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1 Introduction

The study of multi-point boundary value problems for linear second-order ordinary dif-
ferential equations was initiated by Il’in and Moiseev [7, 8]. Motivated by the study of
Il’in and Moiseev [7, 8], Gupta [5] studied certain three-point boundary value problems
for nonlinear ordinary differential equations. For the existence problems of positive solu-
tions of multi-point boundary value problems on time scales, some authors have obtained
many results in recent years, see [6, 9, 10, 12, 13, 14, 15, 16, 18] and the references therein.

Motivated by [17], in this paper, we are interested in the existence of multiple positive
solutions of the following m-point boundary value problem (BVP)







u∆∇(t) + h(t)f(t, u(t)) = 0, t ∈ [t1, tm] ⊂ T,

u∆(tm) = 0, αu(t1)− βu∆(t1) =
m−1
∑

i=2

u∆(ti), m ≥ 3,
(1)

where T is a time scale, 0 ≤ t1 < . . . < tm−1 < tm, α > 0 and β ≥ 0 are given
constants. Some basic definitions and theorems on time scales can be found in the books
[2, 3].
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The rest of paper is arranged as follows. In Section 2, we give several lemmas to
prove the main results in this paper. In Section 3, we first establish the existence results
of solutions of the BVP (1) as a result of Schauder fixed-point theorem. Second, we use
Krasnosel’skii fixed-point theorem to show the existence of a positive solution for the BVP
(1). Third, we apply the Avery-Henderson fixed-point theorem to prove the existence
of at least two positive solutions to the BVP (1). Finally, we establish criteria for the
existence of at least three positive solutions of the BVP (1) by using Legget-Williams
fixed-point theorem. In Section 4, we give two examples to illustrate our results.

2 Preliminaries

We now state and prove several lemmas which are needed later. These lemmas are based
on the linear BVP







u∆∇(t) + y(t) = 0, t ∈ [t1, tm] ⊂ T,

u∆(tm) = 0, αu(t1)− βu∆(t1) =
m−1
∑

i=2

u∆(ti), m ≥ 3.
(2)

Lemma 2.1 Let α 6= 0 and y ∈ Cld[t1, tm]. Then the BVP (2) has the unique

solution

u(t) =

tm
∫

t1

(
β

α
+ s− t1)y(s)∇s+

1

α

m−1
∑

i=2

tm
∫

ti

y(s)∇s+

tm
∫

t

(t− s)y(s)∇s. (3)

Proof From u∆∇(t) + y(t) = 0, we have

u(t) = u(tm) + u∆(tm)(tm − t) +

tm
∫

t

(t− s)y(s)∇s.

By using the boundary conditions, we get

αu(tm) + α

tm
∫

t1

(t1 − s)y(s)∇s− β

tm
∫

t1

y(s)∇s =
m−1
∑

i=2

tm
∫

ti

y(s)∇s.

Since

u(tm) =

tm
∫

t1

(
β

α
+ s− t1)y(s)∇s+

1

α

m−1
∑

i=2

tm
∫

ti

y(s)∇s,

we obtain

u(t) =

tm
∫

t1

(
β

α
+ s− t1)y(s)∇s+

1

α

m−1
∑

i=2

tm
∫

ti

y(s)∇s+

tm
∫

t

(t− s)y(s)∇s. 2

Lemma 2.2 If α > 0, β ≥ 0 and y ∈ Cld ([t1, tm], [0,∞)), then the unique solution

u of the BVP (2) given in (3) satisfies

u(t) ≥ 0, t ∈ [t1, tm] ⊂ T.
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Proof Since u(t) is increasing on [t1, tm], we know that if u(t1) ≥ 0, then u(t) ≥ 0
for t ∈ [t1, tm].

u(t1) =

tm
∫

t1

(
β

α
+ s− t1)y(s)∇s+

1

α

m−1
∑

i=2

tm
∫

ti

y(s)∇s+

tm
∫

t1

(t1 − s)y(s)∇s

=
β

α

tm
∫

t1

y(s)∇s+
1

α

m−1
∑

i=2

tm
∫

ti

y(s)∇s

≥ 0.

