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1 Introduction

The theory of time scale was introduced by Stefan Hilger [10] in order to unify continuous
and discrete cases and was intensively developed in many papers (see [1, 4] and references
therein). Recently the theory of dynamic systems on time scale have received special
attention from many authors, some of them focused their interest on the stability theory
for such systems [2, 3, 13].

Proposed in [11] the Hopfield-type neural networks and their generalizations [7, 8] is
a special but important case of general differential systems. It derives from biological
models in practical investigations and has extensive applications in many different fields
such as parallel computation, signal processing, pattern recognition, optimization and
associative memories (see [5, 8, 14]).

However, as the theory of dynamic systems on time scale is widely studied the
corresponding theory of neural systems is still at an initial stage of its development.
In [6], the authors got some stability results for delayed bidirectional associative memory
neural networks on time scales. Also in [12], some criteria of stability and existence
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of periodic solutions for delayed bidirectional associative memory neural networks with
impulses on time scales were obtained.

Motivated by the above we consider a neural network on time scale the dynamics of
which is described by the equation of the type

x∆(t) = −Bx(t) + Ts(x(t)) + u, t ∈ Tτ , (1)

whose solution x(t; t0, x0) for t = t0 takes the value x0, i.e.

x(t0; t0, x0) = x0, t0 ∈ Tτ , x0 ∈ R
n, (2)

where T is an arbitrary time scale, supT = +∞, Tτ = {t ∈ T : t ≥ τ}, τ ∈ T. In
system (1) x∆(t) is a ∆-derivative on time scale T, x = (x1, x2, . . . , xn)

T ∈ R
n, xi is

the activation of the i-th neuron, T = {tij} ∈ R
n×n, the components tij describe the

interaction between the i-th and j-th neurons, s : Rn → R
n, s(x) = (s1(x1), s2(x2), . . . ,

sn(xn))
T, the activation function si describes response of the i-th neuron, B ∈ R

n×n,
B = diag {bi}, bi > 0 represents the rate with which the i-th neuron shell resets its
potential to the resting state in isolation when it is disconnected from the network and
the external inputs, i = 1, 2, . . . , n, n corresponds to the number of neurons in layers,
u ∈ R

n is a constant external input vector. All needed notations on time scales according
to [4] will be given in Section 2.

System (1) is general and unifies two well known neural models. If T = R then
x∆ = d/dt and the initial problem (1), (2) is equivalent to the initial problem for a
continuous Hopfield type neural network [11]

dx(t)

dt
= −Bx(t) + Ts(x(t)) + u, t ≥ τ, (3)

x(t0; t0, x0) = x0, t0 ≥ τ, x0 ∈ R
n.

If T = N then x∆(k) = x(k+1)− x(k) = ∆x(k), Tτ = {τ, τ +1, τ +2, . . . } and the
initial problem (1)–(2) is equivalent to the initial problem for a discrete Hopfield type
neural network [9]

∆x(k) = −Bx(k) + Ts(x(k)) + u, k ∈ Tτ , (4)

x(k0; k0, x0) = x0, k0 ∈ Tτ , x0 ∈ R
n.

Dynamics of continuous system (3) and discrete systems (4) and their generalizations
are widely studied by many authors [7, 8, 9, 11, 15, 17], but there are no stability results
for system (1) on time scales. Our purpose in the paper is by using the direct Lyapunov
method to study the stability of equilibrium of (1).

The outline of the paper is as follows. In Section 2 we shall give some notations and
basic definitions concerning the calculus on time scale and some required assertions. In
Section 3 we shall present some new sufficient conditions ensuring the asymptotic and
exponential stability of the equilibrium of system (1). Also we shall offer the criteria of
regressivity of function f(x) = −Bx+Ts(x)+u. In Section 4 we shall give one example
to illustrate our results obtained in the previous sections.

