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On the Dynamics of a Class of Darwinian Matrix

Models †

J. M. Cushing ∗

Department of Mathematics and the Interdisciplinary Program in Applied Mathematics

University of Arizona, 617 N. Santa Rita, Tucson, AZ 85721 USA

Received: November 15, 2009; Revised: March 24, 2010

Abstract: Using the methodology of evolutionary game theory (EGT), I study a
class of Darwinian matrix models which are derived from a class of nonlinear matrix
models for structured populations that are known to possess stable (normalized) dis-
tributions. Utilizing the limiting equations that result from this ergodic property, I
prove extinction and stability results for the limiting equations of the EGT versions
of these kinds of structured population models. This is done in a bifurcation theory
context. The results provide conditions sufficient for a branch of non-extinction equi-
libria to bifurcate from the branch of extinction equilibria. When this bifurcation is
supercritical (explicit criteria are given), these equilibria are stable and represent sta-
ble non-extinction equilibria (which are also candidate ESS equilibria). These kinds
of matrix models are motivated by applications to size structured populations, and
I give an application of this type. Besides illustrating the formal theory, this ap-
plication shows the importance of trade-offs among life history parameters that are
necessary for the existence of an evolutionarily stable equilibrium.

Keywords: structured population dynamics; nonlinear matrix model; stable distribu-

tion; limiting equation; evolutionary game theory; bifurcation; equilibrium, stability.

Mathematics Subject Classification (2000): 92D15, 92D25, 39A60.

1 Introduction

Nonlinear matrix models are widely used to describe and study the discrete time dynamics
of structured populations. These models take the form

x(t + 1) = P (x(t))x(t), (1)

† Research partially supported by NSF grant DMS 0917435.
∗ Corresponding author: mailto:cushing@math.arizona.edu
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104 J. M. CUSHING

where P (x) is an m×m non-negative projection matrix that is assumed primitive (irre-
ducible and possessing a strictly positive dominant eigenvalue) for each (column vector)
x ∈ Ω, where Ω is an open set in Rm containing the origin. Here x(t) is a demographic
distribution vector at time t ∈ Z+ = {0, 1, 2, · · · } that is based on a classification scheme
for individuals in the population (chronological age, weight, size, etc.). For more on
matrix models in population dynamics see [1, 9, 10].

In general the projection matrix has the form

P (x) = F (x) + T (x),
F (x) = [fij(x)], T (x) = [sij(x)],

(2)

where fij ≥ 0 is the amount (number, density, etc.) of surviving i-class offspring per
j-class individual in a unit of time and where sij , 0 ≤ sij ≤ 1, is the fraction of j-class
individuals that survive and move to the i-class over one unit of time [9, 10]. In one
type of model that arises in population dynamics and theoretical ecology, the projection
matrix also has the form

P (x) = a(x)I + b(x)L, (3)

where I is the m×m identity matrix, L is an m×m constant matrix, and a, b are scalar
valued functions of x. For examples see [2, 7, 6, 9, 15], Chapter 17 in [3], Chapter 3 in
[5], and Section 3.

For models of the form (3) there exists an asymptotically stable (normalized) distri-
bution vector. This is a consequence of the following theorem.

Theorem 1.1 [2, 7, 9] Consider the equation x(t + 1) = (α(t)I + β(t)L)x(t) where
(a) α, β are real valued functions for which there exist constants α0, β0 such that 0 ≤
α(t) ≤ α0, 0 < β0 ≤ β(t) for all t ∈ Z+; (b) the m×m constant matrix L has a strictly
dominant, simple eigenvalue θ > 0 with a positive eigenvector v ∈ int

(

Rm
+

)

. Suppose
x(t) is a solution satisfying 0 6= x(t) ≥ 0 for all t ∈ Z+ and p(t) is a weighted total
population size:

p(t)
.
= ω · x(t), 0 6= ω ∈ Rm

+ .

Then

lim
t→+∞

x(t)

p(t)
=

v

ω · v . (4)

We can apply Theorem 1.1 to solutions of the nonlinear matrix equation (1)-(3) with
α(t) = a(x(t)) and β(t) = b(x(t)). We then use (4) to replace x(t) and x(t+1) in (1) by
their asymptotic equivalents p(t)v/ω · v and p(t+1)v/ω · v and obtain the scalar limiting
equation

p(t+ 1) =
[

a
( v

ω · v p(t)
)

+ b
( v

ω · v p(t)
)

θ
]

p(t)

for the total population size p(t). Thus, for these kinds of matrix models, the high
dimensional dynamics of the original model are replaced by those of the scalar limiting
equation for total population size (which depend on the dominant eigenvalue θ of L),
and the asymptotic distribution (4) (calculated from the eigenvector v associated with
θ). For applications see Section 3 and [9] (and papers cited therein).

Under the assumption that P (x) is nonnegative and primitive for x ∈ Ω, it has a
strictly dominant eigenvalue r = r(x) > 0. It is easy to see that under the assumption
(b) in Theorem 1.1

r(x) = a(x) + b(x)θ
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and as a result the limiting equation can be written as

p(t+ 1) = r
( v

ω · v p(t)
)

p(t). (5)

As a special case, if P = P (p) and hence a = a(p) and b = b(p) are functions of a weighted
total population size p (as they frequently are in applications), the limiting equation is
p(t+ 1) = [a (p(t)) + b (p(t)) θ] p(t) or

p(t+ 1) = r (p(t)) p(t).

Theorems relating the (equilibrium and cycle) dynamics of the limiting equation to the
dynamics of the original matrix model appear in [7].

In their book Vincent and Brown [17] provide a methodology for extending matrix
models for structured populations to an evolutionary setting. Their methodology in-
volves a dynamically evolving phenotypic trait, which affects demographic parameters
in the entries of the projection matrix and whose dynamics are in turn affected by the
population dynamics. Vincent and Brown refer to this coupling of the evolutionary and
population dynamics as Darwinian dynamics. Our goal here is to study Darwinian ma-
trix models with projection matrices of the particular form (3) by making use of the
ergodic Theorem 1.1 and the resulting limiting equation (5). In Section 2 we study,
in the context of bifurcation theory, the existence and stability of both extinction and
non-extinction equilibria. Section 3 contains an application to a Darwinian model based
on a class of structured models studied in the literature which has historical roots in a
seminal paper of Leslie on matrix models in population dynamics [15].

2 Darwinian Matrix Models

Let u denote the mean of a phenotypic trait (with a heritable component) that is subject
to natural selection. The Darwinian dynamics associated with a matrix equation are

x(t+ 1) = P (x(t), u(t))x(t), (6)

u(t+ 1) = u(t) + σ2 ∂ ln r (x(t), u(t))

∂u
,

where P = P (x, u) is now assumed a function of u as well as x and r = r(x, u) is its
dominant eigenvalue. Here the constant σ2 is the variance of the phenotypic trait each
point in time; it is a measure of the speed of evolution. Let Υ ⊆ R1 be an open interval.
We make the following assumptions:

A :







































The nonnegative, primitive matrix P (x, u) has the form (3)
with an m×m constant matrix L and real valued functions
a, b ∈ C2

(

Ω×Υ → R1
+

)

that satisfy the following:
(a) there exist constants a0, b0 such that 0 ≤ a(x, u) ≤ a0,

and 0 < b0 ≤ b(x, u) for (x, u) ∈ Ω×Υ;
(b) L has a simple, strictly dominant eigenvalue θ > 0 with a

positive eigenvector v.

Under assumption A, Theorem 1.1 applies to (6) with α(t) = a(x(t), u(t)) and β(t) =
b(x(t), u(t)) and implies that solutions have a stable normalized distribution (4). From
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(6) we derive the two scalar equations

p(t+ 1) = ω · P (x(t), u(t)) x(t), (7a)

u(t+ 1) = u(t) + σ2 ∂ ln r (x(t), u(t))

∂u
, (7b)

for the dynamics of the total population size p(t) = ω · x(t) and the mean trait u(t).
Replacing x(t) by vp(t)/ω · v, we obtain the limiting equations [7, 14]

p(t+ 1) = r

(

p(t)

ω · v v, u(t), θ
)

p(t), (8a)

u(t+ 1) = u(t) + σ2 ∂ ln r (x, u, θ)

∂u

∣

∣

∣

∣

(x,u)=( p(t)
ω·v

v,u(t))
, (8b)

for p(t) and u(t), where for convenience we have added θ to the argument list in the
dominant eigenvalue

r(x, u, θ) $ a(x, u) + b(x, u)θ (9)

of P (x, u) = a(x, u)I + b(x, u)L. This system of limiting equations is two dimensional
and therefore more analytically tractable than the original m + 1 dimensional matrix
model (6). We now turn our attention to an analysis of the equilibrium states of this
limiting system. We will relate these dynamics to those of the original matrix model in
Section 2.3.

2.1 The limiting system: existence of equilibria

The equilibrium equations for (8) are

p = r
( p

ω · v v, u, θ
)

p,

0 = ru

( p

ω · v v, u, θ
)

,

where the subscript u denotes partial differentiation ∂/∂u. We are interested in the
existence of two types of equilibria. An extinction equilibrium (p, u) of (8) is one in
which p = 0 and a non-extinction equilibrium is one in which p > 0.

We are also interested in the stability of these equilibria, when they exist. We refer
to a (locally asymptotically) stable equilibrium as an evolutionarily stable equilibrium.
(In the language of [17] the associated equilibrium trait has convergent stability.) We
say that a population whose orbit tends to a stable extinction equilibrium evolves to
extinction, while one whose orbits tend to a non-extinction equilibrium evolutionarily
persists and equilibrates.

Definition 2.1 A pair u, θ (with θ > 0) is an extinction pair if

ru (0, u, θ) = au (0, u) + bu (0, u) θ = 0. (10)

An extinction pair u∗, θ∗ is a critical extinction pair if in addition it satisfies
r (0, u∗, θ∗) = 1. That is to say, a critical extinction pair u∗, θ∗ satisfies

r (0, u∗, θ∗) = a (0, u∗) + b (0, u∗) θ∗ = 1,
ru (0, u, θ) = au (0, u

∗) + bu (0, u
∗) θ∗ = 0.

(11)
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Clearly (p, u) = (0, u) is an extinction equilibrium of (8)-(9) (with parameter value
θ) if and only if u, θ is an extinction pair. As we will see, critical extinction pairs serve
as bifurcation points for the creation of non-extinction equilibria.

The non-extinction equilibrium equations are

1 = r
( p

ω · v v, u, θ
)

,

0 = ru

( p

ω · v v, u, θ
)

.

If u∗, θ∗ is a critical extinction pair, the implicit function theorem implies that these equi-
librium equations have a solution (p, u) = (π(θ), υ(θ)) for θ near θ∗, where π(θ), υ(θ) are
twice continuously differentiable functions that satisfy (π(θ∗), υ(θ∗)) = (0, u∗), provided
the Jacobian with respect to p and u

(

∇xr (0, u
∗, θ∗) · v

ω·v
0

∇xru (0, u
∗, θ∗) · v

ω·v
ruu (0, u

∗, θ∗)

)

is non-singular at (p, u) = (0, u∗), θ = θ∗, i.e. provided

δ $ ∇xr (0, u
∗, θ∗) · v 6= 0 and ruu (0, u

∗, θ∗) 6= 0.

This branch of equilibria (p, u) = (π(θ), υ(θ)) consists of non-extinction equilibria p =
π(θ) > 0 for θ > θ∗ if π′(θ) > 0 or for θ < θ∗ if π′(θ∗) < 0. An implicit differentiation of
1 = r (π(θ)v/ω · v, υ(θ), θ) shows (recall (11))

π′(θ∗) = −ω · v
δ

rθ (0, u
∗, θ∗) .

Since rθ (0, u
∗, θ∗) = b (0, u∗, θ∗) > 0, the sign of π′(θ∗) is the opposite of the sign of δ.

Theorem 2.1 Assume A and that u∗, θ∗ > 0 is a critical extinction pair (i.e., a pair
that satisfies (11)) for which

δ $ [∇xa (0, u
∗) +∇xb (0, u

∗) θ∗] · v 6= 0,
auu (0, u

∗) + buu (0, u
∗) θ∗ 6= 0.

(12)

Then there exists a (twice continuously differentiable) branch of non-extinction equilibria
(p, u) = (π(θ), υ(θ)) for

θ ' θ∗ if δ < 0,

θ / θ∗ if δ > 0,

such that (π(θ∗), υ(θ∗)) = (0, u∗).

In many applications, the dependency of the projection matrix, and hence a and b,
on x is through a dependency on a weighted population size p, i.e., a(p, u) and b(p, u).
In that case, δ = rp (0, u

∗, θ∗)ω · v and the condition δ 6= 0 is equivalent to

ap (0, u
∗) + bp(0, u

∗)θ∗ 6= 0,

where ap and bp are the partial derivatives of a and b with respect to p.
We can view the existence result in Theorem 2.1 as a bifurcation phenomenon by

using θ as a bifurcation parameter. To clarify this, we distinguish two types of extinction
pairs.
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Definition 2.2 A type 1 extinction pair u, θ is one for which

bu (0, u) = au (0, u) = 0 and θ ∈ Υ is arbitrary.

A type 2 extinction pair u, θ is one for which

bu (0, u) 6= 0 and θ = −au (0, u)

bu (0, u)
.

Type 1 extinction pairs produce a branch of extinction equilibria (p, u) = (0, u∗) of
the limiting system (8) for all values of θ ∈ Υ where u∗ satisfies bu (0, u

∗) = au (0, u
∗) =

0. The branch of non-extinction equilibria in Theorem 2.1 intersects this branch of
extinction equilibria in a transcritical bifurcation at the critical extinction pair u, θ =
u∗, θ∗ where

θ∗ =
1− a (0, u∗)

b (0, u∗)
. (13)

See Figure 1(a,b).
Type 2 extinction pairs produce a branch of extinction equilibria (p, u) = (0, u) for

θ = −au (0, u) /bu (0, u) and those values of u for which bu(0, u) 6= 0. The branch of
non-extinction equilibria in Theorem 2.1 intersects this branch of extinction equilibria in
a transcritical bifurcation at the critical extinction pair u∗, θ∗ value where u∗ satisfies

− au (0, u
∗)

bu (0, u∗)
=

1− a (0, u∗)

b (0, u∗)
. (14)

and θ∗ is given by (13). See Figure 1(c,d).
We say that the bifurcation is supercritical (or to the right) if δ < 0 and subcritical

(or to the left) if δ > 0.

Figure 1. All graphs show intersecting branches of extinction and non-extinction pairs

u, θ (which correspond to extinction and non-extinction equilibria of the limiting equations (8)

respectively). The dashed lines are pairs that correspond to equilibria with p < 0 and therefore

are not biologically relevant. The intersection occurs at a critical pair u∗, θ∗ with θ∗ defined by

(13). In graphs (a) and (b) the extinction pairs are of Type 1 and plot as a horizontal straight

line where u∗ satisfies bu (0, u∗) = au (0, u∗) = 0. In graphs (c) and (d) the extinction pairs are

of Type 2 and u∗ satisfies (14).
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2.2 The limiting system: stability of equilibria

The eigenvalues µ1, µ2 of the Jacobian of the limiting system (8), which when evaluated
at either an extinction or a non-extinction equilibrium has a triangular form (because
ru

(

p
ω·v

v, u
)

p vanishes at either type of equilibrium), are

µ1
.
= r

( p

ω · v v, u, θ
)

+ p
∇xr

(

p

ω·v
v, u, θ

)

· v
ω · v , µ2

.
= 1 + σ2ruu

( p

ω · v v, u, θ
)

.

For an extinction equilibrium (p, u) = (0, u) these eigenvalues are

µ1 = r(0, u, θ), µ2 = 1 + σ2ruu(0, u, θ).

The linearization principle implies the equilibrium is unstable if r(0, u, θ) > 1 or if
ruu(0, u, θ) > 0 and is (locally asymptotically) stable if r(0, u, θ) < 1, ruu(0, u, θ) < 0 and
σ2 < −2/ruu(0, u, θ). Note it is necessary for the stability of an extinction equilibrium
(p, u) = (0, u) that r(0, ·, θ) have a local maximum at u.

Lemma 2.1 Assume A and that u, θ is an extinction pair.
(a) The extinction equilibrium (0, u) of the limiting system (8) is unstable if

a(0, u) + b(0, u)θ > 1 or auu (0, u) + buu (0, u) θ > 0.

(b) Assume auu (0, u) + buu (0, u) θ < 0. Then (0, u) is (locally asymptotically) stable if

a(0, u) + b(0, u)θ < 1 and σ2 < −2 (auu (0, u) + buu (0, u) θ)
−1

.

Let u∗, θ∗ be a critical extinction pair for which the conditions (12) hold. This point is
a bifurcation point for non-extinction equilibria (as in Figure 1) whose stability properties
we now consider. If

auu (0, u
∗) + buu (0, u

∗) θ∗ > 0,

then, because µ2 > 1, the extinction equilibria for θ ≈ θ∗ are unstable (Lemma 2.1).
By continuity, an eigenvalue of the Jacobian evaluated at the bifurcating non-extinction
equilibria is also greater than one for θ ≈ θ∗. Thus, in this case equilibria of both types
are unstable near the bifurcation point.

If, on the other hand,

auu (0, u
∗) + buu (0, u

∗) , θ∗ < 0,

then by Lemma 2.1 the extinction equilibrium loses stability as the bifurcation parameter
θ increases through the critical value θ (assuming θcr > 0). It follows by the exchange of
stability principle for transcritical bifurcations [13] that a supercritical (right) bifurcation
results in the stability of the non-extinction equilibria and a subcritical (left) bifurcation
results in the instability of the non-extinction equilibria.

We have arrived at our main result concerning the limiting system (8) for the Dar-
winian matrix model (6).

Theorem 2.2 Assume A and that u∗, θ∗ > 0 is a critical extinction pair for which
(12) and a(0, u∗) < 1 hold. Then for the limiting system (8) there exist branches of
extinction and non-extinction equilibria, parameterized by θ, that transcritically bifurcate
(intersect) at θ = θ∗ given by (13). (a) Assume auu (0, u

∗) + buu (0, u
∗) θ∗ < 0. Then
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the extinction equilibria lose stability as θ increases through θ∗. Moreover, near the
bifurcation point ( i.e. for θ ≈ θ∗ ), and for σ2 sufficiently small, i.e., for

σ2 < −2 (auu (0, u
∗) + buu (0, u

∗) θ∗)
−1

,

the bifurcating non-extinction equilibria are (evolutionarily) stable if the bifurcation is
supercritical ( δ < 0 ) and are unstable if the bifurcation is subcritical ( δ > 0 ). (b) If
auu (0, u

∗) + buu (0, u
∗) θ∗ > 0, then both the extinction equilibria and the non-extinction

equilibria are unstable near the bifurcation point, i.e. for ( θ ≈ θ∗).

2.3 The Darwinian matrix model

In Sections 2.1 and 2.2, we obtained existence and stability results for the limiting equa-
tions (8) of the dynamic equations (7) for p(t) and u(t) associated with the Darwinian
matrix equation (6). Under certain hypotheses the asymptotic dynamics of these two
systems are related [7, 14]. (The theorems and the proofs given in [7] are for scalar maps,
but remain valid virtually verbatim for systems of scalar maps.) Roughly speaking, if
the dynamics of the limiting equations are not too complicated, then no orbit of (7) will
approach an unstable equilibrium (or cycle) of the limiting system and if (p(0), u(0)) is
sufficiently close to a (locally asymptotically) stable equilibrium (or cycle) (pe, ue) of the
limiting equations and if the initial normalized distribution x(0)/p(0) is sufficiently close
to the limiting distribution v/ω · v, then

lim
t→+∞

x(t)

p(t)
=

v

ω · v and lim
t→+∞

(p(t), u(t)) = (pe, ue).

The hypotheses required are that the limiting equations have at most a finite number of
equilibria (or cycles) in any compact subset of R2

+, all of which are hyperbolic, and the
ω-limit sets of bounded orbits are equilibria (or cycles).

We conclude with some remarks concerning the results in Sections 2.1 and 2.2.

Remark 2.1. The inequality ruu(0, u
∗, θ∗) = auu (0, u

∗)+ buu (0, u
∗) θ∗ > 0 in Theo-

rem 2.2(b) implies that the inherent growth rate r(0, u, θ∗) has a local minimum (of 1) as
a function of the trait u at u = u∗ (assuming the eigenvalue θ ≈ θ∗ remains fixed). Since
in this case all equilibria on both bifurcating branches (extinction and non-extinction)
are unstable, it follows that no population will evolve to have trait u ≈ u∗, whether the
population goes extinct or not.

Remark 2.2. Evolutionarily stable equilibria occur in the transcritical bifurcation
when ruu(0, u

∗, θ∗) < 0 and hence r(0, u, θ∗) has a local maximum (of 1) as a function
of the trait u. In this case, the extinction equilibria are unstable if the demographic
parameters in the matrix L are such that θ / θ∗ and populations evolve to extinction.
On the other hand, for θ ' θ∗ the extinction equilibria are unstable and the population
will not evolve to extinction. In this case the non-extinction equilibria are stable if δ < 0
and populations evolve to an evolutionarily stable non-extinction equilibrium (pe, ue),
pe > 0, with a trait u = ue at which r(pe, u, θe) has a local maximum. This is because
the equilibrium equation is ru(pe, u, θe) = 1 and, by continuity, ruu(pe, ue, θe) < 0 for
θe ' θ∗. If r(pe, u, θe) in fact has a global maximum on the trait interval Υ at u = ue,
then the evolutionary stability of the equilibrium plus ruu(pe, ue, θe) < 0 implies the
equilibrium is an ESS (see the ESS Maximum Principle in [17]). That is to say, the
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population evolves to a non-extinction equilibrium state that is resistant to invasion by
other mutant species.

Remark 2.3. The condition δ $ ∇xr (0, u
∗, θ∗) · v < 0, required for a supercritical

bifurcation of evolutionarily stable non-extinction equilibria, is a negative feedback con-
dition. This is because it requires sufficiently large negative derivatives of the inherent
population growth rate r with respect to the components in the distribution vector x.
This condition is met under the usual assumptions of so-called density effects in ecology.
In order to fail, i.e., in order for δ > 0, positive feedback terms (Allee effects) would
have to out weigh the negative density effects. As we have seen, this would lead to a
subcritical bifurcation of unstable non-extinction equilibria.

Remark 2.4. Since r(x, u) = a(x, u) + b(x, u)θ, we have the relationship r(0, u∗) =
a(0, u∗) + b(0, u∗)θ between the dominant eigenvalue r(0, u∗) (the inherent population
growth rate at the critical trait u∗) and θ. The bifurcation described in Theorems 2.1
and 2.2 in terms of θ can therefore be restated in terms of the magnitude of r(0, u∗).
Thus, the bifurcation phenomenon in these theorems (and hence the possibility of a
bifurcation from an evolutionary state of extinction state to an evolutionary state of
non-extinction) occurs when the magnitude of r(0, u∗) increases through 1. See [11]. As
is shown in [12], this phenomenon can also be equivalently stated in terms of the inherent
net reproductive number R0(0, u

∗) at the critical trait. See [12]. The quantity R0(0, u
∗),

which is generally more analytically tractable than r(0, u∗), is the dominant eigenvalue
of F (0, u∗)(I − T (0, u∗))−1 [8, 9, 10].

Remark 2.5. The definition of a type 2 extinction pair u∗, θ∗clearly requires that
a(0, u) and b(0, u) have opposite monotonicities at u = u∗. In specific applications the
biological implication of this fact is usually that some kind of trade-off between two
demographic parameters occurs as the the trait u is changed. We will see an example of
this in Section 3.

3 An Application

Consider a projection matrix (2) in which the matrix of class transitions are

sjj = πj (1− γj) , sij = πiτijγj .

Here γj is the fraction that leaves the jth size class per unit time, τij is the fraction of
those who leave that moves to class i, and πj is the survival rates per unit time. We
can put this general model into the form (3) under the following two assumptions: the
fraction of j-class individuals leaving the j-class, γj , and the class specific fertility rates,
fij , are proportional to a function of a resource consumption rate u ≥ 0 and the survival
rates πj are class independent. Specifically

γj = τjφ(u), fij = πi(u)ϕijφ(u), πi = π(u),

where 0 ≤ φ(u) ≤ 1 for u ∈ Υ = [0, umax), umax ≤ +∞. For a reproductively obligate
resource, we have φ(0) = 0. For this model, the fertility and transition matrices are

F = π(u)φ(u) [ϕij ] , T = π(u)











1− τ1φ(u) τ12τ2φ(u) · · · τ1mτmφ(u)
τ21τ1φ(u) 1− τ2φ(u) · · · τ2mτmφ(u)

...
...

...
τm1τ1φ(u) τm2τ2φ(u) · · · 1− τmφ(u)











.
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Let τk = max{τi} and re-write T as

T = π (1− τkφ(u)) I + πφ(u)











τk − τ1 τ12τ2 · · · τ1mτm
τ21τ1 τk − τ2 · · · τ2mτm
...

...
...

τm1τ1 τm2τ2 · · · τk − τm











.

Then we can write the projection matrix as

P = π(u) (1− τkφ(u)) I + π(u)φ(u)L, (15)

where

L =











τk − τ1 + ϕ11 τ12τ2 + ϕ12 · · · τ1mτm + ϕ1m

τ21τ1 + ϕ21 τk − τ2 + ϕ22 · · · τ2mτm + ϕ2m

...
...

...
τm1τ1 + ϕm1 τm2τ2 + ϕm2 · · · τk − τm + ϕmm











(16)

is a non-negative matrix. This matrix model is motivated by applications in which the
classes are based on physiological size of individuals; see [9] and the references cited
therein for examples. It has the form (3) with a = π(u) (1− τkφ(u)) and b = πφ(u).
We assume L has a positive dominant eigenvalue θ which has an associated positive
eigenvector.

For density dependence in the fertility and survivorship rates π = π(x, u), φ = φ(x, u),
then

a (x, u) = π(x, u) [1− τkφ(x, u)] , b(x, u) = π(x, u)φ(x, u).

In this application we assume density dependence is through a dependency on a weighted
total population size p. Then

γj = τjφ(p, u), fij = ϕijφ(p, u), πi = π(p, u) (17)

in the fertility and transition matrices F and T . Theorems 1.1, 2.1 and 2.2 apply to this
population model with

a(p, u) = π(p, u) (1− τkφ(p, u)) , b(p, u) = π(p, u)φ(p, u) (18)

in the projection matrix (3). Thus, there is a stable normalized distribution and the
asymptotic population dynamics are described by the limiting equations (8). We illus-
trate the application of Theorems 2.1 and 2.2 with a specific example.

Important in the evolution and adaptation of biological species are trade-offs among
life history characteristics and strategies [16]. In the model above, we assume a trade-off
between fertility and survivorship as a function of the resource consumption rate u. Thus,
an increase in u results in an increase in fertility but also a decrease in survivorship. A
decrease in survivorship can be the result of many causes: the stress and metabolic costs
associated with finding and consuming prey, a resulting exposure to predators, etc.

We take

φ(p, u) =
1

1 + cp
f(u), π(p, u) =

1

1 + cp
π0 (1− f(u)) , c > 0, 0 < π0 < 1, (19)
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where f(u) is a twice continuously differentiable, real value function of u on an interval
0 ≤ u ≤ um ≤ +∞ that satisfies

f(0) = 0, f ′(u) > 0, lim
u→um

f(u) = 1.

