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1 Introduction

Within the last 130 years the methods of stabilization of control systems have been con-
structed, developed, and improved: from creating Vyshnegradsky’s cataract to the analy-
sis and synthesis of systems of rocket stabilization and distributed systems of clock-signal
generators in multiprocessor clusters. At present the theory and practice of stabilization
are the subject of many books and surveys. The various methods of stabilization have
entered into textbooks on the control theory and became classical ones. But in the last
thirty years there has been a rapid growth of publications, devoted to the methods of
stabilization of linear control systems, and the above-mentioned books and surveys have
already not reflected them completely.

The increasing interest to stabilization problems is motivated by the needs of the
practice of control formulated in the open problems by many famous scholars such as
V.I. Zubov, W.M. Wonham, D.S. Bernstein, R. Brockett, J. Rosenthal and J.C. Willems.
For solving these problems the new methods of analysis and synthesis of linear control
systems were developed.

In this survey the effort is made to describe new methods and results. The authors
believe that the acquaintance with these methods and results will be useful for many
specialists and will give an impetus to the further development of this interesting and
substantial direction: the theory of stabilization of linear control systems.

A more detailed consideration of current methods of stabilization will be in our book
[1].

2 Stabilizability and Pole Assignment in Linear Systems by Static Time-
Invariant State Feedback

Here we consider the stabilization and pole assignment problems for linear time-invariant
continuous-time systems.

Consider a linear time-invariant continuous-time system

ẋ = Ax+Bu, (1)

where x = x(t) ∈ R
n is the state vector, u = u(t) ∈ R

m is the control input vector, and
A,B are real constant matrices of dimension n× n and n×m, respectively. (The point
over the symbol x denotes the differentiation in t).

In the following all matrices have real-valued elements.
We consider for system (1) the classical feedback stabilization problem:
Under the assumption that the uncontrolled system is unstable, find an appropriate

stabilizing feedback law.
It is well-known that this problem can be solved by means of a time-invariant static

full state feedback u = Sx. This result follows from the following theorem on pole
assignment.

Zubov’s and Wonham’s Theorem (on pole assignment) [2, 3]. The system
(1) is completely controllable if and only if for every choice of the self-conjugate set
M = {µj}n

j=1 of complex numbers µj there exists (m × n)-matrix S such that A + BS
has M for its set of eigenvalues.

According to [4], this theorem was first obtained for the single-input case (m = 1)
by Bertram in 1959 using locus method. In 1961, Bass independently formulated and
proved the same result (but did not publish it) in the context of linear algebra. The
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single-input case was also considered by Rissanen [5] and Rosenbrock [6]. The above
Theorem in the multi-input case for complex matrices A,B, S and arbitrary set M of
complex numbers was proved by Popov [7] and by Langenhop [8]. Other contributions
concerning pole assignment in multi-input systems by state feedback are due to Simon
and Mitter [9], and Brunovsky [10]. In [9] the ability to relocate arbitrarily eigenvalues
by state feedback was called modal controllability.

Zubov [2] and Wonham [3] were the first to prove the Theorem on pole assignment in
the multi-input systems of the type (1) for real matrices A,B, S and self-conjugate set
of complex numbers.

It should be noted that the proof of this Theorem in complex case (A,B, S and M
are complex) is far simpler than real one.

Since then, when Zubov’ and Wonham’s works appeared, a great number (literally
hundreds) of works, concerning pole assignment and its applications has been written.
The primary impetus of most of the works mentioned concerns the stabilization problem
for system (1).

The proof of Zubov’s and Wonham’s Theorem in multi-inpute case is rather tedious.
Therefore after publication of works [2, 3] there were offered alternative proofs of this
theorem (see, e.g., [11]-[13]; and also [14]-[19]). The goal of these papers was to give a
simple proof of Zubov’s and Wonham’s Theorem.

Below we present another, different from the above-mentioned ones simple and direct
new proof of Zubov’s and Wonham’s Theorem [20].

In the following instead of “complete controllability” of system (1) we will simply say
about “controllability” of the pair (A,B).

2.1 Elementary Proof of Zubov’s and Wonham’s Theorem

A. Proof of Sufficiency.
Suppose that the pair (A,B) is not controllable. Then in system (1) we can separate

from (1) a subsystem which contains no input variables. More precisely, there exists a
nondegenerate linear transformation of coordinates x → Qx (detQ 6= 0) such that the
system (1) in new coordinates takes a form of the type (1) with the matrices

A =

(
A11 A12

A21 A22

)
}n1

}n2
, B =

(
B1

B2

)
}n1

}n2
,

A21 = 0, B2 = 0 or A12 = 0, B1 = 0.

Then it is clear that whatever (m× n)-matrix

S = ( S1 S2 )}m (n1 + n2 = n)
︸︷︷︸ ︸︷︷︸

n1 n2

we take the spectrum of the closed-loop system matrix A+BS in the form

σ(A+BS) = σ(A11 +B1S1) ∪ σ(A22)

or
σ(A +BS) = σ(A11) ∪ σ(A22 +B2S2).

We see that one of two parts of the spectrum of the matrix A+BS is independent of
the choice of matrix A+BS. Therefore, the matrix cannot have arbitrarily preassigned
eigenvalues. The Sufficiency is proved. 2

The proof of Necessity leans on a number of simple propositions.
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Lemma 2.1 Let

Γ =

(
α −β
β α

)

(β 6= 0) (2)

be a real (2 × 2)-matrix. Let B be a real (2 × 2)- or (2 × 1)-matrix and B 6= 0. Then
there exists a real matrix R such that the eigenvalues of the matrix Γ +BR are real.

The Proof of Lemma 2.1 is straightforward.
Using Lemma 2.1 we can easily prove the following proposition.

Lemma 2.2 Let Λ and B be real (n×n)- and (n×m)-matrices, respectively. Suppose
the pair (Λ, B) is controllable and all eigenvalues of the matrix Λ are nonreal. Then there
exists a real (m× n)-matrix R such that all eigenvalues of the matrix Λ +BR are real.

Proof Let λ1, λ̄1, . . . , λℓ, λ̄ℓ (λj , λ̄j = αj ± iβj , βj 6= 0, j = 1, . . . , ℓ; n = 2ℓ) be the
eigenvalues of the matrix Λ, listed according to their multiplicity.

By a similarity matrix Q (detQ 6= 0) transforms the matrix Λ to the real lower Jordan
canonical form

Λ̃ = Q−1ΛQ = diag {J1(λ1), . . . , Jq(λq)}, q ≤ ℓ.

Here Jk(λk) (k = 1, . . . , q) is a lower λk – Jordan block of dimension 2νk × 2νk(
q∑

k=1

νk = ℓ

)

. That is, the block Jk(λk) has (2×2)-matrices Γj (j = 1, . . . , ℓ) of the type

(2) on the diagonal, the identity (2× 2)-matrices lower the diagonal, and zero – matrices
elsewhere.

Let B̃ := Q−1B. Find (m × n)-matrix such that the matrix Λ̃ + B̃R̃1 has two real
(may be equal) and n − 2 nonreal eigenvalues. Then it will be the same for the matrix
Λ1 := Λ + BR1, where R1 = R̃Q−1. In this case the pair (Λ1, B) will be controllable
since (Λ, B) is controllable by assumption.

We seek R̃1 in the form of a block matrix R̃1 = [R̃pq] containing four blocks R̃pq (p, q =

1, 2) such that R̃12 = 0, R̃21 = 0, R̃22 = 0 and (2×2)-block matrix R̃11 is to be determined.
(In the case m = 1 R̃11 is a row matrix of size 1 × 2.)

Divide the matrices Λ̃ and B̃ into four blocks

Λ̃ = [Λ̃pq], B̃ = [B̃pq] (p, q = 1, 2)

in such a way that Λ̃11 and B̃11 are (2× 2)-matrices. (In the case m = 1 B̃11 is a column
matrix of dimension 2 × 1.) It is clear that Λ̃11 = Γ1, σ(Λ̃22) = {λ2, λ̄2, . . . , λℓ, λ̄ℓ}.

We have
Λ̃1 := Λ̃ + B̃R̃1 (p, q = 1, 2), (3)

where M̃12 = 0, M̃22 = Λ̃22 and

M̃11 = Γ1 + B̃11R̃11. (4)

The pair (Λ̃, B̃) is controllable, since the pair (Λ, B) is the same by assumption.
Therefore it must be (B̃11, B̃12) 6= 0. Otherwise the pair (Λ̃, B̃) will not be controllable.
Without loss of generality we assume that B̃11 6= 0. Then by virtue of Lemma 2.1 there
exists a matrix R̃11 such that (2× 2)-matrix (4) has real eigenvalues r1 and r2. Whence
taking into account the structure of matrix (3) it follows that

σ(Λ̃ + B̃R̃1) = {r1, r2} ∪ {λ2, λ̄2, . . . , λℓ, λ̄ℓ}.
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Rearrange the matrices M̃11,Γj(j = 1, ℓ) in the diagonal array of matrix (3) in such
a way that Γ2 appears in the top left-hand corner of matrix (3).

We apply to matrix Γ2 the same procedure as above for Γ1. Thus we change the
matrix Γ2 by matrix of the type (4) having real eigenvalues. Therefore we obtain a
matrix Λ2 having four (among them may be equal ones) real eigenvalues and n − 4
remaining nonreal ones λ3, λ̄3, . . . , λℓ, λ̄ℓ.

Repeating this process after ℓ steps as a result we obtain a matrix Λℓ having only
real eigenvalues. The Lemma 2.2 is proved. 2

From Lemma 2.2 immediately it follows

Lemma 2.3 Let A and B be arbitrary real (n×n)- and (n×m)-matrices, respectively.
Let the pair (A,B) be controllable. Then there exists a real (m× n)-matrix R such that
all the eigenvalues of the matrix A+BR are real.

