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Abstract: In this paper, a strongly damped semilinear integrodifferential equation
has been considered and reformulated as an abstract second order integrodifferential
equation in a Banach space. The local existence and uniqueness of a classical solution
is estabilished. The continuation of classical solution, the maximal interval of the
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Finally an application of the established results is demonstrated.
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1 Introduction

Let Ω be a bounded domain in RN with sufficiently smooth boundary ∂Ω and Lu =
∑N

i,j=1
∂

∂xi

(

aij(x)
∂u
∂xj

)

be a symmetric second order strongly elliptic differential operator

in Ω. Consider the following initial boundary value problem for the strongly damped
partial integrodifferential equation,

∂2u(x, t)

∂t2
+ (aL+ bI)

(

∂u(x, t)

∂t

)

+ (cL+ dI)u(x, t) = h

(

x, t, u(x, t),
∂u(x, t)

∂t

)

+

∫ t

t0

k(t− s)g

(

x, s, u(x, s),
∂u(x, s)

∂s

)

ds,

(x, t) ∈ Ω× (t0, T ), 0 < T <∞, (1)
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with initial conditions

u(x, t0) = x0(x),
∂u(x, t0)

∂t
= x1(x), x ∈ Ω,

and the homogeneous Dirichlet boundary conditions, where a > 0, b, c, d are constants
and h and g are smooth nonlinear functions and k is a locally p-integrable function for
1 < p <∞.

Duvaut and Lions [5], Glowinski, Lions and Tremolieres [7] have studied particular
case of (1) in which L = −4 and k ≡ 0, in the context of the theory of viscoelastic
materials.

We may rewrite (1) with initial and homogeneous Dirichlet boundary conditions in
the abstract form as the following initial value problem in the Banach space H = L2(Ω),

d2u(t)

dt2
+A

(

du(t)

dt

)

+Bu(t)

= f

(

t, u(t),
du(t)

dt

)

+

∫ t

t0

k(t− s)g

(

s, u(s),
du(s)

ds

)

ds, t > t0,

u(t0) = x0, u′(t0) = x1. (2)

where operator A with domain D(A) = H2(Ω)
⋂

H1
0 (Ω) is given by

Au = aLu, u ∈ D(A),

and the operator B is such that D(A) = D(B) with B = (cL + dI) for some constants
c and d. The function f is defined from R+ × H × H into H given by f(t, u, v) =
h(t, u, v) − bv. We assume that −A generates an analytic semigroup T (t) in X . The
nonlinear maps f and g satisfy the assumptions (F) and (G), respectively, and the kernel
k satisfies (K) stated in the next section.

In this paper, we concentrate on the study of the abstract second order semilinear
integrodifferential equation

u′′(t) +Au′(t) = f(t, u(t), u′(t)) +

∫ t

t0

k(t− s)g(s, u(s), u′(s)) ds,

u(t0) = x0, u′(t0) = x1, (3)

as we can merge the term Bu in the function f so that the modified function f still
satisfies the assumption (F).

Sandefur [10] has studied the second order semilinear differential equation

u′′(t) +Au′(t) +Bu(t) = f(t, u(t)),

u(0) = φ, u′(0) = ψ, (4)

in a Banach space X under the assumptions that the linear operators A and B can be
decomposed as −A = A1 +A2 and B = A2A1, where each Ak generates a C0-semigroup
Tk(t), k = 1, 2 ; and the function f satisfies a locally Lipschitz condition. He has
established the local existence and uniqueness of a mild solution to (4), i.e., there exists
a continuous function u on [0, c] for some c > 0 such that u satisfies the integral equation,

u(t) = T1(t)φ +

∫ t

0

T1(t− τ)T2(τ)(ψ −A1φ)dτ

+

∫ t

0

∫ τ

0

T1(t− τ)T2(t− s)f(s, u(s))dsdτ,
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where φ ∈ D(A1). Aviles and Sandefur [1] have studied the well-posedness of (4) under
the similar conditions.

