2. We need to show that

V (k, x(k)) < W2(α) + η(Nη − i− 1), ∀ k ≥ k′. (8)
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In fact, suppose this is not true, there must be some k′1 ≥ k′ such that

V (k′1, x(k
′
1)) < W2(α) + η(Nη − i− 1),

V (k′1 + 1, x(k′1 + 1)) ≥ W2(α) + η(Nη − i− 1). (9)

Hence we have ∆V (k′1, x(k
′
1)) > 0. On the other hand, $1 ≤ W2(α) ≤ V (k′1 + 1, x(k′1 +

1)), V (k′1 + s, x(k′1 + s)) ≤ $2. Noting the assumption that (5) holds for some i ∈
{0, 1, . . . , Nη − 1}, then, we have for s ∈ I1d ,

V (k′1 + s, x(k′1 + s)) < W2(α) + η(Nη − i) ≤ V (k′1 + 1, x(k′1 + 1)) + η.

From condition (i), (2) and (9), we have W2(α) ≤ V (k′1+1, x(k′1+1)) ≤ W2(|x(k
′
1+1)|),

and hence, α ≤ |x(k′1 + 1)| ≤ Lρ0, ε0 ≤ ‖xd(k
′
1)‖ ≤ ρ0, ε0 ≤ ρ0. With condition (ii), one

can derive that

∆V (k′1, x(k
′
1)) ≤ −W3(|x(k

′
1 + 1)|) +$3 ≤ −$3 < 0.

This is a contradiction again to the definition of Lyapunov function V (k, x(k)). Thus (8)
holds, and consequently, (5) holds for all i ∈ {0, 1, . . . , Nη}. Therefore, we obtain that

x(k) ∈ B0 for all k ≥ kNη
= k0 +K, where K = Nη(d +

[

W1(β)
$3

]

) is independent of k0

and φ. 2

Corollary 3.1 Given positive scalars α and β and assume that PV (s) ∈ C(R+,R+)
with PV (s) > s for s > 0. If there exist a Lyapunov function V : Z+ × R

n → R
+, and

wedge functions Wi(·)(i = 1, 2, 3), satisfying the conditions (i) in Theorem 3.1 and the
following condition :

(ii)′ ∆V (k, x(k)) ≤ −W3(|x(k + 1)|) for ε0 ≤ ‖xd(k)‖ ≤ ρ0,

provided ε0 ≤ ρ0, V (k+s, x(k+s)) < PV (V (k+1, x(k+1))) for s ∈ I1d , where ε0 = L−1α,
ρ0 = max{β,W−1

1 (W2(α))}, L is defined by (2). Then, the conclusion of Theorem 3.1
still holds.

Proof For any 0 < $1 ≤ $2, and any $3 > 0, choose η ∈ (0, inf{PV (s) − s :
$1 ≤ s ≤ $2}). Then, if V (k+ s, x(k+ s)) ≤ min{$2, V (k+1, x(k+1)+ η)} for s ∈ I1d ,
and $1 ≤ V (k + 1, x(k + 1)), we have

V (k + s, x(k + s)) ≤ V (k + 1, x(k + 1)) + η < PV (V (k + 1, x(k + 1))),

for s ∈ I1d . Hence, by condition (ii)′, we have

∆V (k, x(k)) ≤ −W3(|x(k + 1)|) ≤ −W3(|x(k + 1)|) +$3.

Then, the conditions (i) and (ii) in Theorem 3.1 are both satisfied. Therefore, the result
follows. 2

By using Theorem 3.1 and Corollary 3.1, we obtain the following Razumikhin-type
theorem for the U.P.A.S. with regard to the zero solution of systems (1).

Theorem 3.2 For given scalar pair (α, β) with 0 < α < β, ε ∈ (0, β) is arbitrary.
Assume that scalars $1, $2, $3 with 0 < $1 ≤ $2, $3 > 0 are all arbitrary, PV (s) ∈
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Figure 1: The relationship of the balls B0, B1 and B2.