The following lemma solves the pole assignment problem in the field of real numbers
R.

Lemma 2.4 (Lemma on pole assignment in R) Let A and B be arbitrary real (n ×
n)- and (n × m)-matrices, respectively. Suppose the pair (A,B) is controllable. Let
{µ1, . . . , µn} be an arbitrary set of real numbers. Then there exists a real (m×n)-matrix
such that

σ(A+BS) = {µ1, . . . , µn}. (5)

Proof By virtue of Lemma 2.3 there exists a real (m×n)-matrix R0 such that all the
eigenvalues of the matrix A0 := A+ BR0 are real. We denote these ones by λ1, . . . , λn,
listed according to multiplicity. That is,

σ(A0) = {λ1, . . . , λn} (λj ∈ R, j = 1, . . . , n). (6)

The pair (A0, B) is controllable since the pair (A,B) is the same by assumption.
Let µ1, . . . , µn be arbitrary n real numbers (among them may be repeating ones).
The proof of Lemma 2.4 is exactly analogous to that of Lemma 2.2 and consists of

solution n intermediate tasks.
1) {A0, B;λ1|µ1} – task: Find real (m× n)-matrix such that

σ(A0 +BS1) = {µ1;λ2, . . . , λn}. (7)

As above by a similarity matrix Q0 we transform the matrix A0 to the real lower
Jordan form: Ã0 := Q−1

0 A0Q0. Let B̃ = Q−1
0 B.

We first solve {Ã0, B̃;λ1|µ1} – task. For this purpose as above we seek a corresponding
matrix S̃1 in the form of a block matrix S̃1 = [S̃pq] (p, q = 1, 2) such that S̃12 = 0, S̃21 = 0,

S̃22 = 0, and S̃11 =: s̃11 is a real number to be determined.
As above divide the matrices Ã0 and B̃ into four blocks

Ã0 = [Ãpq ] B̃ = [B̃pq] (p, q = 1, 2).

Here Ã11 =: ã11 and B̃11 =: b̃11 are real numbers. Clearly, ã11 = λ1, σ(Ã22) =
{λ2, . . . , λn}. Then we have Ã1 := Ã0 + B̃S̃1 = [M̃pq], where M̃12 = 0, M̃22 = Ã22

and

M̃11 =: m̃11 = λ1 + B̃11S̃11. (8)
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Since the pair (A0, B) is controllable as above in the proof of Lemma 2.2 one must have
(B̃11, B̃12) 6= 0. Without loss of generality we assume that B̃11 = b̃11 6= 0.

We claim that in (8) m̃11 = µ1. From here and (8) we determine s̃11 = (µ1 −λ1)/b̃11.
Therefore we have

σ(Ã0 + B̃S̃1) = {µ1;λ2, . . . , λn}.
That is, the matrix S̃1 is solution of the {Ã0, B̃;λ1|µ1}-task. Then the matrix S1 =
S̃1Q

−1
0 will be solution of the task (7), since the matrix A0 +BS1 is similar to the matrix

Ã0 + B̃S̃1.
Denote A1 := A0 +BS1. Then A1 = A+B(R0 + S1).
We solve the next
2) {A1, B;λ2|µ2}-task: Find (m× n)-matrix such that

σ(A1 +BS2) = {µ1, µ2;λ3, . . . , λn}. (9)

We will exactly solve task (9) analogously to task (7). At first we rearrange the diagonal
elements µ1, λ2, . . . , λn of the matrix Ã1 = Ã0 + B̃S̃1 in such a way that λ2 appears in
the top left-hand corner of matrix Ã1.

Apply to matrices A1, B and numbers λ2, µ2 the same procedure of ”the replacement
λ1 by µ1” that we have made in the previous task. In the same way we determine a
matrix S2 and corresponding matrix A2 = A+B(R0 + S1 + S2) such that

σ(A2) = {µ1, µ2;λ3, . . . , λn}.

In this case S2 = S̃2Q
−1
0 Q−1

1 , where Q1 is a similarity matrix, and S̃2 is determined
analogously to S̃1.

Repeating this process of solving corresponding {Aj−1, B;λj |µj}-tasks we sequen-
tially replace each eigenvalue λj (j = 1, . . . , n) of the matrix A0 from (6) by corresponding
number µj from the given set {µj}n

j=1. As a result we obtain successively the matrices
S1, . . . , Sn such that the matrix

An = A+B(R0 + S1 + · · · + Sn)

has {µj}n
j=1 for its desired set of eigenvalues. Hence, the matrix S := R0 +S1 + · · ·+Sn

has the required property (5).
Lemma 2.4 is proved. 2

Immediately from Lemma 2.4 it follows

Lemma 2.5 (Lemma on stabilization of the pair (A,B)) Let A and B be real (n×n)-
and (n×m)-matrices, respectively. Let the pair (A,B) be controllable. Then there exists
a real (m × n)-matrix S such that the matrix A + BS is stable, i.e. the pair (A,B) is
stabilizable.

Remark 2.1 A stabilization matrix S in Lemma 2.5 can be constructed by the al-
gorithm described in the proof of Lemma 2.4.

Remark 2.2 In [21] another variant of elementary proof of the Lemma on Stabiliza-
tion of the system (1) is proposed.

B. Proof of Necessity of Zubov’s and Wonham’s theorem.
Without loss of generality we may assume that rankB = m.
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If m = n, then the solution of pole assignment problem is given by the formula

S = B−1(M −A),

whereM is an arbitrary (n×n)-matrix having the set {µj}n
j=1 as its spectrum. It remains

to consider the case 1 ≤ m < n.
Let {µj}n

j=1 be an arbitrary set of n complex numbers closed under complex conju-
gation. We will prove that there exists a (m× n)-matrix S such that

σ(A +BS) = {µj}n
j=1.

Assume among the numbers µj (j = 1, . . . , n) we have k real and ℓ complex-
conjugate ones. Let µ1, . . . , µk be real numbers and the rest of 2ℓ numbers
µk+1, µ̄k+1, . . . , µk+1, µ̄k+1 be complex conjugate ones. Let µk+j , µ̄k+j = σk+j ± iωk+j ,
ωk+j 6= 0 (j = 1, . . . .ℓ; k + 2ℓ = n).

Let Λ = {λ1, . . . , λn} be an arbitrary set of pairwise distinct real numbers λj (j =
1, . . . , n). By virtue of Lemma 2.4 there exists a real (m× n)-matrix S0 such that

σ(A+BS0) = {λ1, . . . , λn} (λp 6= λq, p 6= q, p, q = 1, . . . , n).

Denote A0 := A+BS0.
1. Applying sequentially the algorithm of solving of {Aq−1, B;λq|µq} – tasks described

in the proof of Lemma 2.4 we construct matrices S1, . . . , Sk and the matrix

Ak = A0 +B(S1 + · · · + Sk)

such that σ(Ak) = {µ1, . . . , µk;λk+1, λk+2, . . . , λn}.
2. We now solve the {Ak, B;λk+1, λk+2|µk+1, µ̄k+1}-task: Find (m×n)-matrix Sk+1

such that
σ(Ak +BSk+1) = {µ1, . . . , µk;µk+1, µ̄k+1;λk+3, . . . , λn}. (10)

Since λk+1 6= λk+2 by a similarity matrix P0 one can reduce the matrix Ak to the form
of the four block matrix

Ãk := P−1
0 AkP+0 = [Λ̃pq] (p, q = 1, 2),

where Λ̃11 = (λk+1, λk+2), Λ̃12 = 0. It is clear that

σ(Λ̃22) = {µ1, . . . , µk;λk+3, λk+4, . . . , λn}.

Divide the matrix B̃ := P−1
0 B into four blocks such that the matrix B̃11 has the dimension

2 × 2 (or 2 × 1 in the case m = 1): B̃ = [B̃pq] (p, q = 1, 2). Let

B̃11 = (b̃rt)
2
r,t=1.

(In the case m = 1 B̃11 = column(b̃11, b̃21.)
Since the pair (A,B) is controllable the pair (Ak, B), and therefore the pair (Ãk, B̃)

is controllable. Hence, as we have noted above in the proofs of Lemmas 2.2 and 2.4 one
may assume that

b̃11 6= 0 and b̃22 6= 0. (11)

To establish (10) we first solve {Ãk, B̃;λk+1, λk+2|µk+1, µ̄k+1}-task. For this purpose
as above we seek a matrix S̃k+1 in the form of a block matrix S̃k+1 = [S̃pq] (p, q = 1, 2),



242 G.A. LEONOV AND M.M. SHUMAFOV

where S̃12 = 0, S̃21 = 0, S̃22 = 0 and (2 × 2)-matrix S̃11 is to be determined (in the case
m = 1 S̃11 is a row (1 × 2)-matrix).

We have
Ãk+1 := Ãk + B̃S̃k+1 = [M̃pq], (12)

where M̃11 = Λ11 + B̃11S̃11, M̃12 = 0, M̃22 = Λ̃22. Two cases are possible: a) det B̃11 6=
0 and b) det B̃11 = 0.

Case a). Here we claim that

Λ̃11 + B̃11S̃11 = Σ1, (13)

where

Σ1 =

(
σk+1 −ωk+1

ωk+1 σk+1

)

.

From (13) we at once determine the matrix S̃11 = (B̃11)
−1(Σ1 − Λ̃11).