In [3] Bahuguna, Shukla and Singh have considered initial value problem (2) with the
kernel k ≡ 0 and t0 = 0 i.e.

d2u(t)

dt2
+A

(

du(t)

dt

)

+Bu(t) = f

(

t, u(t),
du(t)

dt

)

, t > 0,

u(0) = x0, u′(0) = x1.

in real Banach space and used the method of semidiscretization in time to prove the
existence, uniqueness and continuous dependence on initial data of a solution to this
initial value problem and discussed their application to the viscoelastic models involving
short and long memory effects.

Bahuguna [2] has considered the following special case of (3) with the kernel k ≡ 0,

u′′(t) +Au′(t) = f(t, u(t), u′(t)),

u(t0) = x0, u′(t) = x1, (5)

and established the existence, uniqueness, continuation of a solution to the maximal
interval of existence, and the global existence of a strong solution and a classical solution
for this special case. He has assumed that −A generates an analytic semigroup T (t) in
X and the nonlinear map f satisfies an assumption similar to the assumption (F).

Engler, Neubrander and Sandefur [6] have proved the local existence and uniqueness
of a mild solution to (5) under the assumptions that −A generates an analytic semigroup
T (t) in X and f satisfies a condition similar to the assumption (F), where a mild solution
on [t0, t1), for some t1 > t0, to (5) is the first component of a solution (u(t), v(t)) of the
integral equations

u(t) = x0 + (T (t− t0)− I)(−A)−1x1

+

∫ t

t0

(T (t− s)− I)(−A)−1f(s, u(s), v(s))ds, t0 ≤ t ≤ t1,

v(t) = T (t− t0)x1 +

∫ t

t0

T (t− s)f(s, u(s), v(s))ds, t0 ≤ t ≤ t1.

Bahuguna [2] has improved the results of [6] by showing that (5) has a unique local
classical solution, i.e., there exists a unique u ∈ C1([t0, t1);X) ∩ C2((t0, t1);X) and
satisfies (5) on [t0, t1) for some t1 > t0. Further, he has established the continuation of
this solution, the maximal interval of existence and the global existence.

In [4] Bahuguna and Shukla studied the Faedo-Galerkin approximation of solutions to
the initial value problem (3) in a Hilbert space. Pandey, Ujlayan and Bahuguna considerd
an abstract semilinear hyperbolic integrodifferential equation in [9] and used the theory
of resolvent operators to establish the existence and uniqueness of a mild solution under
local Lipschitz conditions on the nonlinear maps and an integrability condition on the
kernel. Under some additional conditions on the nonlinear maps they also proved the
existence of a classical solution.

In this paper we show that (3) has a unique local classical solution, i.e., there exists
a unique u ∈ C1([t0, t1);X) ∩ C2((t0, t1);X) satisfying (3) on [t0, t1) for some t1 > t0.
Further, we discuss the continuation of this solution, the maximal interval of existence and
the global existence. We achieve these objectives by extending the ideas and techniques
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used in the proofs of Theorems 6.3.1 and 6.3.3 in Pazy [8], concerning a semilinear
equation of the first order, to (3). For the global existence, we require a modified version
of Lemma 4.1, stated and proved at the end of the fourth section in [2]. Finally in the
last section we demonstrate an application of the results established in earlier sections.

2 Preliminaries and Assumptions

Let X be a Banach space and let −A generate the analytic semigroup T (t) in X . we
note that if −A is the infinitesimal generator of an analytic semigroup then −(A + αI)
is invertible and generates a bounded analytic semigroup for α > 0 large enough. This
allows us to reduce the general case, in which −A is the infinitesimal generator of an
analytic semigroup, to the case where the semigroup is bounded and the generator is
invertible. Hence, for convenience, without loss of generality, we assume that T (t) is
bounded, that is ‖T (t)‖ ≤M for t ≥ 0 and 0 ∈ ρ(−A), i.e., −A is invertible. Here ρ(−A)
is the resolvent set of −A. It follows that, for 0 ≤ α ≤ 1, Aα can be defined as a closed
linear invertible operator with its domain D(Aα) being dense in X . We denote by Xα

the Banach space D(Aα) equipped with the norm

‖x‖α = ‖Aαx‖,

which is equivalent to the graph norm of Aα. For 0 < α < β, we have Xβ ↪→ Xα and
the embedding is continuous.