C(R+,R+) with PV (s) > s for s > 0. If there exist a Lyapunov function V : Z+ ×R
n →

R
+, wedge functions Wi(·)(i = 1, 2, 3), satisfying

(i) W2(α) ≤ W1(β);

(ii) W1(|x(k)|) ≤ V (k, x(k)) ≤ W2(|x(k)|);

and either of the following conditions (iii)a or (iii)b for ε0 ≤ ‖xd(k)‖ ≤ ρ0, ε0 ≤ ρ0:

(iii)a ∆V (k, x(k)) ≤ −W3(|x(k + 1)|) +$3, provided

V (k + s, x(k + s)) ≤ min{$2, V (k + 1, x(k + 1)) + η}

for s ∈ I1d , and $1 ≤ V (k + 1, x(k + 1));

(iii)b ∆V (k, x(k)) ≤ −W3(|x(k + 1)|), provided for s ∈ I1d ,

V (k + s, x(k + s)) < PV (V (k + 1, x(k + 1))),

where ε0 = L−1W−1
2 (W1(ε)), ρ0 = β, L is defined by (2). Then the zero solution of

systems (1) is U.P.A.S.

Proof By condition (i), B0 ⊆ B1, as shown in Fig 1. Since

ε0 = L−1W−1
2 (W1(ε)) < L−1W−1

2 (W1(β)),

Then, by Theorem 3.1 and Corollary 3.1, we can assert that, both B1 and B2 are invariant
sets, and there exists a positive number K = K(α, ε) such that for any k0 ∈ Z, φ ∈
ΞB0

(Id,R
n) implies ∀ k ≥ k0 +K, x(k; k0, φ) ∈ B2. By condition (ii), |x(k)| < α implies

x(k) ∈ B0; x(k) ∈ B1 implies |x(k)| < β; x(k) ∈ B2 implies |x(k)| < ε. Then, for any
k0 ∈ Z, ‖φ‖ < α implies ∀ k ≥ k0 + K, |x(k; k0, φ)| < ε, i.e., the zero solution of the
systems (1) is U.P.A.S. 2

Remark 3.1 In Theorem 3.1 and Corollary 3.1, whenever ε0 ≤ L−1W−1
2 (W1(β)),

ρ0 ≥ β and ∆V (k, x(k)) ≤ 0 in the conditions (ii) and (ii)′, one can obtain the result
that B1 is an invariable set. Here, the conditions of Theorem 3.1 and Corollary 3.1
are corresponding to the case that u, v, w are wedge functions in the conditions of
Theorem 1 and Corollary 1 in [9]. Moreover, it is more convenient to apply Theorem 3.1
and Corollary 3.1 in this paper to estimate relations between balls B0 and B1 in the light
of information on ε0 ≤ ‖xd(k)‖ ≤ ρ0, which are not mentioned in Theorem 1, Corollary 1
and Corollary 2 in [9].
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4 Estimation of the Solution Boundary and Arrival Time

Now let us consider Theorem 3.2, Corollary 3.1 and Theorem 3.2 from previous
section without the condition W2(α) < W1(β). If ε0 = L−1W−1

2 (W1(β)), ρ0 =
max{β,W−1

1 (W2(α))}, then we can assert that B1 is an invariant set. In addition,
the trajectory of the solution of system (1) starting from B0, will fall into B1 in finite
time when B0 ⊃ B1, or stay in the region of B1 when B0 ⊆ B1. On the other hand,
with the assumption of W2(α) < W1(β), all trajectories which exit from the ball B0,
will take the ball B1 to be their boundary and can not get out of the region of B1.
Thus, by the proposed theorems and Remark 3.1, as long as ε0 ≤ L−1W−1

2 (W1(β)), and
∆V (k, x(k)) ≤ 0 in conditions (iii)a∼(iii)b, the system is U.P.S.. Following the above
analysis, one can observe that it is more convenient to apply Theorem 3.1 and Corol-
lary 3.1 in this paper to estimate relations between the balls B0 and B1 by using the
information on ε0 ≤ ‖xd(k)‖ ≤ ρ0, which are not discussed in Theorem 1, Corollary 1
and Corollary 2 in [9]. We give the following theorem to estimate both the boundary of
the solution of system (1) and arrival time K.