Case b). In this case we determine the matrix S̃11 from the condition of equality of
the characteristic polynomials of matrices in the right-hand and left-hand sides of (13):

det(pI2 − Λ̃11 − B̃11S̃11) = det(pI2 − Σ1). (14)

Here I2 is the identity (2 × 2)-matrix.
Let S̃11 = (crt)

2
r,t=j . (In the case m = 1 S̃11 = (c11, c12).) Taking into account

inequalities (2.11) and equality b̃11b̃22 − b̃21b̃12 = 0, from (14) we can determine one of
possible values of the entries crt of the matrix S̃11:

c̃11 = d1/b̃11 c21 := 0; c22 = d2/b̃22 (b̃22 6= 0), (15)

where
d1 = (σ2

k+1 + ω2
k+1 + λ2

k+1 − 2λk+1σk+1)/(λk+2 − λk+1),

d2 = (σ2
k+1 + ω2

k+1 + λ2
k+2 − 2λk+2σk+1)/(λk+1 − λk+2).

Since λk+1 6= λk+2 by choice of the set Λ the last expressions have a meaning. (In the
case m = 1 c11 = d1/b̃11, c12 = d2/b̃21).

From (12) and (14) it follows that

det(pIn − Ãk+1) = det(pI2 − Σ1) det(pIn−2 −M22). (16)

Here I2, In−2, In are the identity matrices of respective dimensions. The equality (16)
implies that for matrix (12) corresponding to the matrix S̃k+1 with found above entries
(15) the relation

σ(Ãk+1) = {µ1, . . . , µk;µk+1, µ̄k+1;λk+3, . . . , λn} (17)

holds.
Set Sk+1 := S̃k+1P

−1
0 . Since the matrix Ãk+1 is similar to the matrix Ak+1 :=

Ak +BSk+1, from (17) it follows that relation (10) is valid for the matrix Sk+1.
Further we solve the {Ak+1, B;λk+3, λk+4|µk+2, µ̃k+2} – task exactly analogously

to the preceding one. As a result we find a matrix Sk+2 and a corresponding matrix
Ak+2 := Ak+1 +BSk+2 such that

σ(Ak+2) = {µ1, . . . , µk;µk+1, µ̄k+1;µk+2µ̄k+2;λk+5, . . . , λn}.
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Repeating this process as above after ℓ steps we find matrices Sk+1, . . . , Sk+ℓ and the
matrix Ak+ℓ = Ak +B(Sk+1 + · · · + Sk+ℓ) such that

σ(Ak+ℓ) = {µ1, . . . , µk;µk+1, µ̄k+1, . . . , µk+ℓµ̄k+ℓ}. (18)

Since

Ak+ℓ = A+B(S0 +

k∑

q=1

Sq +

ℓ∑

j=1

Sk+j),

from (18) it follows that the (m× n)-matrix

S = S0 +

k∑

q=1

Sq +

ℓ∑

j=1

Sk+j

has the required property.
Zubov’s and Wonham’s Theorem is completely proved. 2

Remark 2.3 In just proposed proof of Zubov’s and Wonham’s theorem we only used
the fact of possibility of matrices reduction to Jordan canonical form. But there is also
an elementary proof of the theorem on reduction of a matrix to Jordan form proposed
by A. F. Filippov [22]. Together with this Filippov’s theorem our above proof of Zubov’s
and Wonham’s theorem is completely elementary.

Remark 2.4 As is seen from the proofs of Lemmas 2.2, 2.4 and the proof of the
sufficiency of Zubov’s and Wonham’s theorem there is no necessity to reduce matrices
to Jordan form. It is sufficient only to reduce them to the following forms. In the proof
of Lemma 2.2 in the top left-hand corner of the considered matrices we must have a
(2 × 2)-matrix Γ of the type (2) and the elements of the first two rows except for the
entries of matrix Γ must be equal to zero.

Also, in the proof of Lemma 2.4 in the top left-hand corner we must have a num-
ber λj and the elements of the first row except, may be, for λj must be equal to zero.
This observation also applies to the proof of sufficiency of Zubov’s and Wonham’s The-
orem. As a result the finding of the required matrix S becomes more ”economical” for
computations: much less number of operations must be done.

3 Pole Assignment in Linear Systems with Output Feedback

In the preceding section we have considered linear systems with full state feedback.
We now turn our attention to pole assignment for linear systems by output feedback.
Consider a linear time-invariant continuous-time system described by

ẋ = Ax+Bu, y = Cx, (19)

where x ∈ R
n is a state vector, u ∈ R

m is an input vector, y ∈ R
ℓ is an output vector,

and A,B,C are real constant matrices of sizes n× n, n×m, ℓ× n, respectively (ℓ ≤ n).
Assume that the linear system (19) is controlled by a linear static output feedback

u = Sy (20)
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with a real constant m× ℓ-matrix S. Then the resulting closed-loop system (19), (20) is
described by

ẋ = (A+BSC)x.

The poles of this system are the eigenvalues of the matrix A+BSC.
The problem of pole assignment arises in a natural way for closed-loop system using

static output feedback.
Recall that this problem for system (19), (20) or simply triple matrices A,B,C is

formulated as follows:
Given a triple real matrices (A,B,C) and an arbitrary set {µj}n

j=1 of the complex
numbers µj closed under complex conjugation, find a real matrix S such that the spectrum
of the matrix A+BSC coincides with the set {µj}n

j=1, i.e.

σ(A+BSC) = {µj}n
j=1. (21)

As we remarked above in the previous section this problem for two matrices A and
B was first stated and solved by Zubov [2] and Wonham [3].

The problem of pole assignment by time-invariant static output feedback (20) has
received much attention of researchers. Many works are devoted to solution of this
problem and its various modifications (see surveys [23, 24]). Sufficient conditions have
been obtained under which the pole assignment problem (21) can be resolved.

We note that for system (19) as for the system (1) property of controllability of the
pair (A,B) is a necessary condition for the solvability of the pole assignment problem
(21).

One of the pioneer works devoted to solving this problem was Davison’s work [25].
In this work Davison proved the following assertion.

Theorem 3.1 (Davison [25]) If the matrix A is cyclic (i.e. in its Jordan form to
the distinct boxes correspond the distinct eigenvalues), the pair (A,B) is controllable
and rankB = m, rankC = ℓ, then there exists a matrix S such that the eigenvalues of
the matrix A+BSC of closed-loop system (19), (20) are arbitrary close to ℓ preassigned
arbitrary numbers on the complex plane placed symmetrically with respect to the real axis.

In the work [26] it was shown that if system (19) is controllable and observable, then
there exists a matrix S such that the matrix A+BSC is cyclic. Taking into account this
result, in the paper [27] a theorem was proved which strengthen the Davison’s Theorem.
Namely, the following result is valid

Theorem 3.2 (Davison, Chatterjee [27]) If (A,B) is controllable, (A,C) is observ-
able, and rankB = m, rankC = ℓ, then there exists a matrix S such that the max{ℓ,m}
eigenvalues of the matrix A + BSC are arbitrary close to the max{ℓ,m} preassigned
arbitrary complex numbers closed under complex conjugation.

In [28] an algorithm based on this theorem is given which allows pole assignment to
be carried out on large linear systems (19) with output feedback (20).

In the case when A is a cyclic matrix an alternative proof of Davison’s and Chatterjee’s
Theorem based on another approach was suggested in Sridhar’s and Lindorff’s work [29].

An analogous result under some other conditions is established in Jameson’s work
[30] for the systems with scalar input (m = 1). In this work for the case (m = 1) it is
also proved that if the pair (A,B) is not controllable or the pair (A,C) is not observable
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and the eigenvalues λj (j = 1, . . . , n) of the matrix A are distinct, then there is not any
feedback matrix S such that the eigenvalues λjk

(k = 1, . . . , r; r ≤ n) which correspond
to either the uncontrolled or unobserved variables, can be changed. Later, an alternative,
more simple, proof of the second part of Jameson’s assertion, extending his result to the
systems with the vector input (m > 1) was suggested in Nandi’s and Herzog’s note ([31]).

In later Davison’s and Wang’s [32] and Kimura’s [33, 34] works it was established that
under the same as above conditions on the matrices A,B and C for almost all A,B and
C the min(n,m+ ℓ−1) eigenvalues of the matrix A+BSC can be made arbitrarily close
to the min(n,m + ℓ − 1) preassigned arbitrary complex numbers closed under complex
conjugation.

This implies that if

m+ ℓ ≥ n+ 1,

then the pole assignment problem (21) is solvable for almost all matrices A,B and C.
Thus, the last inequality is a sufficient condition of solvability of the problem (21) in

the typical case.
In Brockett’s, Byrnes’s [35] and Shumacher’s [36] works there was given another

sufficient condition of solvability of the problem (21) in the typical case. Namely, they
show that

if mℓ = n and the number

d(m, ℓ) =
1!2! . . . (ℓ− 1)!(mℓ)!

m!(m+ 1)! . . . (m+ ℓ− 1)!

is odd, then the problem (21) is solvable in the typical case.
A sufficient condition in the case when the number d(m, ℓ) is even was obtained by

Wang [37]:
if mℓ > n and the number d(m, ℓ) is even, then the problem (21) is solvable in the

typical case.
The distinct elementary proofs of this assertion were given in the works [38]-[41].

Another sufficient conditions of solvability of the problem (21) (and ”near” problems)
in the typical case were obtained in the works of many authors.

In Hermann’s and Martin’s [42] and Willems’s and Hesselink’s [43] papers it was
established a general necessary condition

mℓ ≥ n

of solvability of the problem (21) in the typical case. Later, this condition was strength-
ened in the work [44].

