
Nonlinear Dynamics and Systems Theory, 10 (2) (2010) 175–188

Global Optimization Method for Continuous-Time

Sensor Scheduling

S.F. Woon 1,2 ∗, V. Rehbock 1 and R.C. Loxton 1

1 Department of Mathematics and Statistics, Curtin University of Technology,

Bentley, Western Australia 6102, Australia;
2 Physical Science, College of Arts and Sciences, Universiti Utara Malaysia,

06010 Sintok, Kedah, Malaysia.

Received: June 24, 2009; Revised: March 26, 2010

Abstract: We consider a situation in which several sensors are used to collect data
for signal processing. Since operating multiple sensors simultaneously causes system
interference, only one sensor can be active at any one time. The problem of scheduling
the operation of the sensors to minimize signal estimation error is formulated as
a discrete-valued optimal control problem. This problem cannot be solved using
conventional optimization techniques. We instead transform it into an equivalent
mixed discrete optimization problem. The transformed problem is then decomposed
into a bi-level optimization problem, which is solved using a discrete filled function
method in conjunction with a conventional optimal control algorithm. Numerical
results show that our algorithm is robust, efficient, and reliable in attaining a near
globally optimal solution.
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1 Introduction

Sensors are used in various applications, including military surveillance, ground map-
ping, tracking and recognition of targets, instrumentation, air traffic control, imaging,
and robotics [1]. Information collected by the sensors is used to design activities that
evolve over time in the underlying system [2]. For example, in a defense system, surveil-
lance sensors are used to detect, identify, and localize targets, assess levels of threat,
and deduce enemy intent [3]. In some applications, such as robotics, operating several
sensors simultaneously causes interference in the system and thus affects the measure-
ment accuracy [4]. Consequently, it is impossible to operate all of the sensors at once.
Instead, we need to schedule the operation of sensors over a given time frame so that
the signal estimation error is minimized. We assume in this paper that only one sensor
may be active at any one time. The accuracy of the estimation obtained by the sensors
increases with a decrease in measurement of noise in a stochastic environment. The
work presented here was motivated by [5] and [6]. In [6], the optimal scheduling policy
is obtained by solving a quasi-variational inequality. However, the complexity of the
model in [6] makes it difficult to compute an optimal solution. On the other hand, [5]
considers open-loop policies with switches from one sensor to another. This reference
proposes a time scaling transformation, which aims to capture a large variety of possible
switching sequences. The sensor scheduling problem, which is formulated as a discrete-
valued optimal control problem, is first transformed into an optimal parameter selection
problem, and then solved using existing optimal control software. The optimal control
for the original problem is determined through a reverse transformation. However, this
approach introduces a large number of artificial switches, many of which are not utilized
in the optimal solution. As a consequence, the resulting optimization problem has many
local minima. A study similar to that considered in [5] is performed in [7], where a
combination of a branch and cut technique and a gradient-based method is applied to
solve the continuous-time sensor scheduling problem.

We consider a general optimal sensor scheduling problem, which is similar to the one
discussed in [5] and [7], and propose a transformation to convert it into an equivalent
mixed discrete optimization problem, as discussed in Section 3. Then, we propose a novel
global optimization algorithm in Section 4, which incorporates a discrete filled function
method and a gradient-based method, to avoid local solutions and speed up the com-
putation. To evaluate the effectiveness of our algorithm, we solve a numerical example
from the literature and compare the results with those obtained from the methods in [5]
and [7] in Section 5.

2 Problem Formulation

Consider the following system of linear stochastic differential equations on a given prob-
ability space (Ω,F ,P):

dx(t) = A(t)x(t)dt +B(t)dK(t), t ∈ [0, T ],

with initial condition
x(0) = x0.