Hence the result holds. 2

Lemma 2.3 If α > 0, β ≥ 0 and y ∈ Cld ([t1, tm], [0,∞)), then the unique solution

to the BVP (2) satisfies

u(t) ≥
t− t1

tm − t1
‖u‖, t ∈ [t1, tm] ⊂ T, (4)

where ‖u‖ = sup
t∈[t1,tm]

|u(t)|.

Proof From the fact that u(t) is increasing on [t1, tm], we have ‖u‖ = sup
t∈[t1,tm]

|u(t)| =

u(tm). Let

g(t) = u(t)−
t− t1

tm − t1
‖u‖, t ∈ [t1, tm] ⊂ T. (5)

Since g∆∇(t) = u∆∇(t) = −y(t) ≤ 0, we know that the graph of g is concave on [t1, tm] ⊂
T. We get

g(t1) = u(t1) ≥ 0

and
g(tm) = 0.

From the concavity of g,
g(t) ≥ 0 for t ∈ [t1, tm] ⊂ T. (6)

From (5) and (6), we obtain

u(t) ≥
t− t1

tm − t1
‖u‖ for t ∈ [t1, tm] ⊂ T. 2

We assume the following hypotheses:
(H1) h ∈ Cld ([t1, tm], [0,∞)) and there exists t0 ∈ [t1, tm] such that h(t0) > 0.
(H2) f : [t1, tm]× [0,∞) → [0,∞) is continuous such that f(t, .) > 0 on any subset of T
containing t0.

The solutions of the BVP (1) are the fixed points of the operator A defined by

Au(t) =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

+

tm
∫

t

(t− s)h(s)f(s, u(s))∇s.
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3 Existence of Solutions

To prove the existence of at least one solution for the BVP (1), we will apply the following
Schauder Fixed Point Theorem: Let B be a Banach space and S be a nonempty bounded,

convex, and closed subset of B. Assume A : B → B is a completely continuous operator.

If the operator A leaves the set S invariant, i.e. if A(S) ⊂ S, then A has at least one

fixed point in S.
Let B denote the Banach space Cld[t1, tm] with the norm ‖u‖ = sup

t∈[t1,tm]

|u(t)|.

Theorem 3.1 Assume (H1) and (H2) are satisfied, α > 0 and β ≥ 0. Let there exists

a number r > 0 such that

max
‖u‖≤r

|f(t, u)| ≤
1

k1
u

for t ∈ [t1, tm], where

k1 =

tm
∫

t1

(
β

α
+ s− t1)h(s)∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)∇s.

Then the m-point BVP (1) has at least one solution u(t).

Proof Let S = {u ∈ B : ‖u‖ ≤ r}. Obviously, S is closed, bounded and convex
subset of B. Define A : S → B by

Au(t) =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

+

tm
∫

t

(t− s)h(s)f(s, u(s))∇s.

for t ∈ [t1, tm]. Now, we will show that A : S → S. If u ∈ S,

‖Au‖ =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

≤

tm
∫

t1

(
β

α
+ s− t1)h(s)

1

k1
u(s)∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)
1

k1
u(s)∇s

≤ ‖u‖ ≤ r.

for every t ∈ [t1, tm]. Since ‖Au‖ ≤ r, we have A(S) ⊂ S. Further, the operator A is
completely continuous. Hence, A has at least one fixed point in S by Schauder fixed
point theorem. Since the solutions of problem (1) are fixed points of operator A, the
BVP (1) has at least one solution u(t). 2

We will need also the following (Krasnosel’skii) fixed point theorem [15] to prove the
existence of at least one positive solution for the BVP (1).
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Theorem 3.2 [4] Let E be a Banach space, and let K ⊂ E be a cone. Assume Ω1

and Ω2 are open bounded subsets of E with 0 ∈ Ω1, Ω1 ⊂ Ω2, and let

A : K ∩ (Ω2 \ Ω1) → K

be a completely continuous operator such that either

(i) ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω2;
or

(ii) ‖Au‖ ≥ ‖u‖ for u ∈ K ∩ ∂Ω1, ‖Au‖ ≤ ‖u‖ for u ∈ K ∩ ∂Ω2

hold. Then A has a fixed point in K ∩ (Ω2 \Ω1).