In [43] it is shown that, generally speaking, the inequality mℓ ≥ n is not a sufficient
condition of solvability of the problem (21) in the typical case. Namely,

if m = ℓ = 2 and n = 4, then the problem (21) in the typical case is unsolvable.
Note that in many works (see, for example, [45]-[51]) a more general than (21) eigen-

structure assignment problem was considered. In this case the eigenvalues µ1, . . . , µr

of the matrix of closed-loop system together with the corresponding to them eigenvec-
tors ξ1, . . . , ξr are arbitrarily given or the elementary divisors, corresponding to these
eigenvalues, are given. The problem is to find a matrix S such that either the spectrum
of the matrix A + BSC contains the set {µj}r

j=1 as a subset and the corresponding to
the numbers µj eigenvectors of the matrix A + BSC are equal to ξj (or are arbitrarily
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close to ξj) or the characteristic polynomial of the matrix A+BSC has the preassigned
polynomials ψ1, . . . , ψr(p) as its invariant factors (or elementary divisors).

One of the first works devoted to the eigenstructure assignment problem were the
works of Rosenbrock [52], Kalman [53], Moore [54], and Srinathkumar [55]. The following
result is valid.

Theorem 3.3 (Rosenbrock and Kalman [18, 52, 53]) Suppose the pair (A,B) is con-
trollable with the indices of controllability k1 ≥ k2 ≥ · · · ≥ km. Let {ψi(p)}q

i=1, q ≤ m
be a set of polynomials the leading coefficients of which are equal to 1. Assume that each
polynomial ψi (i = 1, . . . , q− 1) is divided by the successive one ψi+1 without residue and
n∑

i=1

degψi = n.

Then for the existence of the matrix S such that the given polynomials ψi are the
nontrivial (not equal identically to the unity) invariant factors of the characteristic poly-
nomial pI −A−BS it is necessary and sufficient that the following inequalities hold

r∑

i=1

degψq+1−i ≤
r∑

i=1

kq+1−i, r = 1, 2, . . . , q.

In this case the equality occurs for r = q = m.

(Here ”deg” denotes a ”degree of polynomial”.)
In the papers [56, 57] Rosenbrock’s and Kalman’s theorem (and results of other

authors) are generalized.
In the work [54] it was described the class of all sets of the eigenvectors of the matrix

A + BS of closed-loop system with state feedback, which can correspond to the preas-
signed arbitrarily distinct eigenvalues of this matrix. In the same work in the case of
distinct eigenvalues there was given the solution of the problem of simultaneous assign-
ment of the eigenvalues and the corresponding eigenvectors of the matrix of closed-loop
system.

In the paper [55] a tool developed in [33, 58] was used for study of the eigenstructure
assignment problem for systems with state feedback. In [55] Srinathkumar has proved,
in particular, the following assertion.

If the pair (A,B) is controllable, the pair (A,C) is observable and rank (B) =
m, rank (C) = ℓ, then there exists a matrix S such that the eigenvalues of the ma-
trix A + BSC are equal to the max(m, ℓ) preassigned numbers with the corresponding
max(m, ℓ) eigenvectors with max(m, ℓ) preassigned arbitrary components.

We also note Van der Woude’s paper where a general theorem is proved giving a
necessary and sufficient condition (in geometric terms) of solvability of pole assignment
problem (21) by output feedback (20) for single-input system (19) (m = 1).

Theorem 3.4 (Van der Woude [59]) Suppose the system (19) is controllable and f(p)
is an arbitrary real polynomial with leading coefficient 1 of degree n.

Then for the existence of a real (ℓ× 1)-matrix S such that

det(pI − (A+BSC)) = f(p)

it is necessary and sufficient that

f(A)Ker (C) ⊂ Lin (B,AB, . . . , An−2B).
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Lately Van der Woude’s theorem was essentially used by Aeyels and Willems [60,
61] for pole assignment in linear time-invariant discrete-time systems by periodic static
output feedback. In the end we note that at the present time the pole assignment problem
and the related with it adjoining questions are in the focus of attention of many scholars
and the flow of literature in this direction does not weaken.

Remark 3.1 Some above-mentioned result can be regarded as results for output
stabilization problem, since the latter is a special case of pole assignment problem. These
results are formulated in terms of matrices whereas in the well-known Nyquist criterion
the necessary and sufficient condition of stabilization of the system (19) is formulated in
terms of behavior of hodograph of the frequency response of this system.

4 Nonstationary Stabilization. The Brockett Problem

In 1999, R. Brockett in the book [62] formulated the problem on stabilizability of a linear
time-invariant system by means of a static time-varying output feedback.

To solve this problem two approaches are developed. The first of them is developed
for constructing a low-frequency time-varying feedback, and the second approach for
constructing a high-frequency one.

The Brockett problem is formulated as follows.

Problem 4.1 (Brockett Problem) Given a linear time-invariant continuous-time sys-
tem (19), find a static time-varying output feedback

u = S(t)y, (22)

such that the resulting closed-loop system

ẋ = (A+BS(t)C)x (23)

is asymptotically stable.

In the previous section some aspects of the problem of stabilization of system (19)
by output feedback (22) with a constant matrix S(t) ≡ S= const are considered. In the
Brockett problem it is required to find a variable stabilizing matrix S = S(t) with the
property mentioned above. In this case the Brockett problem can be reformulated in the
following way.

Does the introduction of the time-dependent matrices S(t) in feedback gain extend the
possibility of stationary stabilization?

In the works [63]-[66] for some important cases the solution of the Brockett problem
of nonstationary linear stabilization for system (19) in the class of piecewise-constant
periodic with a sufficiently large period stabilizing functions S(t) is given(a low-frequency
stabilization).

In the works [67]-[70] for single-input single-output system (19) the Brockett problem
is solved in the other class of the stabilizing functions. Namely, this is solved in the class
of continuous periodic with a sufficiently small period functions S(t) (a high-frequency
stabilization). Below we consider these two types of nonstationary stabilization.
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4.1 Nonstationary low-frequency stabilization

Basic hypotheses. Suppose that there exist real constant (m× ℓ)-matrices S1 and S2

such that the linear systems

ẋ = (A+BSjC)x (x ∈ R
n) (j = 1, 2) (24)

possess stable invariant linear manifolds Lj and invariant linear manifolds Mj.
Suppose

Mj ∩ Lj = {0}, dimMj + dimLj = n.

We assume also that for solutions xj(t;x0) (xj(0;x0) = x0) of systems (24) the following
inequalities

|xj(t;x0)| ≤ αj |x0|e−λjt ∀x0 ∈ Lj , (25)

|xj(t;x0)| ≤ βj |x0|e−κjt ∀x0 ∈Mj, (26)

are satisfied for positive numbers λj , κj, αj , βj .
Suppose that there exist a continuous (m× ℓ)-matrix Σ(t) and a number r > 0 such

that during the time from t = 0 to t = r the phase flow {θr
t0
} of the system

ẋ = (A+BΣ(t)C)x (x ∈ R
n) (27)

takes the manifold M1 to a manifold lying in L2:

θr
0M1 ⊂ L2. (28)

Under these assumptions the following theorem holds.

Theorem 4.1 (The fundamental theorem) Suppose the following inequality holds

λ1λ2 > κ1κ2.

Then there exists a periodic (m×ℓ)-matrix S(t) such that the system (23) is asymptotically
stable. In this case stabilizing matrix S(t) in (22) has the form

S(t) =







S1 for t ∈ [0, t1),

Σ(t− t1) for t ∈ [t1, t1 + τ), S(t+ T ) = S(t),

S2 for t ∈ [t1 + τ, t1 + t2 + τ),

(29)

where T := t1 + t2 + τ and positive numbers t1 and t2 are determined from conditions

{

− λ1t1 + κ2t2 < −T̃ ,
− λ2t2 + κ1t1 < −T̃ .

Here T̃ is a sufficiently large number.

Consider separately an important case of single-input single-output system (19). Let
in (24)-(28)

S1 = S2 = S0, Σ(t) ≡ Σ0, S0,Σ0 ∈ R, (30)

S0Σ0 < 0, λ1 = λ2 = λ, κ1 = κ2 = κ. (31)
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Suppose that all the eigenvalues λk of the matrix A+BΣ0C have nonpositive real parts,
in this case the eigenvalues with zero real parts have the prime divisors only.

Suppose there exists a sequence {τj} → +∞ such that

θτjM1 ⊂ L2. (32)

Here θt = e(A+Σ0BC)t is the phase flow of system (27), where Σ(t) ≡ Σ0. Then the
following result is valid.

Theorem 4.2 Suppose for system (19) the hypotheses (30)-(32) are satisfied. Sup-
pose the inequality

λ > κ

is valid. Then there exists T -periodic function with zero mean on the period such that the
system (23) is asymptotically stable. In this case the stabilizing function has the from

S(t) =







S0 for t ∈ [0, t0),

Σ0 for t ∈ [t0, t0 + τ), S(t+ T ) = S(t),

S0 for t ∈ [t0 + τj , 2t
0 + τj),

Here T = τj(1 − Σ0/S0) is a period of the function S(t), t0 = |τjΣ0/2S0| and τj is a
sufficiently large number satisfying condition (32).

We remark that there are propositions which provide effective test of the ”condition
of manifolds embedding” (28) [63]-[66].

Applying Theorem 4.1 to two-dimensional case of system (19) (n = 2) one can prove
the following assertion.

Theorem 4.3 Suppose there exist (m×ℓ)-matrices S0 and Σ0 satisfying the following
hypotheses:

1) det(BS0C) 6= 0, Tr (BS0C) 6= 0; if det(BS0C) = 0, then, at least one of inequali-
ties detA 6= 0 or det(a1, r2)+det(r1, a2) 6= 0, is valid. Here a1, a2 and r1, r2 are the first
and the second columns of the matrices A and BS0C, respectively.