2 Notations and Preliminaries

In this section all facts concerning time scale calculus are given according to book [4].
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Definition 2.1 An arbitrary nonempty closed subset of the set of real numbers R

with the topology and ordering inherited from R is referred to as a time scale and denoted
by T.

Definition 2.2

• The forward and backward jump operators σ : T → T and ρ : T → T are respec-
tively defined by σ(t) = inf{s ∈ T : s > t} and ρ(t) = sup{s ∈ T : s < t}.

• If σ(t) = t, ρ(t) = t, σ(t) > t, and ρ(t) < t, then the element t ∈ T is called
right-dense, left-dense, right-scattered, and left-scattered, respectively. Here it is
assumed that inf ∅ = supT (i.e. σ(t) = t, if T contains the maximal elements t)
and sup∅ = inf T (i.e. ρ(t) = t, if T contains the minimal elements t).

• In addition to the set T, the set Tk is defined as follows

T
k =

{
T\(ρ(supT), supT], if supT <∞,

T, if supT = ∞.

• The distance from an arbitrary element t ∈ T to its follower is called the graininess
of the time scale T and is given by the formula

µ(t) = σ(t) − t.

If T = R, then σ(t) = ρ(t) = t and µ(t) = 0, if T = Z, then σ(t) = t+1, ρ(t) = t−1
and µ(t) = 1.

Definition 2.3

• The function f : T → R is called ∆-differentiable at a point t ∈ T
k if there exists

γ ∈ R such that for any ε > 0 there exists a W -neighborhood of t satisfying

| [f(σ(t))− f(s)]− γ[σ(t)− s]| < ε|σ(t)− s|

for all s ∈W . In this case we shall write f∆(t) = γ.

• if the function f : T → R is ∆-differentiable for any t ∈ T
k, then f is called

∆-differentiable on T
k.

Theorem 2.1 Assume that the functions f, g : T → R are ∆-differentiable at t ∈ T
k.

Then the following assertions are valid:

(1) the sum f + g is ∆-differentiable at t and (f + g)∆(t) = f∆(t) + g∆(t);

(2) for any α ∈ R, the function αf(t) is ∆-differentiable at t and αf∆(t) = αf∆(t);

(3) the product fg is ∆-differentiable at t and

(fg)∆(t) = f∆(t)g(t) + f(σ(t))g∆(t) = f(t)g∆(t) + f∆(t)g(σ(t));

(4) f(σ(t)) = f(t) + µ(t)f∆(t).

Note that, if T = R, then f∆ = f ′, which is the Euler derivative of f, and if T = Z,
then f∆(t) = ∆f(t) = f(t+ 1)− f(t), which is the forward difference of f(t).
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Definition 2.4

• A function f : T → R is called rd-continuous provided it is continuous at right-
dence points in T and its left-sided limit exists (finite) at left-dence points in T.
The set of all rd-continuous functions f : T → R is denoted by Crd = Crd(T) =
Crd(T,R).

• A function f : T → R is called regressive, if 1 + µ(t)f(t) 6= 0 for all t ∈ T
k and

positive regressive, if 1 + µ(t)f(t) > 0 for all t ∈ T
k.

• A function f : T× R
n → R

n is called regressive, if the mapping I + µ(t)f(t, ·) is
invertible at each t ∈ T

k. Here I : Rn → R
n is identity mapping.

• The set of all regressive and rd-continuous functions f : T → R is denoted by R.

We define the function

βk(t) =

{
µ−1(t) log |1 + µ(t)k(t)|, if µ(t) > 0,

k(t), if µ(t) = 0,

where k ∈ R, t ∈ [t0,+∞)T. Here and bellow [a,+∞)T = {t ∈ T : a ≤ t < +∞},
a ∈ T.

Definition 2.5 We recall that the function ψ : R+ → R+ belongs to the class K, if
it is continuous, strictly increasing on R+ and ψ(0) = 0.

Definition 2.6 We recall that the matrix A ∈ R
n×n is called M -matrix if its all

non-diagonal elements are non-positive and all principle minors are positive.