Theorem 3.3 Assume (H1), (H2) hold, and α > 0, β ≥ 0. In addition, let there

exist numbers 0 < r < R <∞ such that

f(s, u) ≤
1

k1
u, if 0 ≤ u ≤ r, s ∈ [t1, tm]

and

f(s, u) ≥
tm − t1

k2(tm−1 − t1)
u, if R ≤ u <∞, s ∈ [tm−1, tm],

where

k1 =

tm
∫

t1

(
β

α
+ s− t1)h(s)∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)∇s

and

k2 =

tm
∫

tm−1

(
β +m− 2

α
+ s− t1)h(s)∇s.

Then the BVP (1) has at least one positive solution.

Proof Define the cone P ⊂ B by

P = {u ∈ B : u is concave, u(t) ≥ 0 and u∆(tm) = 0}. (7)

From (H1), (H2), Lemma 2.2 and Lemma 2.3, we have AP ⊂ P . Also it is easy to obtain
that A : P → P is completely continuous. If u ∈ P with ‖u‖ = r, then we get

‖Au‖ =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

≤

tm
∫

t1

(
β

α
+ s− t1)h(s)

1

k1
u(s)∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)
1

k1
u(s)∇s

≤ ‖u‖.

Thus, we have ‖Au‖ ≤ ‖u‖ for u ∈ P ∩∂Ω1, where Ω1 := {u ∈ Cld([t1, tm],R) : ‖u‖ <
r}.
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Let us now define

Ω2 := {u ∈ Cld([t1, tm],R) : ‖u‖ <
tm − t1

tm−1 − t1
R}.

If u ∈ P ∩ ∂Ω2, from (4)

u(t) ≥ u(tm−1) ≥
tm−1 − t1

tm − t1
‖u‖ = R, t ∈ [tm−1, tm]

and so

‖Au‖ =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

=

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s

+
1

α
[(

t3
∫

t2

h(s)f(s, u(s))∇s+ . . .+

tm
∫

tm−1

h(s)f(s, u(s))∇s)

+ (

t4
∫

t3

h(s)f(s, u(s))∇s+ . . .+

tm
∫

tm−1

h(s)f(s, u(s))∇s) + . . .

+

tm
∫

tm−1

h(s)f(s, u(s))∇s]

≥

tm
∫

tm−1

(
β +m− 2

α
+ s− t1)h(s)f(s, u(s))∇s

≥

tm
∫

tm−1

(
β +m− 2

α
+ s− t1)h(s)

tm − t1

k2(tm−1 − t1)
u(s)∇s

≥ ‖u‖.

Hence, ‖Au‖ ≥ ‖u‖ for u ∈ P ∩ ∂Ω2. By the first part of Theorem 3.2, A has a fixed
point in P ∩ (Ω2 \ Ω1), such that r ≤ ‖u‖ ≤ tm−t1

tm−1−t1
R. Therefore, the BVP (1) has at

least one positive solution. 2

Now, we apply the following (Avery-Henderson) fixed point theorem [1] to prove the
existence of at least two positive solutions to the nonlinear m-point BVP (1).

Theorem 3.4 [1] Let P be a cone in a real Banach space E. Set

P (φ, r) = {u ∈ P : φ(u) < r}.

If η and φ are increasing, nonnegative continuous functionals on P , let θ be a nonnegative

continuous functional on P with θ(0) = 0 such that, for some positive constants r and

M ,

φ(u) ≤ θ(u) ≤ η(u) and ‖u‖ ≤Mφ(u)
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for all u ∈ P (φ, r). Suppose that there exist positive numbers p < q < r such that

θ(λu) ≤ λθ(u), for all 0 ≤ λ ≤ 1 and u ∈ ∂P (θ, q).

If A : P (φ, r) → P is a completely continuous operator satisfying

(i) φ(Au) > r for all u ∈ ∂P (φ, r),

(ii) θ(Au) < q for all u ∈ ∂P (θ, q),

(iii) P (η, p) 6= ∅ and η(Au) > p for all u ∈ ∂P (η, p),

then A has at least two fixed points u1 and u2 such that

p < η(u1) with θ(u1) < q and q < θ(u2) with φ(u2) < r.