2) The matrix A+BΣ0C has complex-conjugate eigenvalues.
Then there exists a periodic matrix S(t) such that the system (23) is asymptotically

stable.

4.2 Stabilization of linear system in the scalar case

Consider the system (19) with scalar input u and scalar output y (m = ℓ = 1).
In the sequel we shall assume that the transfer function W (p) = C(A − pI)−1B

of system (19) is nondegenerate. This is equivalent to the fact that the pair (A,B) is
controllable and the pair (A,C) is observable.

By applying Theorem 4.1 one can prove a number of assertions.

A. The case of codimension 1 of the stable manifold.
In this case the following theorems hold.

Theorem 4.4 Suppose the systems (24) have a stable invariant manifold L2 of di-
mension n−1 and an one-dimensional invariant manifold M1, satisfying basic conditions
(25)-(28).
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Suppose also that S1, S2 and Σ0 are numbers such that Σ0 6= Sj (j = 1, 2) and the
matrix Q = A + Σ0BC has the complex-conjugate eigenvalues α ± iβ of multiplicity 1
and the rest of its eigenvalues λk satisfy the condition Reλk < α (k = 1, . . . , n− 2).

Then there exists a periodic function S(t) of the type (29) with Σ(t) = Σ0 such that
the system (23) is asymptotically stable.

Theorem 4.5 Let the system (24) (j = 1, 2) have a stable invariant manifold L2 of
dimension n − 1 and an one-dimensional invariant manifold M1 satisfying basic condi-
tions (25)-(28). Suppose CB = 0. Then there exists a feedback (22), where S(t) is a
piecewise-constant periodic function of the type (29), such that the system (23) is asymp-
totically stable.

Theorem 4.6 Let in system (19) CB 6= 0. Suppose the matrix A has the eigenvalue
κ > 0 and n− 1 eigenvalues with the real part smaller than −λ, where λ > κ. Suppose
that the inequality

CB

lim
p→κ

(κ− p)W (p)
< 1

is satisfied. Here W (p) is the transfer function of system (19). Then there exists a
periodic function S(t) of the type (29) such that the system (23) is asymptotically stable.

Theorem 4.7 Let CB 6= 0. Suppose that there exist numbers S1 6= S2 such that:
1) the matrix A+ S1BC has the positive eigenvalue κ1.
2) the matrix A+S2BC has the one positive eigenvalue κ2 and n−1 eigenvalues with

negative real parts;
3) the inequality

(CB)
S1 − S2

κ2 − κ1
< 1

holds. Suppose the condition λ1λ2 > κ1κ2 of Fundamental Theorem is satisfied.
Then there exists a periodic function S(t) of the type (29) such that the system (23)

is asymptotically stable.

B. The case of codimension 2 of the stable manifold
In this case the following result is valid.

Theorem 4.8 Suppose the systems (24) have a n − 2-dimensional stable invariant
manifold L2 and an one-dimensional invariant manifold M1 satisfying basic conditions
(25)-(28). Suppose that for a certain number Σ0 6= Sj (j = 1, 2) the matrix A+Σ0BC has
two complex-conjugate eigenvalues α± iβ of multiplicity 1 and the rest of its eigenvalues
λj satisfy the condition Reλj < α. Then there exists a periodic function S(t) of the type
(29), where Σ(t) ≡ Σ0, S1, S2,Σ0 ∈ R, such that the system (23) is asymptotically stable.

4.3 Necessary conditions of stabilization

Above we derived some sufficient conditions of stabilizability of the system (19). Here
we give necessary conditions of stabilizability of the system (19) with a scalar input u
and a scalar output y.

A simple and general necessary condition of the impossibility of stabilization of system
(19) is given by the following
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Proposition 4.1 If the inequality Tr(A+ S(t)BC) ≥ α > 0 is satisfied for all t ∈ R

and some positive number α, then the system (23) is not asymptotically stable.

Here Tr denotes the trace of a matrix.
The statement of this proposition follows from the well-known Liouville formula.
Suppose now that the transfer function of system (19) is nondegenerate. Then it can

be represented as the quotient

W (p) =
ν(p)

∆(p)

of the two polynomials

ν(p) = cnp
n−1 + cn−1p

n−2 + · · · + c1, ck ∈ R,

∆(p) = pn + anp
n−1 + · · · + a1, ak ∈ R (k = 1, . . . , n),

with no common zeros. Here ∆(p) is the characteristic polynomial of the matrix A.
Assume that cn 6= 0. In this case, without loss of generality, we set cn = 1.
The following theorem gives sufficient conditions of the impossibility of stabilization

of system (19).

Theorem 4.9 Suppose for system (19) the following conditions are valid:
1) for n > 2 c1 ≤ 0, . . . , cn−1 ≤ 0 (for n = 2 c1 ≤ 0),

2) c1(an − cn−1) > a1,

c1 + c2(an − cn−1) > a2

. . . . . . . . . . . . . . .

cn−2 + cn−1(an − cn−1) > an−1.

Then there does not exist a function S(t) such that the system (23) is asymptotically
stable.

Thus, a necessary condition of stabilization of the system (19) is the violation of at
least one of hypotheses either 1) or 2) of Theorem 4.9 or the violation of inequality in
the above Proposition.

4.4 Low-frequency stabilization of two-dimensional and three-dimensional
systems

Now we apply the above results to the two-dimensional and three-dimensional systems.
A. Two-dimensional systems. Consider a system with a scalar input u(t) and a

scalar output y(t), the transfer function of which is equal to the following

W (p) =
c2p+ c1

p2 + a2p+ a1
. (33)

Here a1, a2; c1, c2 are real numbers.
Let c2 6= 0. Then without loss of generality we can assume that c2 = 1. Suppose also

that the function W (p) is nondegenerate, i.e.

c21 − a2c1 + a1 6= 0. (34)
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Then the system with transfer function (33) can be realized in the phase space as a
system of the type (19)

{

ẋ1 = x2,

ẋ2 = −a1x1 − a2x2 − u. y = c1x1 + x2.
(35)

From the Routh-Hurwitz conditions it follows that by the feedback u = S0y, S0 =
const 6= 0 the stationary stabilization of system (35) is possible if and only if either the
inequality c1 > 0 or the relations c1 ≤ 0, a2c1 < a1, are valid.

Consider the case when the stationary stabilization is impossible: c1 ≤ 0, a2c1 ≥ a1.
Applying Theorem 4.3 or Theorem 4.6 we can obtain the following sufficient condition

of nonstationary stabilization of system (35) c21 − a2c1 + a1 > 0. If the inequality c21 −
a2c1 +a1 < 0. holds, then the hypotheses of Theorem 4.9 are satisfied. Therefore, system
(35) cannot be stabilizable by any feedback u = S(t)y.

Thus, we have the following

Theorem 4.10 Suppose that the transfer function W (p) of system (35) is non-
degenerate, i.e. inequality (34) is valid. Then a necessary and sufficient condition of
stabilizability of system (35) is that at least one of the conditions holds:

1) c1 > 0 or 2) c1 ≤ 0, c21 − a2c1 + a1 > 0, (36)

In this case for the stabilizing control u = S(t)y the function S(t) can be chosen as the
piecewise-constant periodic one with sufficiently large period (a low-frequency stabiliza-
tion).

Remark 4.1 Theorem 4.10 very well illustrates the fact that the introduction of a
function S(t) 6= S0, S0 = const, in the feedback u = S(t)y (a nonstationary stabilization)
extends the possibility of stationary stabilization (S(t) ≡ S0).. Namely, in the space of
parameters {(a1, a2; c1)} of system (35) conditions (36) select a more wide domain than
the domain {c1 > 0} ∪ {c1 < 0, a2c1 < a1}, defined by the Routh-Hurwitz conditions for
stationary stabilization.

B. Three-Dimensional Systems
1) Suppose that the transfer function of system with a scalar input u(t) and the scalar

output y(t) has the form

W (p) =
1

p3 + αp2 + βp+ γ
, (37)

where α, β, γ are real numbers. Then such a system can be realized in the phase space
R

3 as a system of the type (19)







ẋ = x2,

ẋ2 = x3,

ẋ3 = −(αx3 + βx2 + γx1) − u, y = x1.

(38)

By the Routh-Hurwitz conditions the stationary stabilization u = S0y of system (38) is
possible if and only if

α > 0 and β > 0.
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Let α > 0, β ≤ 0. In this case the stationary stabilization is impossible. Now we
make use of Theorem 4.8.

By applying Theorem 4.8 to system (38) one can show that if α > 0, β ≤ 0, there
exists a control u = S(t)y, where S(t) is a piecewise-constant periodic function with
sufficiently large period, such that the system (38) with u = S(t)y is asymptotically
stable.

For system (38) with any feedback u = S(t)y we have

Tr(A+BS(t)C) = −α ∀t ∈ R. (39)

Then by Proposition from section 4.3 system (38) ( u = S(t)y) is not asymptotically
stable for α ≤ 0.

Thus, we have the following

Theorem 4.11 The system (38) with transfer function (37) is stabilized by feedback
(22) if and only if α > 0. In this case the function S(t) for the stabilizing control can
be chosen as the piecewise-constant periodic one with sufficiently large period (a low-
frequency stabilization).

2) Consider a system with a scalar input u(t) and a scalar output y(t) and the transfer
function of the form

W (p) =
p

p3 + αp2 + βp+ γ
, (40)

where α, β and γ are real numbers.
Let γ 6= 0. This condition is a condition of nondegenaracy of the function (40). Then

this system can be realized in the phase space R
3 as a system







ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −(αx3 + βx2 + γx1) − u, y = x2.