Theorem 4.1 Given scalars α, ε with 0 < ε < α, σ1 > 1. If there exist a Lyapunov
function V : Z+ × R

n → R
+, wedge functions Wi(·)(i = 1, 2, 3), satisfying

(i) W1(|x(k)|) ≤ V (k, x(k)) ≤ W2(|x(k)|);

(ii) ∆V (k, x(k)) ≤ −W3(|x(k + 1)|) for‖xd(k)‖ ≤ ρ0, provided

V (k + s, x(k + s)) < σ1(V (k + 1, x(k + 1))) for s ∈ I1d ,

then
(1) βα = W−1

1 (W2(α));
(2) K = k0 +m1 (d+m2),
where

m1 =

{

W2(α)+(σ1−2)W1(ε)
(σ1−1)W1(ε)

, W2(α)−W1(ε)
(σ1−1)W1(ε)

is integer;
[

W2(α)−W1(ε)
(σ1−1)W1(ε)

]

, otherwise,

m2 =







2W2(α)

W3(W
−1

2
(W1(ε)))

+ 1, 2W2(α)

W3(W
−1

2
(W1(ε)))

is integer;
[

2W2(α)

W3(W
−1

2
(W1(ε)))

]

, otherwise,

[·] denotes the greatest integer function, ρ0 = W−1
1 (W2(α)), βα is the estimation of the

solution boundary of system (1), and K is the time that the solution exists from the given
ball {φ : ‖φ‖ < α} and falls into the region {x(k) : ‖x(k)‖ < ε}.

Proof (1) In Theorem 3.1, let W1(βα) = W2(α). Then, ε0 = L−1α, ρ0 = βα,
and B1 = B2 = {x(k) : V < W1(βα)}. It follows from Theorem 3.1 that the solution
starting from B2 can not exits from B1, which implies that the solution starting from set
{φ : ‖φ‖ < α} will have a boundary βα = W−1

1 (W2(α)).
(2) In Theorem 3.1, let B1 = {x(k) : V (k, x(k)) < W2(α)}, and B2 = {x(k) :

V (k, x(k)) < W1(ε)}. Notice that ε0 = L−1W−1
2 (W1(ε)) and ρ0 = W−1

1 (W2(α)), let
PV (s) = σ1s, then PV (s) has the required property in Corollary 3.1 and there exist

two scalars δ1 > 0 and δ2 ∈ (0, 1/2), such that W2(α)−W1(ε)
(σ1−1)W1(ε)

< W2(α)−W1(ε)
(σ1−1)W1(ε)−δ1

< m1, and
2W2(α)

W3(W
−1

2
(W1(ε)))

< W2(α)

δ2W3(W
−1

2
(W1(ε)))

< m2. With the similar analysis process in the proofs

of Theorem 3.1 and Corollary 3.1, one can derive the conclusion of (2) for ε ≤ ‖x(k)‖ < α
with η = (σ1 − 1)W1(ε)− δ1 ∈ (0, inf(PV (V )− V )) and $3 = δ2W3(W

−1
2 (W1(ε))). 2
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5 Practical Controllability

In this section we will use the results from previous sections to study the practical
controllability for a general class of nonlinear discrete systems with input time delay.
Consider the following system:

x(k + 1) = f(k, x(k)) +

d
∑

i=0

B(k − i)u(k − i), (10)

where f : Z+ × R
n → R

n, B : Z+ × R
n → R

n×m, i = 1, . . . , d, u(k) ∈ R
m is input,

and is supposed to guarantee the existence and uniqueness of the solution. This type of
model is generally studied in networked control systems (NCSs). We first introduce the
following definitions:

Definition 5.1 System (10) is called to be:

Uniformly Practically Controllable (U.P.C.) with respect to (α, β), 0 < α < β, if
there exist finite time K and a control u(·) defined on [k0,K] such that all the
solutions x(k) = x(k; k0, φ, u) that exit from {φ ∈ R

n : ‖φ‖ < α} will enter into a
bounded region {x(k) ∈ R

n : ‖xd(k)‖ < β} at time K instant for all k0 ∈ Z
+;

Uniformly Practically Asymptotically Controllable (U.P.A.C.) with respect to
(α, β), 0 < α < β, if U.P.C. holds, and for each ε ∈ (0, β), there exists a posi-
tive number K = K(k0, α, ε) such that ‖φ‖ < α implies |x(k; k0, φ, u)| < ε for all
k ≥ k0 +K.