Here, {x(t), t ∈ [0, T ]} is a R
n-valued state process representing a signal of interest. It is

assumed to be square integrable. The initial state, x0, is a R
n-valued Gaussian random

vector on (Ω,F ,P) with mean x̄0 and covariance matrix P0. Furthermore, A : [0, T ] →
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R
n×n and B : [0, T ] → R

n×p are continuous functions. The process {K(t), t ∈ [0, T ]} is a
standard R

p-valued Brownian motion on (Ω,F ,P) with mean zero and given covariance
matrix Q ∈ R

p×p, where Q is symmetric and positive semi-definite.
Suppose that there are M sensors for detecting the state process. Only one of these

sensors may be operated at any one time. A sensor schedule is a function φ : [0, T ] →
{1, . . . ,M} that returns the active sensor at time t. In other words, φ(t) = i means
sensor i is active at time t. Let Φ be the set of all measurable sensor schedules and let
y be the observation process associated with the scheduling policy φ. For any φ ∈ Φ, we
have the following output equation:

dy(t) =

M
∑

i=1

χ{t:φ(t)=i}(t)
{

Ci(t)x(t)dt +Di(t)dWi(t)
}

, t ∈ [0, T ],

and

y(0) = 0,

where, for each I ⊂ [0, T ],

χI(t) =

{

1, t ∈ I,

0, otherwise,

and {Wi(t), t ∈ [0, T ]} is a standard R
m-valued Brownian motion with mean zero and

covariance matrix R ∈ R
m×m, where R is symmetric and positive definite, Ci : [0, T ] →

R
m×n and Di : [0, T ] → R

m×m are continuous functions.

Each sensor makes an observation of the state process that is contaminated by noise.
The history of such observation processes is denoted by {y(s), 0 ≤ s ≤ t}. The data
collected from the M sensors are used to estimate the state x at time t. The best
estimate of x(t) is known as x̂(t). Since y is corrupted by noise, the history observed
is uncertain. Let the history of such a process be denoted by the smallest σ-algebra,
Fy

t = σ{y(s), 0 ≤ s ≤ t}. Hence, the optimal mean-square estimate of the state given
Fy

t is x̂(t), and the associated error covariance is P (t). Then, for a given φ ∈ Φ, the
optimal x̂(t) is given by the following theorem. The proof of this theorem may be found
in [8].

Theorem 2.1 For each sensor schedule φ ∈ Φ, the optimal mean-square estimate of

the state x̂(t) is the unique solution of the following stochastic differential equation:

dx̂(t) =

[

A(t) − P (t)

M
∑

i=1

χ{t:φ(t)=i}(t)C
>
i (t)R̄−1

i (t)Ci(t)

]

x̂(t)dt

+

[

P (t)
M
∑

i=1

χ{t:φ(t)=i}(t)C
>
i (t)R̄−1

i (t)

]

dy(t), t ∈ [0, T ], (1)

and

x̂(0) = x̄0, (2)

where

R̄−1
i (t) =

[

Di(t)Ri(t)D
>
i (t)

]−1
, (3)
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and the error covariance matrix P : [0, T ] → R
n×n is the unique solution of the matrix

Riccati differential equation

Ṗ (t) = A(t)P (t)+P (t)A>(t)+B(t)QB>(t)−P (t)
M
∑

i=1

χ{t:φ(t)=i}(t)C
>
i (t)R̄−1

i (t)Ci(t)P (t)

(4)
with initial condition

P (0) = P0. (5)

Clearly, the solution of (4)-(5) depends on the sensor schedule that is chosen. Let P (·|φ)
be the solution corresponding to φ ∈ Φ. We formulate the following sensor scheduling
problem.

Problem (P). Choose φ ∈ Φ to minimize

g0(φ) = αtrace{P (T |φ)}+

∫ T

0

trace{P (t|φ)}dt, (6)

subject to (4) and (5), where α is a non-negative constant.

The objective function (6) is designed to minimize the estimation error during the oper-
ation of the system. Note that Problem (P) is a discrete-valued optimal control problem.
The main challenge in solving Problem (P) is that the control φ is constrained to take
values in the discrete set {1, . . . ,M}. Each sensor schedule is completely determined by
specifying the values in {1, . . . ,M} that it assumes and the times when it switches from
one value in {1, . . . ,M} to another. Clearly, only a finite number of switches are able to
be implemented in practice, and hence φ is a piecewise constant function with a finite
number of switches. In other words, to solve Problem (P), we need to determine both
the optimal switching sequence and the optimal switching times. Thus, we transform
Problem (P) into an equivalent and solvable form in the next section.