(41)

By the Routh-Hurwitz conditions the stationary stabilization of system (41) is possi-
ble if and only if α > 0, γ > 0. Consider the case α > 0, γ < 0. Then the stationary stabi-
lization is impossible. We apply Theorem 4.5 with S1 = S2; λ1 = λ2 = λ, κ1 = κ2 = κ.
Then we obtain that the conditions α > 0, γ < 0, are sufficient for nonstationary stabi-
lization of system (41).

Since for system (41) with any feedback u = S(t)y the equality (39) holds, asymptotic
stability of the system (41) is impossible for α ≤ 0 by Proposition from section 4.3.

Thus, we have the following

Theorem 4.12 Let α 6= 0, γ 6= 0. Then for system (41) to be stabilized by feedback
(22) it is necessary and sufficient that α > 0.

3) Consider a system with a scalar input u(t) and a scalar output y(t) and the transfer
function of the form

W (p) =
p2

p3 + αp2 + βp+ γ
, (42)

where α, β, γ ∈ R.



254 G.A. LEONOV AND M.M. SHUMAFOV

Suppose that the function (42) is nongenerate, i.e. γ 6= 0. Then this system can be
realized in the phase space R

3 as a system







ẋ1 = x2,

ẋ2 = x3,

ẋ3 = −(αx3 + βx2 + γx1) − u, y = x3.

(43)

The stationary stabilization u = S0y of system (43) is possible if and only if β > 0, γ > 0.
In the case β < 0, γ < 0 by Theorem 4.9 the stabilization (a stationary or nonstationary)
is impossible.

Consider the case β > 0, γ < 0, when the stationary stabilization is impossible. By
applying the fundamental theorem (Theorem 4.1) from section 4.1 and as above, letting
S1 = S2; λ1 = λ2 = λ, κ1 = κ2 = κ, one can prove the following assertion.

Theorem 4.13 Let β 6= 0, γ < 0. Then for system (43) to be stabilized by feedback
(22) it is necessary and sufficient that β > 0.

Remark 4.2 As Theorem 4.10 Theorems 4.11–4.13 very well illustrate advantages
of nonstationary stabilization in comparison with the stationary one.

4.5 Nonstationary high-frequency stabilization

In the previous section for some important cases the solution of the Brockett problem
of nonstationary linear stabilization of system (19) in the class of piecewise-constant
periodic stabilizing functions S(t) is given.

In the works [67]-[70] another approach is proposed for solving the Brockett problem.
This approach differs from the technique considered in the previous section and is based
on the averaging method and uses some ideas and methods from vibrational control
theory [71]-[74].

Also in this approach some research methods are used developed for the investigation
well-known phenomenon of stabilization of the upper pendulum equilibrium position
when the suspension point performs sufficiently fast oscillations in the vertical direction.

In [67]-[70] the Brockett problem is solved in the class of continuous periodic func-
tions with a sufficiently small period (a high-frequency stabilization). There there are
considered the functions of the form S(t) = α + βωk cos(ωt), where k ∈ N and ω is a
sufficiently large parameter.

We present corresponding results. Consider two cases:
1) CB 6= 0 and 2) CB = CAB = 0.

A. Stabilization in the case CB 6= 0.

In this case the following theorem holds.

Theorem 4.14 ([70]). Let in system (19) CB 6= 0. Suppose that there exist real
numbers α and κ ≥ 0 such that the matrix

A+ κ(CB)BCA + (α− κCAB)BC (44)

is stable. Then there exists a periodic function

S(t) = α+ βω cosωt, (45)
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where ω is a sufficiently large number and β ∈ R satisfies the relation

(

1
2π

2π∫

0

exp(βCB sin t)dt

)2

− 1

(CB)2
= κ, (46)

such that the closed-loop system (23) is exponentially stable uniformly with respect to ω
for all sufficiently large ω.

B. Stabilization in the case CB = CAB = 0.

In this case the following result is valid.

Theorem 4.15 ([70]). Let in system (19) CB = CAB = 0. Suppose that there exist
real numbers α and κ ≥ 0 such that the matrix

A− 3κ(CA2B)BCA + (α+ κCA3B)BC (47)

is stable. Then there exists a periodic function

S(t) = α+ γω2 cosωt, (48)

where ω is a sufficiently large number and γ ∈ R satisfies the relation

γ2 = 2κ. (49)

such that the closed-loop system (23) is exponentially stable uniformly with respect to ω
for sufficiently large ω.

Remark 4.3 In the work [70] the case when in system (19) CB = CAB = · · · =
CA2k−1B = 0 is also considered. In the case k > 1 (k ∈ N) the corresponding stabiliza-
tion theorem is formulated similarly to Theorem 4.15: instead of the stability property
of matrix (47) the stability property of the matrix

A+ (−1)k(2k + 1)κ(CA2kB)BCA + [α+ (−1)k+1(2k + 1)κ(CA2k+1B)BC]

is required. In this case the stabilizing function has the form S(t) = α+ βωk+1 cosωt.

4.6 High-frequency stabilization of two-dimensional and three-dimensional
systems

Here we consider examples of application of Theorems 4.14 and 4.15 to two-dimensional
and three-dimensional systems.

A. Two-dimensional systems. Consider the system (35). Suppose that inequality
(34) holds. For system (35) the condition CB 6= 0 is valid. Therefore, we can apply
Theorem 4.14. In this case the matrix (44) takes the form

(
0 1

−a1 − αc1 − κ(c21 − a2c1 + a1) −a2 − α

)

. (50)

The matrix (50) is stable if and only if there exist the values of parameters α ∈ R

and κ ∈ [0,+∞) such that the inequalities

a2 + α > 0, a1 + αc1 + κ(c21 − a2c1 + a1) > 0 (51)
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hold. Relations (51) are satisfied if at least one of the inequalities

c1 > 0 or c21 − a2c1 + a1 > 0, c1 ≤ 0 (52)

is satisfied.
Thus, by Theorem 4.14 the condition (52) is sufficient for the existence of a control

u = S(t)y, which stabilizes the system (35). Here S(t) is a function of the type (45). As
α, one may take an arbitrary number satisfying inequalities (51) for some κ ≥ 0. As β,
one should take a number satisfying the equation

2π∫

0

e−β sin tdt = 2π
√

1 + κ. (53)

It is easy to show that the equation (53) has a solution with respect to β.
By Theorem 4.9 if the inequality c21 − a2c1 + a1 < 0 (c1 ≤ 0) is satisfied, then system

(35) cannot be stabilized by any feedback of the type u = S(t)y.
Thus, we have the following

Theorem 4.16 ([67, 70]) Suppose the inequality (34) holds. Then
1) if at least one of inequalities (52) is satisfied, then there exists a feedback

u = S(t)y, S(t) = α+ βω cosωt, (54)

where α and β are determined from (51) and (53), respectively, such that the closed-loop
system (35),(54) is exponentially stable uniformly with respect to ω for sufficiently large
ω;

2) if condition (52) is not satisfied, then for any choice of function S(t) the system
(35), where u = S(t)y, is not exponentially stable.

Thus, condition (52) is necessary and sufficient one for the existence of feedback (54)
such that it stabilizes uniformly exponentially system (35) in the class of continuous and
periodic functions S(t).

The same condition (52), as was shown in section 4.4, is also necessary and sufficient
one for stabilization of system (35) in the other class of the piecewise-constant periodic
functions S(t).

B. Three-dimensional systems. Consider a system (38), where α := a3, β :=
a2, γ := a1(a1, a2, a3 are real numbers).

The stationary stabilization (S(t) ≡ const) is possible if and only if a2 > 0, a3 > 0.
For system (38) the relations CB = CAB = 0 are valid. We apply Theorem 4.15.

Here the matrix (47) takes the form





0 1 0
0 0 1

−a1 + α+ κa3 −a2 − 3κ −a3



 . (55)

The matrix (55) is stable if and only if there exist values of the parameters α ∈ R

and κ ∈ [0,+∞) such that the following inequalities

a3 > 0, a1 − α− κa3 > 0.

a3(a2 + 3κ) − a1 + α+ κa3 > 0

}

(56)
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hold. The relations (56) are equivalent to the inequality a3 > 0.
Thus, by Theorem 4.15 the condition a3 > 0 is sufficient for the existence of the

periodic function S(t) of the type (48) such that the feedback u = S(t)y exponentially
stabilizes the system (38). Here one may take as α an arbitrary number satisfying relation
(56) for some κ ≥ 0. As γ a number satisfying the equation (49) should be taken.

The relation (39) holds. Therefore, if a3 ≤ 0 by Proposition from section 4.3 the
system (38) is not asymptotically (and exponentially) stable for any feedback u = S(t)y.

Thus, the following result is valid.

Theorem 4.17 ([69, 70]) 1) If in system (38) a3 > 0, then there exists a feedback of
the type (48) such that the system (38),(48) is uniformly with respect to ω exponentially
stable for sufficiently large values of ω.

2) If a3 ≤ 0, then for no function S(t) the exponential stabilization of system (38) is
possible by means of the feedback u = S(t)y.

Thus, the condition a3 > 0 is necessary and sufficient one for the existence of the
feedback of the type (48), which stabilizes uniformly exponentially the system (38). As
was shown above in section 4.4 (Theorem 4.11) the same condition a3 > 0 is also necessary
and sufficient one for stabilization of system (38) in the class of the piecewise-constant
periodic functions S(t) with sufficiently large period (a low-frequency stabilization).

5 Discrete-time systems. Problem statement

In this part the discrete-time version of Brockett stabilization problem and pole assign-
ment in discrete-time systems by periodic output feedback will be considered.

