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Abstract: In this paper we are concerned with a neutral differential equation with
a deviated argument in an arbitrary Banach space X. To study the existence and
uniqueness of a solution of the problem considered, we use the theory of the analytic
semigroups and the fixed point arguments. Finally, we give an example to demon-
strate an application of the abstract results.
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1 Introduction

In this study we are concerned with the following neutral differential equation with a
deviated argument considered in a Banach space X :

{
d
dt [u(t) + g(t, u(a(t)))] +Au(t) = f(t, u(t), u[h(u(t), t)]), 0 < t ≤ T <∞,

u(0) = u0,
(1.1)

where −A is the infinitesimal generator of an analytic semigroup. f, g, h and a are
suitably defined functions satisfying certain conditions to be stated later.

Initial results related to the differential equations with the deviated arguments can
be found in some research papers of the last decade but still a complete theory seems
to be missing. For the initial works on the existence, uniqueness and stability of various
types of solutions of different kinds of differential equations, we refer to [1]-[14] and the
references cited in these papers.
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Hernandez and Henriquez [9, 10] established some results concerning the existence,
uniqueness and qualitative properties of a solution operator of the following general
partial neutral functional differential equation with the infinite delay:

d

dt
(u(t)− g(t, ut)) = Au(t) + f(t, ut), t ≥ 0,

u0 = ϕ ∈ C0,

where A generates an analytic semigroup on a Banach space B, g and f are continuous
functions from [0,∞)× C0 into B and for each u : (−∞, b] → B, b > 0 and t ∈ [0, b], ut
represents, as usual, the mapping defined from (−∞, 0] into B by

ut(θ) = u(t+ θ) for θ ∈ (−∞, 0].

Adimy et al [1] have studies the existence and stability of a solution of the following
general class of nonlinear partial neutral functional differential equations:

d

dt
(u(t)− g(t, ut)) = A(u(t)− g(t, ut)) + f(t, ut), t ≥ 0,

u0 = ϕ ∈ C0, (1.2)

where the operator A is the Hille-Yosida operator not necessarily densely defined on the
Banach space B. The functions g and f are continuous from [0,∞)× C0 into B.

In this paper, we use the Banach fixed point theorem and the analytic semigroup
theory to prove the existence and uniqueness of different kinds of solutions to the prob-
lem (1.1). The plan of the paper is as follows. In Section 3, we prove the existence and
uniqueness of a local solution and in Section 4, the existence of a global solution for the
problem (1.1) is given. In the last section, we give an example.

The results presented in this paper can be applied easily to the problem (1.1) with a
nonlocal condition under some modified assumptions on the function f and the operator
A.

2 Preliminaries and Assumptions

As pointed out earlier, we note that if −A is the infinitesimal generator of an analytic
semigroup then for c > 0 large enough, −(A+ cI) is invertible and generates a bounded
analytic semigroup. This allows us to reduce the general case in which −A is the infinites-
imal generator of an analytic semigroup to the case in which the semigroup is bounded
and the generator is invertible. Hence, without loss of generality, we suppose that

‖S(t)‖ ≤M for t ≥ 0 and 0 ∈ ρ(−A),

where ρ(−A) is the resolvent set of −A. It follows that for 0 ≤ α ≤ 1, Aα can be defined
as a closed linear invertible operator with domain D(Aα) and being dense in E. We have
Eκ ↪→ Eα, for 0 < α < κ and the embedding is continuous. For more details on the
fractional powers of the closed linear operators, we refer to Pazy [15].

It can be proved easily that Eα := D(Aα) is a Banach space with norm ‖x‖α = ‖Aαx‖
and it is equivalent to the graph norm of Aα. Also, for each α > 0, we define E−α = (Eα)

∗,
the dual space of Eα is a Banach space endowed with the norm ‖x‖−α = ‖A−αx‖.
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It can be seen easily that Cα
t = C([0, t];Eα), for all t ∈ [0, T ], is a Banach space

endowed with the supremum norm,

‖ψ‖t,α := sup
0≤η≤t

‖ψ(η)‖α, ψ ∈ Cα
t .

We set Cα−1
T = C([0, T ];Eα−1) = {y ∈ Cα

T : ‖y(t)− y(s)‖α−1 ≤ L|t− s|, ∀ t, s ∈ [0, T ]},
where L is a suitable positive constant to be specified later and 0 ≤ α < 1.