Specific examples include f(u) = 1− e−αu on 0 ≤ u < +∞ and f(u) = up on 0 ≤ u ≤ 1.
Here we have taken the dependence of fertility and survivorship on weighted population
size p to have the discrete time, logistic form 1/(1 + cp) as first consider by Leslie [15].
Note that fertility is 0 at consumption rate u = 0 and that survivorship π(p, u) is 0 as the
consumption rate u approaches um. Neither of these two extremes is therefore favorable
for the persistence of the population.

Straightforward calculations solving equations (11) show that there exists a (unique)
critical extinction pair given by the formulas

u∗ = f −1

(− (1− π0) +
√
1− π0

π0

)

, θ∗ = τk +
π0

2− π0 − 2
√
1− π0

. (20)

Note that 0 < u∗ < um. Moreover, further calculations show

δ = −c
(

1 +
√
1− π0

)

ω · v < 0,

auu (0, u
∗) + buu (0, u

∗) θ∗ = −2
(

2− π0 + 2
√
1− π0

)

(f ′(u∗))
2
< 0,

and, as a result, there is a supercritical bifurcation of evolutionarily stable, non-extinction
equilibria as θ increases through θ∗ (Theorems 2.1 and 2.2). Since

bu(0, u) =
(

2− π0 − 2
√
1− π0

)

f ′(u∗) > 0,

the critical extinction pair is of Type 2 and the bifurcation has the form in Figure 1(c).
As a consequence of these results, the Darwinian model (6) with (15) and (17)-(19)

predicts evolution to extinction for θ < θ∗ and evolution to a non-extinction equilibrium
for θ ' θ∗. Note that the bifurcating, evolutionarily stable non-extinction equilibria have
traits near u∗ and therefore lie between the two unfavorable traits of 0 and um.

This bifurcation result is stated in terms of the dominant eigenvalue θ of L the
matrix given by (16). Often of interest is how the bifurcation to evolutionarily stable
states depends on the class-specific parameters appearing as entries in L. In general, of
course, there is no formula that explicitly relates θ to the entries in L (when the number
of classes m is large). However, as pointed out in Remark 4, this bifurcation result
can be equivalently re-stated in terms of r(0, u∗) = a(0, u∗) + b(0, u∗)θ, namely, that
the bifurcation occurs as r(0, u∗) increases through 1 or equivalently as the inherent net
reproductive number R0(0, u

∗) (at the critical trait u∗) increases through 1. The quantity

R0(0, u
∗) is the dominant eigenvalue of F (0, u∗) (I − T (0, u∗))

−1
and explicit formulas

for it in terms of the entries in the projection matrix are often available [8, 9, 10]. This
is particularly true, for example, when there is only one newborn class, i.e., when only
the first row in F is nonzero.

As an example, suppose the population model is based on an Usher matrix or, as it is
called in [1], the standard size-structured model. In this model, individuals either remain
in a size class or advance (grow into) the next size class in a unit of time. This means
that the transition matrix T is bidiagonal with nonzero entries along the main diagonal
and its subdiagonal only. All newborns are assumed to lie in the smallest size class and
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hence only the first row of the fertility matrix F is nonzero. This Usher model takes the
form

F = π(p, u)φ(p, u)











ϕ11 ϕ12 · · · ϕ1m

0 0 · · · 0
...

...
...

0 0 · · · 0











+ π(p, u)



















1− τ1φ(p, u) 0 · · · 0 0
τ1φ(p, u) 1− τ2φ(p, u) · · · 0 0

0 τ2φ(p, u) · · · 0 0
...

...
...

...
0 0 · · · 1− τm−1φ(p, u) 0
0 0 · · · τm−1φ(p, u) 1



















.

The formula for the inherent net reproductive number of an Usher matrix gives (see
[8, 9, 10])

R0(p, u) = π(p, u)φ(p, u)

m
∑

i=1

ϕ1i

i
∏

j=1

π(p, u)φ(p, u)τj−1

1− π(p, u) (1− τjφ(p, u))
,

where for notational convenience τ0 = 1 and τm = 0. Thus, from (19) and (20) we obtain

R0(0, u
∗) = π0 (1− f(u∗)) f(u∗)

m
∑

i=1

ϕ1i

i
∏

j=1

π0 (1− f(u∗)) f(u∗)τj−1

1− π0 (1− f(u∗)) (1− τjf(u∗))
,

where

f(u∗) =
− (1− π0) +

√
1− π0

π0
.

The bifurcation to evolutionary non-extinction equilibria occurs for R0(0, u
∗) ' 1 [12].

In this interpretation, the bifurcation phenomenon can now be determined in terms of
the any of the size-specific fertilities ϕ1i or the growth rates τi or the survivorship π0.

For example, if all size classes but the largest consist of juveniles, so that all ϕ1i = 0
except ϕ1m > 0, then we have the formula

R0(0, u
∗) = [π0 (1− f(u∗)) f(u∗)]

m+1
ϕ1m

m
∏

j=1

τj−1

1− π0 (1− f(u∗)) (1− τjf(u∗))

and the bifurcation requirement that R0(0, u
∗) ' 1 can now be re-stated as a threshold

for adult fertility ϕ1m ' ϕ∗

1m.

4 Concluding Remarks

Theorems 2.1 and 2.2 describe a fundamental bifurcation phenomenon for a class of non-
linear matrix models that describe the evolutionary dynamics of a structured population.
The type of matrix models considered in these theorems (which are motivated by cer-
tain size-structured models that arise in applications found in the literature) possess a
strong ergodic property: solutions, whatever their dynamics, have a stable (normalized)
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class distribution. This property, when applied to the Darwinian matrix models obtained
from these population dynamic models by the methods of evolutionary game theory [17],
leads to limiting equations for the evolving phenotypic trait and the total (weighted)
population size.

The bifurcation phenomenon in Theorems 2.1 and 2.2 is fundamental in the sense
that it concerns the fundamental biological question of extinction versus non-extinction,
or in the context of the Darwinian models (6) considered here, evolution to extinction
versus evolution to a non-extinction equilibrium state. These theorems show that this
transition occurs at (and only at) a critical value θ∗ of the bifurcation parameter θ and
what we have defined to be a critical extinction trait value u = u∗. The bifurcation does
not always lead to stable non-extinction equilibria, however, and Theorem 2.2 describes
when the bifurcation is stable and when it is not.

The requirements for a stable bifurcation turn out to imply (among other things) that
the inherent growth rate r of the population dynamics must attain a (local) maximum
at the critical value of the trait (a fact that also implies the evolutionarily stable non-
extinction equilibria are candidates for an ESS [17]). Although we do not pursue the issue
here, the biological interpretation of these requirements is that some kind of a trade-off
must occur among vital life history traits as a function of the phenotypic trait u. This
is illustrated by the example in Section 3.

There remain several interesting open problems. Theorem 2.1 provides the existence
of a local bifurcating branch of non-extinction equilibria. Similar theorems for popu-
lation dynamic models without evolution assert the global existence of this branch. A
global bifurcation theorem for the Darwinian model is lacking. The instability results
in 2.2(b), in which the equilibria on both the extinction equilibrium and non-extinction
equilibrium branches are unstable, leave open the question of the asymptotic dynamics
in this case. The same question arises in 2.2(a) when the bifurcation is subcritical. Also,
the methodology of evolutionary game theory is applicable when more than one pheno-
typic trait evolves. The ergodic Theorem 1.1 would still apply to the Darwinian matrix
models for multiple traits and hence permit an analysis by means of lower dimensional
limiting equations. Bifurcation theorems for these multi-trait Darwinian models would
be of interest.

In this paper the focus is on the special class of Darwinian matrix models with
projection matrices of the form (3). A bifurcation theorem for matrix models with more
general projection matrices is given in [11].
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Abstract: We model a dynamic monopoly with environmental externalities, in-
vestigating the adoption of a tax levied on the firm’s instantaneous contribution to
the accumulation of pollution. The latter process is subject to a shock, which is i.i.d.
across instants. We prove the existence of an optimal tax rate such that the monopoly
replicates the same steady state welfare level as under social planning. Yet, the corre-
sponding output level, R&D investment for environmental friendly technologies and
surplus distribution necessarily differ from the socially optimal ones.

Keywords: environmental externality; stochastic shock; optimal taxation; differen-

tial game.
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1 Introduction

A lively debate is currently taking place on the need to preserve the environment from the
negative consequences of pollution generated by industrial activities ? . A crucial aspect
is the lack of incentives on the part of profit-seeking firms to carry out R&D projects to
generate new environmental-friendly technologies.

To this effect, policy makers may adopt several forms of regulation and taxa-
tion/subsidization policies to induce firms to internalize externalities and invest accord-
ingly. The standard approach to this problem consists in introducing a Pigouvian tax
or subsidy rule whereby firms pay or receive an amount of money proportional to the
aggregate current stock of pollutants generated by the industry as a whole. We propose
an alternative policy design, where the tax is levied on the marginal contribution to the

∗ Corresponding author: mailto:luca.lambertini@unibo.it
? For an exhaustive account, see [12] and [6].
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accumulation process followed by pollution. Accordingly, this policy is close in spirit to
the adoption of a quality standard, such as the use of filters capturing CO2, in order to
decrease the amount of pollutants emitted by a car per mile.

We evaluate this perspective in a simple optimal control model where the market is
monopolistic. To add a realistic feature to our framework, we allow for the presence of a
stochastic shock affecting the accumulation of pollution, in such a way that the resulting
optimal tax rate depends on the expected value of the shock. Our main result is that
there exists a tax policy (i) inducing the firm to invest in R&D for a greener technology
and (ii) yielding the same steady state social welfare as under social planning. However,
the two allocations characterizing, respectively, the regulated monopoly and the first
best differ under all remaining respects, i.e., price, output, R&D investment and surplus
distribution.

The remainder of the paper is structured as follows. The model is laid out in Section
2. Section 3 contains the analysis of the regulated monopoly. The first best allocation
is described in Section 4, while Section 5 investigates the optimal design of taxation.
Concluding remarks are in Section 6.

2 The Setup

Consider a monopolistic single-product firm facing the instantaneous demand function
p(t) = a − q(t), where a > 0 is the reservation price and q(t) ∈ [0, a− c] is the output
level. The production cost is linear in q(t) with unit cost c ∈ (0, a). The production
process involves a negative environmental externality S(t), that accumulates according
to the dynamics

Ṡ(t) = b(t)q(t) − δS(t)

θ(t)
. (1)

This evolutionary structure features a depreciation rate δ > 0, which is also affected by
a stochastic shock on its slope, in the form of a random variable θ(t), i.i.d. over time,
with mean E(θ) = 1 and variance V ar(θ) = σ2

θ > 1. For future reference, we define
the mean of the reciprocal as E(θ−1) = w > 1, by Jensen’s inequality ?. Our way of
modelling uncertainty admittedly differs from the standard approach taken in the existing
literature on stochastic differential games, where usually a Wiener process appears (for
an overview, see [4], 2000, ch. 8). In place of a Wiener process, we consider the presence
of a shock that, being i.i.d. across instants, allows us to take the necessary conditions on
the expected value of the Hamiltonian function. Accordingly, by applying Pontryagin’s
maximum principle to the expected value of the Hamiltonian, one has that the mean
and variance of the shock enter the necessary conditions as parameters. That is, this
way of formalising the presence of uncertainty has no procedural bearings on the solution
techniques needed to characterise the resulting steady state equilibrium. In particular,
when deriving the control equations, we will see that these contain the parameters of the
distribution of the shock, but not the shock itself as a function of time.

The assumption that the dynamics of the stock of pollution is subject to shocks has
been introduced to capture the idea, largely discussed in the current debate on global
warming and the anthropic responsibility in its evolution, that our knowledge of this
matter is still incomplete and subject to natural factors beyond human control. In
particular, our way of modelling (1) refers to uncertainty affecting measures of the rate

? For examples of analogous approaches in literature on industrial organization, see [8] or [10].
Systems of equations with random parameters have also been investigated by [11].
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at which the atmosphere can absorb and eliminate CO2-equivalent emissions, especially
if one takes into account deforestation ?.

To create an incentive for the monopolist to invest in R&D so as to make its produc-
tive technology more environmental-friendly, the government imposes an instantaneous
Pigouvian taxation. Usually, the Pigouvian tax is levied on the total amount of the
externality (see [7], or [1],[2], inter alia). Here, we propose an alternative policy design,
whereby the firm is subject to an instantaneous tax equal to τb (t) , i.e., what is being
taxed is indeed the rate b (t) at which a unit of final product contributes to the increase in
the stock of pollution. The coefficient b(t) is thus a further state variable whose dynamic
equation is a linear one:

ḃ(t) = −k(t) + ηb(t), (2)

with η > 0, and decreasing in k (t) ≥ 0, which is the instantaneous R&D effort carried out
by the firm. A plausible economic interpretation of b (t) is to see it as the environmental
obsolescence rate of technology, measuring the growth rate of the external damage in-
volved by the use of technologies that become increasingly more polluting as time goes
by.

The R&D technology used by the firm involves an instantaneous cost measured by
Γ(t) = zk2(t), where z is a positive constant. The problem for the monopolistic firm
consists in maximizing w.r.t controls k(t) and q(t) the expected value of the following
payoff functional:

J ≡
∫

∞

0

e−ρt((p(t) − c)q(t)− Γ(t)− τb(t))dt, (3)

subject to:


























ḃ(t) = −k(t) + ηb(t),

Ṡ(t) = b(t)q(t)− δS(t)

θ(t)
,

b(0) = b0 > 0,

S(0) = S0 > 0.

(4)

This is a modified (monopolistic) version of a dynamic oligopoly game with environmental
effects examined in [5]. The main differences consist in (i) the presence of a shock
affecting the accumulation of the environmental externality; (ii) the functional form
of the dynamics of b(t), linear in this case; (iii) the tax is levied on the monopolist’s
contribution to pollution and not on the overall stock of pollution itself.

3 The Monopoly Optimum

The current value Hamiltonian function reads as:

H(·) = (a− c− q(t))q(t) − zk2(t)− τb(t)+ (5)

+λ(t)(−k(t) + ηb(t)) + µ(t)

(

b(t)q(t) − δS(t)

θ(t)

)

,

where λ(t) is the costate variable associated with the state b(t) and µ(t) is the one
associated with the other state S(t). Because of the aleatory effect, the monopolist is

? According to the Department of Economics and Social Affairs of UNO, “ongoing deforestation
accounts for about 8% of the world’s annual carbon emissions” (see [3], 2009, p. 86).
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supposed to maximize the expected value of the Hamiltonian E(H). From now on, we
will drop the time argument for brevity.

What follows is the list of the necessary conditions for the maximization of E(H),
adjoint equations and transversality conditions (an application of Pontryagin’s Maximum
Principle in a stochastic framework can be found in [9]) ?:

∂E(H)

∂k
= −2zk− λ = 0, (6)

∂E(H)

∂q
= a− c− 2q + µb = 0, (7)

λ̇ = ρλ− ∂E(H)

∂b
= (ρ− η)λ− µq + τ, (8)

µ̇ = ρµ− ∂E(H)

∂S
= (ρ+ δw)µ, (9)

lim
t−→∞

e−ρtλ(t) = 0, lim
t−→∞

e−ρtµ(t) = 0. (10)

Note that in (9) we make use of the expected value E(θ−1) = w. On this basis, we are
going to write the control equations as well as the state equations in expected value.
By differentiating (6) and (7) w.r.t. time, (4), (8) and (9) amount to the following
state-control dynamical system:































































E
(

ḃ
)

= −k + ηb,

E
(

Ṡ
)

= bq − δwS,

E
(

k̇
)

= (ρ− η)k − (a− c− 2q)q

2zb
− τ

2z
,

E (q̇) =
1

2

(−a+ c+ 2q

b

)

[−k + (η + ρ+ δw)b].

(11)

Proposition 3.1 The model admits a unique steady state P ∗ = (b∗, S∗, k∗, q∗),
whose coordinates are, respectively,

b∗ =
τ

2η(ρ− η)z
, S∗ =

τ(a − c)

4η(ρ− η)zδw
, k∗ =

τ

2(ρ− η)z
, q∗ =

a− c

2
.

Proof Solving (11) yields a unique stationary point P ∗, whose coordinates are all
strictly positive if ρ− η > 0.

Clearly, if ρ ∈ [0, η) , then τ must be negative in order for the vector (b∗, S∗, k∗, q∗)
to be economically meaningful. In this range, the fact that discounting is lower than the
environmental obsolescence rate entails that the only feasible policy takes the form of a
subsidy. Conversely, for all ρ > η, τ must be positive, i.e., the regulator has to tax the
firm to induce the entrepreneur to carry out a positive amount of R&D.

? We omit the explicit exposition of second order conditions for a maximum as they are satisfied by
construction.
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Note that, while k∗ is a function of τ, q∗ is not. This immediately implies that, by
adopting this policy, the regulator is providing the firm with an incentive to carry out
R&D while leaving unaffected the choice of the optimal monopoly output (and therefore
the corresponding price level).

As a clear consequence of the dynamics of the model, the only coordinate affected
by uncertainty is S∗, i.e., the steady state level of the pollution stock is a function of w.
The Jacobian matrix of (11) evaluated at P ∗ is:

J(P ∗) =



























η 0 −1 0

a− c

2
−δw 0

τ

2η(ρ− η)z

0 0 ρ− η
η(a− c)(ρ− η)

τ

0 0 0 ρ+ δw



























.

Proposition 3.2 P ∗ is a saddle point for the system (11).

Proof J(P ∗) has the negative eigenvalue λ1 = −δw, and the positive eigenvalues
λ2 = ρ + δw, λ3 = η and that is sufficient to deduce that P ∗ represents a saddle point
equilibrium for (11).

Note that, if ρ > η, the stable subspace E(P ∗) is spanned by the vector (0, 1, 0, 0),
that is, on the S-axis the time trajectory of the stock of pollution asymptotically heads
towards the level S∗.

Since the model features a single agent, there obviously exists a unique feedback
stationary strategy coinciding with the open-loop solution. In particular, the related
optimal value function V (b, S) satisfying the Hamilton-Jacobi-Bellman equation is linear-
quadratic in b and linear in S.

3.1 Welfare and profit assessment

Let E (π∗), E (CS∗) and E (SW ∗) be the profit, the consumer surplus and the social
welfare functions evaluated at the steady state P ∗. We have that:

E (π∗) = (a− c− q∗)q∗ − z(k∗)2 − τb∗ =
(a− c)2

4
− τ2(3η − 2ρ)

4η(ρ− η)2z
, (12)

independent of w.

Proposition 3.3 1. If ρ >
3η

2
, then E (π∗) > 0 for every τ .

2. If 0 < ρ <
3η

2
, then E (π∗) > 0

∀ τ ∈
(

min

{

∓(a− c)(ρ− η)

√

ηz

3η − 2ρ

}

,max

{

∓(a− c)(ρ− η)

√

ηz

3η − 2ρ

})

.

Proof Trivially, the expression (12) is strictly positive irrespective of the value of

τ if ρ >
3η

2
, whereas if ρ <

3η

2
, the positivity is ensured if τ belongs to the interval

(−τ1, τ1), where τ1 = max±(a− c)(ρ− η)

√

ηz

3η − 2ρ
.
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The consumer surplus at equilibrium reads:

E (CS∗) =
(q∗)2

2
+ τb∗ =

(a− c)2

8
+

τ2

2η(ρ− η)z
.

Finally, the social welfare at equilibrium follows:

E (SW ∗) = E (CS∗ − S∗ + π∗) =
3(a− c)2

8
− τ2

4(ρ− η)2z
− τ(a − c)

4η(ρ− η)zδw
.

Proposition 3.4 E (SW ∗) > 0 for every τ belonging to the interval:

(

min

{

− (a− c)(ρ− η)

2

(

1

ηδw
∓ z

√

1

η2z2δ2w2
+

6

z

)}

,

max

{

− (a− c)(ρ− η)

2

(

1

ηδw
∓ z

√

1

η2z2δ2w2
+

6

z

)})

.

Proof It suffices to solve the inequality E(SW ∗) > 0 with respect to τ .

4 The First Best

Now we briefly expose the first best solution that would be attained if the firm were run
by a benevolent planner maximizing the discounted flow of social welfare w.r.t. q and k.
The planner’s Hamiltonian is:

HP (·) = (a− c− q)q − q2

2
− S − zk2 + λ(−k + ηb) + µ

(

bq − δS

θ

)

. (13)

Taking the necessary conditions on the expected value of HP (·) and following the same
procedure as in the previous section, we obtain the following steady state coordinates
(the subscript P stands for planner):

bP =
(a− c) (ρ+ δw)

1 + 2ηz (ρ+ δw)
2
(ρ− η)

,

SP =
2 (a− c)

2
η (ρ− η) (ρ+ δw)

3
z

δw
[

1 + 2ηz (ρ+ δw)2 (ρ− η)
]2 ,

kP =
(a− c) (ρ+ δw) η

1 + 2ηz (ρ+ δw)
2
(ρ− η)

,

qP =
2 (a− c) η (ρ− η) (ρ+ δw)

2
z

1 + 2ηz (ρ+ δw)
2
(ρ− η)

.

(14)

Note that all of these coordinates are affected by the shock. The associated profits and
consumer surplus are:

E (πP ) =
(a− c)

2
η (2ρ− 3η) (ρ+ δw)

2
z

[

1 + 2ηz (ρ+ δw)2 (ρ− η)
]2 , (15)
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E (CSP ) =
1

2

[

2 (a− c) η (ρ− η) (ρ+ δw)2 z

1 + 2ηz (ρ+ δw)
2
(ρ− η)

]2

. (16)

Hence, the resulting social welfare level is E (SWP ) = E (πP + CSP − SP ) . Before pro-
ceeding any further, it is worth stressing the following straightforward result:

Proposition 4.1 If ρ >
3η

2
, then πP > 0.

We are now in a position to address the following question, i.e., whether the policy
maker regulating the behaviour of a profit-maximizing monopolist can design an optimal
tax rate τ so as to replicate the same welfare performance associated to the first best
allocation we have just sketched. This must be done under the non-negativity constraint
concerning the firm’s profits, as established in Proposition 3.3.1. In doing so, we shall
confine our attention to the parameter range ρ > 3η/2, in order for the planning equi-
librium to be sustainable under our partial equilibrium approach, i.e., in absence of any
other industrial sector that could be taxed to raise the money necessary for the survival
of the public monopoly for all ρ ∈ [0, 3η/2) .

5 Designing the Optimal Taxation

The policy maker’s problem consists in solving

∆E (SW ) = E (SWP − SW ∗) = 0 (17)

w.r.t. τ, with

∆E (SW ) =
1

8

[

2τ2

(ρ− η)2 z
+

2 (a− c) τ

δη (ρ− η)wz
− 3 (a− c)

2
+Ψ

]

, (18)

where

Ψ ≡
8η (a− c)

2
(ρ+ δw)

2
z
[

2δη (ρ− η)
2
w (ρ+ δw)

2
z − 2ρ (ρ− η)− δηw

]

δ
[

1 + 2ηz (ρ+ δw)
2
(ρ− η)

]

w
. (19)

Equation (17) has two real roots in τ, τ− < 0 < τ+
?. On this basis, we can state our

final result:

Proposition 5.1 For all ρ >
3η

2
, there exists a tax (τ+) allowing the policy maker

to replicate at the monopoly equilibrium the social welfare performance associated with
the first best.

The negative solution must be discarded in view of Proposition 4.1. As a last remark,
again recollecting Proposition 3.1, it is worth pointing out that such a policy can only
reproduce the aggregate surplus created by this industry, while the output and the R&D
effort will necessarily differ across regimes. To see this, it’s sufficient to compare q∗

against qP : while the former is constant (and coincides with the standard output that we
usually observe in a monopoly equilibrium with the same demand and cost functions), the
latter clearly accounts for the shock affecting the accumulation of pollution. Additionally,
one may observe that k∗ = kP obtains in correspondence of a value of τ that does not
solve (17).

? We omit the lengthy expressions of the two roots for the sake of brevity.
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6 Conclusion

In a dynamic monopoly model with environmental externalities, we have investigated
the possibility of using a tax taylored on the firm’s instantaneous contribution to the
accumulation of pollution, which is subject to a shock, the latter being i.i.d. across
instants. There exists an optimal tax rate such that the industry exactly replicates the
same steady state welfare performance as in the first best. However, the corresponding
expected values of output level, R&D investment for green technologies and surplus
distribution necessarily differ from those characterising social planning.

An interesting extension of the foregoing analysis is the design of the same kind of
policy in an oligopoly game where each single firm might refrain from investing in envi-
ronmental friendly technologies due to the usual free riding incentive usually associated
with strategic interplay. This is left for future research.
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1 Minimization with Equality Constraints

We consider the nonlinear programming problem of finding a point x∗ ∈ Rn to

minφ(x) subject to ψ(x) = 0, (1)

where the functions φ(·) : Rn →R1 and ψ(·) : Rn →Rm are C2. We develop differential
equation algorithms of the form

ẋ = g(x),

where (·) denotes d()/dt and t is time. We choose the function g(·) with the objec-
tive of having solutions x(t) → x∗ as t → ∞. Such “trajectory following” algorithms
have received considerable attention in recent years. In [1] Steepest Descent differential
equations are used to design controllers for nonlinear systems. In [2] optimal control dif-
ferential equations are used to design new discrete minimization algorithms. In [3] and
[4] differential equation algorithms are investigated for min-max optimization problems.
In [5] and [6] differential equations for Newton’s method are used to find all of the sta-
tionary points of a function. In [7] a Gradient Enhanced Newton algorithm is developed
for finding a stationary proper minimum point. In [8] a Gradient Enhanced Min-Max
method is developed for finding a proper stationary min-max saddle point.

In this paper, we extend the stationarymin andmin-max results of [7] and [8] to include
equality constraints. As in these previous papers, we are concerned with differential
equation-based algorithms, and with the stiffness and domain of stability of a family
of gradient-based numerical update algorithms. These algorithms include, as special
cases, Steepest Descent, Min-Max Ascent, Newton’s Method, augmented Lagrangians
and Hestenes’ Method of Multipliers, and the Gradient Enhanced Min-Max algorithm
that we extend here for minimization subject to equality constraints. We use Lyapunov
exponents to measure the stiffness (e.g., widely separated time scales and eigenvalues) of
the various algorithms when applied to an equality constrained version of Rosenbrock’s
“banana” function.

2 Necessary Conditions at a Minimum Point

The necessary conditions for x∗ ∈ Rn to yield a regular [9, p. 35] local minimum can be
expressed in terms of the Lagrangian

L(x,λ)
4

= φ(x) − λᵀ
ψ(x), (2)

where λ ∈ Rm is a vector of Lagrange multipliers and ψ(·) : Rn → Rm represents a
system of m < n equality constraints that must be satisfied at x∗.

The first-order Karush–Kuhn–Tucker necessary conditions [9, p.57] are that:

0ᵀ =
∂L

∂x
=
∂φ

∂x
− λᵀ

∂ψ

∂x
, 0ᵀ =

∂L

∂λ
= −ψᵀ(x), (3)

where ∂L/∂x
4

= [∂L/∂x1, . . . , ∂L/∂xn]. Since ∂L/∂λ = −ψᵀ the necessary conditions
can be written in terms of yᵀ = [xᵀ,λᵀ] ∈ Rp, p = n+m, as

∇yL(y)
4

=

[

∂L

∂y

]ᵀ

= 0, (4)
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that is,

∇xL =

[

∂φ

∂x

]ᵀ

−
[

∂ψ

∂x

]ᵀ

λ = 0, ∇λL =

[

∂L

∂λ

]ᵀ

= −ψ = 0.