We consider the problem

u′′(t) +Au′(t) = f(t, u(t), u′(t)) +

∫ t

t0

k(t− s)g(t, u(t), u′(t))ds, t > t0,

u(t0) = x0, u′(t0) = x1. (6)

On the kernel k we assume the following condition.
(K) The kernel k ∈ Lp

loc(0,∞) for some 1 < p < ∞ is locally Hölder continuous on
(0,∞) i.e.,

|k(t)− k(s)| ≤ Lk|t− s|µ for s, t ∈ (0,∞) and 0 < µ < 1.

The nonlinear functions f and g satisfy the following assumptions on an open subset U
of R+ ×X1 ×Xα.

Assumption (F): A function f is said to satisfy the assumption (F) if for every
(t, x, x̃) ∈ U there exists a neighborhood V ⊂ U and constant Lf ≥ 0, 0 < ϑ ≤ 1, such
that

‖f(t, x1, x̃1)− f(t, x2, x̃2)‖ ≤ Lf [|t1 − t2|
ϑ + ‖x1 − x2‖1 + ‖x̃1 − x̃2‖α], (7)

for all (ti, xi, x̃i) ∈ V .
Assumption (G): A function g is said to satisfy the assumption (G) if for every

(t, x, x̃) ∈ U there exists a neighborhood V ⊂ U and a nonnegative function Lg ∈
Lq
loc(0,∞) where 1 < q <∞, 1

p + 1
q = 1 such that

‖g(t, x1, x̃1)− g(t, x2, x̃2)‖ ≤ Lg(t)[‖x1 − x2‖1 + ‖x̃1 − x̃2‖α], (8)

for all (t, xi, x̃i) ∈ V .
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Definition 2.1 By a local classical solution to (6) we mean a function u ∈
C1([t0, t1);X) ∩C2((t0, t1);X) satisfying (6) on [t0, t1) for some t1 > t0.

Definition 2.2 By a local mild solution to (6) we mean the first component of a
solution (u, v) to the pair of integral equations

u(t) = x0 + (T (t− t0)− I)(−A)−1x1 +

∫ t

t0

(T (t− s)− I)(−A)−1[f(s, u(s), v(s))

+

∫ s

t0

k(s− τ)g(τ, u(τ), v(τ))dτ ]ds, t0 ≤ t ≤ t1,

v(t) = T (t− t0)x1 +

∫ t

t0

T (t− s)[f(s, u(s), v(s))

+

∫ s

t0

k(s− τ)g(τ, u(τ), v(τ))dτ ]ds, t0 ≤ t ≤ t1, (9)

on [t0, t1) for some t1 > t0.

3 Local Existence of Solution

As we have already pointed out, without loss of generality, the semigroup generated by
−A, can be assumed to be bounded and A is invertible. Under these conditions imposed
on A we prove the following local existence and uniqueness theorem.

Theorem 3.1 Suppose that −A generates the analytic semigroup T (t) such that
‖T (t)‖ ≤ M and 0 ∈ ρ(−A). If the maps f and g satisfy assumptions (F) and (G),
respectively, and the kernel k satisfies (K) then (6) has a unique local classical solution.

Proof Fix (t0, x0, x1) in U and choose t′1 > t0 and δ > 0 such that (7), with some
fixed constant Lf > 0, 0 < ϑ ≤ 1 and (8) with the nonnegative function Lg(t) hold on
the set

V = {(t, x, x̃) ∈ U | t0 ≤ t ≤ t′1, ‖x− x0‖1 + ‖x̃− x1‖α ≤ δ}.

Let
Bf = max

t0≤t≤t′
1

‖f(t, x0, x1)‖,

Bg = max
t0≤t≤t′

1

‖g(t, x0, x1)‖

and

C(δ) = [Lf + ‖k‖Lp(t0,t′1)
‖Lg‖Lq(t0,t′1)

]δ +Bf +Bg‖k‖Lp(t0,t′1)
(t′1 − t0)

1

q .