Define the constants

M :=
(

tm
∫

tm−1

(
β +m− 2

α
+ tm−1 − t1)h(s)∇s

)−1

(8)

and

N :=
(

tm
∫

t1

(
β +m− 2

α
+ s− t1)h(s)∇s

)−1

. (9)

Theorem 3.5 Assume (H1), (H2) hold and α > 0, β ≥ 0. Suppose there exist num-

bers 0 < p < q < r such that the function f satisfies the following conditions:

(i) f(s, u) > rM for s ∈ [tm−1, tm] and u ∈ [r, r(tm−t1)
tm−1−t1

],

(ii) f(s, u) < qN for s ∈ [t1, tm] and u ∈ [0, q(tm−t1)
tm−1−t1

],

(iii) f(s, u) > pM for s ∈ [tm−1, tm] and u ∈ [p(tm−1−t1)
tm−t1

, p]

where N and M are defined in (8) and (9), respectively. Then the BVP (1) has at least

two positive solutions u1 and u2 such that

u1(tm) > p with u1(tm−1) < q and u2(tm−1) > q with u2(tm−1) < r.

Proof Define the cone P as in (7). From (H1), (H2), Lemma 2.2 and Lemma 2.3,
AP ⊂ P and it is easy to obtain A is completely continuous. Let the nonnegative
increasing continuous functionals φ, θ and η be defined on the cone P by

φ(u) := u(tm−1), θ(u) := u(tm−1), η(u) := u(tm).

For each u ∈ P , we have

φ(u) = θ(u) ≤ η(u)

and from (4) we have

‖u‖ ≤
tm − t1

tm−1 − t1
φ(u). (10)

Moreover, θ(0) = 0 and for all u ∈ P , λ ∈ [0, 1] we get θ(λu) = λθ(u). In the following
claims, we verify the remaining conditions of Theorem 3.5.



312 İSMAIL YASLAN

If u ∈ ∂P (φ, r), from (10) we have r = u(tm−1) ≤ u(s) ≤ ‖u‖ ≤ r(tm−t1)
tm−1−t1

for

s ∈ [tm−1, tm]. Then using hypothesis (i) and (8), we obtain

φ(Au) =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

+

tm
∫

tm−1

(tm−1 − s)h(s)f(s, u(s))∇s

=

tm−1
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α
[

tm−1
∫

t2

h(s)f(s, u(s))∇s+ . . .

+

tm−1
∫

tm−2

h(s)f(s, u(s))∇s+ (m− 2)

tm
∫

tm−1

h(s)f(s, u(s))∇s]

+

tm
∫

tm−1

(
β

α
+ tm−1 − t1)h(s)f(s, u(s))∇s

>

tm
∫

tm−1

(
β +m− 2

α
+ tm−1 − t1)h(s)rM∇s

= r.

Thus the condition (i) of Theorem 3.4 holds. Next, we will show that the condition (ii)
of Theorem 3.4 is satisfied. If u ∈ ∂P (θ, q), then from (10) we have 0 ≤ u(s) ≤ ‖u‖ ≤
q(tm−t1)
tm−1−t1

for s ∈ [t1, tm]. Thus, from hypothesis (ii) and (9) we get

θ(Au) =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

+

tm
∫

tm−1

(tm−1 − s)h(s)f(s, u(s))∇s

≤

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α
(m− 2)

tm
∫

t1

h(s)f(s, u(s))∇s

<

tm
∫

t1

(
β +m− 2

α
+ s− t1)h(s)qN∇s

= q.