To proceed further, we need to assume the following assumptions on operator A and
function f, g, h, a:

(A1): 0 ∈ ρ(−A) and −A is the infinitesimal generator of an analytic semi-
group {S(t) : t ≥ 0}.
(A2): Let U1 ⊂ Dom(f) be an open subset of R+ × Eα × Eα−1 and for each
(t, u, v) ∈ U1 there is a neighborhood V1 ⊂ U1 of (t, u, v). The nonlinear map
f : R+ × Eα × Eα−1 → E satisfies the following condition,

‖f(t, x1, y1)− f(s, x2, y2)‖ ≤ Lf [|t− s|θ1 + ‖x1 − x2‖α + ‖y1 − y2‖α−1],

where 0 < θ1 ≤ 1, 0 ≤ α < 1, Lf > 0 is a constant, (t, x1, y1) ∈ V1, and
(s, x1, y2) ∈ V2.

(A3): Let U2 ⊂ Dom(h) be an open subset of Eα×R+ and for each (x, t) ∈ U2

there is a neighborhood V2 ⊂ U2 of (x, t). The map h : Eα×R+ → R+ satisfies
the following condition

|h(x, t)− h(y, s)| ≤ Lh[‖x− y‖α + |t− s|θ2 ],
where 0 < θ2 ≤ 1, 0 ≤ α < 1, Lh > 0 is a constant, (x, t), (y, s) ∈ V2 and
h(., 0) = 0.

(A4): Let U3 ⊂ Dom(g) be an open subset of [0, T ] × Eα−1 and for each
(t, x) ∈ U3, there is a neighborhood V3 ⊂ U3 of (x, t). The function g :
[0, T ]× Eα−1 → Eβ is continuous for (t, u) ∈ [0, T0]× Eα−1 such that

‖Aβg(t, x)−Aβg(s, y)‖ ≤ Lg{|t− s|+ ‖x− y‖α−1}, and
Lg‖Aα−β−1‖ < 1,

where 0 ≤ α < 1, Lg > 0 is a positive constant (x, t), (y, s) ∈ V3.

(A5): The function a : [0, T ] → [0, T ] satisfies the following two conditions:

(i) a satisfies the delay property a(t) ≤ t, for all t ∈ [0, T ];

(ii) The function a is Lipschitz continuous; that is, there exists a positive
constant La such that

|a(t)− a(s)| ≤ La|t− s|, for all t, s ∈ [0, T ] and 1 > ‖A−1‖La.

Definition 2.1 A continuous function u ∈ Cα−1
T ∩Cα

T is said to be a mild solution
of equation (1.1) if u is the solution of the following integral equation

u(t) = S(t)[u(0) + g(0, u0)]− g(t, u(a(t))) +

∫ t

0

AS(t− s)g(s, u(a(s)))ds

+

∫ t

0

S(t− s)f(s, u(s), u[h(u(s), s)])ds, t ∈ [0, T ] (2.3)

and satisfies the initial condition u(0) = u0.
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Definition 2.2 A function u : [0, T ] → E is called a solution of 1.1 if u satisfies the
following conditions,

(i) u(.) + g(., u(a(.))) ∈ Cα−1
T ∩ C1((0, T ), E) ∩ C([0, T ], E),

(ii) u(t) ∈ D(A), and (t, u(t), u[h(u(t), t)]) ∈ U1,

(iii) d
dt [u(t) + g(t, u(a(t)))] +A[u(t)] = f(t, u(t), u[h(u(t), t)]) for all t ∈ (0, T ],

(iv) u(0) = u0.

3 Existence of Local Solutions

In this section, we provide an existence and uniqueness theorem for a mild solution of
(1.1). We set

W = {u ∈ Cα
T0

∩Cα−1
T0

: u(0) = u0, ‖u− u0‖T0,α ≤ δ}.

Clearly, W is a closed and bounded subset of Cα−1
T .

Under the assumptions (A2)-(A3), 0 ≤ α < 1 and u ∈ Cα
T0

imply that
f(s, u(s), u[h(u(s), s)]) is continuous on [0, T0]. Therefore, we can show that there ex-
ists a positive constant N such that

‖f(s, u(s), u[h(u(s), s)])‖ ≤ N= Lf [T0
θ1 + δ(1 + LLh) + LLhT

θ2
0 ] +N0,

where N0 = ‖f(0, u0, u0)‖. Similarly, with the help of the assumptions (A4)-(A5), we
can easily show that ‖Aβg(t, u(a(t)))‖ ≤ Lg[T0 + δ] + ‖g(0, u0)‖α = N1. Also, we denote
‖A−1‖ =M2 and ‖A−α‖ =M3.