Choose t1 > t0 such that

‖T (t− t0)x1 − x1‖+ ‖T (t− t0)A
αx1 −Aαx1‖ ≤

δ

3

and

t1 − t0 < min

{

t′1 − t0,
δ

3
(M + 1)−1C(δ)−1, [

δ

2
C−1

α (1− α)C(δ)−1]
1

1−α

}

,
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where Cα is a positive constant depending on α and satisfying

‖AαT (t)‖ ≤ Cαt
−α for t > 0. (10)

Let Y = C([t0, t1];X ×X). Then y ∈ Y is of the form y = (y1, y2), yi ∈ C([t0, t1];X),
i = 1, 2. Y , endowed with the supremum norm,

‖(y1, y2)‖Y = sup
t0≤t≤t1

[‖y1(t)‖+ ‖y2(t)‖]

is a Banach space. We define a map F on Y by Fy = F (y1, y2) := (ŷ1, ŷ2) with

ŷ1(t) = Ax0 − (T (t− t0)− I)x1 −

∫ t

t0

(T (t− s)− I)Fy(s)ds,

ŷ2(t) = T (t− t0)A
αx1 +

∫ t

t0

T (t− s)AαFy(s)ds, (11)

where

Fy(t) = f(t, A−1y1(t), A
−αy2(t)) +

∫ t

t0

k(t− τ)g(τ, A−1y1(τ), A
−αy2(τ))dτ,

for t ∈ [t0, t].
For every y ∈ Y , Fy(t0) = (Ax0, A

αx1), and the assumptions (F) and (G) on f and
g, respectively, and (K) on the kernel k imply that F : Y → Y . Let S be a nonempty
closed and bounded set given by

S = {y ∈ Y | y = (y1, y2), y1(t0) = Ax0, y2(t0) = Aαx1, ‖y1(t)−Ax0‖+‖y2(t)−A
αx1‖ ≤ δ}.

Let y = (y1, y2) be any element of S. We have from (11)

‖ŷ1(t)−Ax0‖ + ‖ŷ2(t)−Aαx1‖

≤ ‖(T (t− t0)− I)x1‖+

∫ t

t0

‖T (t− s)− I‖‖Fy(s)‖ds

+‖(T (t− t0)− I)Aαx1‖+

∫ t

t0

‖AαT (t− s)‖‖Fy(s)‖ds. (12)

To find the estimate for Fy(s), we add and subtract f(s, x0, x1) and g(s, x0, x1) and using
(F), (G) and (K), we get

‖Fy(s)‖ ≤ ‖f(s, A−1y1(s), A
−αy2(s))− f(s, x0, x1)‖+Bf

+

∫ s

t0

|k(s− τ)|[‖g(τ, A−1y1(τ), A
−αy2(τ)) − g(τ, x0, x1)‖ +Bg]dτ

≤ [Lf + ‖k‖Lp(t0,t′1)
‖Lg‖Lq(t0,t′1)

]δ +Bf +Bg‖k‖Lp(t0,t′1)
(t′1 − t0)

1

q

≤ C(δ). (13)

Using the estimate (13) and the fact that ‖T (t)‖ ≤ M together with (10) and (12), we
get

‖ŷ1(t)−Ax0‖+ ‖ŷ2(t)−Aαx1‖ ≤
δ

3
+ (M + 1)C(δ)(t − t0) +

CαC(δ)(t − t0)
1−α

1− α
≤ δ.
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Hence, F : S → S. Now, we show that F is a contraction on S. Let (y1, y2) and (z1, z2)
be any two points of S. From (11) we have

‖ŷ1(t)− ẑ1(t)‖+ ‖ŷ2(t)− ẑ2(t)‖ ≤

∫ t

t0

‖T (t− s)− I‖‖Fy(s)− Fz(s)‖ds

+

∫ t

t0

‖T (t− s)Aα‖‖Fy(s)− Fz(s)‖ds. (14)

Using (F), (G) and (K), we get

‖Fy(s)− Fz(s)‖

≤ ‖f(s, A−1y1(s), A
−αy2(s))− f(s, A−1z1(s), A

−αz2(s))‖

+

∫ s

t0

|a(s− τ |‖g(τ, A−1y1(τ), A
−αy2(τ)) − g(τ, A−1z1(τ), A

−αz2(τ))‖dτ

≤ [Lf + ‖k‖Lp(t0,t′1)
‖Lg‖Lq(t0,t′1)