Theorem 5.1 Assume that there exists a control law u(k) such that system (10) can
be expressed by the form of (1), and the conditions of Theorem 3.2 are satisfied. Then,
system (10) is U.P.A.C.with respect to (α, β).

For system (10), adopt the feedback control law u(k) = F (k, x(k))x(k). Assume
fu(k, x(k)) = f(k, x(k)) +B(k)u(k) and

‖fu(k, x(k))‖ ≤ ‖Ψ0(k)‖‖x(k)‖.

Let Ψi(k) = B(k− i)F (k− i, x(k− i)), where F (k, x(k)) is the control gain matrix, Ψ0(k)
and Ψi(k) are of compatible dimensions. Consequently, the closed-loop system of (10)
has the following form:

x(k + 1) = fu(k, x(k)) +

d
∑

i=1

Ψi(k)x(k − i). (11)

Let λmax(·) and λmin(·) be the maximum eigenvalue and the minimum eigenvalue of a
real symmetric matrix, respectively. ‖ · ‖2 stands for the Euclidean vector norm or the
2-norm of a matrix. Then, we have the following corollary.

Corollary 5.1 If there exists F (k) such that

sup
k∈Z

d
∑

i=0

‖Ψi(k)‖
2
2 < 1− (

α

β
)2 (12)

then, the closed-loop system (11) is U.P.A.S., and system (10) is U.P.A.C. with respect
to (α, β) with 0 < α < β.
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Proof In fact, by (12), noting that 0 < α < β, then, ∀ε ∈ (0, α2/β2), there exist
scalars δ1 ∈ [α2/β2, 1] and δ2 > 1 such that

sup
k∈Z

‖Ψ0(k)‖
2
2 + δ2 sup

k∈Z

d
∑

i=1

‖Ψi(k)‖
2
2 < δ1 − (

α

β
)2 + ε < δ1.

Thus, there exists a positive definite matrix P such that λmin(P ) = δ1λmax(P ).
Choose V (k, x(k)) = xT (k)Px(k), W1(|x(k)|) = λmin(P )xT (k)x(k), and W2(|x(k)|) =
λmax(P )xT (k)x(k). It is obvious that

W1(|x(k)|) ≤ V (k, x(k)) ≤ W2(|x(k)|).

Let PV (s) = δ2s for s ≥ 0. Then PV (s) > s for s ≥ 0. For all i ∈ {1, . . . , d}, if
V (k − i, x(k − i)) < PV (V (k + 1, x(k + 1))), then, ‖x(k − i)‖22 < ‖x(k + 1)‖22δ2/δ1, and
it follows (11) that

‖x(k + 1)‖22 ≤ sup
k∈Z

‖Ψ0(k)‖
2
2‖x(k)‖

2
2

+sup
k∈Z

d
∑

i=1

‖Ψi(k)‖
2
2‖x(k − i)‖22

≤ sup
k∈Z

‖Ψ0(k)‖
2
2‖x(k)‖

2
2

+

δ2 supk∈Z

d
∑

i=1

‖Ψi(k)‖
2
2

δ1
‖x(k + 1)‖22.

Consequently,

−‖x(k)‖22 ≤

δ2 supk∈Z

d
∑

i=1

‖Ψi(k)‖
2
2 − δ1

δ1 supk∈Z
‖Ψ0(k)‖22

‖x(k + 1)‖22.

Let ẽ =
δ1−supk∈Z

‖Ψ0(k)‖
2

2
−δ2 supk∈Z

d∑

i=1

‖Ψi(k)‖
2

2

supk∈Z
‖Ψ0(k)‖2

2

. Since scalar ε ∈ (0, α2/β2) is arbitrary,

thus, ẽ > α2

β2−α2 > 0, and

∆V (k, x(k)) = xT (k + 1)Px(k + 1)− xT (k)Px(k)

≤ −λmax(P )
α2

β2 − α2
‖x(k + 1)‖22.