Consider a linear time-invariant discrete-time system

xk+1 = Axk +Buk, yk = Cxk (k = 0, 1, 2, . . .), (57)

where xk ∈ R
n is the state vector, uk ∈ R

m is the control input vector, yk ∈ R
ℓ is the

output vector, A,B and C are real constant matrices of dimension n×n, n×m and ℓ×n,
respectively.

It is well known that if C = In (In is the identity matrix) and the pair (A,B) is
controllable then the poles of the system (57) can be assigned arbitrarily by time-invariant
static state feedback [2, 3]. Hence the system (57) under the mentioned assumptions can
be stabilizable. When only the output but not the state is available the problem of
stabilizability and pole assignability by time-invariant static output feedback has also
received much attention.

Necessary and/or sufficient conditions have been obtained under which stabilizability
and pole assignability by time-invariant static output feedback are guaranteed. The basic
results are available in the literature (see, for example, [18],[19] and surveys [23],[24]).

The question arises as to what extent the stabilization or pole assignment problem
can be resolved by introducing time-varying static output feedback. The problem can be
formulated as follows.

Problem 5.1 The Stabilization Problem.
Given a triple real constant matrices A,B and C, find a sequence of real (m × ℓ)-

matrices {Sk} (k = 0, 1, 2, . . .) such that the system (57) with the feedback

uk = Skyk (k = 0, 1, 2, . . .), (58)
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i.e. the closed-loop system

xk+1 = (A+BSkC)xk (k = 0, 1, 2, . . .) (59)

is asymptotically stable.

The Problem 5.1 is the discrete analog of the Brockett problem of stabilization of a
linear continuous-time system by means of time-varying static output feedback.

It is important to notice that the discrete-time and continuous-time versions of Brock-
ett problem are essentially different. This becomes clear, for example, from the fact that
several difficulties and obstructions, which arise in solving of the Brockett problem in the
continuous-time case, are lacking in the discrete-time case. For the statement the the
next problem we assume that the time-dependent feedback (58) is periodic. i.e.

Sk+p = Sk ∀k ∈ {0, 1, 2, . . .}, (60)

where p is a positive integer.
Then the system (59) is a periodic linear system of period p. This system can be

considered as a time-invariant system with time interval equal to the period p:

ξr+1 = Msξr (r = 0, 1, 2, . . .), (61)

where
Ms = (A+BSp−1C)(A +BSp−2C) . . . (A+BS0C). (62)

The eigenvalues of the composite matrix Ms determine the dynamics of the system
(61), which in turn determines the dynamics of the periodic system (59),(60). These
eigenvalues called multiplicators will be referred to as the poles of the periodic system
(59). The matrix Ms is called the monodromy matrix for system (59),(60).

Now the pole assignment problem for the system (57) can be formulated in the fol-
lowing way:

Problem 5.2 The pole assignment problem.
Given a triple real constant matrices A,B and C, find real (m × ℓ)-matrices

S0, S1, . . . , Sp−1 such that the eigenvalues of the closed-loop system matrix Ms from
(62) are the roots of a polynomial

f(z) = zn + αn−1z
n−1 + · · · + α0 (63)

with real coefficients αi (i = 0, 1, . . . , n− 1).

Clearly, Problem 5.2 is more general than Problem 5.1. Problem 5.1 has been studied
in [75], and Problem 5.2 in [60],[61]. In these works two different approaches were offered
in solving these problems. Here we present the corresponding results. We begin with
Problem 5.2.

5.1 Pole assignability

Consider the system (57) with scalar input and scalar output (m = l = 1). Then B is a
column matrix, C is a row matrix, the feedback gains Sk are numbers.

A. Two-Dimensional Case

In this case the following theorem yields a complete solution of Problem 5.2 in the
sense of giving conditions for the realizability of pole assignment by static periodic output
feedback.
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Theorem 5.1 (On pole assignment: n = 2 [60]). Let in system (57) n = 2. Suppose
that the pair (A,B) is controllable and the pair (A,C) is observable. Then for the problem
of pole assignment in system (57) by means of periodic feedback (58),(60) with period 3
to be solvable it is necessary and sufficient that 1) CA−1B 6= 0 and 2) |CB|+ |TrA| 6= 0.

Remarks to Theorem 5.1
1. In Theorem 5.1 it is assumed that the system (57) is controllable and observable.

This assumption is necessary for pole assignability. This follows from the well-known fact
that uncontrollable and unobservable modes cannot be moved by static output feedback:
neither by time-invariant nor by time-varying feedback [76].

2. In Theorem 5.1 it is assumed implicitly that the system matrix A is non-singular.
This assumption entails no restriction as soon as the system (57) is controllable and
observable. The nonsingularity of matrix A in controllable and observable system can
be realized by a preliminary output feedback. Really, this follows from the well-known
formula

det[zI − (A+ SBC)] = ∆(z) + Sν(z),

where the characteristic polynomial ∆(z) = det(zI − A) of the matrix A and the poly-
nomial ν(z) of degree not greater than n− 1 have no common roots.

3. From the result stated in [77] it follows that the pole assignability of system (57)
is not possible in general by means of a periodic static output feedback of period 2.
Therefore, at least periodic static output feedback of period 3, as considered in Theorem
5.1, is necessary to realize pole assignment.

B. Multidimensional Case
Let W (z) denote the transfer function of system (57). Consider its representation in

the form of rational function

W (z) = C(Iz −A)−1B =
qn−1z

n−1 + · · · + q1z + q0
zn + pn−1zn−1 + · · · + p1z + p0

, (64)

where p, q ∈ R (i = 0, 1, . . . , n − 1). Here in the denominator of (64) we have the
characteristic polynomial of the matrix A.

The following theorem gives sufficient conditions under which the poles of system (57)
of arbitrary order can be assigned by means of periodic output feedback (58),(60).

Theorem 5.2 (On pole assignment: n > 2 [61]) Suppose that the pair (A,B) is
controllable and the pair (A,C) is observable. Suppose that the coefficients qi, pi (i =
0, 1, . . . , n − 1) of polynomials in the numerator and denominator of fraction (64) are
non-zero and all quotients pi/qi (i = 0, 1, . . . , n − 1) are mutually different. Let α0 6= 0
in (63). Then for the problem of pole assignment in system (57) by means of periodic
feedback (58),(60) with period p = n+ 1 to be solvable it is sufficient that

rank [B,AΠs0B, . . . , (AΠs0)n−1B] = n,

where

Πs0 = (A+ S0
n−1BC) . . . (A+ S0

0BC), s0 := (S0
0 , S

0
1 , . . . , S

0
n−1) =

(
p0

q0
,
p1

q1
, · · · , pn−1

qn−1

)

.

Remarks to Theorem 5.2
1. As in Theorem 5.1 (see Remark 1 to it) the conditions that (A,B) is controllable

and (A,C) is observable are necessary for pole assignability. Therefore, without loss of
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generality, the system matrix A is assumed to be nonsingular. By analogy with this we
may also assume that the coefficients pi (i = 0, 1, . . . , n− 1) of characteristic polynomial
of the matrix A are non-zero.

2. The assumption that the coefficients qi (i = 0, 1, . . . , n − 1) of the numerator in
(64) are all non-zero is not necessary in general. This assumption is only a consequence
of approach offered in [61]. The condition q0 6= 0 is equivalent to condition CA−1B 6= 0,
since q0 = −(CA−1B)p0. This is necessary. Really, otherwise the determinant of the
monodromy matrix Ms from (62) would be independent of the numbers S0, S1, . . . , Sp−1

for any values of p, since

detMs = (detA)p · (1 + S0CA
−1B) . . . (1 + Sp−1CA

−1B).

On the other hand the condition qn−1 6= 0 or equivalent (since qn−1 = CB) to it condition
CB 6= 0 is not necessary in general. Indeed, in two-dimensional case (see Theorem 5.1)
the zero value of CB may be allowed, but then the trace TrA of the matrix A must be
different from zero.

3. The condition that all quotients pi/qi (i = 0, 1, . . . , n − 1) are mutually different
is not necessary in general. It is a consequence of approach offered in [61]. For the
second-order systems this condition is not necessary [60].

4. The condition that the period of the output feedback gain Sk is equal to n+ 1 is
sufficient only. As remarked above for second order systems periodic feedback of period
p = 2 cannot solve the pole assignment problem.

5. The condition α0 6= 0 is equivalent to the condition that the poles of closed-
loop system (59) must differ from the origin. This condition is not necessary. In [61]
an example of third order system, where α0 = 0, is given but nevertheless the pole
assignment is possible.

6. The result of Theorem 5.2 can be generalized for multi-input multi-output systems
(see [61]).

5.2 Examples

A. A second order system ([60]).
Consider the system

xk+1 =

(
0 1
2 1

)

xk +

(
0
1

)

uk, yk = (−1 1)xk. (65)

The system (65) is controllable and observable. Here CB = 1, CA−1B = −1/2.
Therefore by Theorem 5.1 the pole assignment for system (65) is solvable by means of
periodic feedback (58),(60) with period p = 3.

This result can be obtained also by Theorem 5.2. Really, the transfer function of
system (65) is

W (z) =
z − 1

z2 − z − 2
.

We have p0 = −2, p1 = −1, q0 = −1, q1 = 1, S0
0 = 2, S0

1 = −1. Also,

Πs0 = (A+ S0
0BC)(A + S0

1BC) =

(
0 0
0 3

)

, rank (B,AΠs0 ) = rank

(
0 3
1 3

)

= 2.

Therefore, all conditions of Theorem 5.2 are satisfied.
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It should be noted that the open-loop system (65) xk+1 = Axk (uk := 0) is unstable
and cannot be stabilized by time-invariant output feedback uk = Syk (S = const).

B. A third order system ([61]).

Consider the discrete-time third-order system of the type (57) with

A =





0 1 0
0 0 1

−p0 −p1 −p2



 , B =





0
0
1



 , C = (q0 q1 q1).