The necessary conditions (4) are stationarity conditions, yielding candidates that may
be local minima, maxima, or saddle points. Suppose that the constraint qualification
conditions [9, p. 55] hold: that at x∗ there exists a nonzero vector η ∈ Rn tangent to
the constraints ψ(x∗) = 0. Then the second-order necessary condition [9, p. 56] for a
regular local minimum point is that

ηᵀH(x∗,λ∗)η ≥ 0 for all nonzero η such that
∂ψ(x∗)

∂x
η = 0, (5)

where H(x,λ) = ∂2L(x,λ)/∂x2. A second-order sufficient condition is that ∇yL(y) =
[∂L (y∗) /∂y]

ᵀ
= 0 and

ηᵀH(x∗,λ∗)η > 0 for all nonzero η such that
∂ψ(x∗)

∂x
η = 0, (6)

which would be satisfied, for example, by the stronger condition that H(x∗,λ∗) be pos-
itive definite.

3 Numerical Minimization Methods

Numerical minimization methods [10] generally seek a search direction s and a step size
α for a move x ← x + αs. Here, we focus on the instantaneous search direction, us-
ing a differential step size with continuous updating of the search direction. Thus we
develop “trajectory following” algorithms of the form dx/dt = g(x). Such differential
equations-based algorithms have been very useful in developing new discrete optimiza-
tion algorithms [2] based on long-term optimal control algorithms. In addition, using a
differential step size avoids difficulties such as “chatter” that can occur with discrete step
size algorithms such as Steepest Descent applied, for example, to Rosenbrock’s function
[7].

3.1 Unconstrained minimization

3.1.1 Steepest descent

The simplest algorithm for minimizing an unconstrained function φ(x) is the Steepest
Descent algorithm

ẋ = −∇φ,

with ∇φ
4

= [∂φ/∂x]
ᵀ
, which yields

dφ

dt
=
∂φ

∂x
ẋ = −‖∇φ‖2 ,

where ‖·‖ denotes the Euclidian norm. If x∗ is a local minimal point for φ(x) then
V (x) = φ(x) − φ(x∗) is a local Lyapunov function, establishing that Steepest Descent
is at least locally asymptotically stable at a proper local minimum. In addition, if
x∗ is unique and ‖∇φ(x)‖ → ∞ as ‖x‖ → ∞ then the minimal point x∗ is globally
asymptotically stable.

Steepest Descent may produce stiff systems. Such systems require much more compli-
cated differential equation solvers than Euler’s method or Runge–Kutta methods, leading
to complicated discrete versions.
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3.1.2 Newton’s method

From Taylor’s theorem applied to the stationarity necessary condition

∇φ = 0,

we get
∇φ(x+∆x) = ∇φ(x) +∇

2φ(x)∆x +O(‖∆x‖2), (7)

where ∇
2φ

4

= ∂2φ/∂x2 is the Hessian matrix, ∆x = ẋ∆t +O(∆t2), and O(α2)/α→ 0
as α→ 0. Setting the left-hand side equal to zero yields the discrete-time (∆t = 1, small

‖∆x‖) version of Newton’s method: ∆x = −
[

∇
2φ

]

−1
∇φ.

In the limit as ∆t→ 0, the continuous-time Newton method is given by

ẋ = −
[

∇
2φ

]

−1
∇φ. (8)

The discrete-time version of Newton’s method corresponds to applying Euler integration
∆x = ẋ∆t to (8) with ∆t = 1.

Note that Newton’s method is only well defined in a region where the determinant
∣

∣∇
2φ(x)

∣

∣ does not change sign and is nonzero, such as some neighborhood of a proper

local minimal point x∗, at which ∇
2φ(x∗) > 0 (positive definite). Newton’s method,

in regions where it does work, typically converges much faster than Steepest Descent,
and yields non-stiff systems. In particular, in terms of the gradient ∇φ [x (t)] along x(t),
Newton’s method (8) yields

d∇φ

dt
=

[

∇
2φ

]

ẋ = −∇φ,

which is non stiff, with eigenvalues µk = −1, k = 1, . . . , n. Note that, along x(t) we
have ∇φ [x (t)] = ∇φ [x (0)] e−t → 0 as t → ∞, hence ∇φ [x(t)] → 0. As with Steepest
Descent, Newton’s method is at least locally asymptotically stable to a proper local
minimal point.

3.2 Constrained minimization

3.2.1 Penalty functions

The earliest approach to handling equality constraints ψ(x) = 0 was to apply uncon-
strained minimization to a penalty function such as Courant’s penalty function

π(x, β) = φ(x) +
1

2
β ‖ψ(x)‖2 = φ(x) +

1

2
βψᵀ(x)ψ(x), (9)

with a sequence of increasing values for β > 0. Then Steepest Descent yields

ẋ = −∇π = −∇φ(x) − βΓᵀ(x)ψ(x),

where Γ ∈ Rm×n is given by
Γ(x) = ∂ψ(x)/∂x. (10)

The main difficulty with this approach is that, for any finite β > 0, the point that
minimizes π(x, β) is not exactly the same point that minimizes φ(x) subject to ψ(x) = 0,
except in the limit as β → ∞. In addition, large values of β yield stiff systems. Note
that Newton’s method applied to (9) may alleviate the stiffness, but not the “mismatch”
between the two minimization solutions, which requires β →∞.
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3.2.2 Newton’s method

The first-order necessary conditions for a stationary point of φ(x) subject to ψ(x) = 0

are given by (3) in terms of a Lagrange multiplier vector. Newtons method, applied to
(4), is given by

[

ẋ

λ̇

]

= −H−1(y)

[

∇xL
−ψ(x)

]

, (11)

where

H(y) = ∇
2
yL

4

=
∂2L

∂y2
=











∂2L

∂x2

∂2L

∂λ∂x

∂2L

∂x∂λ

∂2L

∂λ2











=







∂2L

∂x2
−Γᵀ

−Γ 0






. (12)

3.2.3 Min-Max Lagrangians

Consider the Lagrangian

L(x,λ) = φ(x) − λᵀψ(x).

Let x(λ) denote the unconstrained minimizer for L(x,λ), and let x∗ and λ∗ be the
solution and Lagrange multiplier, respectively, for the constrained minimization problem
(1). Then L(x(λ),λ) ≤ L(x,λ) ∀ x, along with ψ(x∗) = 0 , yields

L(x(λ),λ) ≤ L(x∗,λ) = φ(x∗)− λᵀψ(x∗)

= φ(x∗) = φ(x∗)− λ∗ᵀψ(x∗)

= L(x∗,λ∗) = L(x (λ∗) ,λ∗).

Thus

L(x∗,λ∗) = max
λ

min
x
L(x,λ) = min

x
max
λ

L(x,λ), (13)

since L(x,λ) is linear in λ.

A Min-Max Ascent algorithm [3] for achieving the Lagrangian saddle point defined
by (13) is given by

ẋ = −∇xL(x,λ) = −∇φ(x) + Γᵀ (x)λ, (14)

λ̇ = ∇λL(x,λ) = −ψ(x). (15)

As noted in [11], methods such as this, where x∗ solves the primal problem (1) and λ(u)
is the Lagrange multiplier vector for an associated dual problem [12, p. 113]:

min
u∈Nu

x(u)∈Nx

φ[x(u)] subject to ψ [x(u)] = u (16)

with λ(0) = λ∗ and Nu⊂ Rm and Nx⊂ Rn being small neighborhoods of u∗ = 0 and
x∗, respectively, have “... serious disadvantages. First, problem (1) must have a locally
convex structure in order for the dual problem (16) to be well defined and (15) to be
meaningful. Second, ..., the ascent iteration (15) converges only moderately fast.”
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3.2.4 Augmented Lagrangians

The following results apply to the equality constrained problem (1), but can be extended
to the general nonlinear programming problem with equality and inequality constraints.

Consider an augmented Lagrangian [13]

L(x,λ,β) 4

= L(x,λ) + 1
2ψ(x)

ᵀSψ(x) = φ(x) + 1
2ψ(x)

ᵀSψ(x) − λᵀ
ψ(x), (17)

where β ∈ Rm, β≥ 0, and S = diag [β] ∈ Rm×m. The augmented Lagrangian (17)
can be viewed either as 1) the Lagrangian plus a penalty term or 2) the Lagrangian for
minimizing a weighted Courant penalty function (9) subject to ψ(x) = 0. In the first
case view, since a purely x-dependent penalty term has been added to L(x,λ), we expect
that in changing to a maxλ minx L(x,λ) vs. maxλ minx L(x,λ) process, λ has no effect,
but x affords a trade-off between the x that minimizes L(x,λ) and the x that minimizes
L(x,λ,β). However, the penalty weights βi on the ψi do not need to approach infinity
for the two solutions to be the same and can be quite moderate in size. We have:

Theorem 3.1 If second-order sufficient conditions (6) hold at (x∗,λ∗) then there
exists β′ ≥ 0 such that for any β >β′, x∗ is an isolated local minimizer of L(x,λ∗,β),

that is, x∗ = x(λ∗). Furthermore, λ∗ is a local maximizer of ν(λ)
4

= L(x(λ),λ,β).

Proof [10, pp. 289–291].

Hereafter we consider the case where S = βIm and drop the β argument in L(·) unless
it is expressly needed for the discussion.

4 Gradient Transformation Trajectory Following

From Theorem 3.1 we seek a maxλ minx L(x,λ). We consider the class of Gradient
Transformation algorithms, of the form

ẏ = −P(y)∇yL(y), (18)

where P(y) ∈ Rp×p is a Gradient Transformation matrix to be chosen, y ∈ Rp with
yᵀ = [xᵀ,λᵀ], and

h(y) = ∇yL(y) =
[

∇xL
∇λL

]

=

[

∇xL+ βΓᵀψ

∇λL

]

=

[

∇φ− Γᵀ [λ− βψ]
−ψ

]

. (19)

Thus the Gradient Transformation algorithms are of the form

[

ẋ

λ̇

]

= −
[

Pxx Pxλ

Pλx Pλλ

] [

∇xL
∇λL

]

=

[

Pxx Pxλ

Pλx Pλλ

] [

−∇φ+ Γᵀ [λ− βψ]
ψ

]

. (20)

If P(y) is nonsingular in a region R ⊆ Rp containing y∗ = (x∗,λ∗) then for (18) the
only equilibrium points in R are where ∇yL(y∗) = 0. We will be concerned with the
uniqueness and local and global stability of the (possibly multiple) equilibria and with
the “stiffness” of the resulting system, corresponding to various choices for P(y).
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4.1 Min-Max ascent

The original trajectory following method [3] for seeking maxλ minx L(x,λ) is via steepest
descent for x and steepest ascent for λ, yielding

ẋ = −∇xL = − [∇xL+ βΓᵀψ] = −∇xφ+ Γᵀ [λ− βψ] ,
λ̇ = ∇λL = ∇λL = −ψ.

This corresponds to choosing

P =

[

Pxx Pxλ

Pλx Pλλ

]

=

[

In 0

0 −Im

]

(21)

in (20), where Ip denotes the p× p identity matrix.

4.2 Hestenes’ method of multipliers

In a discrete-time setting let λk denote the current estimate for the Lagrange multiplier
λ∗ and let x = x(λk) denote the minimizer of L(x,λk). Then

0 = ∇xL = ∇xL+ βΓᵀψ = ∇xφ− Γᵀ [λk − βψ] .

Hestenes [13] suggests taking λk+1 = λk − βψ. Then if ψ(xk+1) = 0 at the minimizer
xk+1 of L(x,λk+1)

0 = ∇xL = ∇xL = ∇xφ (xk+1)− Γᵀ (xk+1)λk+1

would yield (xk+1,λk+1) = (x∗,λ∗) satisfying the first-order necessary conditions (3).
The continuous-time version of Hestenes’ Method of Multipliers is λ̇ = −βψ. This,

coupled with steepest descent on x, corresponds to choosing in (20):

P =

[

Pxx Pxλ

Pλx Pλλ

]

=

[

In 0

0 −βIm

]

. (22)

4.3 Newton’s method

For maxλ minx L(x,λ) the first-order necessary conditions are

0 = ∇xL = ∇xL+ βΓᵀψ, 0 = ∇λL = ∇λL = −ψ. (23)

Newton’s method applied to (23) is given by

[

ẋ

λ̇

]

= −H−1(y)

[

∇xL
∇λL

]

= −H−1(y)

[

∇xL
−ψ

]

, (24)

where

H(y) 4

= ∇
2
yL =

∂2L
∂y2

=







∂2L
∂x2

−Γᵀ

−Γ 0






, (25)

with Γ(x) defined by (10). This corresponds to choosing in (20):

P =

[

Pxx Pxλ

Pλx Pλλ

]

= H−1.
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Instead of assuming H−1 exists, Newton’s method can be written as

H(y)





ẋ

λ̇



 =







∂2L
∂x2

−Γᵀ

−Γ 0











ẋ

λ̇



 = −





∇xL

∇λL



 . (26)

A geometric interpretation of Newton’s method is given by noting that

d

dt





∇xL

∇λL



 =











∂2L
∂x2

ẋ+
∂2L
∂λ∂x

λ̇

∂2L
∂x∂λ

ẋ+
∂2L
∂λ2 λ̇











=







∂2L
∂x2

−Γᵀ

−Γ 0











ẋ

λ̇



 . (27)

Thus from (26)
d

dt

[

∇xL
∇λL

]

= −
[

∇xL
∇λL

]

. (28)

Hence
[

∇xL
∇λL

]

t

= e−t
[

∇xL
∇λL

]

t=0

and we have

[

∇xL
ψ

]

t

= e−t
[

∇xL
ψ

]

t=0

→
[

0

0

]

as t→∞.

Thus Newton’s method: a) is at least locally asymptotically stable to a point ŷ satisfying
the necessary conditions (3) provided H−1(ŷ) exists, b) is not stiff (all eigenvalues are
µ = −1), and c) has a domain of attraction that is the region containing ŷ, where H−1

exists. However, Newton’s method may not be globally convergent. Furthermore, it
only seeks stationary points of the augmented Lagrangian L(x,λ), not specifically those
yielding maxλ minx L(x,λ).

5 Stiff Differential Equations

Stiff systems are systems of differential equations which have two or more widely sepa-
rated time scales, usually specified in terms of eigenvalues. For nonlinear systems we will
use Lyapunov exponents.

5.1 Lyapunov exponents

Lyapunov exponents [14, p. 205] are generalizations of eigenvalues and characteristic
(Floquet) multipliers that provide information about the (average) rates at which neigh-
boring trajectories converge or diverge in a nonlinear system. Let y(t) and ỹ(t) be
solutions to

ẏ = f(y), (29)

starting from neighboring initial conditions, and let ρ(t) = ‖ỹ(t)− y(t)‖ be the distance
between the trajectory y(t) and the perturbed trajectory ỹ(t) at time t. If ρ(0) is ar-
bitrarily small and ρ(t) → ρ(0)eσt as t → ∞ then σ is called a Lyapunov exponent
for the reference trajectory y(t). The distance between the trajectory points y(t) and
ỹ(t) grows, shrinks, or remains constant for σ > 0, σ < 0, or σ = 0, respectively. In
a p-dimensional state space there are p real Lyapunov exponents, σ1 ≥ . . . ≥ σp, corre-
sponding to exponential growth rates in p orthogonal directions. For a given trajectory



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 10 (2) (2010) 125–160 133

y(t) the Lyapunov exponents are unique, but are functions of the initial state. Arbitrar-
ily close initial states (e.g., on and to either side of a separatrix) may yield trajectories
with different Lyapunov exponents, corresponding to different behaviors as t→∞.

If f(·) is continuous and continuously differentiable the Lyapunov exponents can be
calculated in terms of the state perturbation equations

η̇ = A(t)η, A(t) =
∂f [y(t)]

∂y
, (30)

where A(t) is evaluated along a trajectory y(t) and, for small α, ỹ(t) = y(t) + αη(t) +
O(α2) is an initially neighboring trajectory. If f(·) is discontinuous across some “switch-
ing surface” in state space certain “jump conditions” must be imposed to accurately
compute Lyapunov exponents [15].

For the special case of an equilibrium y(t) = constant, so that A is constant, the
Lyapunov exponents σk are the real parts of the eigenvalues µk, k = 1, . . . , p, of A. The
same result holds for trajectories that asymptotically approach an equilibrium.

One way to compute Lyapunov exponents numerically [16] is to integrate the equa-
tions of motion (29), along with p copies of the perturbation equations (30), one for
each of p initially orthogonal unit perturbations ηk(0), corresponding to the semi-axes
of an initially spherical p-dimensional ellipsoid in state space. At t > 0 we define the
instantaneous Lyapunov exponents as

σk(t) =
1

t
ln

[ ‖ηk(t)‖
‖ηk(0)‖

]

(31)

with the Lyapunov exponents σk = limt→∞ {σk(t)}. We define the instantaneous “stiff-

ness” as Σ(t)
4

= |σmax(t)− σmin(t)|. As the trajectory y(t) moves through state space,
the perturbation vectors ηk(t) rotate (so they are no longer orthogonal) and stretch or
shrink as the axes of the ellipsoid centered at y(t) change. Over time, the perturbation
vectors will all tend to align with the major axis of the ellipse, corresponding to the
largest Lyapunov exponent, in a manner analogous to the power method for generating
the dominant eigenvalue and eigenvector of a matrix. Since some of the Lyapunov ex-
ponents may be positive, particularly in chaotic systems, the algorithm incorporates a
periodic discontinuous rescaling of the perturbation vectors, to avoid numerical overflow,
using a Gramm-Schmidt orthonormalization procedure [14, p. 207].

5.2 State perturbation equations

Let pᵀ

k(y), k = 1, . . . , p, denote the k-th row of P(y). Then

ẏ = f(y) = −P(y)∇yL(y) = −







p
ᵀ

1(y)
...

pᵀ

p(y)






∇yL(y).

Along a trajectory y(t) the state perturbation equations (30), with A(y) = ∂f(y)/∂y ,
are given by

A(y) = −P(y)H(y) −









∂L(y)
∂y

∂p1(y)
∂y

...
∂L(y)
∂y

∂pp(y)
∂y









, (32)
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where H = ∇
2
yL(y) = ∂2L/∂y2. At a stationary point y∗ of L(y), ∇yL(y∗) = 0 and

A(y∗) = −P(y∗)H(y∗). This result also holds for P constant. The eigenvalues of A(y∗)
provide a measure of the stiffness of the system (29), at least near y∗. Along a trajectory
y(t) the Lyapunov exponents (31) do so.

6 Unconstrained Min-Max Saddle Point

In [8] a Gradient Enhanced Min-Max (GEMM) algorithm is developed as a variable
Levenberg-Marquardt modification [17, p. 145] to Newton’s method, designed to find
saddle points of a scalar-valued function. The GEMM algorithm specifically seeks min-
max saddle points, whereas Newton’s method seeks stationary points. As we shall see,
GEMM generally has a larger domain of attraction than Newton’s method (by keeping
the Hessian matrix nonsingular), is not stiff, and is faster than Newton’s method.

As background we summarize some results from [8] for GEMM applied to the problem
of finding a game-theoretic saddle point in the absence of equality constraints.

Let Mᵀ denote the transpose of a matrix M. For yᵀ = [uᵀ,vᵀ], with u ∈ U ⊆ Rn,
v ∈ V ⊆ Rm, and y ∈ Rp, p = n + m, we are concerned with finding a point y∗ =
(u∗,v∗) to yield a min-max for a C2 scalar-valued function φ(y) = φ (u,v), such that
u∗ minimizes φ and v∗ maximizes φ. That is, φ (u∗,v) ≤ φ (u∗,v∗) ≤ φ (u,v∗) for all
u ∈ U and v ∈ V . Denote the gradient of φ by

g =

[

∂φ

∂y

]ᵀ

=

[

gu
gv

]

=





[

∂φ

∂u

]ᵀ

[

∂φ
∂v

]ᵀ





and the Hessian of φ by

G =
∂2φ

∂y2
=

[

Guu Guv

Gᵀ

uv Gvv

]

,

where gu ∈ Rn, gv ∈ Rm, Guu = ∂2φ/∂u2 ∈ Rn×n, Gvv = ∂2φ/∂v2 ∈ Rm×m, and
Guv = ∂2φ/∂u∂v ∈ Rn×m.

We are particularly concerned with finding a proper stationary min-max point

y∗, at which:

1. φ (u∗,v) < φ (u∗,v∗) < φ (u,v∗) for all u ∈ U − {u∗} and v ∈ V − {v∗},

2. g∗ = g(y∗) = 0,

3. G∗

uu = Guu(y
∗) ≥ 0 (positive semidefinite),

4. G∗

vv = Gvv(y) ≤ 0 (negative semidefinite),

5. |G∗| = |G(y∗)| < 0,

where |·| denotes the determinant. In addition we assume that g(y) 6= 0 for y 6= y∗ and
that ‖g(y)‖ → ∞ as ‖y − y∗‖ → ∞, where ‖·‖ denotes the Euclidian norm.

For u ∈ U and v ∈ V let

Ru = {(u,v) : v ∈ V and φ(u,v) ≤ φ(ū,v) for all ū ∈ U , }

denote the rational reaction set for the minimizing player u, and let

Rv = {(u,v) : u ∈ U and φ(u, v̄) ≤ φ(u,v) for all v̄ ∈ V}
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Figure 1: Banana saddle (a = 1000, c = 1).

denote the rational reaction set for the maximizing player v. On Ru with u ∈
o

U(interior
of U) it is necessary [9, p. 149] that

0 = gu(u,v) =

[

∂φ(u,v)

∂u

]ᵀ

(33)

and

Guu(u,v) =
∂2φ(u,v)

∂u2
≥ 0.

On Rv with v ∈
o

V it is necessary that

0 = gv(u,v) =

[

∂φ(u,v)

∂v

]ᵀ

(34)

and

Gvv(u,v) =
∂2φ(u,v)

∂v2
≤ 0.

6.1 Stingray saddle function

For a > 0 and c > 0 we consider the “Stingray” saddle function

φ =
a

2
u2 +

c

2
(u− 1) v2 (35)

with gradient and Hessian

g =

[

gu
gv

]

=

[

au+ c
2v

2

c (u− 1) v

]

, G =

[

Guu Guv
Guv Gvv

]

=

[

a cv
cv c (u− 1)

]

.

The function has a unique proper min-max point at y∗ = (u∗, v∗) = (0, 0), with
g 6= 0 for y 6= 0 and ‖g‖ → ∞ as ‖y‖ → ∞. Note that |G| = ac (u− 1)− c2v2 = 0 on
u = 1 + c

a
v2. Also note that Guu = a > 0 for all (u, v), but Gvv = c (u− 1) < 0 only for

u < 1. The Stingray function φ(u, v) is convex in u for each v, but is concave in v only
for u < 1. For u > 1 the function is convex in v.
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Figure 2: Stingray saddle (a = 1, c = 1).

Figure 3: Stingray saddle (a = 1 , c = 100).
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Figures 1–3 show three-dimensional and contour plots for various values of a and c.
For a = 1000 and c = 1 the function is similar to Rosenbrock’s “banana” function, having
a steep-walled canyon with a parabolic valley, except that the stationary point is a saddle
point instead of a minimum point. For a = 1 and increasing values of c the function
looks like a stingray flapping its wings. Unless otherwise specified, we will consider the
case where a = 1 and c = 100. For these parameter values the stingray function has a
sharp local maxv ridge on v = 0, u < 1, and a local maxu valley on u = − c

2av
2.

As illustrated in Figure 2, the minumaxv φ rational reaction sets, for vmin ≤ v ≤ vmax

with vmax > 0 and vmin < 0, are

Ru =
{

(u, v) : u = − c

2a
v2
}

, Rv = {(u, v) : v = v◦(u)} ,

where

v◦(u) =















0 if u < 1,
∈ [vmin, vmax] if u = 1,

vmax if u > 1 and vmax ≥ |vmin| ,
vmin if u > 1 and vmax ≤ |vmin| .

In particular, while the minimizing player u seeks gu = 0, the maximizing player v only
seeks gv = 0 for u < 1. For u > 1 the maximizing player seeks either the upper or lower
bound on v. Nevertheless, the intersection Ru ∩ Rv of the reaction sets is the min-max
point u∗ = v∗ = 0, where both gu = 0 and gv = 0.

6.2 Gradient enhanced Newton (GEN) minimization

Consider, for a moment, Newton’s method applied to the problem of finding a unique
proper minimum point for a function φ(y). For the case where G(y) = ∂2φ/∂y2 is
not positive definite everywhere, the Levenberg–Marquardt modification to Newton’s
method [17, pp. 145–149] is given by (αI +G)ẏ = −g, where α ≥ 0 and I denotes the
p × p identity matrix. If F = αI + G is positive definite, then let ẏ = −P(y)g, with
P(y) = F−1 = (αI +G)−1. Then φ̇ = gᵀẏ = −gᵀPg < 0 for g 6= 0 establishes (global)
asymptotic stability.

Let µi and ξi, i = 1, . . . , p, denote the eigenvalues and eigenvectors of G, respectively.
For symmetric G the eigenvalues are all real, but may not all be positive. The matrix
F = αI + G has eigenvalues ωi = µi + α and eigenvectors ξi, since Fξi = (µi + α) ξi.
Thus, at a point y, if α is sufficiently large all of the eigenvalues of F will be positive.
As α→ 0 the method approaches Newton’s method applied to φ(y), and as α→∞ the
method approaches Steepest Descent applied to φ(y)/α.

The Levenberg–Marquardt minimization method generally will not work with con-
stant α. If |G(y)| changes sign somewhere then for constant α the determinant
|F| = |αI+G| will also generally change sign, although at a different place than |G(y)|.

In [7] we develop a Gradient Enhanced Newton (GEN) minimization method, in
which α = γ ‖g‖ = γ

√
gᵀg with constant γ ≥ 0, yielding

ẏ = −P(y)g = − [γ ‖g‖ I+G]
−1

g. (36)

The ideas behind this minimization method are: 1) at points where ‖g‖ 6= 0 we can make
F be positive definite for sufficiently large γ ≥ 0; 2) for small γ or near places where g = 0

the method behaves like Newton’s method; 3) the speed ‖ẏ‖ ≈ 1/γ. In [7] it is shown
that, for sufficiently large γ ≥ 0, GEN is globally asymptotically stable for functions that
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have a single proper stationary minimum point and satisfy a Lyapunov growth condition.
In addition, when applied to Rosenbrock’s “banana” function, GEN is uniformly nonstiff
and approximately 25 times faster than Newton’s method and approximately 2500 times
faster than Steepest Descent.

A very recent paper [18] shows that, for long-term optimization algorithms,
Levenberg–Marquardt, especially in the form (36), is more fundamental than Newton’s
method and that Newton’s method should be viewed as a special case of Levenberg–
Marquardt, rather than the other way around.