So condition (ii) of Theorem 3.4 holds. Since 0 ∈ P and p > 0, P (η, p) 6= ∅. If

u ∈ ∂P (η, p), from (4) we have p(tm−1−t1)
tm−t1

≤ u(tm−1) ≤ u(s) ≤ ‖u‖ = p for s ∈ [tm−1, tm].
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Hence, we obtain

η(Au) =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

>

tm
∫

tm−1

(
β +m− 2

α
+ tm−1 − t1)h(s)pM∇s

= p

using hypothesis (iii) and (8). Since all the conditions of Theorem 3.4 are satisfied, the
m-point BVP (1) has at least two positive solutions u1 and u2 such that

u1(tm) > p with u1(tm−1) < q and u2(tm−1) > q with u2(tm−1) < r. 2

Now, we will use the following (Legget-Williams) fixed point theorem [11] to prove
the existence of at least three positive solutions to the nonlinear BVP (1).

Theorem 3.6 [11] Let P be a cone in the real Banach space E. Set

Pr := {x ∈ P : ‖x‖ < r}

P (ψ, a, b) := {x ∈ P : a ≤ ψ(x), ‖x‖ ≤ b}.

Suppose A : Pr → Pr be a completely continuous operator and ψ be a nonnegative

continuous concave functional on P with ψ(u) ≤ ‖u‖ for all u ∈ Pr. If there exists

0 < p < q < l ≤ r such that the following conditions hold,

(i) {u ∈ P (ψ, q, l) : ψ(u) > q} 6= ∅ and ψ(Au) > q for all u ∈ P (ψ, q, l);

(ii) ‖Au‖ < p for ‖u‖ ≤ p;

(iii) ψ(Au) > q for u ∈ P (ψ, q, r) with ‖Au‖ > l,

then A has at least three fixed points u1, u2 and u3 in Pr satisfying

‖u1‖ < p, ψ(u2) > q, p < ‖u3‖ with ψ(u3) < q.

Theorem 3.7 Assume (H1), (H2) hold and α > 0, β ≥ 0. Suppose that there exist

constants 0 < p < q <
q(tm−t1)
tm−1−t1

≤ r such that the function f satisfies the following

conditions:

(i) f(s, u) ≤ rN for s ∈ [t1, tm] and u ∈ [0, r];

(ii) f(s, u) > qM for s ∈ [tm−1, tm] and u ∈ [q, q(tm−t1)
tm−1−t1

];

(iii) f(s, u) < pN for s ∈ [t1, tm] and u ∈ [0, p].

Then the BVP (1) has at least three positive solutions u1, u2 and u3 satisfying

u1(tm) < p, u2(tm−1) > q, u3(tm) > p with u3(tm−1) < q.

Proof We will show that the conditions of Theorem 3.6 are satisfied. For this purpose
we first define the nonnegative continuous concave functional ψ : P → [0,∞) to be
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ψ(u) := u(tm−1), the cone P as in (7), M as in (8) and N as in (9). We have ψ(u) ≤ ‖u‖
for all u ∈ P . If u ∈ Pr, then 0 ≤ u ≤ r and from the hypothesis (i), we get

‖Au‖ =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

≤

tm
∫

t1

(
β +m− 2

α
+ s− t1)h(s)rN∇s

= r.

Thus, we obtain A : Pr → Pr . Similarly, if u ∈ Pp, then the hypothesis (iii) yields
f(s, u(s)) < pN for s ∈ [t1, tm]. Just as above, we have A : Pp → Pp. It follows that
condition (ii) of Theorem 3.6 is satisfied.

Since q(tm−t1)
tm−1−t1

∈ P (ψ, q, q(tm−t1)
tm−1−t1

) and ψ( q(tm−t1)
tm−1−t1

) = q(tm−t1)
tm−1−t1

> q, {u ∈

P (ψ, q, q(tm−t1)
tm−1−t1

) : ψ(u) > q} 6= ∅. For all u ∈ P (ψ, q, q(tm−t1)
tm−1−t1

), we get q ≤ u(tm−1) ≤

u(s) ≤ ‖u‖ for s ∈ [tm−1, tm]. Using the assumption (ii), we obtain

ψ(Au) =

tm
∫

t1

(
β

α
+ s− t1)h(s)f(s, u(s))∇s+

1

α

m−1
∑

i=2

tm
∫

ti

h(s)f(s, u(s))∇s

+

tm
∫

tm−1

(tm−1 − s)h(s)f(s, u(s))∇s

>

tm
∫

tm−1

(
β +m− 2

α
+ tm−1 − t1)h(s)qM∇s

= q.