3 Problem Transformation

Recall that only one sensor is active at each time and that only a finite number of switches
are allowed. Suppose that we allow a sensor schedule φ to switch N times during the
time horizon. Let V = {v = [v1, . . . , vN+1]

> : vi ∈ {1, . . . ,M}} be the set of all possible
switching sequence vectors. Let σ = [σ1, . . . , σN+1]

>, where σi ≥ 0, i = 1, . . . , N + 1,
denote the duration for which the corresponding sensor vi in the sequence is active.
Clearly,

N+1
∑

i=1

σi = T.

Let Σ denote the set of all such σ. Note that under the assumption of a finite number of
switches, N , any φ ∈ Φ is completely determined by an element (v,σ) ∈ V × Σ, where

φ(t) = vi, t ∈

[

i−1
∑

j=1

σj ,

i
∑

j=1

σj

]

, i = 1, . . . , N + 1.
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We introduce a new time variable τ ∈ [0, N + 1] and consider the fixed partition
{0, 1, . . . , N + 1}. The original time horizon [0, T ] is transformed into the new time
horizon [0, N + 1] as follows:

ṫ(τ) = σi, τ ∈ [i − 1, i), i = 1, . . . , N + 1, (7)

with the boundary conditions
t(0) = 0 (8)

and
t(N + 1) = T. (9)

The original dynamics (4)-(5) are transformed into

˙̃P (τ) = σi

[

A(τ)P̃ (τ) + P̃ (τ)A>(τ) +B(τ)QB>(τ)

− P̃ (τ)C>
vi (τ)R̄

−1
vi (τ)Cvi (τ)P̃ (τ)

]

, τ ∈ [i− 1, i), i = 1, . . . , N + 1, (10)

and
P̃ (0) = P0. (11)

Hence, the transformed problem is stated formally below. Let P̃ (·|v,σ) be the solution
of (10)-(11) corresponding to (v,σ) ∈ V × Σ.

Problem (R). Choose v ∈ V and σ ∈ Σ to minimize

g0(v,σ) = αtrace{P̃ (N + 1|v,σ)}+
N+1
∑

i=1

∫ i

i−1

trace{P̃ (τ |v,σ)}σi dτ, (12)

subject to (7)-(9) and the dynamics (10)-(11), where α is a non-negative constant.

Problem (R), an equivalent problem to Problem (P), is a mixed discrete optimization
problem with the discrete variable v representing the switching sequence and the
continuous variable σ representing the time length of each mode. We propose to solve
Problem (R) by first decomposing it into two levels. Note that for a fixed v ∈ V ,
Problem (R) reduces to the following problem.

Problem (R1). Given v ∈ V , find a σ ∈ Σ to minimize

g0(σ|v) = αtrace{P̃ (N + 1|σ,v)}+
N+1
∑

i=1

∫ i

i−1

trace{P̃ (τ |σ,v)}σi dτ, (13)

subject to (7)-(9) and dynamics (10)-(11), where α is a non-negative constant.
Problem (R1) is a standard optimal parameter selection problem in a canonical form
suitable for the application of a standard algorithm based on the control parameteri-
zation concept. For each given v, the optimal value of g0 in (13) can be determined
using an optimal control software, such as MISER3.3 [9], since the switching sequence is
fixed. Note that in MISER3.3, the optimal parameter selection problem is solved using
a sequential quadratic programming algorithm. The second problem in the proposed



180 S.F. WOON, V. REHBOCK AND R.C. LOXTON

decomposition is defined as follows.

Problem (R2). Choose v ∈ V to minimize the objective function

J(v), (14)

where
J(v) = min

σ∈Σ
g0(σ|v).