Theorem 3.1 Let us assume that the assumptions (A1)-(A5) are satisfied and u0 ∈
D(Aα), for 0 ≤ α < 1. Then, the differential equation (1.1) has a unique local mild
solution u(t), for t ∈ (0, T0), where T0 = T0(α, β, u0) > 0 is sufficiently small.

Proof For a fixed δ > 0, we choose 0 < T0 = T0(α, β, u0) ≤ T such that

Cα+1−βLg
T β−α
0

β − α
+ CαLf [2 + LLh]

T 1−α
0

(1− α)
≤ 1− η, (3.4)

where η = Lg‖Aα−β−1‖ < 1 and satisfying the following

‖(S(t)− I)Aα[u0 + g(0, u0)]‖+ ‖Aα−β‖Lg[T0 + δ] ≤ δ

2
(3.5)

for all t ∈ [0, T0] and

Cα+1−βN1
T β−α
0

β − α
+ CαN

T 1−α
0

1− α
≤ δ

2
. (3.6)

For more details of choosing such a T0, we refer to Theorem 2.2 of [8].
We define a map F : Cα

T0
∩ Cα−1

T0
→ Cα

T0
∩ Cα−1

T0
as

(Fu)(t) = S(t)[u0 + g(0, u0)]− g(t, u(a(t))) +

∫ t

0

AS(t− s)g(s, u(a(s)))ds

+

∫ t

0

S(t− s)f(s, u(s), u[h(u(s), s)])ds, t ∈ [0, T ]. (3.7)
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In order to prove this theorem, we need to show that Fu ∈ Cα−1
T0

, for any u ∈ Cα−1
T0

.
Clearly, F : Cα

T → Cα
T .

If u ∈ Cα−1
T0

, T > t2 > t1 > 0, and 0 ≤ α < 1, then we get

‖(Fu)(t2)− (Fu)(t1)‖α−1 ≤ ‖(S(t2)− S(t1))(u0 + g(0, u0))‖α−1

+‖Aα−β−1‖‖Aβg(t2, u(a(t2)))−Aβg(t1, u(a(t1)))‖

+

∫ t1

0

‖(S(t2 − s)− S(t1 − s))Aα−β‖‖Aβg(s, u(a(s)))‖ds

+

∫ t2

t1

‖S(t2 − s)Aα−β‖‖Aβg(s, u(a(s)))‖ds.

+

∫ t1

0

‖(S(t2 − s)− S(t1 − s))Aα−1‖

× ‖f(s, u(s), u[h(u(s), s)])‖ds

+

∫ t2

t1

‖S(t2 − s)Aα−1‖‖f(s, u(s), u[h(u(s), s)])‖ds. (3.8)

For the first part of the right hand side of (3.8), we have

‖(S(t2)− S(t1))(u0 + g(0, u0))‖α−1 ≤
∫ t2

t1

‖Aα−1S′(s)(u0 + g(0, u0))‖ds

=

∫ t2

t1

‖AαS(s)(u0 + g(0, u0))‖ds

≤
∫ t2

t1

‖S(s)‖[‖u0‖α + ‖Aα−β‖‖g(0, u0)‖β ]ds

≤ C1(t2 − t1), (3.9)

where C1 = [‖u0‖α + ‖Aα−β‖‖g(0, u0)‖β]M.
For the second part of the right hand side of (3.8), we can see that

‖Aα−β−1‖‖Aβg(t2, u(a(t2)))−Aβg(t1, u(a(t1)))‖
≤ ‖Aα−β−1‖Lg[|(t2 − t1)|+ ‖u(a(t2))− u(a(t1))‖α−1]

≤ ‖Aα−β−1‖[Lg + LLa]|(t2 − t1)|
≤ C2|(t2 − t1)|. (3.10)

where C2 = ‖Aα−β−1‖[Lg + LLa].
To handle the third and fifth parts of the right hand side of (3.8), we observe that

‖(S(t2 − s)− S(t1 − s))‖α−1 ≤
∫ t2−t1

0

‖Aα−1S′(l)S(t1 − s)‖dl

≤
∫ t2−t1

0

‖S(l)AαS(t1 − s)‖dl

≤ MCα(t2 − t1)(t1 − s)−α. (3.11)