6.3 Gradient enhanced min-max

The Levenberg–Marquardt modification of Newton’s method can not be used for min-
max problems, but a variation of it can. Consider the Hessian

G(y) =
∂2φ

∂y2
=





∂2φ
∂u2

∂2φ
∂u∂v

∂2φ
∂v∂u

∂2φ
∂v2



 =

[

Guu Guv

Gᵀ

uv Gvv

]

,

which is positive definite at a proper minimum point. But at a proper min-max point
y∗ we have G∗

uu = Guu (y
∗) ≥ 0, G∗

vv = Gvv (y
∗) ≤ 0, and |G∗| = |G(y∗)| < 0. Thus

the eigenvalues of G∗

uu are ≥ 0, the eigenvalues of G∗

vv are ≤ 0, and the product of the
eigenvalues of G∗ is negative. When |G(y)| passes through zero, so does one or more of
its eigenvalues. The Levenberg-Marquardt matrix F = αI+G could be used to make all
of its eigenvalues be positive (or all of them negative, for α < 0) at any given point ŷ.
But if α = α(y) ≥ 0, with α(y∗) = 0 and |G∗| = |G(y∗)| < 0, then somewhere between
y∗ and ŷ we would have |F(y)| = 0, as one of the positive eigenvalues goes negative
or one of the negative eigenvalues goes positive. What we need to do, to ensure that
the replacement matrix F(y) for G (y) is nonsingular, is to keep the positive eigenvalues
positive and the negative eigenvalues negative, yielding |F(y)| < 0.

Consider
ẏ = −Pg (37)

with

P = F−1 =

[

αuIu +Guu Guv

Gᵀ

uv −αvIv +Gvv

]

−1

. (38)

For αu = αv = α → ∞ the method approaches Min-Max Ascent (see Section 6.4.1)
applied to φ/α. For α→ 0 the method approaches Newton’s method applied to φ. The
Gradient Enhanced Min-Max (GEMM) method is given by (37)–(38) with αu =
γu ‖g‖ and αv = γv ‖g‖ for constants γu ≥ 0 and γv ≥ 0. That is, P = F−1, with

F =

[

γu ‖g‖ Iu +Guu Guv

Gᵀ

uv −γv ‖g‖ Iv +Gvv

]

. (39)

In [8] we prove that for sufficiently large constants γu ≥ 0 and γv ≥ 0 the matrix
F in (39) is nonsingular for all y. Hence the only equilibrium for (37)–(39) is at y∗.
A Lyapunov approach can be used to investigate whether the unique equilibrium at y∗

is (globally) asymptotically stable. However, note that using W (y) = gᵀg as a descent
function [14, p. 276] would not work, since Ẇ = gᵀġ+ ġᵀg = gᵀGẏ+ ẏᵀGg = −gᵀQg,
with Q = GP + PᵀG not being positive definite if |G| changes sign (see Lyapunov’s
lemma [14, p. 223]). Also note that replacing the minumaxv φ problem with Newton’s
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method (or the Levenberg–Marquardt modification) applied to the least squares problem
[17, pp. 146–148] of minimizing W (y), via ẏ = −H−1(y)∇W , where ∇W = [∂W/∂y]

ᵀ

and H(y) = ∂2W/∂y2, would involve third derivatives of φ(y).

6.4 Gradient transformation results for the stingray saddle function

6.4.1 Min-max ascent

Since u seeks minu φ(u,v) and v seeks maxv φ(u,v), the first min-max algorithm inves-
tigated by researchers [3] was steepest descent on u and steepest ascent on v.

Let Iu and Iv denote the n× n and m×m identity matrices, respectively. Taking

P(y) = diag [Iu,−Iv] =
[

Iu 0

0 −Iv

]

yields the Min-Max Ascent algorithm

u̇ = −gu, v̇ = gv (40)

with the state perturbation equations

[

η̇u
η̇v

]

=

[

−Guu −Guv

Gᵀ

uv Gvv

] [

ηu
ηv

]

.

For the Stingray saddle function

φ =
a

2
u2 +

c

2
(u− 1) v2

the Min-Max Ascent system is given by

u̇ = −gu = −au− c

2
v2, v̇ = gv = c (u− 1) v

with the state perturbation equations

[

η̇u
η̇v

]

=

[

−a −cv
cv c (u− 1)

] [

ηu
ηv

]

.

At the stationary point the state perturbation matrix

A(y∗) =

[

−a 0
0 −c

]

has eigenvalues {−a,−c}. For a = 1 and c = 100 Min-Max Ascent yields a very stiff
system.

Figure 4 shows Min-Max Ascent trajectories for the case where a = 1 and c = 100. For
numerical integration we use fixed step size (∆t = 10−5, because of stiffness) standard
4th-order Runge-Kutta. Trajectories for u < 1 rapidly approach the v = 0 (gv = 0)
surface (the sharp local maximum ridge of the Stingray) and then slowly move along the
ridge toward the saddle point at the origin. This is caused by the stiffness of the system.
Notice the tendency, in the region u > 1, for trajectories to diverge from the gv = 0
surface rather than converge to it. This is caused by Gvv not being negative definite
everywhere.
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Figure 4: Min-Max Ascent (a = 1, c = 100).

|G|=0

Figure 5: Newton’s method (a = 1, c = 100).

6.4.2 Newton’s method

Newton’s method, in which dg/dt = −g, [hence, g(t) = g(0)e−t → 0 as t → ∞],
corresponds to P(y) = G−1(y). Applied to the Stingray saddle function, Newton’s
method is given by

ẏ = −G−1g (41)

= −
[

a cv
cv c (u− 1)

]

−1 [
au+ c

2v
2

c (u− 1) v

]

= − c

|G|

[

(u− 1)
(

au+ 1
2cv

2
)

− cv2 (u− 1)
−v

(

au+ 1
2cv

2
)

+ a (u− 1) v

]

,

where |G| = ac (u− 1)−c2v2. Figure 5 shows trajectories for Newton’s method applied to
the Stingray saddle function (a = 1, c = 100) using 4th-order Runge-Kutta (∆t = 10−3).

At y∗ = (u∗, v∗) = (0, 0) the state perturbation equations yield

A(y∗) =

[

−1 0
0 −1

]

with eigenvalues {−1,−1}. This is clearly not a stiff system near y∗. Trajectories move
at a much better speed than in Min-Max Ascent, as indicated by the step size. However,
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Newton’s method is not globally asymptotically stable to y∗. Note that solutions to (41)
only exist for |G| 6= 0 and that |G| = 0 on v2 = (u− 1) a/c. The domain of attraction
to y∗ is only the region u < 1, that is, the region where Gvv < 0.

6.4.3 GEMM

For a and c > 0 in the Stingray saddle function (35) consider

F =

[

αuIu +Guu Guv

Gᵀ

uv −αvIv +Gvv

]

=

[

αu + a cv
cv −αv + c (u− 1)

]

.

The determinant |F| = (αu + a) [−αv + c (u− 1)] − c2v2 is zero on c2v2 =
(αu + a) [−αv + c (u− 1)] provided −αv + c (u− 1) ≥ 0. Since αu + a > 0 for all αu ≥ 0
with a > 0 and c > 0, a necessary and sufficient condition for |F(u, v)| < 0 for all u, v is
that −αvIv +Gvv = −αv + c (u− 1) < 0 for all u. We can ensure that |F(u, v)| < 0 for
all u, v by taking

αv = γv ‖g‖ = γv

√

(

au+
c

2
v2
)2

+ c2 (u− 1)2 v2

with sufficiently large γv > 0. Then

|F| = −γv (αu + a)

√

(

au+
c

2
v2
)2

+ c2 (u− 1)
2
v2 + (αu + a) c (u− 1)− c2v2.

The maxv |F| occurs on v = 0, with

|F|v=0 = −γv (αu + a)

√

(au)
2
+ (αu + a) c (u− 1) = (αu + a) [−γva |u|+ c (u− 1)] .

For u ≤ 0 we have |F|v=0 < 0. For u > 0 we have

0 = |F|v=0 = (αu + a) [−γvau+ c (u− 1)] = (αu + a) [(c− γva)u− c]

at

u =
1

1− γv ac
which yields u < 0 (a contradiction) for γv > c/a. We conclude that |F(u, v)| < 0 for all
u, v if we take αu = γu ‖g‖ and αv = γv ‖g‖, with γu ≥ 0 and γv > c/a.

Applied to the Stingray function, the Gradient Enhanced Min-Max algorithm is given
by

[

u̇
v̇

]

= −F−1g = − 1

|F|

[

[−γv ‖g‖+ c (u− 1)]
(

au+ 1
2cv

2
)

− c2v2 (u− 1)
−cv

(

au+ 1
2cv

2
)

+ (γu ‖g‖+ a) c (u− 1) v

]

,

where 0 > |F| = (γu ‖g‖+ a) [−γv ‖g‖+ c (u− 1)] − c2v2 for all u, v, provided γu ≥ 0
and γv > c/a. For a = 1, c = 100, and γv = 101, Figures 6–7 show trajectories for the
Gradient Enhanced Min-Max algorithm for γu = 1 and 10, respectively.
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Figure 6: GEMM trajectories (γu = 1, γv = 101).

Figure 7: GEMM trajectories (γu = 10, γv = 101).

6.4.4 Unconstrained trajectory following performance comparisons

For comparison of Min-Max Ascent, Newton’s method, and the Gradient Enhanced Min-
Max (GEMM) method, we consider the trajectories starting from (u, v) = (−1.5, 0.5)
for the Stingray saddle function. We use fixed time step standard 4th-order Runge-
Kutta with the time step ∆t chosen to control the approximate initial displacement
∆s = ‖ẏ(0)‖∆t. The trajectories are terminated when ‖g‖ < 10−3. We consider two
cases: Table 1 shows results for the “Banana saddle” (a = 1000, c = 1, γu = γv = 1,
stiffness ≈ 1000), and Table 2 shows results for the “Stingray saddle” (a = 1, c = 100,
γu = 1, γv = 101, stiffness ≈ 100). The results indicate that Newton’s method is
about 60 to 440 times faster than Min-Max Ascent, and that the Gradient Enhanced
Min-Max method is about 2 to 3 times faster than Newton’s method and about 175 to
1000 times faster than Min-Max Ascent. These results are consistent with the results
[7] for the Gradient Enhanced Newton (GEN) minimization method. When applied to
Rosenbrock’s function, GEN is approximately 25 time faster than Newton’s method and
approximately 2500 times faster than Steepest Descent.

In [8] we show that the Gradient Enhanced Min-Max method provides global asymp-
totic stability to the saddle point for functions such as the Stingray saddle function,
which have a single proper stationary min-max point and satisfy a Lyapunov growth
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Table 1: Banana saddle results (a = 1000, c = 1).

Method ∆t ‖ẋ(0)‖∆t Final t # Steps Ratio

Min-Max Ascent 10−6 1. 4999 × 10−3 6.210995 6, 210, 995 980.2

Newton 10−3 1. 5133 × 10−3 14.221 14221 2. 24

GEMM 2.5 × 10−3 1. 4999 × 10−3 15.84 6336 1

Table 2: Stingray saddle results (a = 1, c = 100).

Method ∆t ‖ẋ(0)‖∆t Final t # Steps Ratio

Min-Max Ascent 10−5 1. 254 8 × 10−3 7.32973 732, 973 175. 5

Newton 10−3 1. 296 2 × 10−3 11.74 11, 740 2. 81

GEMM 1.5 × 10−2 1. 254 3 × 10−3 62.625 4, 175 1

condition. For the Stingray function Newton’s method is not stiff but does not provide
global asymptotic stability. Min-Max Ascent, applied to the Stingray function, provides
global asymptotic stability [8] but is very stiff. When applied to the Stingray function,
the Gradient Enhanced Min-Max method is very fast and is not stiff, whereas Min-Max
Ascent is very slow and very stiff. The Gradient Enhanced Min-Max method is approxi-
mately 3 times faster than Newton’s method and approximately 175 to 1000 times faster
than Min-Max Ascent.

7 Min-Max Saddle Point with Equality Constraints

In this section we extend the results in [8] to the problem of finding Lagrangian saddle
points y = (x,λ) for the problem of minimizing a scalar-valued function φ(x) subject to
equality constraints ψ(x) = 0. In particular we expand our previous results to handle
the fact that L(x,λ) is linear in λ.

For the augmented Lagrangian L, and its gradient h(y) and Hessian H(y) given
by (19) and (25), respectively, we are particularly concerned with finding a proper

Lagrangian saddle point y∗ = (x∗,λ∗), at which:

i) L (x∗,λ) ≤ L (x∗,λ∗) < L (x,λ∗) for all (x,λ) 6= (x∗,λ∗),

ii) h∗ = [∂L(y∗)/∂y]ᵀ = 0, where h(y) = ∇y L(y),
iii) H∗

xx = ∂2L (x∗,λ∗) /∂x2 ≥ 0 (positive semidefinite),

where, for β ≥ 0, the augmented Lagrangian is

L(x,λ) = φ(x) − λᵀψ(x) + β
1

2
ψᵀ(x)ψ(x). (42)

In addition we assume that h(y) = ∇yL(y) = [∂L(y)/∂y]ᵀ 6= 0 for y 6= y∗ and that
‖h(y)‖ → ∞ as ‖y − y∗‖ → ∞, where ‖·‖ denotes the Euclidian norm.

As a modification to Newton’s method (26) we consider a gradient transformation
algorithm of the form

ẏ = −P(y)∇yL(y) = −F−1(y)∇yL(y), (43)

where

F(y) = H(y) + ‖h‖
[

γxIn 0

0 −γλIm

]

=





γx ‖h‖ In +
∂2L
∂x2

−Γᵀ

−Γ −γλ ‖h‖ Im



 , (44)
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with

h(y) = ∇yL(y) =
[

∇xL
∇λL

]

=









[

∂L
∂x

]ᵀ

−ψ









, (45)

H(y) = ∂2L(y)
∂y2

=

[

Hxx Hλx

Hᵀ

λx Hλλ

]

=







∂2L
∂x2

−Γᵀ

−Γ 0






, (46)

Γ =
∂ψ

∂x
. (47)

7.1 Nonsingularity of F(y)
We will show that for a sufficiently large constant γx ≥ 0 and any constant γλ > 0 the
matrix F(y) in (44) is nonsingular for all y. Hence the only equilibrium for (18) with
(43)–(44) is at y∗. To prove that F(y) is nonsingular, we have the following results:

Lemma 7.1 For y ∈ Rp let M(y) be an s× s matrix whose elements are functions
of class Cq, q ≥ 0, in a neighborhood of ŷ ∈ Rp, with distinct eigenvalues at ŷ. Then
the eigenvalues µk(y), k = 1, . . . , s, of M(y) are of class Cq in a neighborhood of ŷ.

Proof The characteristic equation is 0 = P(µ,y) = |µI−M(y)| = µs+ ps−1µ
s−1+

. . . + p1µ + p0, where I denotes the s × s identity matrix. The coefficients pk(y) are
Cq since they can be determined from Newton’s identities [14, p. 227] in terms of the
trace(Mk), k = 1, . . . , s, of powers of M(y), which only involves products and sums of
the elements of M(y). Then the lemma follows from the implicit function theorem [9, p.
21], with Jacobian dP (µk, ŷ) /dµ 6= 0 for the case where the eigenvalues µk, k = 1, . . . , s,
are distinct.

For repeated eigenvalues, the elements of M(y) can be perturbed by an arbitrarily
small amount ε > 0 to yield distinct eigenvalues [19, p. 89]. For a more detailed analysis
of the case of repeated eigenvalues, see [20, p. 134]. Henceforth, we will consider only
the case of distinct eigenvalues.

Theorem 7.1 For y ∈ Rp let M(y) ∈ Rs×s be a continuous symmetric matrix
with M(y∗) ≥ 0 (≤ 0) and let L(y) be a scalar-valued function of class Cq, q ≥ 1.
Let h(y) = [∂L/∂y]ᵀ. If h(y∗) = 0, with h(y) 6= 0 for y 6= y∗ and ‖h(y)‖ → ∞
as ‖y − y∗‖ → ∞, then for γ ≥ 0 (≤ 0) with |γ| sufficiently large, the s × s matrix
N(y) = γ ‖h(y)‖ I+M(y) is positive definite (negative definite) for all y 6= y∗.

Proof We consider the positive semidefinite case for M(y∗). The proof for the
negative semidefinite case is analogous. At y let µ(y) denote the smallest (possibly
negative) eigenvalue of M(y), with corresponding unit eigenvector ξ(y). For γ ≥ 0 let
ω(y) = µ(y) + γ ‖h(y)‖ denote the corresponding smallest eigenvalue of N(y), with
corresponding unit eigenvector ξ(y), where ξᵀN(y)ξ = ω(y)ξᵀξ = ω(y) = µ(y) +
γ ‖h(y)‖. Let Br = {y : ‖y − y∗‖ ≤ r}. From Lemma 7.1 µ(y) is continuous on Rp,
with µ(y∗) ≥ 0 and all the other eigenvalues of M(y∗) are positive. For arbitrarily
small ε > 0 let ȳ be a minimal point for µ(y) on Bε. If ȳ = y∗ choose any γ̄ > 0. If
ȳ 6= y∗ choose γ̄ > max {0,−µ(ȳ)/ ‖h(ȳ)‖}. Then for γ > γ̄, µ(y) > 0 ∀ y ∈ Bε − {y∗}.
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For any r ≥ ε let Xr = {y : ε ≤ ‖y − y∗‖ ≤ r}, with ‖h(y)‖ > 0 ∀ y ∈ Xr. From the
theorem of Weierstrass µ(y)/ ‖h(y)‖ takes on a minimum value at some point ŷ ∈ Xr.
Let γ̂(r) = max {0,−µ(ŷ)/ ‖h(ŷ)‖} ≥ 0. Then for γ > γ̂(r) we have ω(y)/ ‖h(y)‖ =
γ + µ(y)/ ‖h(y)‖ ≥ γ + µ(ŷ)/ ‖h(ŷ)‖ ≥ γ − γ̂(r) > 0 ∀ y ∈ Xr. The conditions on
h(y) ensure that ‖h(y)‖ 6→ 0 as ‖y − y∗‖ → ∞. Thus γ̂ = limr→∞ {γ̂(r)} exists. Then
ω(y) > 0 ∀ y 6= y∗ provided γ > max (γ̄, γ̂).

Lemma 7.2 Let A ∈ Rn×nbe symmetric and B ∈ Rn×m. If A is positive definite
(A > 0) then BᵀAB is at least positive semidefinite (BᵀAB ≥ 0).

Proof For z ∈ Rm and s ∈ Rn, let s = Bz. Then sᵀAs > 0 for s 6= 0. Hence
zᵀBᵀABz ≥ 0 for z 6= 0.

Lemma 7.3 Let A ∈ Rn×n be symmetric and B ∈ Rn×n. If A > 0 (< 0) and B ≥ 0
(≤ 0) then A+B > 0 (< 0).

Proof For s ∈ Rn we have sᵀ(A+B)s = sᵀAs + sᵀBs > 0 (< 0) for all s 6= 0.

Theorem 7.2 For A ∈ Rn×n symmetric, B ∈ Rn×m, and D ∈ Rm×m symmetric,
the matrix

F =

[

A B

Bᵀ D

]

is nonsingular, with |F| < 0, if A > 0 and D < 0 (or if A < 0 and D > 0).

Proof Pre-multiplying the first block row by BᵀA−1 and subtracting from the
second block row yields

|F| =
∣

∣

∣

∣

A B

0 D−BᵀA−1B

∣

∣

∣

∣

= |A|
∣

∣D−BᵀA−1B
∣

∣ .

For A > 0, we have [21, p. 128] |A| = µ1 · · ·µn > 0, where µk, k = 1, . . . , n, are the
eigenvalues of A. From Lemma 7.2 BᵀA−1B ≥ 0. Thus from Lemma 7.3 with D < 0 we
have D−BᵀA−1B < 0. Hence

∣

∣D−BᵀA−1B
∣

∣ = ω1 · · ·ωm < 0, where ωj , j = 1, . . . ,m,
are the eigenvalues of D−BᵀA−1B. Thus, |F| = µ1 · · ·µnω1 · · ·ωm < 0.

Theorem 7.3 If y∗ = (x∗,λ∗) is a proper Lagrangian maxλ-minx saddle point for
a scalar-valued C2 function

L(x,λ) = φ(x) − λᵀψ(x) +
1

2
βψᵀ(x)ψ(x),

with h(x,λ) = [∂L/∂x, ∂L/∂λ]ᵀ 6= 0 for y 6= y∗ and ‖h(y)‖ → ∞ as ‖y − y∗‖ → ∞,
and with

H(y) = ∂2L(y)
∂y2

=

[

Hxx Hxλ

Hᵀ

xλ Hλλ

]

,

then for sufficiently large γx ≥ 0 and any γλ > 0 the matrix

F =

[

γx ‖h‖ In +Hxx Hxλ

Hᵀ

xλ −γλ ‖h‖ Im

]

is nonsingular, with |F| < 0, for all y 6= y∗.

Proof From Theorem 7.1, for y 6= y∗, γx ‖h‖ In + Hxx > 0 for sufficiently large
γx ≥ 0 and −γλ ‖h‖ Im < 0 for any γλ > 0. Then |F| < 0 follows from Theorem 7.2
with A = γx ‖h‖ In +Hxx, B = Hxλ, and D = −γλ ‖h‖ Im.
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7.2 Speed of GEMM

Using F from (44) write the GEMM algorithm in the form











‖h‖





γxIn 0

0 −γλIm



+







∂2L
∂x2

−Γᵀ

−Γ 0

















[

ẋ

λ̇

]

= −
[

∇xL
∇λL

]

. (48)

Thus, using (45), (27), and (28), we have

‖h‖
[

γxIn 0

0 −γλIm

] [

ẋ

λ̇

]

+
dh

dt
= −h.

For small ‖h‖ or small γx, γλ GEMM approaches Newton’s method applied to L. For
large ‖h‖ or large γx, γλ GEMM approaches Hestenes’s Method of Multipliers applied
to L/(γx ‖h‖) with β → γx/γλ, that is,

‖h‖
[

γxIn 0

0 −γλIm

] [

ẋ

λ̇

]

≈ −h

yields

[

ẋ

λ̇

]

≈ −





1
γx
In 0

0 − 1

γλ
Im





1

‖h‖h =
1

‖h‖







− 1

γx
∇xL

1

γλ
∇λL







with “speed”

‖ẏ‖ →







1/γ if γx = γλ = γ,
1/γx if γx << γλ,
1/γλ if γλ << γx,

for large ‖h‖, γx, or γλ.

7.3 Stability of GEMM

For ẏ = F−1h the only equilibrium is at h = ∇yL = 0. As ‖h‖ → 0 GEMM approaches
Newton’s method (F → H). Thus y∗ is at least locally asymptotically stable and non-
stiff, with all eigenvalues µ = −1. From Theorem 7.3 F−1(y) exists for all y, provided
γλ > 0 and γx ≥ 0 is sufficiently large. Therefore the domain of attraction is all of Rp
and GEMM is globally asymptotically stable to y∗.

8 Rosenbrock’s Function with Constraint

As an Example we consider the problem of minimizing Rosenbrock’s function

φ(x) = 100(x21 − x2)2 + (1− x1)2, (49)

subject to the parabolic constraint

ψ(x) = (x1 − 2)2 + x2 − 1 = 0. (50)

Figure 8 shows contours of constant φ(x), along with the constraint ψ(x) = 0.
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Figure 8: Rosenbrock’s function with parabolic constraint.

The gradient and the Hessian matrix of φ are given by

∇φ(x) =

[

∂φ

∂x

]ᵀ

=





400x1
(

x21 − x2
)

+ 2 (x1 − 1)

−200
(

x21 − x2
)



 , (51)

∇
2φ(x) =

∂2φ

∂x2
=

[

1200x21 − 400x2 + 2 −400x1
−400x1 400

]

. (52)

Rosenbrock’s function φ is analogous to a curved canyon with very steep walls and a
shallow sloping parabolic valley floor, defined by x2 = x21. The function has a single
proper unconstrained global minimum at x̂ = [1, 1]

ᵀ
, with φ(x) > 0 for all x 6= x̂. Note

that ∇φ(x) 6= 0 except at x̂ and ‖∇φ(x)‖ → ∞ as ‖x− x̂‖ → ∞. Hence contours
of constant φ are topologically equivalent to spheres [14, p. 215]. On the other hand,
φ(x) is not a convex function, that is, it does not satisfy φ [θx1 + (1− θ)x2] ≤ θφ(x1) +
(1 − θ)φ(x2) for all x1, x2, and 0 ≤ θ ≤ 1. This follows [17, p. 425] from the fact
that ∇

2φ(x) is positive definite only in the region x2 < x21 + 1/2. Some numerical
optimization algorithms have trouble with Rosenbrock’s function because they exhibit
“stiff” dynamics. For example, applied to the unconstrained problem, the discrete version
of Steepest Descent “chatters” along the valley floor.

For the constrained optimization problem the augmented Lagrangian is

L = φ− λψ +
1

2
βψ2

= 100(x21 − x2)2 + (1− x1)2 − λ
[

(x1 − 2)2 + x2 − 1
]

+
1

2
β
[

(x1 − 2)
2
+ x2 − 1

]2

.
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With yᵀ = [xᵀ, λ], the gradient of L is

∇yL=
[

∂L
∂y

]ᵀ

=













∂L
∂x1

∂L
∂x2

∂L
∂λ













=













∂φ
∂x1

+ (βψ − λ) ∂ψ
∂x1

∂φ
∂x2

+ (βψ − λ) ∂ψ
∂x2

−ψ













(53)

=









400(x21 − x2)x1 − 2(1− x1) +
(

β
[

(x1 − 2)
2
+ (x2 − 1)

]

− λ
)

2 (x1 − 2)

−200(x21 − x2) +
(

β
[

(x1 − 2)
2
+ (x2 − 1)

]

− λ
)

− (x1 − 2)
2 − x2 + 1









and the Hessian of L is

H 4

= ∇
2
yL =

∂2L
∂y2

=











∂2L
∂x2

−
[

∂ψ

∂x

]ᵀ

−∂ψ
∂x

0











= [Hij ] , (54)

where

H11 =
∂2L
∂x21

=
∂2φ

∂x21
+ (βψ − λ) ∂

2ψ

∂x21
+ β

(

∂ψ

∂x1

)2

(55)

= 1200x21 − 400x2 + 2 + 2
(

β
[

(x1 − 2)
2
+ (x2 − 1)

]

− λ
)

+ 4β (x1 − 2)
2
,

H12 = H21 =
∂2L

∂x1∂x2
=

∂2φ

∂x1∂x2
+ (βψ − λ) ∂2ψ

∂x1∂x2
+ β

∂ψ

∂x1

∂ψ

∂x2
(56)

= −400x1 + 2β (x1 − 2) ,

H13 = H31 =
∂2L
∂x1∂λ

= − ∂ψ
∂x1

= −2 (x1 − 2) , (57)

H22 =
∂2L
∂x22

=
∂2φ

∂x22
+ (βψ − λ) ∂

2ψ

∂x22
+ β

(

∂ψ

∂x2

)2

= 200 + β, (58)

H23 = H32 =
∂2L
∂x2∂λ

= − ∂ψ
∂x2

= −1, (59)

H33 =
∂2L
∂λ2

= 0. (60)

The first-order necessary conditions for maxλminx L(x, λ, β) are:

0 =
∂L
∂x1

= 400(x21 − x2)x1 − 2(1− x1)− 2λ (x1 − 2) (61)

+ β
[

(x1 − 2)2 + x2 − 1
]

2 (x1 − 2) ,

0 =
∂L
∂x2

= −200(x21 − x2)− λ+ β
[

(x1 − 2)2 + x2 − 1
]

, (62)

0 =
∂L
∂λ

= −ψ = − (x1 − 2)
2 − x2 + 1. (63)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 10 (2) (2010) 125–160 149

At (x, λ) = (x∗, λ∗), with Lagrangian L(x, λ) = L(x, λ, β)|β=0, using (63) in (62) with
β = 0 yields

λ = −200
{

x21 +
[

(x1 − 2)
2 − 1

]}

. (64)

Then using (63) and (64) in (61) yields

0 =
∂L

∂x1
= 800x31 − 2400x21 + 2801x1 − 1201.