Then, conditions (i), (ii) and (iii)b of Theorem 3.2 are all satisfied, and hence, the con-
clusion follows. 2

Remark 5.1 In Theorem 3.1, Corollary 3.1, Theorem 3.2 and Theorem 4.1, there is
a relation between V (k + s, x(k + s))(s ∈ I1d ) and V (k + 1, x(k + 1)), namely, ”provided
R(V (k + s, x(k + s)), V (k + 1, x(k + 1)))”, where R(·, ·) defines a relation. We call
this relation as the R-relation. The conditions (ii), (ii)

′
, (iii)a and (iii)b describe the

constraint on ∆V (k, x(k)) under the R-relation, but no constrain on ∆V (k, x(k)) without



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 10(2) (2010) 161–174 171

R-relation. Thus, the condition that the constraint on ∆V (k, x(k)) holds not only with
but also without the R-relation, is more restrictive than the condition that the constraint
on ∆V (k, x(k)) holds only with the R-relation. Therefore, we can obtain a class of
particular cases of Theorem 3.2 with conditions (i), (ii), either (iii)a or (iii)b, which in
fact are corresponding to the well-known Lyapunov-like theorems.

6 Illustrative Numerical Example

To illustrate the effectiveness of the results obtained in previous sections, we consider
the following nonlinear discrete system with input time delay:

x(k + 1) = 1.44x(k)− x3(k) + 0.069u(k) + 0.031u(k− 1), x(k) ∈ [−1.2, 1.2].(13)

Assume that α = 0.45 and β = 0.60. To obtain the zero solution x(k) = 0 in U.P.A.S
with (α, β), adopt the following fuzzy control law:

R1 : IF x is about ± 1.2, THEN

u = F1x(k),

R2 : IF x is about 0, THEN

u = F2x(k).

The references on fuzzy control can be found in [18, 19]. Then, the overall control law is

u(k) =

2
∑

i=1

µiFix(k), (14)

where µ1 = x2

1.44 and µ2 = 1− µ1 are both membership functions, as shown in Figure 2.
The control gain matrices are designed to be F1 = −0.0694 and F2 = −18.9114. Then,
the closed-loop system can be expressed as follows:

x(k + 1) =
(

1.44− x2(k) + 0.069

2
∑

i=1

µiFi

)

x(k) + 0.031

2
∑

i=1

µiFix(k − 1).

Denote discriminant function by

g(x(k)) =
(

1.44− x2(k) + 0.069
2

∑

i=1

µiFi

)2
+ (0.031

2
∑

i=1

µiFi)
2.

The profile of g(x) is illustrated in Figure 3. We can calculate that g(x) ≤ 0.3619 <
1−α2/β2 = 0.4375 for x ∈ [−1.2, 1.2]. By (12) and Corollary 5.1, system (13) is U.P.A.C.
with respect to (α, β). The state curve with initial values x(−1) = 0.3, x(0) = 0.4 of
system (13) with and without fuzzy controller (14) are shown in Figure 4. Without fuzzy
controller, i.e., u(k) = 0, the zero solution is unstable, and the nonlinear discrete system
converges to x(k) ≈ 0.6633 > β; whereas, with fuzzy controller (14), the closed-loop
system is U.P.A.S. with (α, β).



172 Z. SU, Q.L. ZHANG AND W.Q. LIU

−1 −0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

Independent Variable x

M
e

m
b

e
rs

h
ip

 F
u

n
ct

io
n

 
µ

µ
1

µ
1

µ
2

Figure 2: The membership functions of µ1 and µ2
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7 Conclusions

Motivated by the idea in [9], practical asymptotic stability and controllability are studied
for a class of nonlinear discrete systems with time delay. Some explicit criteria for the
uniform practical asymptotic stability are established by means of Lyapunov function
and Razumikhin technique. Estimations of the solution boundary and arrival time of
the solution are also investigated. In addition, the proposed theorems are used to study
the practical controllability for a general class of nonlinear discrete systems with input
time delay. Finally, a numerical example is presented to illustrate the effectiveness of the
proposed results. We believe the results in this paper are useful for the study networked
control systems.
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