Hence, the condition (i) of Theorem 3.6 holds.
For the condition (iii) of Theorem 3.6, we suppose that u ∈ P (ψ, q, r) with ‖Au‖ >

q(tm−t1)
tm−1−t1

. Then, from (4) we obtain

ψ(Au) = Au(tm−1) ≥
tm−1 − t1

tm − t1
‖Au‖ > q.

Since all conditions of the Legget-Williams fixed point theorem are satisfied, the nonlinear
BVP (1) has at least three positive solutions u1, u2 and u3 such that

u1(tm) < p, u2(tm−1) > q, u3(tm) > p with u3(tm−1) < q. 2

Using the ideas in the proof of the above problem, we can establish the existence of
an arbitrary odd number of positive solutions of (1).

Theorem 3.8 Assume that (H1) and (H2) are satisfied and α > 0, β ≥ 0. Suppose
that there exist numbers

0 < p1 < q1 <
q1(tm − t1)

tm−1 − t1
≤ p2 < q2 <

q2(tm − t1)

tm−1 − t1
≤ p3 < . . . ≤ pn, n ∈ N
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such that the function f satisfies the following conditions:

(i) f(s, u) < piN for s ∈ [t1, tm] and u ∈ [0, pi],

(ii) f(s, u) > qiM for s ∈ [tm−1, tm] and u ∈ [qi,
qi(tm−t1)
tm−1−t1

],

where N and M are defined in (8) and (9), respectively. Then the m-point BVP (1) has
at least 2n− 1 positive solutions.

The proof of the theorem comes directly from induction. When n = 1, we obtain
A : Pp1

→ Pp1
⊂ Pp1

from condition (i), which implies that A has at least one fixed
point u1 ∈ Pp1

by the Schauder fixed point theorem. When n = 2, by Theorem 3.7 we
can obtain at least three positive solutions u2, u3 and u4. Following this way, we can
obtain that the operator A has 2n− 1 different fixed points by induction.

Remark 3.1 When m = 3, our results, i.e. Theorem 3.3, Theorem 3.5 and Theorem
3.7 reduce to Theorem 4, Theorem 5 and Theorem 6 in [12], respectively.

4 Examples

Example 4.1 Let T = {(15 )
n : n ∈ N0} ∪ {0}. We consider the following boundary

value problem:







u∆∇(t) + 29(u+4)
1

20

(u+4)
1

2 +1
= 0, t ∈ [0, 1] ⊂ T,

u∆(1) = 0, u(0)− 2u∆(0) = u∆( 1
25 ) + u∆(15 ).

(11)

Taking t1 = 0, t2 = 1
25 , t3 = 1

5 , t4 = 1 = α, β = 2,m = 4, h(t) = 1 and f(t, u) = 29(u+4)
1

20

(u+4)
1

2 +1
,

we investigate the solvability of this problem by means of Theorem 3.5. By (8) and (9),
we obtain M = 25

84 and N = 6
29 .

If we take p = 10, q = 17 and r = 19, then 0 < p < q < r and the conditions (i)− (iii)
of Theorem 3.5 are satisfied. Thus, the BVP (11) has at least two positive solutions u1
and u2 satisfying

u1(1) > 10 with u1(
1

5
) < 17 and u2(

1

5
) with u2(

1

5
) < 19.

Example 4.2 In problem (11), let f(t, u) = 2u2

(u+1)2+1 . If we take p = 0.27, q = 1 and

r = 8 then 0 < p < q <
q(tm−t1)
tm−1−t1

≤ r and the conditions (i) − (iii) of Theorem 3.7 are

satisfied. According to Theorem 3.7, the BVP

{

u∆∇(t) + 2u2

(u+1)2+1 = 0, t ∈ [0, 1] ⊂ T,

u∆(1) = 0, u(0)− 2u∆(0) = u∆( 1
25 ) + u∆(15 ),

has at least three positive solutions u1, u2 and u3 satisfying

u1(1) < 0.27, u2(
1

5
) > 1, u3(1) > 0.27 with u3(

1

5
) < 1.
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