This cubic polynomial has roots x1 = 1, 1± 1
40 i
√
802.

Thus the unique constrained global minimal point is

y∗ = (x∗1, x
∗

2, λ
∗) = (1, 0,−200) , (65)

with φ∗ = φ(x∗) = 100 and ψ∗ = ψ(x∗) = 0, at which ∇yL(x
∗, λ∗) = ∇yL(x∗, λ∗, β) =

0, with

∇xL (y) 6= 0 and ∇yL (y) 6= 0 for y 6= y∗ (66)

and

‖∇xL (y)‖ → ∞ and ‖∇yL (y)‖ → ∞ as ‖y − y∗‖ → ∞ (67)

for all β ≥ 0.

Note that at y∗ the Hessian matrix (12) for the Lagrangian L,

H(y∗) =
∂2L (x∗, λ∗)

∂x2
=

[

1602 −400
−400 200

]

(68)

is positive definite. Thus the second-order sufficient condition (6) is satisfied by the
stronger condition that H(x∗, λ∗) is positive definite. For this Example switching from
maxλminx L(x, λ) to maxλminx L(x, λ, β) is not mandatory. However, we will continue
using L(x, λ, β), with L(x, λ) = L(x, λ, 0).

9 Augmented Lagrangian Trajectory Following

9.1 Min-max ascent

Choosing

P =

[

Pxx Pxλ

Pλx Pλλ

]

=

[

In 0

0 −Im

]

(69)

in (20) yields

ẋ = −∇xL =−∇φ+ Γᵀ [λ− βψ] , (70)

λ̇ = ∇λL =−ψ, (71)

which corresponds to steepest descent for x on L(x,λ,β) and steepest ascent for λ on
L(x,λ,β). We will set β = 0, yielding the Min-Max Ascent algorithm considered in [3].
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9.1.1 Simulation results

For the Example problem in Section 8 the Min-Max Ascent equations of motion are

ẋ1 = −400(x21 − x2)x1 + 2(1− x1) +
(

λ− β
(

(x1 − 2)
2
+ (x2 − 1)

))

2 (x1 − 2) ,

ẋ2 = 200(x21 − x2) +
(

λ− β
(

(x1 − 2)
2
+ (x2 − 1)

))

, (72)

λ̇ = − (x1 − 2)
2 − x2 + 1.

The state perturbation equations η̇ = Aη are





η̇x

η̇y



 =











−∂
2L
∂x2

− ∂2L
∂x∂λ

∂2L
∂λ∂x

∂2L
∂λ2















ηx

ηy



 (73)

and yield





η̇1
η̇2
η̇3



 =





a11 400x1 − 2β (x1 − 2) 2 (x1 − 2)
400x1 − 2β (x1 − 2) −200− β 1
−2 (x1 − 2) −1 0









η1
η2
η3



 ,

where

a11 = −1200x21 + 400x2 − 2− 2
(

β
(

(x1 − 2)
2
+ (x2 − 1)

)

− λ
)

− 4β (x1 − 2)
2
.

At (x∗, λ∗) = (1, 0,−200)




η̇1
η̇2
η̇3



 =





−1602− 4β 400 + 2β −2
400 + 2β −200− β 1

2 −1 0









η1
η2
η3



 .

For β = 0 the eigenvalues (µk) and eigenvectors (ξk) of A are

µ1 = −5. 00× 10−3, ξ
ᵀ

1 =
[

6. 23× 10−8 5. 00× 10−3 1. 0
]

,

µ2 = −93. 90, ξ
ᵀ

2 =
[

−0.256 −0.967 −4. 83× 10−3
]

,

µ3 = −1708. 09, ξ
ᵀ

3 =
[

−0.967 0.256 1. 28× 10−3
]

.

(74)

The Lyapunov exponents are (σ1, σ2, σ3) = (µ1, µ2, µ3). This is a very stiff system, with

“stiffness” Σ
4

= |σmax − σmin| ≈ 1, 700.
Figure 9 shows Min-Max Ascent trajectories for λ(0) = 0 and β = 0, starting from

initial x(0) at the edges of the plot region. The trajectories were generated using standard
4-th order Runge-Kutta integration with a fixed step size ∆t = 2×10−4. The trajectories
in Figure 9 rapidly approach the valley of Rosenbrock’s function then move more slowly
along the valley until they reach a region just below the unconstrained minimal point x̂ =
(1, 1). Then they move agonizingly slowly down to the constrained minimal point x∗ =
(1, 0). For example, the trajectory from y(0) = (−2, 4, 0) takes approximately 0.1 sec. of
simulation time to reach the valley, approximately 3 sec. more to reach a neighborhood
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Figure 9: Min-Max Ascent (λ(0) = 0, β = 0).

Figure 10: Min-Max Ascent (λ(0) = λ∗ = −200, β = 0).

of x̂, and then more than 1300 sec. longer to converge to y∗ = (1, 0,−200), at tf ≈ 1400
sec., with stopping criterion ‖∇yL‖ ≤ 10−3. All other trajectories, which are x1, x2
projections of the three-dimensional y = (x1, x2, λ) trajectories, behaved similarly and
converged to y∗, but for plotting purposes were terminated after t = 0.1 sec., to illustrate
that they overshoot or undershoot the valley.

The extremely slow convergence is associated with λ [due to µ1 in (74)] and is a result
of the choice λ(0) = 0. The trajectories are essentially steepest descent on φ(x) until λ(t)
very slowly converges to λ∗. Figure 10 shows trajectories from the same initial conditions
as in Figure 9, except with λ(0) = λ∗. All trajectories, with step size ∆t = 10−4, were
terminated when ‖∇yL‖ ≤ 10−3, but only required a total of approximately 0.1 sec. of
simulation time to converge to y∗.

Figure 11 shows the Lyapunov exponent time histories for Min-Max Ascent on L,
starting from (x1, x2 λ) = (−2.5, 0, 0) with β = 0. The system is uniformly very stiff, with
Σ(t) = |σmax(t)− σmin(t)| varying between approximately 250 and 1, 700 and converging
to Σ ≈ 1, 700.
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Figure 11: Lyapunov exponents for Min-Max Ascent (λ(0) = 0, β = 0).

9.1.2 Stability analysis

Lyapunov’s first method establishes that the Min-Max Ascent system (72) is locally
asymptotically stable to y∗ for β = 0. Alternatively, in [4] a min-max sufficiency condi-
tion is developed using

V (y) =
1

2
[y − y∗]

ᵀ
[y − y∗] =

1

2
[x− x∗]

ᵀ
[x− x∗] +

1

2
[λ− λ∗]

ᵀ
[λ − λ∗] . (75)

Along y(t)

V̇ (y) =
∂V

∂x
ẋ+

∂V

∂λ
λ̇ = − [x− x∗]

ᵀ
∇xL+ [λ − λ∗]

ᵀ
∇λL. (76)

If
V̇ (y) < 0 provided ẏ 6= 0 (77)

in a neighborhood of y∗, then V (y) is a Lyapunov function, establishing at least local
asymptotic stability [14, p. 217]. The function (75), with β = 0 so L = L, is used in
[3] to establish local asymptotic stability of y∗ for Min-Max Ascent applied to finding a
saddle point of L(x,λ) under the conditions that L is linear in λ and H = ∂2L/∂x2 is
positive definite at (x∗,λ∗).

Unfortunately, for our Example the function (75) does not satisfy (77) everywhere
and can not be used to establish global asymptotic stability for our Example. In fact,
for some saddle-point problems, Min-Max Ascent can produce Hamiltonian systems [8],
which can not be asymptotically stable. However, simulation experiments indicate that
Min-Max Ascent is globally asymptotically stable to y∗ for our Example.

9.2 Hestenes’ method of multipliers

Choosing

P =

[

Pxx Pxλ

Pλx Pλλ

]

=

[

In 0

0 −βIm

]

(78)

in (20) yields

ẋ = −∇xL = −∇φ+ Γᵀ [λ− βψ] , (79)

λ̇ = ∇λL = −βψ, (80)
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corresponding to Hestenes’ Method of Multipliers [13].
For our Example the equations of motion for Hestenes’ Method of Multipliers are

ẋ1 = −400(x21 − x2)x1 + 2(1− x1) +
(

λ− β
(

(x1 − 2)2 + (x2 − 1)
))

2 (x1 − 2) ,

ẋ2 = 200(x21 − x2) +
(

λ− β
(

(x1 − 2)
2
+ (x2 − 1)

))

,

λ̇ = −β
[

(x1 − 2)
2
+ x2 − 1

]

.

The state perturbation equations are





η̇1
η̇2
η̇3



 =





a11 400x1 − 2β (x1 − 2) 2 (x1 − 2)
400x1 − 2β (x1 − 2) −200− β 1
−2β (x1 − 2) −β 0









η1
η2
η3



 ,

where

a11 = −1200x21 + 400x2 − 2− 2
(

β
(

(x1 − 2)
2
+ (x2 − 1)

)

− λ
)

− 4β (x1 − 2)
2
.

At (x∗, λ∗)




η̇1
η̇2
η̇3



 =





−1602− 4β 400 + 2β −2
400 + 2β −200− β 1

2β −β 0









η1
η2
η3



 .

For β = 5 the state perturbation equations have Lyapunov exponents (σ1, σ2, σ3) equal
to the eigenvalues (µ1, µ2, µ3) =

(

−2. 44 × 10−2,−94. 91 ,−1732. 07
)

. This is a very stiff
system, with stiffness Σ = |σmax − σmin| ≈ 1, 700, which is approximately that of Min-
Max Ascent. For β = 100 the eigenvalues are (µ1, µ2, µ3) = (−0.33,−109. 64,−2192. 03),
with stiffness Σ = |σmax − σmin| ≈ 2, 200. For very large β the state perturbation matrix

A ≈





−4β 2β −2
2β −β 1
2β −β 0





has eigenvalues (µ1, µ2, µ3) =
(

0,− 5
2β + 1

2

√

25β2 − 20β,− 5
2β − 1

2

√

25β2 − 20β
)

→
(0, 0,−5β). Thus the stiffness increases with increasing β. However, as we shall show
later, even for β = 5 the convergence for the Method of Multipliers is much faster than
for Min-Max Ascent.

As with Min-Max Ascent, Lyapunov’s first method establishes local asymptotic sta-
bility of y∗, but no suitable Lyapunov function is known to establish global asymptotic
stability. However, experimental simulation results indicate that Hestenes’ Method of
Multipliers is globally asymptotically stable for our Example.

Figure 12 shows trajectories for Hestenes’ Method of Multipliers applied to the aug-
mented Lagrangian L with λ(0) = 0 and β = 5, using step size ∆t = 10−4 with termina-
tion when ‖∇yL‖ ≤ 10−3. The behavior is similar to Min-Max Ascent, except for faster
convergence to the constrained minimum point, at approximately tf = 300 sec.

Figure 13 shows the Lyapunov exponent time histories for Hestenes Method of Mul-
tipliers applied to L, starting from (x1, x2 λ) = (−2.5, 0, 0) with β = 5. The stiffness
is similar to Min-Max Ascent, with Σ(t) varying between approximately 100 and 1, 700
and converging to Σ ≈ 1, 700.
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Figure 12: Method of Multipliers (λ(0) = 0, β = 5).

Figure 13: Method of Multipliers Lyapunov exponents (λ(0) = 0, β = 5).

9.3 Newton’s method

Choosing

P =

[

Pxx Pxλ

Pλx Pλλ

]

= H−1 =

[

∂2L
∂y2

]

−1

=







∂2L
∂x2

−Γᵀ

−Γ 0







−1

, (81)

in (20), where Γ = ∂ψ/∂x, yields Newton’s method

[

ẋ

λ̇

]

= −H−1(y)

[

∇xL
∇λL

]

= −H−1(y)

[

∇xL
−ψ

]

. (82)

At the constrained minimal point the state perturbation equations (30) and (32) have
A(y∗) = −I, with eigenvalues µ = −1, yielding a non stiff system.

For our Example problem,

H =





H11 −400x1 + 2β (x1 − 2) −2 (x1 − 2)
−400x1 + 2β (x1 − 2) 200 + β −1

−2 (x1 − 2) −1 0



 ,
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where

H11 = 1200x21 − 400x2 + 2 + 2
(

β
(

(x1 − 2)
2
+ (x2 − 1)

)

− λ
)

+ 4β (x1 − 2)
2
.

Then

P = H−1 =
1

|H| adj(H), (83)

where

|H| = − (3600 + 2β)x21 + (6400 + 8β)x1 + (400− 2β)x2 − 3202− 6β + 2λ (84)

and the adjugate matrix is

adj(H) =





−1 2 (x1 − 2) 800(x1 − 1)

2 (x1 − 2) −4 (x1 − 2)
2

c23
800(x1 − 1) c32 c33



 (85)

with

c23 = c32 = (2β + 2000)x21 − (8β + 1600)x1 + (2β − 400)x2 + 2 + 6β − 2,

c33 =
(

2β2 + 4000β + 80 000
)

x21 − 8β (1000 + β) x1

+
(

2β2 − 80 000
)

x2 + 6β2 + 4402β − λ (400 + 2β) + 400.

At points where |H| = 0 the inverse H−1 fails to exist. As a result, Newton’s method
is not globally asymptotically stable to the solution point (x∗1, x

∗

2, λ
∗) = (1, 0,−200) for

our Example problem. Specifically, we have |H| = 0 on the parabola

(400− 2β)x2 = (3600 + 2β)x21 − (6400 + 8β)x1 + 3202− 2λ+ 6β.

At the optimal point y∗ = (1, 0,−200) with β = 0

|H | = −3600x21 + 6400x1 + 400x2 − 3402 = −602.

Furthermore,

H∗

xx =
∂2L(x∗,λ∗)

∂x2
=

[

802 −400
−400 200

]

has |H∗

xx| = 400 and is positive definite. However, L(x∗,λ) = L(x∗,λ∗)∀λ, since
ψ(x∗) = 0. Thus (x∗,λ∗) is not a proper saddle point, since Hλλ = ∂2L/∂λ2 ≡ 0
instead of Hλλ < 0. However, at y∗ with β = 0

H∗|β=0 =







∂2L
∂x2

1

∂2L
∂x1∂x2

− ∂ψ

∂x1

∂2L
∂x1∂x2

∂2L
∂x2

2
− ∂ψ
∂x2

− ∂ψ

∂x1
− ∂ψ

∂x2
0







y∗

β=0

=





802 −400 2
−400 200 −1
2 −1 0





is indefinite, with |H∗|β=0 = −2 6= 0. Thus x∗ is a “nonsingular” point [13], so there

exists β ≥ 0 such that H∗

xx = ∂2L(x∗,λ∗)/∂x2 is positive definite. In our case β = 0
suffices, since H∗

xx is already positive definite.
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Figure 14: Newton’s method (λ(0) = 0, β = 0).

Figure 15: Lyapunov exponents for Newton’s method on L.

Figure 14 shows trajectories for Newton’s method for λ(0) = 0 and β = 0. All of the
solid trajectories, generated with standard 4-th order Runge–Kutta with fixed step size
∆t = 2×10−3, rapidly converge to (x∗1, x

∗

2, λ
∗) = (1, 0,−200). The dashed trajectories all

reach points where |H| = 0 and do not converge to the constrained minimal point. These
trajectories were generated using Branin’s method [5], [6], in which |H| = 0 problems
are avoided by replacing H−1 in (83) with adj(H) from (85). The resulting [x(t), λ(t)]
trajectories are the same as for Newton’s method except for the plot speed and the
direction of motion when |H| = 0 surfaces are “crossed”.

Figure 15 shows the Lyapunov exponent time histories for Newton’s method applied
to L, starting from (x1, x2 λ) = (−2.5, 0, 0) with β = 0. The system is initially moderately
stiff but achieves Σ(t) = |σmax(t)− σmin(t)| < 10 in approximately 1 sec., with Σ(t)→ 0
as all of the Lyapunov exponents converge to σk = −1.
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Figure 16: Gradient Enhanced Min-Max (λ(0) = 0, β = 0).

9.4 Gradient enhanced min-max

For GEMM applied to our Example problem of Rosenbrock’s function with a parabolic
constraint, we have from (44)

F =





γx ‖h‖+H11 H12 −2 (x1 − 2)
H21 γx ‖h‖+H22 −1

−2 (x1 − 2) −1 −γλ ‖h‖



 ,

where

H = [Hij ] =





H11 −400x1 + 2β (x1 − 2) −2 (x1 − 2)
−400x1 + 2β (x1 − 2) 200 + β −1

−2 (x1 − 2) −1 0



 ,

h = ∇yL =









400(x21 − x2)x1 − 2(1− x1) +
(

β
[

(x1 − 2)
2
+ (x2 − 1)

]

− λ
)

2 (x1 − 2)

−200(x21 − x2) +
(

β
[

(x1 − 2)2 + (x2 − 1)
]

− λ
)

− (x1 − 2)
2 − x2 + 1









with H11 = 1200x21 − 400x2 + 2 + 4β (x1 − 2)2 + 2
(

β
[

(x1 − 2)2 + (x2 − 1)
]

− λ
)

.

From Theorem 7.2, for y 6= y∗ and γλ > 0, we have |F| < 0 provided γx > 0 is
sufficiently large so that γx ‖h‖ In +Hxx is positive definite for all y 6= y∗. We choose
γx = 10 and γλ = 0.1. For our Example system Figure 16 shows Gradient Enhanced Min-
Max (GEMM) trajectories applied to the Lagrangian L with step size ∆t = 1. Figure 17
shows Gradient Enhanced Min-Max trajectories applied to the augmented Lagrangian
L, with β = 5 and step size ∆t = 1.

Figure 18 shows the Lyapunov exponent time histories for GEMM applied to L,
starting from (x1, x2 λ) = (−2.5, 0, 0) with β = 0, γx = 10, and γλ = 0.1. The system is
uniformly non stiff, with maxΣ(t) < 1 and Σ(t) → 0 as all of the Lyapunov exponents
converge to σk = −1.

10 Constrained Trajectory Following Performance

For each Gradient Transformation algorithm in Section 4 simulation experiments were
conducted for a variety of parameter combinations, with the algorithms being applied to
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Figure 17: Gradient Enhanced Min-Max (λ(0) = 0, β = 5).

Figure 18: Lyapunov exponents for GEMM on L.

both the Lagrangian L and the augmented Lagrangian L. Table 3 shows the parameter
values for each Gradient Transformation trajectory following method that we studied.
For comparison, all trajectories were started at a point x(0) = (−2.5, 0) from which all
the algorithms converged to the constrained minimal point y∗ = (1, 0,−200).

Table 4 shows step sizes and simulation results for the methods in Table 3. For each
algorithm a trajectory y(t) was computed starting from x(0) = (−2.5, 0) using standard
4-th order Runge–Kutta with fixed step size ∆t, determined to control the approximate
initial single step displacement ∆s = ‖y(∆t) − y(0)‖. The trajectories were terminated
when ‖∇yL‖ ≤ 10−3. For reference, we include results for Min-Max Ascent starting
with λ(0) = λ∗, which yields fairly fast convergence to y∗. All other simulations were
started with λ(0) = 0.

11 Summary

For the problem of minimizing a scalar-valued function subject to equality constraints,
the Gradient Transformation family of differential equation algorithms includes, as spe-
cial cases: Min-Max Ascent, Newton’s method, Hestenes’ Method of Multipliers, and
a Gradient Enhanced Min-Max (GEMM) algorithm extended to handle equality con-
straints. Applied to Rosenbrock’s function with a parabolic constraint, we find that
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Table 3: Gradient Transformation algorithm parameters.

Method λ(0) β γx γλ
Min-Max L 0 0 0 0
Min-Max L∗

−200 0 0 0
Hestenes L1 0 5 0 0
Hestenes L2 0 100 0 0
Newton L 0 0 0 0
Newton L1 0 5 0 0
Newton L2 0 100 0 0
GEMM L 0 0 10 0.1
GEMM L1 0 5 10 0.1
GEMM L2 0 100 10 0.1

Table 4: Simulation results for Gradient Transformation algorithms.

Method Speed ‖ẏ(0)‖ ∆t ‖y(∆t) − y(0)‖ Final t # Steps Ratio

Min-Max L 6.381 × 103 2 × 10−4 0.747 1380.364 6901820 92024

Min-Max L∗ 8.125 × 103 1 × 10−4 0.590 0.095 950 13

Hestenes L1 8.060 × 103 1 × 10−4 0.568 288.016 2880161 38402

Hestenes L2 4.104 × 104 2 × 10−5 0.630 24.965 1248253 16643

Newton L 3.055 × 102 2 × 10−3 0.610 15.670 7835 104

Newton L1 3.494 × 102 2 × 10−3 0.698 15.904 7952 106

Newton L2 1.053 × 103 5 × 10−4 0.526 17.529 35058 467

GEMM L 9.394 × 10−2 1 0.094 75 75 1

GEMM L1 9.303 × 10−2 1 0.093 75 75 1

GEMM L2 9.300 × 10−2 1 0.093 78 78 1

Min-Max Ascent is globally asymptotically stable but very stiff and has very slow con-
vergence. Hestenes’ Method of Multipliers is also globally asymptotically stable and has
faster convergence, but is still very slow and very stiff. Newton’s method is not stiff,
but does not yield global asymptotic stability. However, GEMM is both globally asymp-
totically stable and not stiff. The stiffness of the Gradient Transformation family is
studied in terms of Lyapunov exponent time histories. Starting from points where all the
methods in this paper do work, we show that Min-Max Ascent and Hestenes’ Method of
Multipliers are very stiff and slow to converge, but with the Method of Multipliers being
approximately 2 times as fast as Min-Max Ascent. Newton’s method, where it works,
is not stiff and is approximately 900 times as fast as Min-Max Ascent and 400 times as
fast as the Method of Multipliers. In contrast, the Gradient Enhanced Min-Max method
is globally convergent, is not stiff, and is approximately 100 times faster than Newton’s
method, 40, 000 times faster than the Method of Multipliers, and 90, 000 times faster
than Min-Max Ascent
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pp. 96–106.

[6] Gomulka, J. Two Implementations of Branin’s Method: Numerical Experience. Towards
Global Optimization 2 (L. C. W. Dixon and G. P. Szegö, eds.). North-Holland, Amsterdam,
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1 Introduction

Since Lasalle first introduced the concept of practical stability in [1], it attracts much
attention in control community. Many works on practical stability have been published
with broad applications in different areas. Being much different from stability in terms
of Lyapunov functions, practical stability, which stabilizes a system into a region of
phase space, is a significant performance specification from engineering point of view,
and this idea is quite satisfactory in many applications for quality analysis. In practice,
a system is actually unstable, just because the stable domain or the domain of the
desired attractor is not large enough; or sometimes, the desired state of a system may be
mathematically unstable, yet the systemmay oscillate sufficiently near to a state, in which
the performance is still acceptable, i.e., it is stable in practice. For example, in practical
communication or digital control systems, the signals of controller states, measurement
outputs, and control inputs are quantized and then encoded for transmission. A feedback
law, which global asymptotically stabilizes a given system without quantization, will in
general fail to guarantee global asymptotic stability of the closed-loop system, which
arises in the presence of a quantizer with a finite number of values. Instead of using the
global asymptotic stability, the practice stability can be used to analyze such systems,
where there is a region of attraction in the state and the steady state converges to a
small limit cycle [2]–[6]. On the other hand, it is well known that for more than one
hundred years, Lyapunov’s direct method has been the primary technique for dealing
with stability problems in difference equations. However, the construction of Lyapunov’s
function is much more difficult for time-delay systems than for non-delay systems. Such
difficulties can be overcome via using Lyapunov functions and Razumikhin techniques.
It should be pointed out that the Razumikhin-type method can deal with the time-delay
system effectively and is easier to apply in general, therefore such a method has been a
main technique for analyzing the stability for time-delay systems [7]–[10].

Though there are several results on the practical stability for hybrid and descriptor
systems [11]–[17], to the best of our knowledge, the Razumikhin-type method on
practical stability for discrete time-delay systems has not been investigated. Motivated
by results in [9], we will study the Razumikhin-type theorem on practical asymptotic
stability for a class of discrete time-delay system in this paper. Also estimations of
the solution boundary and arrival time of the solution are discussed. Consequently,
the proposed theorems are used to study the practical controllability of a general class
of nonlinear discrete systems with input time delay. Some explicit criteria for the
uniform practical asymptotic stability are obtained via using the Lyapunov function
and Razumikhin technique.

This paper is organized as follows. In Section 2, some definitions and preliminaries
are introduced. In Section 3, some criteria for uniform practical asymptotic stability of
discrete-time systems with finite delay are derived via using the Lyapunov functions and
Razumikhin-technique. In Section 4, estimation of the solution boundary and arrival
time of the solution are investigated in terms of practical stability. In Section 5, the
proposed theorems are used to analyze the practical controllability for a general class
of nonlinear discrete systems with input time delay. In Section 6, a numerical example
is given to illustrate the effectiveness of main results obtained in Section 5. The last
section gives some conclusions.
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2 Preliminaries

To describe the main result of this paper, we include some preliminary knowledge on the
practical stability for the following general class of nonlinear discrete systems with finite
time delay:

x(k + 1) = F (k, xd(k)), k ∈ Z
+, (1)

where Z
+ is the set of nonnegative integers, d ≥ 0 is an integer, x(k) ∈ R

n, xd(k) =
(xT (k), xT (k − 1), . . . , xT (k − d))T , Rn is the n-dimensional Euclidean space. Denote

Id = {−d,−d+ 1, . . . ,−1, 0}, I1d = Id ∪ {1},

Ξ(Id,R
n) = {ξd = (ξT (0), ξT (−1), . . . , ξT (−d))T | ξ : Id → R

n},

ΞB(Id,R
n) = Ξ(Id,R

n) ∩ {ξd : ξ(s) ∈ B, s ∈ Id},

where B is an open ball. Assume F : Z
+ × ΞB(Id,R

n) → R
n with F (k, 0) = 0 for

k ∈ Z
+, and satisfies certain conditions to guarantee the global existence and uniqueness

of solutions. Thus system (1) has zero solution x(·) ≡ 0. For any k0 ∈ Z
+ and any given

initial function φ ∈ ΞB(Id,R
n), the solution of the systems (1) denoted by x(k; k0, φ)

satisfies (1) for all integers k ≥ k0, and x(k0 + s; k0, φ) = φ(s) for all s ∈ Id.
For all ξd ∈ Ξ(Id,R

n), define the norm of ξd as ‖ξd‖ = max
s∈Id

|ξ(s)|, where | · | stands
for any norm in R

n. We further assume that there exists a constant L > 0 such that for
all ξd ∈ ΞB(Id,R

n),

|F (k, ξd)| ≤ L‖ξd‖, ∀k ∈ Z
+. (2)

Now we introduce the following definitions.

Definition 2.1 [9] A wedge function is a continuous strictly increasing function W :
R

+ → R
+ with W (0) = 0.

Definition 2.2 System (1) is said to be:

Practically Stable (P.S.): For given (α, β) with 0 < α < β and some k0 ∈ Z
+, if

‖φ‖ < α then |x(k; k0, φ)| < β, k ≥ k0;

Uniformly Practically Stable (U.P.S.): If P.S. holds for all k0 ∈ Z
+;

Practically Asymptotically Stable (P.A.S.): If P.S. holds, and for each ε ∈ (0, β),
there exists a positive number K = K(k0, α, ε) such that ‖φ‖ < α implies
|x(k; k0, φ)| < ε, k ≥ k0 +K;

Uniformly Practically Asymptotically Stable (U.P.A.S.): If P.A.S. holds for all
k0 ∈ Z

+.