Now we use the inequality (3.11) to get the bound for the third part we have

∫ t1

0

‖(S(t2 − s)− S(t1 − s))Aα−β‖ × ‖Aβg(s, u(a(s))])‖ds ≤ C4(t2 − t1), (3.12)
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where C4 = N1MCα−β+1
T

1−(α−β)
0

1−(α−β) . Similarly, bound for the fifth part is given as

∫ t1

0

‖(S(t2 − s)− S(t1 − s))Aα−1‖ × ‖f(s, u(s), u[h(u(s), s)])‖ds ≤ C3(t2 − t1), (3.13)

where C3 = NMCα
T 1−α
0

1−α . For the bound for the sixth part, we have

∫ t2

t1

‖S(t2 − s)Aα−1‖‖f(s, u(s), u[h(u(s), s)])‖ds ≤ C5(t2 − t1), (3.14)

where C5 = ‖Aα−1‖MN. Finally, for the fourth part we have the following

∫ t2

t1

‖S(t2 − s)Aα−β‖‖Aβg(s, u(a(s))‖ds ≤ C6(t2 − t1), (3.15)

where C6 = ‖Aα−β‖MN1.
We use the inequalities (3.9), (3.10), (3.13)-(3.15) in inequality (3.8) to get the fol-

lowing inequality

‖(Fu)(t2)− (Fu)(t1)‖α−1 ≤ L̃|t2 − t1|, (3.16)

where, L̃ = max{Ci, i = 1, 2, · · ·6}. Hence, F : Cα−1
T0

→ Cα−1
T0

follows.
Our next task is to show that F : W → W . Now, for t ∈ (0, T0] and u ∈ W , we have

‖(Fu)(t)− u0‖α ≤ ‖(S(t)− I)Aα[u0 + g(0, u0)]‖
+ ‖Aα−β‖‖Aβg(s, u(a(s)))−Aβg(0, u(a(0)))‖

+

∫ t

0

‖S(t− s)A1+α−β‖‖Aβg(s, u(a(s)))‖ds

+

∫ t

0

‖S(t− s)Aα‖‖f(s, u(s), u[h(u(s), s)])‖ds

≤ ‖(S(t)− I)Aα[u0 + g(0, u0)]‖+ ‖Aα−β‖Lg[T0 + δ]

+CαN
T 1−α
0

1− α
+ C1+α−βN1

T β−α
0

β − α
.

Hence, from inequalities (3.5) and (3.6), we get ‖Fu− u0‖T0,α ≤ δ. Therefore, F : W →
W .

Now, if t ∈ (0, T0] and u, v ∈ W , then

‖(Fu)(t)− (Fv)(t)‖α ≤ ‖Aα−β‖‖Aβg(t, u(a(s)))−Aβg(t, v(a(s)))‖

+

∫ t

0

‖S(t− s)A1+α−β‖‖Aβg(s, u(a(s)))−Aβg(s, v(a(s)))‖ds.

+

∫ t

0

‖S(t− s)Aα‖

×‖f(s, u(s), u[h(u(s), s)])− f(s, v(s), v[h(u(s), s)])‖ds. (3.17)

We have the following inequalities

‖Aβg(t, u(a(s)))−Aβg(t, v(a(t)))‖ ≤ Lg‖A−1‖‖u− v‖T0,α, (3.18)
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‖f(s, u(s), u[h(u(s), s)])− f(s, v(s), v[h(v(s), s)])‖
≤ Lf [2 + LLh]‖u− v‖T0,α. (3.19)

We use the inequalities (3.18) and (3.19) in the inequality (3.17) and get

‖(Fu)(t)− (Fv)(t)‖α ≤ [Lg(‖Aα−β−1‖+ C1+α−β
T β−α
0

β − α
)

+CαLf [2 + LLh]
T 1−α
0

(1− α)
]‖u− v‖T0,α. (3.20)

Hence, from inequality (3.4), we get the following inequality given below

‖Fu−Fv‖T0,α < ‖u− v‖T0,α.