The transfer function is

W (z) =
q2z

2 + q1z + q0
z3 + p2z2 + p1z + p0

.

For the values of parameters p0 = 1.875, p1 = 5.75, p2 = 4.5, q0 = 2, q1 = 3, q2 = 1,
the transfer function W (z) has three poles z1 = −0.5, z2 = −1.5, z3 = −2.5 and two real
zeros z0

1 = −1, z0
2 = −2. By the root locus method it can be established that this system

cannot be stabilized by constant output feedback.

Let the characteristic polynomial to be realized be f(z) = z3, i.e. the closed-loop
system is required to have all poles at the origin by introducing the periodic output
feedback of period p = 4. A numerical analysis [61] yields the following result for feedback
gains S0 = 0.9375, S1 = 2.528322, S2 = −8.928145, S3 = 10.

Note that the condition α0 6= 0 of Theorem 5.2 is not satisfied. But nevertheless the
pole assignment problem for considered system is solvable for the polynomial f(z) = z3.
Therefore, as is remarked above (Remark 5 to Theorem 5.2) the condition α0 6= 0 in
Theorem 5.2 is indeed not necessary.

Remark 5.1 Above for the pole assignment in system (57) the periodic memoryless
output feedback has been used, i.e. the value of the input at a particular time t = k
depends on the output value at the same moment of time k. Contrary to this approach in
the works [78]-[80] a memory in the periodic output feedback law is introduced. That is,
value of the input at a moment t = k depends on an output value at a time prior to this
moment, namely at the beginning of the period. We adduce a result on pole assignment
for single-input single-output system (57) by such kind (with memory) of periodic output
feedback. In [79] the following theorem is established:

Let the pair (A,B) be controllable. Then the pole assignment problem has a solution
if and only if the pair (An, C) is observable.

5.3 Stabilizability

We now turn to Problem 5.1 stated above.

5.3.1 Low-frequency stabilization of multi-input multi-output systems

Basic hypotheses. Suppose that there exist real constant (m×ℓ)-matrices S(j)(j = 1, 2)
such that the systems

xk+1 = (A+BS(j)C)xk, xk ∈ Rn (j = 1, 2)(k = 0, 1, 2, . . .) (66)
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have stable invariant linear manifolds Lj and invariant linear manifolds Mj . Assume

that dimMj +dimLj = n and Mj ∩Lj = {0}. Suppose that for solutions x
(j)
k (x

(j)
0 = x0)

of systems (66) the following inequalities

‖x(j)
k ‖ ≤ αj‖x0‖e−λjk ∀x0 ∈ Lj, (67)

‖x(j)
k ‖ ≤ βj‖x0‖eµjk ∀x0 ∈Mj , (68)

are satisfied for positive numbers λj , µj , αj , βj.

Assume that there exist a sequence of matrices {Σk}∞k=0 and an integer r ≥ 1 such
that for the system

xk+1 = (A+BΣkC)xk

the inclusion θr
0M1 ⊂ L2 holds, where θr

0 =
r−1∏

j=0

(A+BΣjC).

Under these assumptions we have the following

Theorem 5.3 (Fundamental Theorem on Stabilization [75]). Suppose the inequality
λ1λ2 > µ1µ2 holds. Then there exists a K-periodic matrix sequence {Sk}(Sk+K = Sk, k =
0, 1, 2, . . . ;K ∈ N) such that the system (59) is asymptotically stable.

In this case the stabilizing feedback gain matrix Sk has the form

Sk =







S1 for k ∈ [0, k1),

Σk−k1
for k ∈ [k1, k1 + r),

S2 for k ∈ [k1 + r, k1 + k2 + r),

where K := k1 + k2 + r, and positive integers k1 and k2 are determined from conditions

−λ1k1 + µ2k2 < −T, −λ2k2 + µ1k1 < −T.

Here T is a sufficiently large positive number. (The notation k ∈ [α, β) means that k
takes only integer values from the interval [α, β).)

5.3.2 Stabilization of single-input single-output systems

Consider the system (57) with scalar input uk and scalar output yk.

Theorem 5.3 implies the following assertion.

Theorem 5.4 (On Stabilization: m = l = 1 [75]). Suppose the pair (A,B) is con-
trollable and the pair (A,C) is observable. Let

M1 = M2, dimM1 = 1, µ1 = µ2 = µ, L1 = L2, dimL1 = n− 1, λ1 = λ2 = λ,

where Lj,Mj(j = 1, 2) are linear manifolds introduced for systems (66), and λj , µj are
numbers from (67), (68). Then if the inequality λ > µ is satisfied, there exists a K-
periodic number sequence {Sk}∞k=0 such that the system (59) is asymptotically stable.

Using Theorem 5.4 one can prove the following
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Theorem 5.5 (On Stabilization: m = l = 1 [75]). Suppose the pair (A,B) is con-
trollable and the pair (A,C) is observable. Suppose that there exists a number S0 such
that the matrix A + S0BC has n − 1 eigenvalues ρj(j = 1, . . . , n − 1) located inside the
unit circle and for the eigenvalue ρn the inequality

max
j

|ρn · ρj | < 1 (69)

holds. Then there exists a K-periodic number sequence {Sk}∞k=0 such that the system
(59) is asymptotically stable.

Remark 5.2 It is well known that for time-invariant system xk+1 = Dxk to be
asymptotically stable it is necessary and sufficient that all eigenvalues of the matrix
D should be located inside the unit circle |z| < 1. The matrix A + S0BC is closed-
loop system obtained after introducing in system (57) a time-invariant output feedback
uk = S0yk(S0 ∈ R). As is seen the condition (69) of Theorem 5.5 relaxes the requirement
of locating all eigenvalues of the matrix A+S0BC inside the unit circle. Hence Theorem
5.5 extends the possibility of stationary stabilization (by time-invariant output feedback).

5.3.3 Stabilization of linear second order systems

Consider a linear single-input single-output system with the transfer function

W (z) =
c2z + c1

z2 + a2z + a1
, (70)

Here a1, a2.c1, c2 are real numbers.
Suppose the function W (z) is nondegenerate, i.e.

c21 − a2c1c2 + a1c
2
2 6= 0. (71)

A state-space realization of the system considered is a system of the type (57) with

A =

(
0 1

−a1 −a2

)

, B =

(
0
1

)

, C = (c1 c2). (72)

Relation (71) is a necessary and sufficient condition for controllability of the pair
(A,B) and observability of the pair (A,C).

Apply Theorem 5.5. The condition (69) is equivalent to the inequality |a1−S0c1| < 1
which have to be satisfied for some number S0. This yields the conditions

c1 6= 0 or |a1| < 1, (73)

which by Theorem 5.5 are sufficient conditions for stabilizability of the system (57), (72).
One can show that conditions (73) are also necessary for stabilizability of the system

considered.
Thus, since the similarity transformation (A,B,C) → (T−1AT, T−1B,CT ) does not

change the transfer function W (z) and detA, we have the following

Theorem 5.6 (On Stabilization: n = 2,m = l = 1 [75]). Suppose that inequality
(71) is satisfied. Then for the system (57) with transfer function (70) to be stabilizable it
is necessary and sufficient that at least one of conditions

W (0) 6= 0 or | detA| < 1 (74)

is valid.
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We note that the conditions 1) and 2) of Theorem 5.1 are also sufficient but, in
general, not necessary conditions for stabilization of system (57) in the two-dimensional
case. Since W (0) = CA−1B, it is clear that for the stabilization of system (57) conditions
(74) are milder than the conditions 1) and 2) of Theorems 5.1.

Remark 5.3 Comparing the conditions (73) of nonstationary stabilization of system
defined by matrices (72) for special case c2 := 0(c1 6= 0) with necessary and sufficient
condition |a2| < 2 of stationary stabilization we see the additional possibilities opened
up by introducing time-variance in the feedback gain.

6 Conclusion

It is well known that although some interesting results are obtained for arbitrary pole
assignment in linear time-invariant systems by means of time-invariant static output
feedback, the possibility of this approach is limited. Another approach to the pole as-
signment stabilization problems is to consider the potential of time-varying static output
feedback. This approach was developed for stabilization of continuous-time systems by
Brockett [62]. For pole assignment in discrete-time systems this approach was considered
by Aeyels and Willems [60, 61].

It is shown that the stabilization by means of periodic output feedback is possible
under weak conditions. Necessary and sufficient conditions for nonstationary low- and
high-frequency stabilization of two- and three-dimensional systems are derived. It turns
out that time-varying feedback control strategy can achieve results that cannot be ob-
tained by time-invariant feedback.

Analogous problems are considered for pole assignment and stabilization of time-
invariant discrete-time control systems.

It is shown that under mild conditions stabilization of time-invariant control systems
is possible by means of piecewise-constant periodic with a sufficiently large period output
feedback (low-frequency stabilization). For second order systems necessary and sufficient
conditions of stabilizability are obtained. Also, it is shown that introducing time-variance
in the feedback gain opens up additional possibilities of stabilization of time-invariant
discrete-time control systems.

Further, the results of works [60, 61] on pole assignment in discrete-time systems by
time-varying static output feedback are presented.

Finally, we remark that the problems of stabilization of linear controllable systems
are the high-capacity impetus for the development of new mathematical methods, which
are presented in the present paper. Here an attempt is made to represent a constantly
increasing number of publications, concerning this subject. In these publications not
only the classical problems of stabilization are solved but the new notions are introduced
and the new problems, arising in different applications, are considered. For the solution
of these problems the methods, suggested in the present paper, can be useful.

Some of the methods described here are useful for investigations of nonlinear systems
[81].
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