Note that Problem (R2) is a purely discrete optimization problem, but computing the
value of J(v) requires solving the corresponding Problem (R1). Hence, Problem (R1) is a
subproblem of Problem (R2). To obtain a near globally optimal solution for Problem (R),
we propose a combined algorithm where Problem (R2) will be solved using a discrete
filled function method and, at each iteration, Problem (R1) is solved using MISER3.3.
For our numerical computations, we have been able to incorporate the discrete filled
function method within the MISER3.3 software. The details of the discrete filled function
approach are discussed in the next section.

Remark 3.1 Note that the early time scale transformation proposed in [5] introduces
a large number of artificial switching instants, typically N ×M , most of which are not
used in the final optimal solution. As a result, the transformed problem yields many local
minima, many of which have high objective values. Our method avoids this difficulty
because only N switches are needed.

4 Discrete Filled Function Method

The filled function approach is a global optimization method which was initiated by Ge
in the late 1980s [10, 11] to solve continuous global optimization problems. Zhu [12]
appears to be the first researcher to adapt the continuous filled function approach in
solving discrete optimization problems. However, the filled function proposed by Zhu
contains an exponential term, making it difficult to determine an improved point [13] in
practice. Since then, various discrete filled functions with improved theoretical properties
have been proposed in [13–17] to enhance computational efficiency.

In this paper, we employ a discrete filled function method, which was recently devel-
oped in [13], as a part of our proposed algorithm. The basic idea of this method is as
follows. We choose an initial sequence and then perform a local search (see Algorithm 4.1
below) to find an initial local minimizer. Then, we construct an auxiliary function, called
a filled function, at this local minimizer. By minimizing the filled function, either an im-
proved local minimizer is found or one of the vertices is reached. This process is repeated
until no improved local minimizer of the corresponding filled function can be found. The
final local minimizer is then taken as an approximation of the global minimizer.

Definition 4.1 For any v ∈ V , the neighbourhood of v is defined by N(v) = {w ∈
V | w = v± ei : i = 1, 2, . . . , N +1}. Here, ei denotes the i-th standard unit basis vector
of RN+1 : its i-th component is equal to one and its other components are equal to zero.
The set of all feasible directions at v ∈ V is defined by D(v) = {d ∈ R

N+1 : v + d ∈
N(v)} ⊂ {±ei, i = 1, . . . , N + 1}.

Definition 4.2 The sequence v∗ ∈ V is a local minimizer of J if J(v∗) ≤ J(v) for all
v ∈ N(v∗). If J(v∗) < J(v) for all v ∈ N(v∗) \ {v∗}, then v∗ is a strict local minimizer
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of J . The sequence v∗ is a global minimizer of J if J(v∗) ≤ J(v) for all v ∈ V . If
J(v∗) < J(v) for all v ∈ V \ {v∗}, then v∗ is a strict global minimizer of J .

Definition 4.3 v is a vertex of V if for each d ∈ D(v), v + d ∈ V and v − d /∈ V .
Let Ṽ denote the set of vertices of V .

Algorithm 4.1 Discrete Steepest Descent Method

1. Choose an initial switching sequence v ∈ V .

2. If v is a local minimizer of J , then stop. Otherwise, find a discrete steepest descent
direction d∗ ∈ D(v) of J .

3. Let v = v + d∗. Go to Step 2.

Based on Definitions 4.1-4.3, we call a function Gv∗ : V 7→ R a discrete filled function

of J at v∗ if it satisfies the following conditions:
(a) v∗ is a strict local maximizer of Gv∗ ;
(b) Let V̂ (v∗) = {v ∈ V : v 6= v∗, J(v) ≥ J(v∗)}. Gv∗ has no local minimizer in the set
V̂ (v∗) \ Ṽ ;
(c) v∗∗ ∈ V \ Ṽ is a local minimizer of J if and only if v∗∗ is a local minimizer of Gv∗ .

Define
Gµ,ρ,v∗(v) = Aµ(J(v) − J(v∗)) − ρ ‖ v − v∗ ‖, (15)

where

Aµ(y) = y·µ

[

(1− c)

(

1− cµ

µ− cµ

)−y/ω

+ c

]

,

ω > 0 is a sufficiently small number, and 0 < c ≤ 1 is a constant. The function
Gµ,ρ,v∗(v) is a discrete filled function when certain conditions on the parameters µ and
ρ are satisfied. Hence, it has properties (a)-(c) when those conditions on µ and ρ are
met. Note that the discrete filled function is constructed based on the following theorems
found in [13]. A detailed convergence analysis for this method has also been given in [13].