Therefore, the map F has a unique fixed point u ∈ W which is given by

u(t) = S(t)[u0 + g(0, u0)]− g(t, u(a(t))) +

∫ t

0

AS(t− s)g(s, u(a(s)))ds

+

∫ t

0

S(t− s)f(s, u(s), u[h(u(s), s)])ds t ∈ [0, T0]. (3.21)

Hence, the mild solution u of equation (1.1) is given by the equation (3.21) and belongs
to Cα

T0
∩Cα−1

T0
. Also, on the similar lines of the proof of Theorem 6.3.1, we can easily

check that
‖u(t+ h)− u(t)‖ ≤ L′|h|γ

for some 0 < γ < 1 − α. Furthermore, the inequality of (A2), implies the local Hölder
continuity of the function f for t, s ∈ [t0, T ], 0 < t0 < T . Precisely for u ∈ Cα−1

T0
and

moreover, u ∈ Cγ((0, T ], Eα) for 0 < γ < 1− α :

‖f(t, u(t), u[h(u(t), t)])− f(s, u(s), u[h(u(s), s)])‖
≤ Lf{|t− s|θ1 + ‖u(t)− u(s)‖α + L|h(u(t), t)− h(u(s), s)|}
≤ Lf{|t− s|θ1 + ‖u(t)− u(s)‖α + LLh[|t− s|θ2 + ‖u(t)− u(s)‖α]}
≤ Lf{|t− s|θ1 + L′|t− s|γ + LLh[|t− s|θ2 + L′|t− s|γ ]}. (3.22)

Hence, the map t 7→ f(t, u(t), u[h(u(t), t)]) is locally Hölder continuous. Therefore,

f(t, u(t), u[h(u(t), t)]) ∈ C([0, T ], E) ∩ Cβ
′

((0, T ], E),

where 0 < β
′

< min{θ1, γ, θ2}. Similarly, we can prove that u(.) + g(., u(a(.))) is also
Hölder continuous on (0, T0]. Therefore, from Theorem 3.1 pp. 110 and Corollary 3.3,
pp. 113, Pazy [15], the function u(.)+g(., u(a(.))) ∈ Cα−1

T0
∩ C1((0, T0), E) ∩ C([0, T0], E)

and u(.) is the unique solution of the problem (1.1) in the sense of definition (3.2) of Pazy
[15]. This completes the proof of the Theorem. 2

4 Existence of Global Solutions

In order to establish the global existence of a mild solution to (1.1), we need the following
lemma.
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Lemma 4.1 Let u0(t, s) ≥ 0 be continuous on 0 ≤ s ≤ t ≤ T < ∞. If there are
positive constants A, E and α such that

u0(t, s) ≤ A+B

∫ t

s

(t− σ)α−1u0(σ, s)dσ, (4.1)

for 0 ≤ s < t ≤ T , then there is a constant C such that u0(t, s) ≤ C.

Proof For 0 ≤ s < t ≤ T , we have

∫ t

s

(t− τ)(α−1)(τ − s)(β−1)dτ = (t− s)α+β−1Γ(α)Γ(β)

Γ(α+ β)
, (4.2)

which holds for every α, β > 0. Integrating (4.1) n−1 times and using (4.2) and replacing
t− s by T , we get

u0(t, s) ≤ A

n−1∑

j=0

(
BTα

α

)j

+
(BΓ(α))n

Γ(nα)

∫ t

s

(t− σ)nα−1u0(σ, s)dσ. (4.3)

Let n be large enough so that nα > 1. We majorize (t− σ)nα−1 by T nα−1 to obtain

u0(t, s) ≤ c1 + c2

∫ t

s

u0(σ, s)dσ. (4.4)

Application of Gronwall’s inequality leads to

u0(t, s) ≤ c1e
c2(t−s) ≤ c1e

c2T ≤ C. (4.5)

This completes the proof of the lemma.

Theorem 4.1 Suppose that 0 ∈ ρ(−A) and the operator −A generates the analytic
semigroup S(t) with ‖S(t)‖ ≤M , for t ≥ 0, the conditions (A1)–(A5) are satisfied and
u0 ∈ D(Aα). If there are continuous nondecreasing real valued functions k1(t), k2(t) and
k3(t) such that

‖f(t, x, y)‖ ≤ k1(t)(1 + ‖x‖α + ‖y‖α−1), (4.6)

|h(x, t)| ≤ k2(t)(1 + ‖z‖α), (4.7)

‖g(t, y)‖β ≤ k3(t)(1 + ‖v‖α−1), (4.8)

for t ≥ 0, x ∈ Eα and y ∈ Eα−1, then the initial value problem (1.1) has a unique
solution which exists for all t ∈ [0, T ].