]‖(y1, y2)− (z1, z2)‖Y

≤
C(δ)

δ
‖(y1, y2)− (z1, z2)‖Y . (15)

Using (15) in (14), we get

‖ŷ1(t)− ẑ1(t)‖ + ‖ŷ2(t)− ẑ2(t)‖

≤

[

(M + 1)C(δ)(t− t0)

δ
+
CαC(δ)(t− t0)

1−α

1− α

]

‖(y1, y2)− (z1, z2)‖Y

≤
2

3
‖(y1, y2)− (z1, z2)‖Y .

Taking supremum over [t0, t1], we have

‖(ŷ1, ŷ2)− (ẑ1, ẑ2)‖Y ≤
2

3
‖(y1, y2)− (z1, z2)‖Y .

Thus, F is a contraction on S. Therefore, it has a unique fixed point in S. Let ȳ =
(ȳ1, ȳ2) ∈ S be that fixed point of F . Then

ȳ1(t) = Ax0 − (T (t− t0)− I)x1 −

∫ t

t0

(T (t− s)− I)Fȳ(s)ds,

ȳ2(t) = T (t− t0)A
αx1 +

∫ t

t0

T (t− s)AαFȳ(s)ds, (16)

where

Fȳ(t) = f(t, A−1ȳ1(t), A
−αȳ2(t)) +

∫ t

t0

k(t− τ)g(τ, A−1ȳ1(τ), A
−αȳ2(τ))dτ.

We note that (u, v) = (A−1ȳ1, A
−αȳ2) is the unique solution of the integral equations

(9) on [t0, t1]. We can easily check that the assumption (F) and the continuity of ȳ1
and ȳ2 on [t0, t1] imply that the map t 7→ Fȳ(t) is continuous and hence bounded on
[t0, t1]. Let ‖Fȳ(t)‖ ≤ N for t0 ≤ t ≤ t1. We will now show that t 7→ Fȳ(t) is locally
Hölder continuous on (t0, t1]. For this we first show that ȳ1 and ȳ2 are locally Hölder
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continuous on (t0, t1]. From Theorem 2.6.13 in Pazy [8], for every 0 < β < 1 − α and
every 0 < h < 1, we have

‖(T (h)− I)AαT (t− s)‖ ≤ Cβh
β‖Aα+βT (t− s)‖ ≤ Chβ(t− s)−(α+β). (17)

Now

‖ȳ2(t+ h)− ȳ2(t)‖ ≤ ‖(T (h)− I)AαT (t− t0)x1‖+

∫ t

t0

‖(T (h)− I)AαT (t−s)Fȳ(s)‖ds

+

∫ t+h

t

‖AαT (t+ h− s)Fȳ(s)‖ds := I1 + I2 + I3 (respectively).

We use (17) to get

I1 ≤ C(t− t0)
−(α+β)hβ ≤M1h

β,

I2 ≤ NChβ
∫ t

t0

(t− s)−(α+β)ds =
NChβ(t− t0)

1−(α+β)

1− (α+ β)
≤M2h

β,

I3 ≤ NCα

∫ t+h

t

(t+ h− s)−α =
NCαh

1−α

1− α
≤M3h

β.

Here M1 depends on t and increases to infinity as t ↓ t0, while M2 and M3 can be
chosen independent of t. From the above estimates, it follows that there exists a positive
constant C such that for every t′0 > t0,

‖ȳ2(t)− ȳ2(s)‖ ≤ C|t− s|β , for t0 < t′0 ≤ t, s ≤ t1.

Similar result holds for ȳ1 (if we take α = 0 in the above consideration). For s, t ∈ (t0, t1]
with t > s we have

‖Fȳ(t)− Fȳ(s)‖ ≤ ‖f(t, A−1ȳ1(t), A
−αȳ2(t))− f(s, A−1ȳ1(s), A

−αȳ2(s))‖

+

∫ s

t0

|k(t− τ)− a(s− τ)|‖g(τ, A−1ȳ1(τ), A
−αȳ2(τ))‖dτ

+

∫ t

s

|k(t− τ)|‖g(τ, A−1ȳ1(τ), A
−αȳ2(τ))‖dτ.