Definition 2.3 For a function V : Z+ × R
n → R

+, define:

∆V (k, x(k)) , V (k + 1, x(k + 1))− V (k, x(k)).
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3 Razumikhin-type Theorems

In this section we will prove some Razumikhin-type theorems with the aim of analyzing
the uniform practical asymptotical stability (U.P.A.S.) for a general class of nonlinear
discrete systems with finite time delay. We first denote the balls B0, B1 and B2 as the
following forms, which will be used in main theorems:

B0 = {x(k) : V (k, x(k)) < W2(α)};
B1 = {x(k) : V (k, x(k)) < W1(β)};
B2 = {x(k) : V (k, x(k)) < W1(ε)}.

Theorem 3.1 Given positive scalars α and β. Assume that scalars $1, $2, $3 with
0 < $1 ≤ $2, $3 > 0 are all arbitrary. If there exist a scalar η > 0, a Lyapunov function
V : Z+ × R

n → R
+, and wedge functions Wi(·)(i = 1, 2, 3), such that

(i) W1(|x(k)|) ≤ V (k, x(k)) ≤ W2(|x(k)|);
(ii) ∆V (k, x(k)) ≤ −W3(|x(k + 1)|) +$3 for ε0 ≤ ‖xd‖ ≤ ρ0,

provided ε0 ≤ ρ0, V (k + s, x(k + s)) ≤ min{$2, V (k + 1, x(k + 1)) + η} for s ∈ I1d , and
$1 ≤ V (k + 1, x(k + 1)). Here ε0 = L−1α, ρ0 = max{β,W−1

1 (W2(α))}, L is defined by
(2). Then, we have (1) B0 is an invariable set; (2) If W2(α) < W1(β), then B1 is an
invariable set and there exists a positive number K = K(α, β) such that for any k0 ∈ Z,
φ ∈ ΞB1(Id,R

n) implies ∀ k ≥ k0 +K, x(k; k0, φ) ∈ B0.

Proof (1) For each φ ∈ ΞB0(Id,R
n), we have x(k; k0, φ) ∈ B0 for k0 − d ≤ k ≤ k0.

Now we claim that for all k ≥ k0, x = x(k; k0, φ) ∈ B0.
Suppose this is not true. Then there exist some k1 ≥ k0 such that x ∈ B0 for all

k0 − d ≤ k ≤ k1, and

V (k1 + 1, x(k1 + 1)) ≥ W2(α), (3)

and consequently,

∆V (k1, x(k1)) = V (k1 + 1, x(k1 + 1))− V (k1, x(k1)) > 0.

On the other hand, by condition (i), we have W1(|x(k)|) < W2(α) for k0 − d ≤ k ≤ k1,
which implies ‖xd(k)‖ ≤ ρ0 for k0 ≤ k ≤ k1. It follows from (2), (3) and condition (i)
that α ≤ |x(k1 + 1)| ≤ L‖xd(k

1)‖ ≤ Lρ0, which implies ε0 ≤ ‖xd(k
1)‖ ≤ ρ0, ε0 ≤ ρ0.

Let 0 < $1 ≤ W2(α) ≤ W2(Lρ0) ≤ $2, and 0 < $3 < W3(α). Then, it follows from (3)
that $1 ≤ V (k1 + 1, x(k1 + 1)), and for η > 0, ∀ s ∈ I1d ,

{

V (k1 + s, x(k1 + s)) < $2

V (k1 + s, x(k1 + s)) < V (k1 + 1, x(k1 + 1)) + η

=⇒ V (k1 + s, x(k1 + s)) ≤ min{$2, V (k1 + 1, x(k1 + 1)) + η}.

By condition (ii), we have ∆V (k1, x(k1)) ≤ −W3(|x(k1 + 1)|) + $3 < 0. This is a
contradiction. Thus for all k ≥ k0, x(k) ∈ B0, i.e., B0 is an invariable set.
(2) If W2(α) < W1(β), we first prove that B1 is an invariable set. In fact, ρ0 = β,
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and ε0 = L−1α < L−1W−1
2 (W1(β)). Similar to the proof of (1), one can derive that,

φ ∈ ΞB1(Id,R
n) implies x(k) ∈ B1 for all k ≥ k0.

Next, we will find an integer K = K(α, β) > 0 such that for all k0 ∈ Z
+, φ ∈

ΞB1(Id,R
n) implies x(k; k0, φ) ∈ B0 for all k ≥ k0 +K.

Assume that 0 < $1 ≤ W2(α) < W1(β) ≤ $2, 0 < $3 < (1/2)W3(α). Let Nη be the
first positive integer satisfying

W1(β) < W2(α) + ηNη. (4)

For each i ∈ {0, 1, . . . , Nη}, let ki = k0 + i(d +

[

W1(β)
$3

]

), where [·] denotes the greatest

integer function, η is dependent on $1 and $3. We show that for all i ∈ {0, 1, . . . , Nη},

V (k, x(k)) < W2(α) + η(Nη − i), ∀ k ≥ ki. (5)

Obviously, it follows (4) that (5) holds for i = 0 since x(k) ∈ B1 for all k ≥ k0. Suppose
(5) holds for some i ∈ {0, 1, . . . , Nη − 1}, we aim to show that (5) also holds for i + 1,
i.e.,

V (k, x(k)) < W2(α) + η(Nη − i− 1), ∀ k ≥ ki+1.

Next we present proof in two steps for clarity.
Step 1. We show that there does exist some k′ ∈ [ki + d, ki+1] such that

V (k′, x(k′)) < W2(α) + η(Nη − i− 1). (6)

Suppose this is not true, for all k ∈ [ki + d, ki+1], we would have

V (k, x(k)) ≥ W2(α) + η(Nη − i− 1). (7)

Noting the assumption that (5) holds for some i ∈ {0, 1, . . . , Nη − 1}, then, for all
k ∈ [ki + d, ki+1 − 1], s ∈ I1d , from (7) we have

V (k + s, x(k + s)) < W2(α) + η(Nη − i) ≤ V (k + 1, x(k + 1)) + η.

On the other hand, for all k ∈ [ki + d, ki+1 − 1], it follows from condition (i), (2) and (7)
thatW2(α) ≤ V (k+1, x(k+1)) ≤ W2(|x(k+1)|), which implies that α ≤ |x(k+1)| ≤ Lρ0,
ε0 ≤ ‖xd(k)‖ ≤ ρ0, ε0 ≤ ρ0. Then, for all k ∈ [ki + d, ki+1 − 1], V (k + s, x(k + s)) ≤ $2,
s ∈ I1d , and it follows from (7) that V (k + 1, x(k + 1)) ≥ $1. By condition (ii), for all
k ∈ [ki + d, ki+1 − 1],

∆V (k, x(k)) ≤ −W3(|x(k + 1)|) +$3 < −$3.

Hence, we have

V (ki+1, x(ki+1)) ≤ V (ki + d, x(ki + d))−$3(ki+1 − ki − d)

< W1(β)−$3

[

W1(β)

$3

]

< 0.

This is a contradiction to the definition of Lyapunov function V (k, x(k)). Thus, there
does exist some k′ ∈ [ki + d, ki+1] such that (6) holds.
Step 2. We need to show that

V (k, x(k)) < W2(α) + η(Nη − i− 1), ∀ k ≥ k′. (8)
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In fact, suppose this is not true, there must be some k′1 ≥ k′ such that

V (k′1, x(k
′

1)) < W2(α) + η(Nη − i− 1),

V (k′1 + 1, x(k′1 + 1)) ≥ W2(α) + η(Nη − i− 1). (9)

Hence we have ∆V (k′1, x(k
′

1)) > 0. On the other hand, $1 ≤ W2(α) ≤ V (k′1 + 1, x(k′1 +
1)), V (k′1 + s, x(k′1 + s)) ≤ $2. Noting the assumption that (5) holds for some i ∈
{0, 1, . . . , Nη − 1}, then, we have for s ∈ I1d ,

V (k′1 + s, x(k′1 + s)) < W2(α) + η(Nη − i) ≤ V (k′1 + 1, x(k′1 + 1)) + η.

From condition (i), (2) and (9), we have W2(α) ≤ V (k′1+1, x(k′1+1)) ≤ W2(|x(k′1+1)|),
and hence, α ≤ |x(k′1 + 1)| ≤ Lρ0, ε0 ≤ ‖xd(k

′

1)‖ ≤ ρ0, ε0 ≤ ρ0. With condition (ii), one
can derive that

∆V (k′1, x(k
′

1)) ≤ −W3(|x(k′1 + 1)|) +$3 ≤ −$3 < 0.

This is a contradiction again to the definition of Lyapunov function V (k, x(k)). Thus (8)
holds, and consequently, (5) holds for all i ∈ {0, 1, . . . , Nη}. Therefore, we obtain that

x(k) ∈ B0 for all k ≥ kNη
= k0 +K, where K = Nη(d +

[

W1(β)
$3

]

) is independent of k0

and φ. 2

Corollary 3.1 Given positive scalars α and β and assume that PV (s) ∈ C(R+,R+)
with PV (s) > s for s > 0. If there exist a Lyapunov function V : Z+ × R

n → R
+, and

wedge functions Wi(·)(i = 1, 2, 3), satisfying the conditions (i) in Theorem 3.1 and the
following condition :

(ii)′ ∆V (k, x(k)) ≤ −W3(|x(k + 1)|) for ε0 ≤ ‖xd(k)‖ ≤ ρ0,

provided ε0 ≤ ρ0, V (k+s, x(k+s)) < PV (V (k+1, x(k+1))) for s ∈ I1d , where ε0 = L−1α,
ρ0 = max{β,W−1

1 (W2(α))}, L is defined by (2). Then, the conclusion of Theorem 3.1
still holds.

Proof For any 0 < $1 ≤ $2, and any $3 > 0, choose η ∈ (0, inf{PV (s) − s :
$1 ≤ s ≤ $2}). Then, if V (k+ s, x(k+ s)) ≤ min{$2, V (k+1, x(k+1)+ η)} for s ∈ I1d ,
and $1 ≤ V (k + 1, x(k + 1)), we have

V (k + s, x(k + s)) ≤ V (k + 1, x(k + 1)) + η < PV (V (k + 1, x(k + 1))),

for s ∈ I1d . Hence, by condition (ii)′, we have

∆V (k, x(k)) ≤ −W3(|x(k + 1)|) ≤ −W3(|x(k + 1)|) +$3.

Then, the conditions (i) and (ii) in Theorem 3.1 are both satisfied. Therefore, the result
follows. 2

By using Theorem 3.1 and Corollary 3.1, we obtain the following Razumikhin-type
theorem for the U.P.A.S. with regard to the zero solution of systems (1).

Theorem 3.2 For given scalar pair (α, β) with 0 < α < β, ε ∈ (0, β) is arbitrary.
Assume that scalars $1, $2, $3 with 0 < $1 ≤ $2, $3 > 0 are all arbitrary, PV (s) ∈
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Figure 1: The relationship of the balls B0, B1 and B2.

C(R+,R+) with PV (s) > s for s > 0. If there exist a Lyapunov function V : Z+ ×R
n →

R
+, wedge functions Wi(·)(i = 1, 2, 3), satisfying

(i) W2(α) ≤ W1(β);

(ii) W1(|x(k)|) ≤ V (k, x(k)) ≤ W2(|x(k)|);

and either of the following conditions (iii)a or (iii)b for ε0 ≤ ‖xd(k)‖ ≤ ρ0, ε0 ≤ ρ0:

(iii)a ∆V (k, x(k)) ≤ −W3(|x(k + 1)|) +$3, provided

V (k + s, x(k + s)) ≤ min{$2, V (k + 1, x(k + 1)) + η}
for s ∈ I1d , and $1 ≤ V (k + 1, x(k + 1));

(iii)b ∆V (k, x(k)) ≤ −W3(|x(k + 1)|), provided for s ∈ I1d ,

V (k + s, x(k + s)) < PV (V (k + 1, x(k + 1))),

where ε0 = L−1W−1
2 (W1(ε)), ρ0 = β, L is defined by (2). Then the zero solution of

systems (1) is U.P.A.S.

Proof By condition (i), B0 ⊆ B1, as shown in Fig 1. Since

ε0 = L−1W−1
2 (W1(ε)) < L−1W−1

2 (W1(β)),

Then, by Theorem 3.1 and Corollary 3.1, we can assert that, both B1 and B2 are invariant
sets, and there exists a positive number K = K(α, ε) such that for any k0 ∈ Z, φ ∈
ΞB0(Id,R

n) implies ∀ k ≥ k0 +K, x(k; k0, φ) ∈ B2. By condition (ii), |x(k)| < α implies
x(k) ∈ B0; x(k) ∈ B1 implies |x(k)| < β; x(k) ∈ B2 implies |x(k)| < ε. Then, for any
k0 ∈ Z, ‖φ‖ < α implies ∀ k ≥ k0 + K, |x(k; k0, φ)| < ε, i.e., the zero solution of the
systems (1) is U.P.A.S. 2

Remark 3.1 In Theorem 3.1 and Corollary 3.1, whenever ε0 ≤ L−1W−1
2 (W1(β)),

ρ0 ≥ β and ∆V (k, x(k)) ≤ 0 in the conditions (ii) and (ii)′, one can obtain the result
that B1 is an invariable set. Here, the conditions of Theorem 3.1 and Corollary 3.1
are corresponding to the case that u, v, w are wedge functions in the conditions of
Theorem 1 and Corollary 1 in [9]. Moreover, it is more convenient to apply Theorem 3.1
and Corollary 3.1 in this paper to estimate relations between balls B0 and B1 in the light
of information on ε0 ≤ ‖xd(k)‖ ≤ ρ0, which are not mentioned in Theorem 1, Corollary 1
and Corollary 2 in [9].
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4 Estimation of the Solution Boundary and Arrival Time

Now let us consider Theorem 3.2, Corollary 3.1 and Theorem 3.2 from previous
section without the condition W2(α) < W1(β). If ε0 = L−1W−1

2 (W1(β)), ρ0 =
max{β,W−1

1 (W2(α))}, then we can assert that B1 is an invariant set. In addition,
the trajectory of the solution of system (1) starting from B0, will fall into B1 in finite
time when B0 ⊃ B1, or stay in the region of B1 when B0 ⊆ B1. On the other hand,
with the assumption of W2(α) < W1(β), all trajectories which exit from the ball B0,
will take the ball B1 to be their boundary and can not get out of the region of B1.
Thus, by the proposed theorems and Remark 3.1, as long as ε0 ≤ L−1W−1

2 (W1(β)), and
∆V (k, x(k)) ≤ 0 in conditions (iii)a∼(iii)b, the system is U.P.S.. Following the above
analysis, one can observe that it is more convenient to apply Theorem 3.1 and Corol-
lary 3.1 in this paper to estimate relations between the balls B0 and B1 by using the
information on ε0 ≤ ‖xd(k)‖ ≤ ρ0, which are not discussed in Theorem 1, Corollary 1
and Corollary 2 in [9]. We give the following theorem to estimate both the boundary of
the solution of system (1) and arrival time K.

Theorem 4.1 Given scalars α, ε with 0 < ε < α, σ1 > 1. If there exist a Lyapunov
function V : Z+ × R

n → R
+, wedge functions Wi(·)(i = 1, 2, 3), satisfying

(i) W1(|x(k)|) ≤ V (k, x(k)) ≤ W2(|x(k)|);
(ii) ∆V (k, x(k)) ≤ −W3(|x(k + 1)|) for‖xd(k)‖ ≤ ρ0, provided

V (k + s, x(k + s)) < σ1(V (k + 1, x(k + 1))) for s ∈ I1d ,

then
(1) βα = W−1

1 (W2(α));
(2) K = k0 +m1 (d+m2),
where

m1 =

{

W2(α)+(σ1−2)W1(ε)
(σ1−1)W1(ε)

, W2(α)−W1(ε)
(σ1−1)W1(ε)

is integer;
[

W2(α)−W1(ε)
(σ1−1)W1(ε)

]

, otherwise,

m2 =







2W2(α)

W3(W
−1
2 (W1(ε)))

+ 1, 2W2(α)

W3(W
−1
2 (W1(ε)))

is integer;
[

2W2(α)

W3(W
−1
2 (W1(ε)))

]

, otherwise,

[·] denotes the greatest integer function, ρ0 = W−1
1 (W2(α)), βα is the estimation of the

solution boundary of system (1), and K is the time that the solution exists from the given
ball {φ : ‖φ‖ < α} and falls into the region {x(k) : ‖x(k)‖ < ε}.

Proof (1) In Theorem 3.1, let W1(βα) = W2(α). Then, ε0 = L−1α, ρ0 = βα,
and B1 = B2 = {x(k) : V < W1(βα)}. It follows from Theorem 3.1 that the solution
starting from B2 can not exits from B1, which implies that the solution starting from set
{φ : ‖φ‖ < α} will have a boundary βα = W−1

1 (W2(α)).
(2) In Theorem 3.1, let B1 = {x(k) : V (k, x(k)) < W2(α)}, and B2 = {x(k) :

V (k, x(k)) < W1(ε)}. Notice that ε0 = L−1W−1
2 (W1(ε)) and ρ0 = W−1

1 (W2(α)), let
PV (s) = σ1s, then PV (s) has the required property in Corollary 3.1 and there exist

two scalars δ1 > 0 and δ2 ∈ (0, 1/2), such that W2(α)−W1(ε)
(σ1−1)W1(ε)

< W2(α)−W1(ε)
(σ1−1)W1(ε)−δ1

< m1, and
2W2(α)

W3(W
−1
2 (W1(ε)))

< W2(α)

δ2W3(W
−1
2 (W1(ε)))

< m2. With the similar analysis process in the proofs

of Theorem 3.1 and Corollary 3.1, one can derive the conclusion of (2) for ε ≤ ‖x(k)‖ < α
with η = (σ1 − 1)W1(ε)− δ1 ∈ (0, inf(PV (V )− V )) and $3 = δ2W3(W

−1
2 (W1(ε))). 2
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5 Practical Controllability

In this section we will use the results from previous sections to study the practical
controllability for a general class of nonlinear discrete systems with input time delay.
Consider the following system:

x(k + 1) = f(k, x(k)) +

d
∑

i=0

B(k − i)u(k − i), (10)

where f : Z+ × R
n → R

n, B : Z+ × R
n → R

n×m, i = 1, . . . , d, u(k) ∈ R
m is input,

and is supposed to guarantee the existence and uniqueness of the solution. This type of
model is generally studied in networked control systems (NCSs). We first introduce the
following definitions:

Definition 5.1 System (10) is called to be:

Uniformly Practically Controllable (U.P.C.) with respect to (α, β), 0 < α < β, if
there exist finite time K and a control u(·) defined on [k0,K] such that all the
solutions x(k) = x(k; k0, φ, u) that exit from {φ ∈ R

n : ‖φ‖ < α} will enter into a
bounded region {x(k) ∈ R

n : ‖xd(k)‖ < β} at time K instant for all k0 ∈ Z
+;

Uniformly Practically Asymptotically Controllable (U.P.A.C.) with respect to
(α, β), 0 < α < β, if U.P.C. holds, and for each ε ∈ (0, β), there exists a posi-
tive number K = K(k0, α, ε) such that ‖φ‖ < α implies |x(k; k0, φ, u)| < ε for all
k ≥ k0 +K.

Theorem 5.1 Assume that there exists a control law u(k) such that system (10) can
be expressed by the form of (1), and the conditions of Theorem 3.2 are satisfied. Then,
system (10) is U.P.A.C.with respect to (α, β).

For system (10), adopt the feedback control law u(k) = F (k, x(k))x(k). Assume
fu(k, x(k)) = f(k, x(k)) +B(k)u(k) and

‖fu(k, x(k))‖ ≤ ‖Ψ0(k)‖‖x(k)‖.

Let Ψi(k) = B(k− i)F (k− i, x(k− i)), where F (k, x(k)) is the control gain matrix, Ψ0(k)
and Ψi(k) are of compatible dimensions. Consequently, the closed-loop system of (10)
has the following form:

x(k + 1) = fu(k, x(k)) +

d
∑

i=1

Ψi(k)x(k − i). (11)

Let λmax(·) and λmin(·) be the maximum eigenvalue and the minimum eigenvalue of a
real symmetric matrix, respectively. ‖ · ‖2 stands for the Euclidean vector norm or the
2-norm of a matrix. Then, we have the following corollary.

Corollary 5.1 If there exists F (k) such that

sup
k∈Z

d
∑

i=0

‖Ψi(k)‖22 < 1− (
α

β
)2 (12)

then, the closed-loop system (11) is U.P.A.S., and system (10) is U.P.A.C. with respect
to (α, β) with 0 < α < β.
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Proof In fact, by (12), noting that 0 < α < β, then, ∀ε ∈ (0, α2/β2), there exist
scalars δ1 ∈ [α2/β2, 1] and δ2 > 1 such that

sup
k∈Z

‖Ψ0(k)‖22 + δ2 sup
k∈Z

d
∑

i=1

‖Ψi(k)‖22 < δ1 − (
α

β
)2 + ε < δ1.

Thus, there exists a positive definite matrix P such that λmin(P ) = δ1λmax(P ).
Choose V (k, x(k)) = xT (k)Px(k), W1(|x(k)|) = λmin(P )xT (k)x(k), and W2(|x(k)|) =
λmax(P )xT (k)x(k). It is obvious that

W1(|x(k)|) ≤ V (k, x(k)) ≤ W2(|x(k)|).

Let PV (s) = δ2s for s ≥ 0. Then PV (s) > s for s ≥ 0. For all i ∈ {1, . . . , d}, if
V (k − i, x(k − i)) < PV (V (k + 1, x(k + 1))), then, ‖x(k − i)‖22 < ‖x(k + 1)‖22δ2/δ1, and
it follows (11) that

‖x(k + 1)‖22 ≤ sup
k∈Z

‖Ψ0(k)‖22‖x(k)‖22

+sup
k∈Z

d
∑

i=1

‖Ψi(k)‖22‖x(k − i)‖22

≤ sup
k∈Z

‖Ψ0(k)‖22‖x(k)‖22

+

δ2 supk∈Z

d
∑

i=1

‖Ψi(k)‖22
δ1

‖x(k + 1)‖22.

Consequently,

−‖x(k)‖22 ≤
δ2 supk∈Z

d
∑

i=1

‖Ψi(k)‖22 − δ1

δ1 supk∈Z
‖Ψ0(k)‖22

‖x(k + 1)‖22.

Let ẽ =
δ1−supk∈Z

‖Ψ0(k)‖
2
2−δ2 supk∈Z

d∑

i=1

‖Ψi(k)‖
2
2

supk∈Z
‖Ψ0(k)‖2

2
. Since scalar ε ∈ (0, α2/β2) is arbitrary,

thus, ẽ > α2

β2
−α2 > 0, and

∆V (k, x(k)) = xT (k + 1)Px(k + 1)− xT (k)Px(k)

≤ −λmax(P )
α2

β2 − α2
‖x(k + 1)‖22.

Then, conditions (i), (ii) and (iii)b of Theorem 3.2 are all satisfied, and hence, the con-
clusion follows. 2

Remark 5.1 In Theorem 3.1, Corollary 3.1, Theorem 3.2 and Theorem 4.1, there is
a relation between V (k + s, x(k + s))(s ∈ I1d ) and V (k + 1, x(k + 1)), namely, ”provided
R(V (k + s, x(k + s)), V (k + 1, x(k + 1)))”, where R(·, ·) defines a relation. We call
this relation as the R-relation. The conditions (ii), (ii)

′

, (iii)a and (iii)b describe the
constraint on ∆V (k, x(k)) under the R-relation, but no constrain on ∆V (k, x(k)) without
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R-relation. Thus, the condition that the constraint on ∆V (k, x(k)) holds not only with
but also without the R-relation, is more restrictive than the condition that the constraint
on ∆V (k, x(k)) holds only with the R-relation. Therefore, we can obtain a class of
particular cases of Theorem 3.2 with conditions (i), (ii), either (iii)a or (iii)b, which in
fact are corresponding to the well-known Lyapunov-like theorems.

6 Illustrative Numerical Example

To illustrate the effectiveness of the results obtained in previous sections, we consider
the following nonlinear discrete system with input time delay:

x(k + 1) = 1.44x(k)− x3(k) + 0.069u(k) + 0.031u(k− 1), x(k) ∈ [−1.2, 1.2].(13)

Assume that α = 0.45 and β = 0.60. To obtain the zero solution x(k) = 0 in U.P.A.S
with (α, β), adopt the following fuzzy control law:

R1 : IF x is about ± 1.2, THEN

u = F1x(k),

R2 : IF x is about 0, THEN

u = F2x(k).

The references on fuzzy control can be found in [18, 19]. Then, the overall control law is

u(k) =

2
∑

i=1

µiFix(k), (14)

where µ1 = x2

1.44 and µ2 = 1− µ1 are both membership functions, as shown in Figure 2.
The control gain matrices are designed to be F1 = −0.0694 and F2 = −18.9114. Then,
the closed-loop system can be expressed as follows:

x(k + 1) =
(

1.44− x2(k) + 0.069

2
∑

i=1

µiFi

)

x(k) + 0.031

2
∑

i=1

µiFix(k − 1).

Denote discriminant function by

g(x(k)) =
(

1.44− x2(k) + 0.069
2

∑

i=1

µiFi

)2
+ (0.031

2
∑

i=1

µiFi)
2.

The profile of g(x) is illustrated in Figure 3. We can calculate that g(x) ≤ 0.3619 <
1−α2/β2 = 0.4375 for x ∈ [−1.2, 1.2]. By (12) and Corollary 5.1, system (13) is U.P.A.C.
with respect to (α, β). The state curve with initial values x(−1) = 0.3, x(0) = 0.4 of
system (13) with and without fuzzy controller (14) are shown in Figure 4. Without fuzzy
controller, i.e., u(k) = 0, the zero solution is unstable, and the nonlinear discrete system
converges to x(k) ≈ 0.6633 > β; whereas, with fuzzy controller (14), the closed-loop
system is U.P.A.S. with (α, β).
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Figure 2: The membership functions of µ1 and µ2
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7 Conclusions

Motivated by the idea in [9], practical asymptotic stability and controllability are studied
for a class of nonlinear discrete systems with time delay. Some explicit criteria for the
uniform practical asymptotic stability are established by means of Lyapunov function
and Razumikhin technique. Estimations of the solution boundary and arrival time of
the solution are also investigated. In addition, the proposed theorems are used to study
the practical controllability for a general class of nonlinear discrete systems with input
time delay. Finally, a numerical example is presented to illustrate the effectiveness of the
proposed results. We believe the results in this paper are useful for the study networked
control systems.
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1 Introduction

Sensors are used in various applications, including military surveillance, ground map-
ping, tracking and recognition of targets, instrumentation, air traffic control, imaging,
and robotics [1]. Information collected by the sensors is used to design activities that
evolve over time in the underlying system [2]. For example, in a defense system, surveil-
lance sensors are used to detect, identify, and localize targets, assess levels of threat,
and deduce enemy intent [3]. In some applications, such as robotics, operating several
sensors simultaneously causes interference in the system and thus affects the measure-
ment accuracy [4]. Consequently, it is impossible to operate all of the sensors at once.
Instead, we need to schedule the operation of sensors over a given time frame so that
the signal estimation error is minimized. We assume in this paper that only one sensor
may be active at any one time. The accuracy of the estimation obtained by the sensors
increases with a decrease in measurement of noise in a stochastic environment. The
work presented here was motivated by [5] and [6]. In [6], the optimal scheduling policy
is obtained by solving a quasi-variational inequality. However, the complexity of the
model in [6] makes it difficult to compute an optimal solution. On the other hand, [5]
considers open-loop policies with switches from one sensor to another. This reference
proposes a time scaling transformation, which aims to capture a large variety of possible
switching sequences. The sensor scheduling problem, which is formulated as a discrete-
valued optimal control problem, is first transformed into an optimal parameter selection
problem, and then solved using existing optimal control software. The optimal control
for the original problem is determined through a reverse transformation. However, this
approach introduces a large number of artificial switches, many of which are not utilized
in the optimal solution. As a consequence, the resulting optimization problem has many
local minima. A study similar to that considered in [5] is performed in [7], where a
combination of a branch and cut technique and a gradient-based method is applied to
solve the continuous-time sensor scheduling problem.