Definition 4.4 Let K be a constant satisfying

1 ≤ max
v1,v2∈V
v1 6=v2

‖ v1 − v2 ‖≤ K < ∞,

where ‖ · ‖ is the Euclidean norm. Let 0 < L < ∞ be the Lipschitz constant such that
|J(v1)− J(v2)| ≤ L ‖ v1 − v2 ‖, for any distinct v1,v2 ∈ V .

Theorem 4.1 If ρ > 0 and 0 < µ < min{1, ρ
L}, then v∗ is a strict local maximizer

of Gµ,ρ,v∗ . If v∗ is a global minimizer of J , then Gµ,ρ,v∗(v) < 0 for all v ∈ V \ {v∗}.

Theorem 4.2 Let v∗∗ be a strict local minimizer of J with J(v∗∗) < J(v∗). If ρ > 0
is sufficiently small and 0 < µ < 1, then v∗∗ is a strict local minimizer of Gµ,ρ,v∗ .

Theorem 4.3 Let v́ be a strict local minimizer of Gµ,ρ,v∗ and let d̄ ∈ D(v́) be a

feasible direction at v́ such that ‖ v́+ d̄− v∗ ‖>‖ v́− v∗ ‖. If ρ > 0 is sufficiently small

and 0 < µ < min{1, ρ
2K2L}, then v́ is a local minimizer of J .
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Corollary 4.1 Assume that every local minimizer of J is strict. Suppose that ρ > 0
is sufficiently small and 0 < µ < min{1, ρ

2K2L}. Then, v∗∗ ∈ V \ Ṽ is a local minimizer

of J with J(v∗∗) < J(v∗) if and only if v∗∗ is a local minimizer of Gµ,ρ,v∗ .

Interested readers are referred to [13] for proofs of Theorem 4.1-4.3. Clearly, from
Corollary 4.1, Gµ,ρ,v∗ must satisfy the condition (c) of the discrete filled function defi-
nition if every local minimizer of J is strict under certain conditions on µ and ρ. If the
local minimizer of the discrete filled function Gµ,ρ,v∗ found is an improved point, it is
also a local minimizer of the original function J . Based on the theoretical framework
described above, a discrete filled function algorithm for global optimization can be stated
as follows.

Algorithm 4.2 Discrete Filled Function Method

1. Initialize v0 ∈ V , ρ0, µ0, ρL > 0, 0 < ρ̂ < 1, and 0 < µ̂ < 1.
Let ρ := ρ0 and µ := µ0.
Choose an initial sequence v0 ∈ V .

2. Starting from v0, minimize J(v) using Algorithm 4.1 to obtain a local minimizer
v∗ of J .

3. (a) List the neighbouring sequences of v∗ as N(v∗) = {w1,w2, . . . ,wq}. Set ` := 1.
(b) Set the current switching sequence, vc := w`.

4. (a) If there exists a direction d ∈ D(vc) such that J(vc + d) < J(v∗), then set
v0 := vc + d and go to Step 2. Otherwise, go to (b) below.
(b) Let D1 = {d ∈ D(vc) : J(vc + d) < J(vc) and Gµ,ρ,v(vc + d) < Gµ,ρ,v(vc)}.
If D1 6= ∅, set d∗ := argmind∈D(vc){J(vc + d) +Gµ,ρ,v∗(vc + d)}.
Then, set vc := vc + d∗ and go to Step 4(a). Otherwise, go to (c) below.
(c) Let D2 = {d ∈ D(vc) : Gµ,ρ,v(vc + d) < Gµ,ρ,v(vc)}.
If D2 6= ∅, set d∗ := argmind∈D(vc){Gµ,ρ,v∗(vc + d)}.
Then, set vc := vc + d∗ and go to Step 4(a). Otherwise, go to Step 5.