Proof Let T0 be sufficiently small as defined in the proof of Theorem 3.1 and let
u(t), t ∈ (0, T0), be the local mild solution of (1.1). To prove the global existence of u(t),
we need to show that we can continue the solution of equation (1.1) as long as ‖u(t)‖α
stays bounded. It is therefore sufficient to show that if u exists on [0, T ), then ‖u(t)‖α is
bounded as t ↑ T.

We have the following inequality

‖u[h(u(s), s)]‖α−1 ≤ ‖u[h(u(s), s)]− u(0)‖α−1 + ‖u0‖α−1

≤ L|h(u(s), s)|+ ‖u0‖α−1

≤ Lk2(T ) + Lk2(T )‖u‖s,α + ‖u0‖α−1. (4.9)
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For t ∈ [0, T ), we have

‖u(t)‖α ≤ ‖S(t)Aα[u0 + g(0, u0)]‖+ ‖Aα−β‖‖g(t, u(a(t)))‖β

+

∫ t

0

‖Aα+1−βS(t− s)‖‖Aβg(s, u(s)))‖ds

+

∫ t

0

‖AαS(t− s)‖‖f(s, u(s), u[h(u(s), s)])‖ds

≤ M [‖u0‖α + k3(T )‖Aα−β‖{1 + ‖A−1‖‖u0‖α}]
+ k3(T )‖Aα−β‖[1 + ‖A−1‖‖u‖t,α]

+ Cα+1−β

∫ t

0

(t− s)−1+β−αk3(T )[1 + ‖A−1‖‖u‖s,α]ds,

+ Cα

∫ t

0

(t− s)−αk1[1 + ‖u‖s,α + ‖u[h(u(s), s)]‖α−1]ds

≤ M [‖u0‖α + k3(T )‖Aα−β‖{1 + ‖A−1‖‖u0‖α}]
+ k3(T )‖Aα−β‖[1 + ‖A−1‖‖u‖t,α]

+ k3(T )Cα+1−β

∫ t

0

(t− s)−(1+α−β)ds

+ ‖A−1‖k3(T )Cα+1−β

∫ t

0

(t− s)−(1+α−β)‖u‖s,αds

+ k1(T )Cα

∫ t

0

(t− s)−αds+ k1(T )Cα

∫ t

0

(t− s)−α‖u‖s,αds

+ (Lk2(T ) + ‖u0‖α−1)k1(T )Cα

∫ t

0

(t− s)−αds

+ Lk2(T )k1(T )Cα

∫ t

0

(t− s)−α‖u‖s,αds.

Hence,

‖u‖t,α ≤ C1 +

∫ t

0

(C2(t− s)−α + C3(t− s)β−α−1)‖u‖s,αds, (4.10)

where

C1 =
M [‖u0‖α + k3(T )‖Aα−β‖{1 + ‖A−1‖‖u0‖α}] + k3(T )‖Aα−β‖

(1− k3(T )‖Aα−β−1‖)

+
k1(T )CαT

1−α

(1− k3(T )‖Aα−β−1‖)(1− α)

+
(Lk2(T ) + ‖u0‖α−1)k1(T )CαT

1−α

(1− k3(T )‖Aα−β−1‖)(1− α)

+
k3(T )Cα+1−βT

α−β

(1− k3(T )‖Aα−β−1‖)(α− β)
,

C2 =
k1(T )Cα[1 + Lk2(T )]

(1 − k3(T )‖Aα−β−1‖) ,

C3 =
‖A−1‖k3(T )Cα+1−β

(1 − k3(T )‖Aα−β−1‖) .
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Now, we rewrite (4.10) as follows

‖u‖t,α ≤ C1 +

∫ t

0

C̃2,3(t− s)−γ̃‖u‖s,αds, (4.11)

where

C̃2,3(t− s)−γ̃ = 2×max[C2(t− s)−α, C3(t− s)β−α−1]. (4.12)

Hence, by applying Lemma 4.1 to the above inequality (4.11), we get the required results.
This completes the proof of the theorem. 2

5 Example

Let E = L2(0, 1).We consider the following partial differential equations with a deviated
argument,





∂t[w(t, x) + ∂xf1(t, w(a(t), x))] − ∂2x[w(t, x)]
= f2(x,w(t, x)),+f3(t, x, w(t, x)), x ∈ (0, 1), t > 0,
w(t, 0) = w(t, 1) = 0, t ∈ [0, T ], 0 < T <∞,
w(0, x) = u0, x ∈ (0, 1),

(5.1)

where

f2(x,w(t, x)) =

∫ x

0

K(x, s)w(s, h(t)(a1|w(s, t)| + b1|ws(s, t)|))ds.