We consider a general optimal sensor scheduling problem, which is similar to the one
discussed in [5] and [7], and propose a transformation to convert it into an equivalent
mixed discrete optimization problem, as discussed in Section 3. Then, we propose a novel
global optimization algorithm in Section 4, which incorporates a discrete filled function
method and a gradient-based method, to avoid local solutions and speed up the com-
putation. To evaluate the effectiveness of our algorithm, we solve a numerical example
from the literature and compare the results with those obtained from the methods in [5]
and [7] in Section 5.

2 Problem Formulation

Consider the following system of linear stochastic differential equations on a given prob-
ability space (Ω,F ,P):

dx(t) = A(t)x(t)dt +B(t)dK(t), t ∈ [0, T ],

with initial condition
x(0) = x0.

Here, {x(t), t ∈ [0, T ]} is a R
n-valued state process representing a signal of interest. It is

assumed to be square integrable. The initial state, x0, is a R
n-valued Gaussian random

vector on (Ω,F ,P) with mean x̄0 and covariance matrix P0. Furthermore, A : [0, T ] →
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R
n×n and B : [0, T ] → R

n×p are continuous functions. The process {K(t), t ∈ [0, T ]} is a
standard R

p-valued Brownian motion on (Ω,F ,P) with mean zero and given covariance
matrix Q ∈ R

p×p, where Q is symmetric and positive semi-definite.
Suppose that there are M sensors for detecting the state process. Only one of these

sensors may be operated at any one time. A sensor schedule is a function φ : [0, T ] →
{1, . . . ,M} that returns the active sensor at time t. In other words, φ(t) = i means
sensor i is active at time t. Let Φ be the set of all measurable sensor schedules and let
y be the observation process associated with the scheduling policy φ. For any φ ∈ Φ, we
have the following output equation:

dy(t) =

M
∑

i=1

χ
{t:φ(t)=i}(t)

{

Ci(t)x(t)dt +Di(t)dWi(t)
}

, t ∈ [0, T ],

and

y(0) = 0,

where, for each I ⊂ [0, T ],

χI(t) =

{

1, t ∈ I,
0, otherwise,

and {Wi(t), t ∈ [0, T ]} is a standard R
m-valued Brownian motion with mean zero and

covariance matrix R ∈ R
m×m, where R is symmetric and positive definite, Ci : [0, T ] →

R
m×n and Di : [0, T ] → R

m×m are continuous functions.

Each sensor makes an observation of the state process that is contaminated by noise.
The history of such observation processes is denoted by {y(s), 0 ≤ s ≤ t}. The data
collected from the M sensors are used to estimate the state x at time t. The best
estimate of x(t) is known as x̂(t). Since y is corrupted by noise, the history observed
is uncertain. Let the history of such a process be denoted by the smallest σ-algebra,
Fy

t = σ{y(s), 0 ≤ s ≤ t}. Hence, the optimal mean-square estimate of the state given
Fy

t is x̂(t), and the associated error covariance is P (t). Then, for a given φ ∈ Φ, the
optimal x̂(t) is given by the following theorem. The proof of this theorem may be found
in [8].

Theorem 2.1 For each sensor schedule φ ∈ Φ, the optimal mean-square estimate of
the state x̂(t) is the unique solution of the following stochastic differential equation:

dx̂(t) =

[

A(t) − P (t)

M
∑

i=1

χ
{t:φ(t)=i}(t)C

>

i (t)R̄−1
i (t)Ci(t)

]

x̂(t)dt

+

[

P (t)
M
∑

i=1

χ
{t:φ(t)=i}(t)C

>

i (t)R̄−1
i (t)

]

dy(t), t ∈ [0, T ], (1)

and

x̂(0) = x̄0, (2)

where

R̄−1
i (t) =

[

Di(t)Ri(t)D
>

i (t)
]

−1
, (3)
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and the error covariance matrix P : [0, T ] → R
n×n is the unique solution of the matrix

Riccati differential equation

Ṗ (t) = A(t)P (t)+P (t)A>(t)+B(t)QB>(t)−P (t)
M
∑

i=1

χ
{t:φ(t)=i}(t)C

>

i (t)R̄−1
i (t)Ci(t)P (t)

(4)
with initial condition

P (0) = P0. (5)

Clearly, the solution of (4)-(5) depends on the sensor schedule that is chosen. Let P (·|φ)
be the solution corresponding to φ ∈ Φ. We formulate the following sensor scheduling
problem.

Problem (P). Choose φ ∈ Φ to minimize

g0(φ) = αtrace{P (T |φ)}+
∫ T

0

trace{P (t|φ)}dt, (6)

subject to (4) and (5), where α is a non-negative constant.

The objective function (6) is designed to minimize the estimation error during the oper-
ation of the system. Note that Problem (P) is a discrete-valued optimal control problem.
The main challenge in solving Problem (P) is that the control φ is constrained to take
values in the discrete set {1, . . . ,M}. Each sensor schedule is completely determined by
specifying the values in {1, . . . ,M} that it assumes and the times when it switches from
one value in {1, . . . ,M} to another. Clearly, only a finite number of switches are able to
be implemented in practice, and hence φ is a piecewise constant function with a finite
number of switches. In other words, to solve Problem (P), we need to determine both
the optimal switching sequence and the optimal switching times. Thus, we transform
Problem (P) into an equivalent and solvable form in the next section.

3 Problem Transformation

Recall that only one sensor is active at each time and that only a finite number of switches
are allowed. Suppose that we allow a sensor schedule φ to switch N times during the
time horizon. Let V = {v = [v1, . . . , vN+1]

> : vi ∈ {1, . . . ,M}} be the set of all possible
switching sequence vectors. Let σ = [σ1, . . . , σN+1]

>, where σi ≥ 0, i = 1, . . . , N + 1,
denote the duration for which the corresponding sensor vi in the sequence is active.
Clearly,

N+1
∑

i=1

σi = T.

Let Σ denote the set of all such σ. Note that under the assumption of a finite number of
switches, N , any φ ∈ Φ is completely determined by an element (v,σ) ∈ V × Σ, where

φ(t) = vi, t ∈
[

i−1
∑

j=1

σj ,

i
∑

j=1

σj

]

, i = 1, . . . , N + 1.
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We introduce a new time variable τ ∈ [0, N + 1] and consider the fixed partition
{0, 1, . . . , N + 1}. The original time horizon [0, T ] is transformed into the new time
horizon [0, N + 1] as follows:

ṫ(τ) = σi, τ ∈ [i − 1, i), i = 1, . . . , N + 1, (7)

with the boundary conditions
t(0) = 0 (8)

and
t(N + 1) = T. (9)

The original dynamics (4)-(5) are transformed into

˙̃P (τ) = σi

[

A(τ)P̃ (τ) + P̃ (τ)A>(τ) +B(τ)QB>(τ)

− P̃ (τ)C>

vi
(τ)R̄−1

vi
(τ)Cvi (τ)P̃ (τ)

]

, τ ∈ [i− 1, i), i = 1, . . . , N + 1, (10)

and
P̃ (0) = P0. (11)

Hence, the transformed problem is stated formally below. Let P̃ (·|v,σ) be the solution
of (10)-(11) corresponding to (v,σ) ∈ V × Σ.

Problem (R). Choose v ∈ V and σ ∈ Σ to minimize

g0(v,σ) = αtrace{P̃ (N + 1|v,σ)}+
N+1
∑

i=1

∫ i

i−1

trace{P̃ (τ |v,σ)}σi dτ, (12)

subject to (7)-(9) and the dynamics (10)-(11), where α is a non-negative constant.

Problem (R), an equivalent problem to Problem (P), is a mixed discrete optimization
problem with the discrete variable v representing the switching sequence and the
continuous variable σ representing the time length of each mode. We propose to solve
Problem (R) by first decomposing it into two levels. Note that for a fixed v ∈ V ,
Problem (R) reduces to the following problem.

Problem (R1). Given v ∈ V , find a σ ∈ Σ to minimize

g0(σ|v) = αtrace{P̃ (N + 1|σ,v)}+
N+1
∑

i=1

∫ i

i−1

trace{P̃ (τ |σ,v)}σi dτ, (13)

subject to (7)-(9) and dynamics (10)-(11), where α is a non-negative constant.
Problem (R1) is a standard optimal parameter selection problem in a canonical form
suitable for the application of a standard algorithm based on the control parameteri-
zation concept. For each given v, the optimal value of g0 in (13) can be determined
using an optimal control software, such as MISER3.3 [9], since the switching sequence is
fixed. Note that in MISER3.3, the optimal parameter selection problem is solved using
a sequential quadratic programming algorithm. The second problem in the proposed
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decomposition is defined as follows.

Problem (R2). Choose v ∈ V to minimize the objective function

J(v), (14)

where
J(v) = min

σ∈Σ
g0(σ|v).

Note that Problem (R2) is a purely discrete optimization problem, but computing the
value of J(v) requires solving the corresponding Problem (R1). Hence, Problem (R1) is a
subproblem of Problem (R2). To obtain a near globally optimal solution for Problem (R),
we propose a combined algorithm where Problem (R2) will be solved using a discrete
filled function method and, at each iteration, Problem (R1) is solved using MISER3.3.
For our numerical computations, we have been able to incorporate the discrete filled
function method within the MISER3.3 software. The details of the discrete filled function
approach are discussed in the next section.

Remark 3.1 Note that the early time scale transformation proposed in [5] introduces
a large number of artificial switching instants, typically N ×M , most of which are not
used in the final optimal solution. As a result, the transformed problem yields many local
minima, many of which have high objective values. Our method avoids this difficulty
because only N switches are needed.

4 Discrete Filled Function Method

The filled function approach is a global optimization method which was initiated by Ge
in the late 1980s [10, 11] to solve continuous global optimization problems. Zhu [12]
appears to be the first researcher to adapt the continuous filled function approach in
solving discrete optimization problems. However, the filled function proposed by Zhu
contains an exponential term, making it difficult to determine an improved point [13] in
practice. Since then, various discrete filled functions with improved theoretical properties
have been proposed in [13–17] to enhance computational efficiency.

In this paper, we employ a discrete filled function method, which was recently devel-
oped in [13], as a part of our proposed algorithm. The basic idea of this method is as
follows. We choose an initial sequence and then perform a local search (see Algorithm 4.1
below) to find an initial local minimizer. Then, we construct an auxiliary function, called
a filled function, at this local minimizer. By minimizing the filled function, either an im-
proved local minimizer is found or one of the vertices is reached. This process is repeated
until no improved local minimizer of the corresponding filled function can be found. The
final local minimizer is then taken as an approximation of the global minimizer.

Definition 4.1 For any v ∈ V , the neighbourhood of v is defined by N(v) = {w ∈
V | w = v± ei : i = 1, 2, . . . , N +1}. Here, ei denotes the i-th standard unit basis vector
of RN+1 : its i-th component is equal to one and its other components are equal to zero.
The set of all feasible directions at v ∈ V is defined by D(v) = {d ∈ R

N+1 : v + d ∈
N(v)} ⊂ {±ei, i = 1, . . . , N + 1}.

Definition 4.2 The sequence v∗ ∈ V is a local minimizer of J if J(v∗) ≤ J(v) for all
v ∈ N(v∗). If J(v∗) < J(v) for all v ∈ N(v∗) \ {v∗}, then v∗ is a strict local minimizer
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of J . The sequence v∗ is a global minimizer of J if J(v∗) ≤ J(v) for all v ∈ V . If
J(v∗) < J(v) for all v ∈ V \ {v∗}, then v∗ is a strict global minimizer of J .

Definition 4.3 v is a vertex of V if for each d ∈ D(v), v + d ∈ V and v − d /∈ V .
Let Ṽ denote the set of vertices of V .

Algorithm 4.1 Discrete Steepest Descent Method

1. Choose an initial switching sequence v ∈ V .

2. If v is a local minimizer of J , then stop. Otherwise, find a discrete steepest descent
direction d∗ ∈ D(v) of J .

3. Let v = v + d∗. Go to Step 2.

Based on Definitions 4.1-4.3, we call a function Gv∗ : V 7→ R a discrete filled function
of J at v∗ if it satisfies the following conditions:
(a) v∗ is a strict local maximizer of Gv∗ ;
(b) Let V̂ (v∗) = {v ∈ V : v 6= v∗, J(v) ≥ J(v∗)}. Gv∗ has no local minimizer in the set
V̂ (v∗) \ Ṽ ;
(c) v∗∗ ∈ V \ Ṽ is a local minimizer of J if and only if v∗∗ is a local minimizer of Gv∗ .

Define
Gµ,ρ,v∗(v) = Aµ(J(v) − J(v∗)) − ρ ‖ v − v∗ ‖, (15)

where

Aµ(y) = y·µ
[

(1− c)

(

1− cµ

µ− cµ

)

−y/ω

+ c

]

,

ω > 0 is a sufficiently small number, and 0 < c ≤ 1 is a constant. The function
Gµ,ρ,v∗(v) is a discrete filled function when certain conditions on the parameters µ and
ρ are satisfied. Hence, it has properties (a)-(c) when those conditions on µ and ρ are
met. Note that the discrete filled function is constructed based on the following theorems
found in [13]. A detailed convergence analysis for this method has also been given in [13].

Definition 4.4 Let K be a constant satisfying

1 ≤ max
v1,v2∈V
v1 6=v2

‖ v1 − v2 ‖≤ K < ∞,

where ‖ · ‖ is the Euclidean norm. Let 0 < L < ∞ be the Lipschitz constant such that
|J(v1)− J(v2)| ≤ L ‖ v1 − v2 ‖, for any distinct v1,v2 ∈ V .

Theorem 4.1 If ρ > 0 and 0 < µ < min{1, ρ

L
}, then v∗ is a strict local maximizer

of Gµ,ρ,v∗ . If v∗ is a global minimizer of J , then Gµ,ρ,v∗(v) < 0 for all v ∈ V \ {v∗}.

Theorem 4.2 Let v∗∗ be a strict local minimizer of J with J(v∗∗) < J(v∗). If ρ > 0
is sufficiently small and 0 < µ < 1, then v∗∗ is a strict local minimizer of Gµ,ρ,v∗ .

Theorem 4.3 Let v́ be a strict local minimizer of Gµ,ρ,v∗ and let d̄ ∈ D(v́) be a
feasible direction at v́ such that ‖ v́+ d̄− v∗ ‖>‖ v́− v∗ ‖. If ρ > 0 is sufficiently small
and 0 < µ < min{1, ρ

2K2
L
}, then v́ is a local minimizer of J .
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Corollary 4.1 Assume that every local minimizer of J is strict. Suppose that ρ > 0
is sufficiently small and 0 < µ < min{1, ρ

2K2
L
}. Then, v∗∗ ∈ V \ Ṽ is a local minimizer

of J with J(v∗∗) < J(v∗) if and only if v∗∗ is a local minimizer of Gµ,ρ,v∗ .

Interested readers are referred to [13] for proofs of Theorem 4.1-4.3. Clearly, from
Corollary 4.1, Gµ,ρ,v∗ must satisfy the condition (c) of the discrete filled function defi-
nition if every local minimizer of J is strict under certain conditions on µ and ρ. If the
local minimizer of the discrete filled function Gµ,ρ,v∗ found is an improved point, it is
also a local minimizer of the original function J . Based on the theoretical framework
described above, a discrete filled function algorithm for global optimization can be stated
as follows.

Algorithm 4.2 Discrete Filled Function Method

1. Initialize v0 ∈ V , ρ0, µ0, ρL > 0, 0 < ρ̂ < 1, and 0 < µ̂ < 1.
Let ρ := ρ0 and µ := µ0.
Choose an initial sequence v0 ∈ V .

2. Starting from v0, minimize J(v) using Algorithm 4.1 to obtain a local minimizer
v∗ of J .

3. (a) List the neighbouring sequences of v∗ as N(v∗) = {w1,w2, . . . ,wq}. Set ` := 1.
(b) Set the current switching sequence, vc := w`.

4. (a) If there exists a direction d ∈ D(vc) such that J(vc + d) < J(v∗), then set
v0 := vc + d and go to Step 2. Otherwise, go to (b) below.
(b) Let D1 = {d ∈ D(vc) : J(vc + d) < J(vc) and Gµ,ρ,v(vc + d) < Gµ,ρ,v(vc)}.
If D1 6= ∅, set d∗ := argmind∈D(vc){J(vc + d) +Gµ,ρ,v∗(vc + d)}.
Then, set vc := vc + d∗ and go to Step 4(a). Otherwise, go to (c) below.
(c) Let D2 = {d ∈ D(vc) : Gµ,ρ,v(vc + d) < Gµ,ρ,v(vc)}.
If D2 6= ∅, set d∗ := argmind∈D(vc){Gµ,ρ,v∗(vc + d)}.
Then, set vc := vc + d∗ and go to Step 4(a). Otherwise, go to Step 5.

5. Let v́ be the obtained local minimizer of Gµ,ρ,v∗ .

(a) If v́ ∈ Ṽ , set ` := `+ 1. If ` > q, go to Step 6. Otherwise, go to Step 3(b).
(b) If v́ /∈ Ṽ , reduce µ by setting µ := µ̂µ and go to Step 4(b).

6. Reduce ρ by setting ρ := ρ̂ρ. If ρ < ρL, terminate the algorithm. The current
v∗ is taken as a global minimizer of the problem. Otherwise, set ` := 1 and go to
Step 3(b).

The mechanism behind this algorithm can be illustrated as follows. Firstly, the
parameters of the discrete filled function Gµ,ρ,v∗ in (15) are initialized to suitable values.
These parameters will be reduced gradually in Steps 5 and 6, to ensure that Gµ,ρ,v∗

eventually satisfies properties (a)-(c). The reduction factor of each parameter is also
specified at Step 1.

Secondly, we choose an initial sequence v0 in the feasible region and minimize the
original function J . Recall that the value of J is computed using MISER3.3 according to
the discussion in the previous section. The objective function value at each sequence in
the neighbourhood of v0 is calculated. The search direction leading to the most improved
objective function value in this neighbourhood is chosen according to Algorithm 4.1. The
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process is repeated until a local minimizer of J , namely v∗, is found. Next, we identify
the neighbourhood of v∗ in Step 3. One of the neighbouring points of v∗, denoted by
vc, is set to be an initial point to minimize the discrete filled function Gµ,ρ,v∗ in the
following step. Note that v∗ is a local maximizer of Gµ,ρ,v∗ here.

In Step 4, we first check to see if there exists a neighbouring sequence of vc that is an
improvement over the current minimizer. If such a sequence can be found, then we use it
as a starting point to minimize the function J using Algorithm 4.1. Otherwise, if we can
find a direction that results in an improvement of both J and G compared with the values
at vc, then we choose the direction which gives the greatest such improvement. If such
a direction does not exist, then find a steepest descent direction such that Gµ,ρ,v∗(vc +
d∗) < Gµ,ρ,v∗(vc). If none of these directions exists, then vc must be a local minimizer
of Gµ,ρ,v∗ , so we go to Step 5.

If the local minimizer of Gµ,ρ,v∗ is found to be a vertex of the feasible region, choose
the next point in N(v∗) as a starting point to minimize Gµ,ρ,v∗ in Step 5(a). Note that
the minimizer of Gµ,ρ,v∗ should be either an improved point or a vertex. Thus, µ is
adjusted suitably to satisfy this criteria in Step 5(b).

If no improved sequence is found with the minimization process starting from all
neighbouring sequences ending up at the vertices, we reduce ρ, reset ` = 1, and minimize
Gµ,ρ,v∗ again with the new value of ρ. The algorithm is repeated until the termina-
tion criteria is reached, where ρ reaches its lower bound, ρL. In other words, we have
minimized the discrete filled function from every search direction from v∗ and failed to
find an improved point, even the parameters are small. We repeat Algorithm 4.2 twice,
reducing the value of ρ each time to confirm that no better solution can be found. Thus,
the final local minimizer v∗ found is taken to be the global solution of J .

To increase the efficiency, we construct a look-up table to store each value of the objec-
tive function J computed so far. Thus, we avoid repeated application of the subproblems
solution algorithm at the same point. This is essential because computing J(v) involves
solving a complex optimal control problem, which takes considerable computational time.

Remark 4.1 Note that a sequential quadratic programming method is employed
within MISER3.3 to solve the subproblem (R1). This is a local search method and
thus cannot guarantee the global optimality for the solution of the subproblem. In other
words, although we aim to solve the upper level problem globally, the lower level problem
may only yield a locally optimal solution. Therefore, we consider our approach to be
a heuristic global optimization method with no implied guarantee of finding the overall
global optimum. Nevertheless, numerical results demonstrate that good quality solutions
can be determined effectively compared with other methods in the literature, such as [5]
and [7].

5 Illustrative Example

Consider a sensor scheduling problem with six sensors and seven switches as discussed
in [7]. Let N = 7, M = 6, n = 2, m = 1, p = 2, T = 8, α = 0, c = 0.5, µ0 = 0.1, ρ0 =
0.1, ω = 1, ρL = 0.001, ρ̂ = 0.1, µ̂ = 0.1 and consider the following dynamics:

[

ẋ1(t)
ẋ1(t)

]

=

[

0.5 1.0
1.0 0.5

] [

x1(t)
x2(t)

]

+

[

2.0
2.0

]

K(t),

[

x1(0)
x2(0)

]

=

[

0
0

]

,
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where

P0 =

[

1 0
0 1

]

, Q =

[

1 0
0 1

]

,

C1(t) =

[

1 + 1.2 sin(2t) 0
1 + 1.2 sin(2t) 0

]

, D1(t) =

[

1 0
0 1

]

, R1(t) =

[

1 0
0 1

]

,

C2(t) =

[

1 + 0.5 cos(2t) 1 + 0.5 cos(2t)
0 0

]

, D2(t) =

[

1 0
0 1

]

, R2(t) =

[

1 0
0 1

]

,

C3(t) =

[

1 + 0.5 sin(2t) 0
0 1 + 0.5 cos(2t)

]

, D3(t) =

[

1 0
0 1

]

, R3(t) =

[

1 0
0 1

]

,

C4(t) =

[

0 1 + 0.5 cos(2t)
1 + 0.5 sin(2t) 0

]

, D4(t) =

[

1 0
0 1

]

, R4(t) =

[

1 0
0 1

]

,

C5(t) =

[

0 0
1 + 0.5 cos(2t) 1 + 0.5 sin(2t)

]

, D5(t) =

[

1 0
0 1

]

, R5(t) =

[

1 0
0 1

]

,

C6(t) =

[

0 1 + 1.8 sin(2t)
0 1 + 1.8 cos(2t)

]

, D6(t) =

[

1 0
0 1

]

, R6(t) =

[

1 0
0 1

]

.

For the ease of computation, we are able to embed the filled function algorithm
into the MISER3.3 program. The algorithm is terminated when µ = 1 × 10−41 and
ρ = 1 × 10−3, at which stage the best local minimizer found cannot be improved. The
computation is performed using the modified version of MISER3.3 on a Windows-based
PC, with a CPU speed of 2.4GHz and 2GB RAM. We solve Problem (R), which has a
total number of 1,679,616 potential switching sequences, using v0 = [6, 5, 2, 6, 5, 2, 6, 1]>

as the initial sequence and σ0 = [1, 1, 1, 1, 1, 1, 1, 1]> as the initial guess for σ. Note that
P0 is initialized as a 2 × 2 identity matrix. Relevant results obtained are summarized
in Table 1. The entries in the v∗ column indicate the optimal solutions for the local
searches. From Table 1, σ∗ = [0.23501973, 0, 0, 7.7649803, 0, 0, 0, 0]> for the assumed
global minimum indicates that sensors 2, 3, 4, and 5 are not used in the final optimal
solution during the tenth iteration. Hence, only two out of six sensors are turned on. The
assumed global optimal switching sequence is to turn on sensor 1, followed by sensor 6,
with the objective function 14.33176. The number of original function evaluations and
filled function evaluations are 5293 and 8517, respectively. This represents 0.32% of the
total number of potential sequences. Note that the objective function evaluations do not
include those that were obtained from the look-up table.

We tested the problem with five different initial sequences. These are
[1, 2, 3, 4, 5, 6, 1, 2]>, [6, 5, 4, 3, 2, 1, 6, 5]>, [1, 6, 3, 2, 4, 5, 3, 1]>, [1, 6, 1, 6, 1, 6, 1, 6]>,
and [6, 6, 1, 2, 5, 4, 2, 1]> using the same P0 and σ0 as in the first computation. As
many as fifty local minima are found during the searches from the various initial se-
quences. Starting at each initial sequence, the algorithm successfully identified the same
assumed discrete global minimum sequence of Problem (R) observed in the first experi-
ment, that is, sensor 1 is followed by sensor 6, with the cost function value J = 14.33176.
Again, computational results show that only up to 0.32% of the total number of potential
sequences are evaluated. The optimal operating schedule for the control and states are
depicted in Figure 1. In addition, several different choices of P0 are tested in our exper-
imentation with various initial switching sequences. The optimal operating schemes for
P0 = 0, P0 = 6I, P0 = 10I are illustrated by Figures 2, 3, and 4, respectively. From



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 10(2) (2010) 175–188 185

Table 1: Numerical Results for P0 = I

v∗

σ
∗ J

[1, 6, 1, 1, 6, 1, 6, 6]> [0.24035917, 0, 0, 0, 0, 0, 7.7525870, 0.0070538593]> 14.649680367412879

[6, 1, 6, 6, 1, 6, 1, 1]> [0.17566501, 0.18470974, 0, 7.6396253, 0, 0, 0, 0]> 14.504334985710470

[1, 6, 1, 6, 6, 1, 1, 6]> [0.23511799, 0, 0, 7.7648820, 0, 0, 0, 0]> 14.331763146735220

[1, 6, 2, 6, 6, 2, 2, 6]> [0.23501894, 0, 0, 7.7649811, 0, 0, 0, 0]> 14.331763102479558

[1, 6, 6, 6, 6, 3, 3, 5]> [0.23502083, 0, 0, 7.7649792, 0, 0, 0, 0]> 14.331763102474610

[1, 6, 6, 6, 6, 6, 5, 5]> [0.23502039, 0, 0, 7.7649796, 0, 0, 0, 0]> 14.331763102473506

[1, 6, 6, 6, 1, 5, 6, 2]> [0.23501994, 0, 0, 7.7649801, 0, 0, 0, 0]> 14.331763102471598

[1, 1, 6, 6, 6, 6, 5, 1]> [0.23501894, 0, 0, 7.7649811, 0, 0, 0, 0]> 14.331763102445281

[1, 1, 6, 6, 5, 6, 6, 2]> [0.23501979, 0, 0, 7.7649802, 0, 0, 0, 0]> 14.331763102440952

[1, 1, 6, 6, 6, 5, 2, 1]> [0.23501973, 0, 0, 7.7649803, 0, 0, 0, 0]> 14.331763102437696
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Figure 1: Optimal Sensor Operating Scheme with P0 = I.

these graphs, only the first and sixth sensors are ever used, while the other four are not
utilized in any optimal solution.