5. Let v́ be the obtained local minimizer of Gµ,ρ,v∗ .

(a) If v́ ∈ Ṽ , set ` := `+ 1. If ` > q, go to Step 6. Otherwise, go to Step 3(b).
(b) If v́ /∈ Ṽ , reduce µ by setting µ := µ̂µ and go to Step 4(b).

6. Reduce ρ by setting ρ := ρ̂ρ. If ρ < ρL, terminate the algorithm. The current
v∗ is taken as a global minimizer of the problem. Otherwise, set ` := 1 and go to
Step 3(b).

The mechanism behind this algorithm can be illustrated as follows. Firstly, the
parameters of the discrete filled function Gµ,ρ,v∗ in (15) are initialized to suitable values.
These parameters will be reduced gradually in Steps 5 and 6, to ensure that Gµ,ρ,v∗

eventually satisfies properties (a)-(c). The reduction factor of each parameter is also
specified at Step 1.

Secondly, we choose an initial sequence v0 in the feasible region and minimize the
original function J . Recall that the value of J is computed using MISER3.3 according to
the discussion in the previous section. The objective function value at each sequence in
the neighbourhood of v0 is calculated. The search direction leading to the most improved
objective function value in this neighbourhood is chosen according to Algorithm 4.1. The
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process is repeated until a local minimizer of J , namely v∗, is found. Next, we identify
the neighbourhood of v∗ in Step 3. One of the neighbouring points of v∗, denoted by
vc, is set to be an initial point to minimize the discrete filled function Gµ,ρ,v∗ in the
following step. Note that v∗ is a local maximizer of Gµ,ρ,v∗ here.

In Step 4, we first check to see if there exists a neighbouring sequence of vc that is an
improvement over the current minimizer. If such a sequence can be found, then we use it
as a starting point to minimize the function J using Algorithm 4.1. Otherwise, if we can
find a direction that results in an improvement of both J and G compared with the values
at vc, then we choose the direction which gives the greatest such improvement. If such
a direction does not exist, then find a steepest descent direction such that Gµ,ρ,v∗(vc +
d∗) < Gµ,ρ,v∗(vc). If none of these directions exists, then vc must be a local minimizer
of Gµ,ρ,v∗ , so we go to Step 5.

If the local minimizer of Gµ,ρ,v∗ is found to be a vertex of the feasible region, choose
the next point in N(v∗) as a starting point to minimize Gµ,ρ,v∗ in Step 5(a). Note that
the minimizer of Gµ,ρ,v∗ should be either an improved point or a vertex. Thus, µ is
adjusted suitably to satisfy this criteria in Step 5(b).

If no improved sequence is found with the minimization process starting from all
neighbouring sequences ending up at the vertices, we reduce ρ, reset ` = 1, and minimize
Gµ,ρ,v∗ again with the new value of ρ. The algorithm is repeated until the termina-
tion criteria is reached, where ρ reaches its lower bound, ρL. In other words, we have
minimized the discrete filled function from every search direction from v∗ and failed to
find an improved point, even the parameters are small. We repeat Algorithm 4.2 twice,
reducing the value of ρ each time to confirm that no better solution can be found. Thus,
the final local minimizer v∗ found is taken to be the global solution of J .

To increase the efficiency, we construct a look-up table to store each value of the objec-
tive function J computed so far. Thus, we avoid repeated application of the subproblems
solution algorithm at the same point. This is essential because computing J(v) involves
solving a complex optimal control problem, which takes considerable computational time.

Remark 4.1 Note that a sequential quadratic programming method is employed
within MISER3.3 to solve the subproblem (R1). This is a local search method and
thus cannot guarantee the global optimality for the solution of the subproblem. In other
words, although we aim to solve the upper level problem globally, the lower level problem
may only yield a locally optimal solution. Therefore, we consider our approach to be
a heuristic global optimization method with no implied guarantee of finding the overall
global optimum. Nevertheless, numerical results demonstrate that good quality solutions
can be determined effectively compared with other methods in the literature, such as [5]
and [7].