Since k is Hölder continuous with the exponent µ, we have
∫ s

t0

|k(t− τ) − k(s− τ)|‖g(τ, A−1ȳ1(τ), A
−αȳ2(τ))‖dτ ≤ N(t1 − t0)|t− s|µ, (18)

and
∫ t

s

|k(t− τ)|‖g(τ, A−1ȳ1(τ), A
−αȳ2(τ))‖dτ ≤ Nk0(t1 − t0)

α|t− s|1−α, (19)

where k0 = maxt0≤t≤t1 |k(t)|. The local Hölder continuity of Fȳ(t) on (t0, t1] follows
from the assumption (F), and the local Hölder continuity of ȳ1 and ȳ2 on (t0, t1] and
from estimates (18) and (19).

Consider the inhomogeneous initial value problem

dv(t)

dt
+Av(t) = Fȳ(t), v(t0) = x1. (20)
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By the corollary 4.3.3 in [8], (20) has a unique solution v ∈ C1((t0, t1];X) given by

v(t) = T (t− t0)x1 +

∫ t

t0

T (t− s)Fȳ(s)ds, (21)

for t > t0. Each term on the right hand side belongs to D(A) and hence belongs to
D(Aα) since D(A) ⊂ D(Aα), 0 ≤ α ≤ 1. Operating on both sides of (21) with Aα, we
find that

Aαv(t) = T (t− t0)A
αx1 +

∫ t

t0

T (t− s)AαFȳ(s)ds. (22)

By (16), the right hand side of (22) equals to ȳ2(t) and therefore Aαv(t) = ȳ2(t), i.e.,

v(t) = A−αȳ2(t). Let u(t) = A−1ȳ1(t), then we have u(t) = x0 +
∫ t

t0
v(s)ds which yields

u(t) ∈ C1([t0, t1);X) ∩ C2((t0, t1);X). Thus, u satisfies (6) on [t0, t1). 2

4 Global Existence of Solutions

In this section we will prove, under additional growth conditions on the nonlinear map
f and g, the following global existence result.

Theorem 4.1 Let 0 ∈ D(−A) and −A be the infinitesimal generator of an analytic
semigroup T (t) such that ‖T (t)‖ ≤ M for t ≥ 0. Let f, g : [0,∞) × X1 × Xα 7→ X
satisfy the assumptions (F) and (G) respectively and let k satisfy (K). If there exist a
nondecreasing function af : [t0,∞) 7→ R+ and a nonnegative function ag ∈ Lq

loc(0,∞),
where q is the same as before, such that

‖f(t, x, x̃)‖ ≤ af (t)[1 + ‖x‖1 + ‖x̃‖α], for t ≥ t0, (x, x̃) ∈ X1 ×Xα,

‖g(t, x, x̃)‖ ≤ ag(t)[1 + ‖x‖1 + ‖x̃‖α], for t ≥ t0, (x, x̃) ∈ X1 ×Xα,

then for each (x0, x1) ∈ X1 ×Xα, (6) has a unique classical solution u which exists for
all t ≥ t0.

Proof Let [t0, T ) be the maximal interval of existence for the solution u to (6)
guaranteed by Theorem (3.1). It suffices to prove that [‖u(t)‖1+ ‖v(t)‖α] ≤ C on [t0, T )
for some fixed constant C ≥ 0 independent of t.

Now, since u(t) is a solution of (6) on [t0, T ), it is also a mild solution to (6) therefore
from (16), we have

Au(t) = Ax0 − (T (t− t0)− I)x1 −

∫ t

t0

(T (t− s)− I)F̄ (s)ds,

Aαu′(t) = T (t− t0)A
αx1 +

∫ t

t0

T (t− s)AαF̄ (s)ds, (23)

where

F̄ (t) = f(t, u(t), u′(t)) +

∫ t

t0

k(t− τ)g(τ, u(τ), u′(τ))dτ.
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From (23), we have