We also compare the solutions obtained here with those obtained from the other
methods proposed in [5] and [7]. These results are summarized in Table 2. Note that
the error estimation that we sought is lower than 19.6553, the optimal solution reported
in [7], which was obtained using a combination of a branch and bound technique with a
gradient-based method. To the best of our knowledge, P0 = 0 is used in [7]. Note that
non-zero choices of P0 lead to even higher objective values when used in conjunction with
the solution in [7].

6 Conclusions

A sensor scheduling problem is considered in this paper. It was formulated as a discrete-
valued optimal control problem and then transformed into a mixed discrete optimization
problem. Then, it was decomposed into a bi-level problem. A new heuristic approach,
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Figure 2: Optimal Sensor Operating Scheme with P0 = 0.
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Figure 3: Optimal Sensor Operating Scheme with P0 = 6I.
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Figure 4: Optimal Sensor Operating Scheme with P0 = 10I.



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 10(2) (2010) 175–188 187

Table 2: A Comparison of Numerical Results with Other Methods.

Methods Objective values

Method in [7] with P0 = 0 19.6553

Method in [5] with P0 = 10I 19.2353622

Proposed method with P0 = 10I 16.5697177

Proposed method with P0 = 6I 15.8781106

Proposed method with P0 = I 14.3317631

Proposed method with P0 = 0 12.9949699

which incorporates the discrete filled function algorithm into standard optimal control
software, is proposed for finding a global solution of this problem. Numerical results show
that the method is efficient, reliable, and robust in solving a complex discrete-valued opti-
mal control problem. The proposed method successfully identified significantly improved
solutions compared with other methods available in the literature.
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Abstract: In this paper, we consider an optimal control problem arising from the
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construct an optimal guidance law to realize the soft landing of the lunar module
with the terminal attitude of the module to be within a small deviation from being
vertical with respect to lunar surface, such that the fuel consumption and the terminal
time are minimized. The optimal control problem is solved by applying the control
parameterization technique and a time scaling transform. In this way, the optimal
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trajectory is tracked such that the fuel consumption and the minimum time are
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1 Introduction

Exploration of the moon, the nearest celestial body to the earth, is becoming more and
more attractive for space scientists in recent years. Satellites and probes have been sent
out to the moon for investigations. Generally speaking, there are three kinds of flight
motions, i.e., flying over, circling or landing on the moon. Those missions aiming to land
the lunar module safely on the surface of the moon are the most important ones.

The soft landing of the lunar module starts from the parking orbit of the moon,
after Hohmann transfer the module enters into an elliptical orbit with the aposelene and
perilune, which are, respectively, 110km and 15km away from the moon surface. When
the module reaches the perilune, the powered descent soft landing begins. Normally, the
lunar soft landing process from the perilune to the moon surface can mainly be divided
into three phases. The first part is the powered deceleration phase, from 15km to 2km
above the lunar surface, the module velocity is reduced to 0m/s by the propellant of
the main thruster. The second part, from 2km to 100m above the lunar surface, is the
attitude adjustment phase, and the module attitude is adjusted so that it is vertical to
the moon surface. The last part is the vertical descent phase, a set of small thrusters
is employed to cancel the moon gravity to ensure the module soft landing on the lunar
surface vertically. In view of the fact that the surrounding circumstance of the moon
is vacuum, lunar soft landing can not be performed in the same way as landing on the
earth or mars. This is because the module can not depend on the lunar atmosphere for
deceleration. One way of realizing soft landing is to use the reverse force thruster which
will, however, consume much of the fuel that the lunar module is carrying. Clearly, if
the fuel consumption can be reduced, then more payloads can be equipped. Thus, the
optimal control strategy that guarantees the soft landing with least fuel consumption is
highly in demand. Consequently, there are now many papers devoted to this area in the
literature [1–6]. Meditch [7] discussed the problem of vertical lunar soft landing, where
the thruster is operated at its maximum force. In this way, the mission is equivalent to
a time optimal control problem and hence can be solved by existing theory. Wang [8]
proposed a control scheme for achieving lunar soft landing, where the optimal control
theory is used in combination with nonlinear neuro-control. Xi [9] presented an optimal
control law obtained by utilizing Pontryagin Maximum Principle for the soft landing of
a lunar module. Here, it is assumed that some of the control variables are not bounded.
Liu [10] designed an optimal control strategy for the soft landing of a lunar module
with a pre-specified terminal time by using the control parameterization technique and
a time scaling transform. [1–3] and [7] studied the vertical descent phase of the lunar
landing. In [4–6] and [8–10], the soft landing from the perilune to the moon surface is
taken as a continuously powered descent process. However, none of these papers take into
consideration the terminal angle constraint between the longitudinal axis of the module
and the moon surface. In fact, among these research articles, the terminal angle of the
module between its longitudinal axis and the plumb line is about fifty degree, which
means that the module can not maintain a vertical attitude when it touches down on the
ground. Furthermore, the dynamical system considered in most of these articles is in the
two-dimensional polar coordinate system. The descent trajectory of the lunar module
is assumed to remain in a vertical plane without consideration of the lateral movement.
Neither the influence of the moon rotation is taken into account. However the lunar
module, in practice, does not descend along such a vertical plane. To be realistic, the
motion of the lunar module, which takes into consideration moon rotation, should be



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 10 (2) (2010) 189–201 191

described in a three-dimensional coordinate system [11].
The problem of the soft landing of a lunar module at the minimum time with the

least fuel consumption can be formulated as an optimal control problem with constraints
on the control and the terminal states. However, it is much too complex to be solved
by using Pontryagin Maximum Principle. In this paper, we calculate the optimal de-
scent trajectory of the lunar module by using the control parameterization technique in
conjunction with a time scaling transform [12]. The lunar soft landing is treated as a
continuously powered descent process with a constraint on the angle of the module be-
tween its longitudinal axis and the moon surface. During the entire process of the lunar
landing, only the main reverse force thruster is needed for deceleration. Therefore, the
design complexity of the guidance control law is reduced substantially. By applying the
control parameterization technique and the time scaling transform, the optimal control
problem is approximated by a sequence of optimal parameter selection problems. Each
of which is basically a mathematical programming problem and hence can be solved by
existing gradient-based optimization methods [13–15]. A general purpose optimal control
software package, called MISER 3.3 [15], was developed based on these methods. We
make use of this optimal control software package to solve our problem in this paper. The
optimal trajectory tracking problem, where a desired trajectory is to be tracked with the
least fuel consumption in the minimum time, is also considered and the same approach to
the first optimal control problem is utilized to solve such an optimal trajectory tracking
problem.

2 Problem Formulation

For continuously powered descent soft landing, the reverse force thruster begins to work,
starting from the perilune to decelerate the initial velocity of the module. With the
cooperation of the attitude control thrusters, the module is guided to reach the landing
target vertically with a small and safe final velocity. In this paper, we study the optimal
guidance scheme for ensuring the soft landing of the lunar module from the perilune to
the moon surface.
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Figure 2.1: Coordinate systems.

As the influences of other celestial bodies on the lunar module are small, compared
with the moon gravity, the lunar module soft landing can be treated in a two-body system
[16]. The motion of the lunar module soft landing is described in a three-dimensional
coordinate system (Figure 2.1). Suppose oxyz and oxLyLzL are, respectively, the Lunar
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Central Inertial Coordinate and Lunar Fixed Coordinate with the moon equator as the
reference plane. Ax1y1z1 is the orbit coordinate, A is the position of the lunar module.
The three coordinates form a right handed system. α and β represent, respectively,
the rotation angles between oxyz and Ax1y1z1. The direction of the thrust force P
in the coordinate Ax1y1z1 can be described in terms of ϑ and ψ. γ is the rotation
angle between oxyz and oxLyLzL. Without lose of generality, we assume that oxyz
and oxLyLzL coincide with each other at the beginning of the soft landing. Based on
Newton’s second law, system dynamic equations can be derived to give [11]







































ẋL = VxL,
ẏL = VyL,
żL = VzL,

V̇xL = BQVr/m+ gxL − 2ωLVzL,

V̇yL = CQVr/m+ gyL,

V̇zL = DQVr/m+ gzL + 2ωLVxL,
ṁ = −Q,

(2.1)

where

B = (cosα cosβ cos γ − sinα sin γ) sinϑ cosψ

−(sinα cosβ cos γ + cosα sin γ) sinϑ sinψ + sinβ cos γ cosϑ,

C = − cosα sinβ sinϑ cosψ + cosβ cosϑ+ sinα sinβ sinϑ sinψ,

D = (cosα cosβ sin γ + sinα cos γ) sinϑ cosψ

−(sinα cosβ sin γ − cosα cos γ) sinϑ sinψ + sinβ sin γ cosϑ.

while xL, yL, zL and VxL, VyL, VzL are the positions and velocities in the Lunar Fixed
Coordinate. m is the mass of the lunar module, Q and Vr represent, respectively, the
fuel consumption rate and the specific impulse of the thruster, gxL, gyL, and gzL denote
the components of lunar gravity in oxLyLzL, and ωL is the angular velocity of the moon
rotation.

Introduce two new state equations

ϑ̇ = v, (2.2)

ψ̇ = w (2.3)

and let

x = [xL, yL, zL, VxL, VyL, VzL, ϑ, ψ,m]T

= [x1, x2, x3, x4, x5, x6, x7, x8, x9]
T ,

u = [Q, v, w]T = [u1, u2, u3]
T .

The original system dynamics (2.1) can be rewritten in the form of an affine nonlinear
system given below.

ẋ(t) = f(x(t)) +B(x(t))u(t), (2.4)

where
f(x) = [x4, x5, x6, gxL − 2ωLx6, gyL, gzL + 2ωLx4, 0, 0, 0]

T , (2.5)



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 10 (2) (2010) 189–201 193

B(x) =





0 0 0 M1 M2 M3 0 0 −1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0





T

(2.6)

while

M1 = [(cosα cosβ cos γ − sinα sin γ) sinx7 cosx8

−(sinα cosβ cos γ + cosα sin γ) sinx7 sinx8 + sinβ cos γ cosx7]Vr/x9,

M2 = [− cosα sinβ sinx7 cosx8 + cosβ cosx7 + sinα sinβ sinx7 sinx8]Vr/x9,

and

M3 = [(cosα cosβ sin γ + sinα cos γ) sinx7 cosx8

−(sinα cosβ sin γ − cosα cos γ) sinx7 sinx8 + sinβ sin γ cosx7]Vr/x9.

The boundedness constraints on the control vector u = [u1, u2, u3]
T are specified below:

α ≤ u(t) ≤ β, ∀ t ≥ 0, (2.7)

where α = [α1, α2, α3]
T and β = [β1, β2, β3]

T , while αi, i = 1, 2, 3, and βi, i = 1, 2, 3,
are given constants. Let U be the set of all such controls. Elements from U are called
admissible controls and U is referred to as the class of admissible controls.

The initial conditions of the soft landing are determined by the state of the lunar
module in the perilune at the initial time t0 = 0. The terminal constraints are specified
by the requirement of the soft landing, i.e., when the lunar module reaches the target at
the terminal time tf which is free, its velocity should be close to zero and its longitudinal
axis should be close to vertical to the moon surface. So the initial conditions and terminal
state constraints can be expressed as:

x(t0) = [xL0, yL0, zL0, VxL0, VyL0, VzL0, ϑ0, ψ0,m0]
T (2.8)

and

Φ =

















xL(tf )− xLr

yL(tf )− yLr

zL(tf )− zLr

VxL(tf )− 0
VyL(tf )− 0
VzL(tf )− 0

















= 0, (2.9)

ϑtf ≤ x7(tf ) ≤ 0, (2.10)

where (xLr, yLr, zLr) represents the position of the landing target in the Lunar Fixed
Coordinate, ϑtf is the terminal separation angle of the module between its longitudinal
axis and the direction of the plumb line. Our aim is to design an optimal control strategy
to achieve the task of soft landing of the lunar module such that conditions (2.9) and
(2.10) are satisfied and the fuel consumption and the flying time are minimized. The
task of minimizing the fuel consumption and the flying time is formulated as the task of
minimizing the following cost function

J = m0 − x9(tf ) + tf . (2.11)

We may now formally state our optimal control problem as follows.
Problem (P): Given system (2.4), find a control u ∈ U such that the cost function (2.11)
is minimized subject to the control constraint (2.7), the initial condition (2.8) and the
terminal state constraints (2.9) and (2.10).
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3 Parameterization of the Control

To solve Problem (P), we shall utilize the control parameterization technique to approx-
imate the control vector u with piecewise constant functions over the time interval [0, tf ]
as:

up1(t) =

np
∑

k=1

σk
1χ[τk−1,τk)(t), (3.1)

up2(t) =

np
∑

k=1

σk
2χ[τk−1,τk)(t), (3.2)

up3(t) =

np
∑

k=1

σk
3χ[τk−1,τk)(t), (3.3)

where
τ0, τ1, . . . , τnp

, τk−1 < τk, k = 1, 2, . . . , np (3.4)

(with τ0 = 0 and τnp
= tf ) are partition points of the time interval [0, tf ], and χI(t)

denotes the indicator function of I defined by

χI(t) =

{

1, t ∈ I,
0, elsewhere.

(3.5)

Let τ = [τ1, . . . , τnp
]T and let Υp be the set which consists of all such τ . For each

j = 1, 2, 3, and k = 1, 2, . . . , np , σk
j is a constant control parameter, and τk , k =

1, . . . , np − 1, are the switching times. Let σj = [σ1
j , · · · , σ

np

j ]T , j = 1, 2, 3 , and let

σ = [(σ1)
T , (σ2)

T , (σ3)
T ]T . Define up = [up1, u

p
2, u

p
3]

T .
As up ∈ U , it is clear that

αj ≤ σk
j ≤ βj (3.6)

for j = 1, 2, 3, and k = 1, 2, . . . , np. Let Ξp denote the set containing all such σ.
Here, for the soft landing of a lunar module, the terminal time τnp

= tf is unknown and
regarded as a decision variable.

We shall map all these variable time points τk, k = 1, . . . , np, into fixed time points
ςk, k = 1, . . . , np, in a new time horizon [0, 1], such that

0 = ς0 < ς1 < · · · < ςnp−1 < ςnp
= 1. (3.7)

For this, we introduce a new state equation defined on [0, 1]

dt(s)

ds
= µp(s), (3.8)

where t(0) = 0, t(1) = tf ,

µp(s) =

np
∑

k=1

δkχ[ςk−1,ςk)(s). (3.9)

Here,
δk ≥ 0, k = 1, . . . , np, (3.10)

are decision variables. µp(s) is called the time scaling control. It is a nonnegative
piecewise constant function with possible discontinuities at the pre-fixed knots ςk, k =
1, . . . , np − 1. Let δ = [δ1, · · · , δnp

]T .
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By applying the time scaling transform (3.8), system equations (2.4) and (3.8) are
transformed into

dx̃(s)

ds
=

[

µp(s)[f (t(s), x̂(s)) +B(t(s), x̂(s))ûp(s)]
µp(s)

]

, (3.11)

where x̃ = [x̃1, · · · , x̃9, x̃10]T = [(x̂)T , t]T , x̂(s) = x(t(s)), and ûp(s) = u(t(s)) given by

û
p(s) =

np
∑

k=1

σkχ[ςk−1,ςk)(s). (3.12)

The initial condition is

x̃(0) = [xL0, yL0, zL0, VxL0 , VyL0 , VzL0, ϑ0, ψ0,m0, 0]
T . (3.13)

The cost function (2.11) and the terminal constraints (2.9) and (2.10) become

J̃ = m0 − x̃9(1) + x̃10(1) (3.14)

and

Φ̃ =





















x̃1(1)− xLr

x̃2(1)− yLr

x̃3(1)− zLr

x̃4(1)− 0
x̃5(1)− 0
x̃6(1)− 0

x̃10(1)− tf





















= 0, (3.15)

ϑtf ≤ x̃7(1) ≤ 0, (3.16)

respectively. They can be written in canonical form as:

g̃0(σ, δ) = Φ̃0(x̃(1|σ, δ), σ, δ) +
∫ 1

0

˜̀
0(s, x̃(s|σ, δ), σ, δ)ds (3.17)

and

g̃i(σ, δ) = Φ̃i(x̃(1|σ, δ), σ, δ) +
∫ 1

0

˜̀
i(s, x̃(s|σ, δ), σ, δ)ds = 0, i = 1, ..., 7, (3.18)

g̃i(σ, δ) = Φ̃i(x̃(1|σ, δ), σ, δ) +
∫ 1

0

˜̀
i(s, x̃(s|σ, δ), σ, δ)ds ≤ 0, i = 8, 9, (3.19)

where ˜̀
i = 0, for i = 0, 1, ..., 9,, while Φ̃i, i = 0, 1, ..., 9, are defined by (3.14), (3.15) and

(3.16), respectively.
The original optimal control problem is now approximated by a sequence of optimal

parameter selection problems depending on p, the number of the partition points of the
time horizon [0, tf ], given below.

Problem (P̃(p)): Given system (3.11) with the initial condition (3.13) on the time
interval s ∈ [0 , 1], find a control parameter vector σ ∈ Ξp and a switching time vector
δ ∈ Υp, such that the cost function (3.14) is minimized subject to the terminal constraints
(3.15) and (3.16).
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For each p, Problem (P̃(p)) can be solved as a nonlinear optimization problem where
the cost function (3.14) is minimized subject to the terminal constraints (3.15) and (3.16)
and the constraints on the decision vectors σ and δ given by (3.6) and (3.10), where the
dynamical system (3.11) is used to generate the values of the cost function (3.14) and the
constraint functions (3.15) and (3.16). Existing gradient-based optimization methods can
be used to solve Problem (P̃(p)). For this, we need the gradient formulas of the objective
function and the constraint functions. For the constraints (3.6) and (3.10), their gradient
formulas are straightforward to calculate. The gradient formulas of the objective function
(3.14) and the constraint functions (3.15) and (3.16) are given bellow.

Theorem 3.1 [12] For each i = 0, 1, . . . , 9, the gradient of the function g̃i with respect
to σ and δ are given by

∂g̃i(σ, δ)

∂σ
=

∫ 1

0

∂H̃i(s, x̃(s),σ, δ, λ̃
i
(s|σ, δ))

∂σ
ds (3.20)

and

∂g̃i(σ, δ)

∂δ
=

∫ 1

0

∂H̃i(s, x̃(s),σ, δ, λ̃
i
(s|σ, δ))

∂δ
ds, (3.21)

where
H̃i(s, x̃,σ, δ, λ̃

i
) = ˜̀

i(s, x̃,σ, δ) + (λ̃
i
)T f̃(s, x̃,σ, δ) (3.22)

and, for each i = 0, 1, . . . , 9, λ̃
i
(s|σ, δ) is the solution of the following co-state system

corresponding to (σ, δ):

d(λ̃(s))
T

ds
= −∂H̃i(s, x̃(s|σ, δ),σ, δ, λ̃(s))

∂x̃
, s ∈ [0, 1) (3.23)

with

(λ̃(1))T =
∂Φ̃i(x̃(1|σ, δ))

∂x̃
. (3.24)

Proof The proof of Theorem 3.1 is similar to that given for Theorem 5.2.1 of [12].
For each p, Problem (P̃(p)) is an optimal parameter selection problem, which can be

viewed as a nonlinear optimization problem. The gradient formulas of the cost function
(3.17) and the constraint functions (3.18) and (3.19) are given in Theorem 3.1, while the
constraints (3.6) are just the bounds for these control parameter vectors.

Thus, any existing gradient-based optimization method, such as sequential quadratic
programming algorithm [17], can be used to solve Problem (P̃(p)). The optimal control
software MISER 3.3 was implemented based on these ideas. It is used in this paper to
solve our optimal control problem. Intuitively, the larger the p, the closer Problem (P̃(p))
is to Problem (P). This intuition is true. We shall briefly discuss the convergence issue
as follows. Let (σp,∗, δp,∗) be the optimal parameter vector of Problem (P̃(p)), and let
ũ
p,∗ be the corresponding piecewise constant control given by

ũp,∗(s) =

np
∑

k=1

σp,∗χ[ k−1
np

, k
np

)(s), (3.25)

where
ũp,∗ = [ũp,∗1 , ũp,∗2 , ũp,∗3 ]T , (3.26)
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σp,∗ = [(σp,∗
1 )T , (σp,∗

2 )T , (σp,∗
3 )T ]T , (3.27)

δp,∗ = [δp,∗1 , . . . , δp,∗np
]T . (3.28)

In the original time horizon [0, tf ], we have

up,∗(t) =

np
∑

k=1

σp,∗χ[τp,∗

k−1,τ
p,∗

k
)(t), (3.29)

where

τp,∗i =

i
∑

k=1

δp,∗k , i = 1, . . . , np. (3.30)

Furthermore, let u∗ be the optimal control of Problem (P). Then, by virtue of the
discussion presented in Section 5 on Convergence Analysis of [18], it holds that

(i) g0(u
p,∗) → g0(u

∗) ;

(ii) if up,∗ → ũ almost everywhere in [0, tf ], then ũ is an optimal control of Problem (P).

From our extensive simulation study experience, we observe that p does not need
to be chosen to be too large. In fact, the difference in the cost values between p = 20
and those with larger p is, in general, very insignificant. Thus, p = 20 is chosen in our
numerical simulation.

4 Optimal Trajectory Tracking

We now move on to consider a situation for which the spacecraft is required to track a
desired trajectory, such that the fuel consumption and the terminal time are minimized.
To realize such an optimal tracking control problem, we only need to modify the cost
function J of Problem (P) as:

J = m0 − x9(tf ) + tf +

∫ tf

0

[(x1(t)− x̄r(t))
2
+ (x2(t)− ȳr(t))

2
+ (x3(t)− z̄r(t))

2
]dt,

(4.1)
where (x̄r , ȳr, z̄r) denotes the desired reference trajectory. Let this optimal trajec-
tory control problem be referred to as Problem (Q). Using the control parameterization
technique and the time scaling transform as described in Section 3, Problem (Q) is trans-
formed into Problem (Q̃(p)) , where the transformed cost function

J̃ = m0 − x̃9(1) + x̃10(1) +

∫ 1

0

[(x̃1(s)− x̂r(s))
2
+ (x̃2(s)− ŷr(s))

2
+ (x̃3(s)− ẑr(s))

2
]ds

(4.2)
is to be minimized over (Ξp × Υp) subject to the system dynamic (3.11) with initial
condition (3.13) and the terminal state constraints (3.15) and (3.16), where x̂r(s) =
x̄r(t(s)), ŷr(s) = ȳr(t(s)), ẑr(s) = z̄r(t(s)).

The gradient formulas of the cost function (4.2) and constraint functions (3.15) and
(3.16) can be derived in the same way as those of Problem (P̃(p)) given in Theorem
3.1. The optimal control parameter selection problem (Q̃(p)) is thus solved utilizing the
optimal control software MISER 3.3.



198 J.Y. ZHOU, K.L. TEO, D. ZHOU AND G.H. ZHAO

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

1400

1600

1800

Time , s

M
od

ul
e 

V
el

oc
ity

 V
L , 

m
/s

Figure 5.1: Module velocity VL.

0 100 200 300 400 500 600
1400

1420

1440

1460

1480

1500

1520

1540

1560

1580

1600

Time , s

P
*  , 

N

Figure 5.2: Thrust force P ∗.

5 Numerical Simulations

The initial conditions of the lunar module are given as: xL0 = 8.19371 × 105m, yL0 =
1.428867× 106m, zL0 = 5.996306× 105m, VxL0 = 1115m/s, VyL0 = −981.82m/s, VzL0 =
816m/s, m0 = 600kg. At the initial time of the soft landing, the rotation angle γ(t0) =
0◦. Specific impulse Vr = 300 × 9.8m/s and angular velocity of the moon rotation
ωL = 2.661699× 10−6rad/s.

We first consider the task of achieving the soft landing of the lunar module. The
landing target is in Mare Imbrium on the moon surface, which is located at 38.628◦

North latitude and 36.806◦ West longitude. Control variables are chosen subject to the
bounds: 0 kg/s ≤ σk

1 ≤ 0.51 kg/s,
∣

∣σk
2

∣

∣ ≤ 1 ◦/s,
∣

∣σk
3

∣

∣ ≤ 1 ◦/s, k = 1, 2, . . . , np.
Terminal separation angle of the module between its longitudinal axis and the plumb line
is ϑtf = 5◦. The scaled time interval is s ∈ [0, 1] partitioned into 20 equal subintervals.
Terminal time of the soft landing is free to vary. The corresponding optimal parameter
selection problem is then solved by using the software MISER 3.3. Terminal conditions
of the lunar module obtained are listed below.

xL(tf ) = 1.0871218× 106m, yL(tf ) = 1.0849749× 106m, zL(tf ) = 8.134568× 105,

VxL(tf ) = 1× 10−4m/s, VyL(tf ) = 0m/s, VzL(tf ) = 2× 10−4m/s.

Figure 5.1 shows the time history in the original time horizon [0, tf ] of the lunar
module velocity. We see that it converges smoothly to zero as the module lands on the
moon. Figures 5.2, 5.4 and 5.6 are optimal control outputs during the period of soft
landing, also in the original time horizon [0, tf ]. Here, we see that the reverse force
thruster works at its maximum thrust force all the time, while the two angular velocity
controllers are operating within their bounds. Under the optimal control law, the lunar
module is guided to the target precisely, and the optimal descent trajectory is shown
in Figure 5.3. Terminal mass of the module is 319.2728kg. Figure 5.5 depicts the time
scaling control. Lunar module lands on the moon surface vertically after 550.4455s, with
the terminal separation angle between the module longitudinal axis and the plumb line
ϑ(tf ) = −4.998◦.

Our next task is to investigate the mission of the optimal trajectory tracking. Suppose
the desired trajectory is the one obtained from the solution of Problem (P). Suppose
that the initial position of the lunar module is given as xL0 = 8.18348 × 105m, yL0 =
1.428821× 106m, zL0 = 6.01136× 105m, which are different from those for Problem (P).
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Let this optimal tracking problem be referred to as Problem (Q). It is solved by using the
approach detailed in Section 4, where the optimal control software MISER 3.3 is utilized.
The optimal control obtained for Problem (P) is used as the initial guess for the search
of the optimal control of Problem (Q). Let the optimal control of Problem (Q) obtained
be denoted as υ∗. Then, under this control, the Lunar module is guided to the target
at the terminal time tf = 572.8s. The terminal velocity is 6.2e-4m/s, while the terminal
mass is 315.43kg. From Figure 5.7, we see that the optimal trajectory tracks the desired
trajectory satisfactorily.

6 Conclusions

This paper studied the soft landing of the lunar module, where its system dynamics is
described in a three-dimensional coordinate system. The constraints on the control and
the terminal state are also taken into consideration. By using the control parameteriza-
tion technique and the time scaling transform, the optimal control problem is solved as
an optimal parameter selection problem by the optimal control software package MISER
3.3, yielding an optimal control law. This optimal control law steers the lunar module
to achieve the pre-specified landing target precisely such that the fuel consumption and
the terminal time are minimized. The module touches down on the moon vertically with
reference to lunar surface. The task of optimal trajectory tracking was also formulated
and solved. The proposed approach is highly effective.
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