The function f3 : R+ × [0, 1]×R → R is measurable in x, locally Hölder continuous in t,
locally Lipschitz continuous in u and uniformly continuous in x. Further, we assume that
a1, b1 ≥ 0, (a1, b1) 6= (0, 0), h : R+ → R+ is locally Hölder continuous in t with h(0) = 0
and K : [0, 1]× [0, 1] → R.

We define an operator A, as follows,

Au = −u′′ with u ∈ D(A) = {u ∈ H1
0 (0, 1) ∩H2(0, 1) : u′′ ∈ E}. (5.2)

Here, clearly the operator A is self-adjoint with compact resolvent and is the infinitesimal
generator of an analytic semigroup S(t). Now we take α = 1/2, D(A1/2) = H1

0 (0, 1) is
the Banach space endowed with the norm,

‖x‖1/2 := ‖A1/2x‖, x ∈ D(A1/2)

and we denote this space by E1/2. Also, for t ∈ [0, T ], we denote

C
1/2
t = C([0, t];D(A1/2)),

endowed with the sup norm

‖ψ‖t,1/2 := sup
0≤η≤t

‖ψ(η)‖α, ψ ∈ C1/2
t .

We observe some properties of the operators A and A1/2 defined by (5.2). For u ∈
D(A) and λ ∈ R, with Au = −u′′ = λu, we have 〈Au, u〉 = 〈λu, u〉; that is,

〈−u′′, u〉 = |u′|2L2 = λ|u|2L2 ,
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so λ > 0. A solution u of Au = λu is of the form

u(x) = C cos(
√
λx) +D sin(

√
λx)

and the conditions u(0) = u(1) = 0 imply that C = 0 and λ = λn = n2π2, n ∈ N. Thus,
for each n ∈ N, the corresponding solution is given by

un(x) = D sin(
√
λnx).

We have 〈un, um〉 = 0 for n 6= m and 〈un, un〉 = 1 and hence D =
√
2. For u ∈ D(A),

there exists a sequence of real numbers {αn} such that

u(x) =
∑

n∈N

αnun(x),
∑

n∈N

(αn)
2 < +∞ and

∑

n∈N

(λn)
2(αn)

2 < +∞.

We have
A1/2u(x) =

∑

n∈N

√
λn αn un(x)

with u ∈ D(A1/2); that is,
∑

n∈N
λn(αn)

2 < +∞. E− 1
2
= H1(0, 1) is a Sobolev space of

negative index with the equivalent norm ‖.‖− 1
2
=

∑∞

n=1 |〈., un〉|2. For more details on

the Sobolev space of negative index, we refer to Gal [8].
The equation (5.1) can be reformulated as the following abstract equation in E =

L2(0, 1):

d

dt
[u(t) + g(t, u(a(t)))] +A[u(t)] = f(t, u(t), u[h(u(t), t)]) t > 0,

u(0) = u0, (5.3)

where u(t) = w(t, .) that is, u(t)(x) = w(t, x), x ∈ (0, 1). The function g : R+×E1/2 → E,
such that g(t, u(a(t)))(x) = ∂xf1(t, w(a(t), x)) and the operator A is same as in equation
(5.2).

The function f : R+ × E1/2 × E−1/2 → E, is given by

f(t, ψ, ξ)(x) = f2(x, ξ) + f3(t, x, ψ), (5.4)

where f2 : [0, 1]× E → H1
0 (0, 1) is given by

f2(t, ξ) =

∫ x

0

K(x, y)ξ(y)dy, (5.5)

and f3 : R× [0, 1]×H2(0, 1) → H1
0 (0, 1), satisfies the following

‖f3(t, x, ψ)‖ ≤ Q(x, t)(1 + ‖ψ‖H2(0,1)) (5.6)

with Q(., t) ∈ E and Q is continuous in its second argument. We can easily verify that
the function f satisfies the assumptions (A1)-(A4). For more details see [8].

For the function a we can take
(i) a(t) = kt, where t ∈ [0, T ] and 0 < k ≤ 1;

(ii) a(t) = ktn for t ∈ I = [0, 1] k ∈ (0, 1] and n ∈ N;

(iii) a(t) = k sin t for t ∈ I = [0, π2 ], and k ∈ (0, 1].
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