5 Illustrative Example

Consider a sensor scheduling problem with six sensors and seven switches as discussed
in [7]. Let N = 7, M = 6, n = 2, m = 1, p = 2, T = 8, α = 0, c = 0.5, µ0 = 0.1, ρ0 =
0.1, ω = 1, ρL = 0.001, ρ̂ = 0.1, µ̂ = 0.1 and consider the following dynamics:

[

ẋ1(t)
ẋ1(t)

]

=

[

0.5 1.0
1.0 0.5

] [

x1(t)
x2(t)

]

+

[

2.0
2.0

]

K(t),

[

x1(0)
x2(0)

]

=

[

0
0

]

,
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where

P0 =

[

1 0
0 1

]

, Q =

[

1 0
0 1

]

,

C1(t) =

[

1 + 1.2 sin(2t) 0
1 + 1.2 sin(2t) 0

]

, D1(t) =

[

1 0
0 1

]

, R1(t) =

[

1 0
0 1

]

,

C2(t) =

[

1 + 0.5 cos(2t) 1 + 0.5 cos(2t)
0 0

]

, D2(t) =

[

1 0
0 1

]

, R2(t) =

[

1 0
0 1

]

,

C3(t) =

[

1 + 0.5 sin(2t) 0
0 1 + 0.5 cos(2t)

]

, D3(t) =

[

1 0
0 1

]

, R3(t) =

[

1 0
0 1

]

,

C4(t) =

[

0 1 + 0.5 cos(2t)
1 + 0.5 sin(2t) 0

]

, D4(t) =

[

1 0
0 1

]

, R4(t) =

[

1 0
0 1

]

,

C5(t) =

[

0 0
1 + 0.5 cos(2t) 1 + 0.5 sin(2t)

]

, D5(t) =

[

1 0
0 1

]

, R5(t) =

[

1 0
0 1

]

,

C6(t) =

[

0 1 + 1.8 sin(2t)
0 1 + 1.8 cos(2t)

]

, D6(t) =

[

1 0
0 1

]

, R6(t) =

[

1 0
0 1

]

.

For the ease of computation, we are able to embed the filled function algorithm
into the MISER3.3 program. The algorithm is terminated when µ = 1 × 10−41 and
ρ = 1 × 10−3, at which stage the best local minimizer found cannot be improved. The
computation is performed using the modified version of MISER3.3 on a Windows-based
PC, with a CPU speed of 2.4GHz and 2GB RAM. We solve Problem (R), which has a
total number of 1,679,616 potential switching sequences, using v0 = [6, 5, 2, 6, 5, 2, 6, 1]>

as the initial sequence and σ0 = [1, 1, 1, 1, 1, 1, 1, 1]> as the initial guess for σ. Note that
P0 is initialized as a 2 × 2 identity matrix. Relevant results obtained are summarized
in Table 1. The entries in the v∗ column indicate the optimal solutions for the local
searches. From Table 1, σ

∗ = [0.23501973, 0, 0, 7.7649803, 0, 0, 0, 0]> for the assumed
global minimum indicates that sensors 2, 3, 4, and 5 are not used in the final optimal
solution during the tenth iteration. Hence, only two out of six sensors are turned on. The
assumed global optimal switching sequence is to turn on sensor 1, followed by sensor 6,
with the objective function 14.33176. The number of original function evaluations and
filled function evaluations are 5293 and 8517, respectively. This represents 0.32% of the
total number of potential sequences. Note that the objective function evaluations do not
include those that were obtained from the look-up table.

We tested the problem with five different initial sequences. These are
[1, 2, 3, 4, 5, 6, 1, 2]>, [6, 5, 4, 3, 2, 1, 6, 5]>, [1, 6, 3, 2, 4, 5, 3, 1]>, [1, 6, 1, 6, 1, 6, 1, 6]>,
and [6, 6, 1, 2, 5, 4, 2, 1]> using the same P0 and σ0 as in the first computation. As
many as fifty local minima are found during the searches from the various initial se-
quences. Starting at each initial sequence, the algorithm successfully identified the same
assumed discrete global minimum sequence of Problem (R) observed in the first experi-
ment, that is, sensor 1 is followed by sensor 6, with the cost function value J = 14.33176.
Again, computational results show that only up to 0.32% of the total number of potential
sequences are evaluated. The optimal operating schedule for the control and states are
depicted in Figure 1. In addition, several different choices of P0 are tested in our exper-
imentation with various initial switching sequences. The optimal operating schemes for
P0 = 0, P0 = 6I, P0 = 10I are illustrated by Figures 2, 3, and 4, respectively. From
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Table 1: Numerical Results for P0 = I