[1 + ‖u(η)‖1 + ‖u′(η)‖α] = [1 + ‖Au(η)‖+ ‖Aαu′(η)‖]

≤ 1 + ‖Ax0‖+ (M + 1)‖x1‖+ (M + 1)

∫ η

t0

‖F̄ (s)‖ds

+M‖x1‖α +

∫ η

t0

Cα(η − s)−α‖F̄ (s)‖ds. (24)

The assumptions on f , g and k imply that

‖F̄ (s)‖ ≤ ‖f(t, u(t), u′(t))‖ +

∫ s

t0

|k(s− τ)|‖g(τ, u(τ), u′(τ))‖dτ

≤ (af (T ) + ‖k‖Lp(t0,T )‖ag‖Lq(t0,T )) sup
t0≤τ≤s

[1 + ‖u(τ)‖1 + ‖u′(τ)‖α]. (25)

Using (25) in (24), we get

[1 + ‖u(η)‖1 + ‖u′(η)‖α] ≤ C1 + C2

∫ η

t0

sup
t0≤τ≤s

[1 + ‖u(τ)‖1 + ‖u′(τ)‖α]ds

C3

∫ η

t0

(η − s)−α sup
t0≤τ≤s

[1 + ‖u(τ)‖1 + ‖u′(τ)‖α]ds.

Hence, we have

sup
t0≤η≤t

[1 + ‖u(η)‖1 + ‖u′(η)‖α] ≤ C1 + C2

∫ t

t0

sup
t0≤τ≤s

[1 + ‖u(τ)‖1 + ‖u′(τ)‖α]ds

C3

∫ t

t0

(t− s)−α sup
t0≤τ≤s

[1 + ‖u(τ)‖1 + ‖u′(τ)‖α]ds.

Using Lemma 4.1 in [2], we obtain supt0≤η≤t[1 + ‖u(η)‖1 + ‖u′(η)‖α] ≤ C. 2

5 Example

Let Ω = (0, 1) and H = L2(Ω). Consider the following initial boundary value problem

∂2u(x, t)

∂t2
−

∂3u(x, t)

∂x2∂t
= F

(

x, t, u(x, t),
∂2u(x, t)

∂x2
,
∂u(x, t)

∂t

)

+

∫ t

t0

k(t− s)G

(

x, s, u(x, s),
∂u(x, s)

∂s

)

ds,

(x, t) ∈ Ω× (t0, T ), 0 < T <∞ (26)

with the initial conditions

u(x, t0) = x0(x),
∂u(x, t0)

∂t
= x1(x), x ∈ Ω,

and the boundary conditions

u(0, t) = u(1, t) = 0, t ∈ (t0, T ), 0 < T <∞
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F and G are sufficiently smooth nonlinear functions and k is a locally p-integrable func-
tion for 1 < p <∞.

We define the operator A with domain D(A) = H2(Ω)
⋂

H1
0 (Ω) as follows

Au = −
∂2u

∂x2
, u ∈ D(A).

Here clearly the operator A is self-adjoint with the compact resolvent and is the in-
finitesimal generator of an analytic semigroup T (t). Now we take α = 1/2, D(A1/2) is
the Banach space endowed with the norm

‖x‖1/2 = ‖A1/2x‖, x ∈ D(A1/2).

Using the above definition of the operator A the equation (26) can be reformulated
as the following abstract equation in H

u′′(t) +Au′(t) = f(t, u(t), u′(t)) +

∫ t

t0

k(t− s)g(s, u(s), u′(s)) ds,

u(t0) = x0, u′(t0) = x1, (27)

where u(t)(x) = u(x, t), the function f is defined from [t0, T ]×D(A) ×D(A1/2) into H
such that

f(t, u(t), u′(t))(x) = F

(

x, t, u(x, t),
∂2u(x, t)

∂x2
,
∂u(x, t)

∂t

)

and g is defined from [t0, T ]×D(A) ×D(A1/2) into H such that

g(t, u(t), u′(t))(x) = G

(

x, t, u(x, t),
∂u(x, t)

∂t

)

.

It can be varified that the assumptions in earlier sections for (27) are satisfied and hence
the existence of a unique classical solution is guarenteed.
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