v∗
σ

∗ J

[1, 6, 1, 1, 6, 1, 6, 6]> [0.24035917, 0, 0, 0, 0, 0, 7.7525870, 0.0070538593]> 14.649680367412879

[6, 1, 6, 6, 1, 6, 1, 1]> [0.17566501, 0.18470974, 0, 7.6396253, 0, 0, 0, 0]> 14.504334985710470

[1, 6, 1, 6, 6, 1, 1, 6]> [0.23511799, 0, 0, 7.7648820, 0, 0, 0, 0]> 14.331763146735220

[1, 6, 2, 6, 6, 2, 2, 6]> [0.23501894, 0, 0, 7.7649811, 0, 0, 0, 0]> 14.331763102479558

[1, 6, 6, 6, 6, 3, 3, 5]> [0.23502083, 0, 0, 7.7649792, 0, 0, 0, 0]> 14.331763102474610

[1, 6, 6, 6, 6, 6, 5, 5]> [0.23502039, 0, 0, 7.7649796, 0, 0, 0, 0]> 14.331763102473506

[1, 6, 6, 6, 1, 5, 6, 2]> [0.23501994, 0, 0, 7.7649801, 0, 0, 0, 0]> 14.331763102471598

[1, 1, 6, 6, 6, 6, 5, 1]> [0.23501894, 0, 0, 7.7649811, 0, 0, 0, 0]> 14.331763102445281

[1, 1, 6, 6, 5, 6, 6, 2]> [0.23501979, 0, 0, 7.7649802, 0, 0, 0, 0]> 14.331763102440952

[1, 1, 6, 6, 6, 5, 2, 1]> [0.23501973, 0, 0, 7.7649803, 0, 0, 0, 0]> 14.331763102437696
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Figure 1: Optimal Sensor Operating Scheme with P0 = I.

these graphs, only the first and sixth sensors are ever used, while the other four are not
utilized in any optimal solution.

We also compare the solutions obtained here with those obtained from the other
methods proposed in [5] and [7]. These results are summarized in Table 2. Note that
the error estimation that we sought is lower than 19.6553, the optimal solution reported
in [7], which was obtained using a combination of a branch and bound technique with a
gradient-based method. To the best of our knowledge, P0 = 0 is used in [7]. Note that
non-zero choices of P0 lead to even higher objective values when used in conjunction with
the solution in [7].

6 Conclusions

A sensor scheduling problem is considered in this paper. It was formulated as a discrete-
valued optimal control problem and then transformed into a mixed discrete optimization
problem. Then, it was decomposed into a bi-level problem. A new heuristic approach,
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Figure 2: Optimal Sensor Operating Scheme with P0 = 0.
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Figure 3: Optimal Sensor Operating Scheme with P0 = 6I.
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Figure 4: Optimal Sensor Operating Scheme with P0 = 10I.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 10(2) (2010) 175–188 187

Table 2: A Comparison of Numerical Results with Other Methods.

Methods Objective values

Method in [7] with P0 = 0 19.6553

Method in [5] with P0 = 10I 19.2353622

Proposed method with P0 = 10I 16.5697177

Proposed method with P0 = 6I 15.8781106

Proposed method with P0 = I 14.3317631

Proposed method with P0 = 0 12.9949699

which incorporates the discrete filled function algorithm into standard optimal control
software, is proposed for finding a global solution of this problem. Numerical results show
that the method is efficient, reliable, and robust in solving a complex discrete-valued opti-
mal control problem. The proposed method successfully identified significantly improved
solutions compared with other methods available in the literature.
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