Definition 2.7 We recall that the mapping H : Rn → R
n is called a homeomor-

phism of Rn onto itself, if H is continuous, bijective, H is onto itself and the inverse
mapping H−1 is also continuous.

For convenience, we introduce some notations. We denote by ‖x‖ a vector norm of
vector x ∈ R

n defined by ‖x‖ = (
∑n

i=1 x
2
i )

1/2, ‖A‖ denotes a matrix norm of matrix
A = {aij} ∈ R

n×n defined by ‖A‖ = (λM (ATA))1/2, λm(A), λM (A) are minimal and
maximal eigenvalues of matrix A respectively. In addition A−1 denotes the inverse of A,
|A| denotes absolute-value matrix given by |A| = {|aij |}.

We assume on system (1) as follows.

S1. The vector-function f(x) = −Bx+ Ts(x) + u is regressive.

S2. There exist positive constants Mi > 0, i = 1, 2, . . . , n, such that |si(r)| ≤ Mi for
all r ∈ R.

S3. There exist positive constants li > 0, i = 1, 2, . . . , n, such that |si(r) − si(v)| ≤
li|r − v| for all r, v ∈ R.

S4. 0 < µ(t) ∈ M for all t ∈ Tτ , where M ⊂ R is a compact set.
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Note that under conditions S1–S3 there exists a unique solution of problem (1), (2)
on [t0,+∞)T for all initial data (t0, x0) ∈ Tτ × R

n [4].

We denote by r0 =
(∑n

i=1(
∑n

j=1Mj |Tij |+ |ui|)2/b2i
)1/2

and Λ = diag{li} ∈ R
n×n.

Similar to Theorem 3.1 from [16] and Theorem 1 from [17] we can easily obtain the
following assertion.

Theorem 2.2 If for system (1) conditions S1–S3 are satisfied then there exists an

equilibrium state x = x∗ of system (1) and moreover, ‖x∗‖ ≤ r0. Besides, if the matrix

BΛ−1 − |T | is an M -matrix, this equilibrium state is unique.

Definition 2.8 The equilibrium state x = x∗ of the system (1) is:

(1) uniformly stable if for all ε > 0 there exists δ = δ(ε) > 0, such that ‖x0−x∗‖ < δ
implies ‖x(t; t0, x0)− x∗‖ < ε for all t ∈ [t0,+∞)T, t0 ∈ Tτ ;

(2) uniformly asymptotically stable if it is uniformly stable and there exists ∆ > 0 such
that ‖x0 − x∗‖ < ∆ implies limt→+∞ ‖x(t; t0, x0)− x∗‖ = 0 for all t0 ∈ Tτ ;

(3) exponentially stable if there exist β > 0 and λ > 0 such that for all t0 ∈ Tτ

there exists N = N(t0) > 0 such that ‖x0 − x∗‖ < β implies ‖x(t; t0, x0)− x∗‖ ≤
Ne−λ(t−t0)‖x0 − x∗‖ for all t ∈ Tτ ;

(4) uniformly exponentially stable if it is exponentially stable and N does not depend
on t0.

Let x∗ be the equilibrium state of system (1). We perform the change of variables
y(t) = x(t)− x∗ and rewrite the initial problem (1), (2) as

y△(t) = −By(t) + Tg(y(t)), t ∈ Tτ , (5)

y(t0; t0, y0) = y0, t0 ∈ Tτ , y0 ∈ R
n, (6)

where y ∈ R
n, g : R

n → R
n, g(y) = (g1(y1), g2(y2), . . . , gn(yn))

T, g(y) = s(y + x∗) −
s(x∗).

If for system (1) assumptions S1–S3 are valid, then for system (5) the following as-
sertions hold true.

G1. The vector-function g̃1(y) = −By + Tg(y) is regressive.

G2. For all r ∈ R |gi(r)| ≤ 2Mi, i = 1, 2, . . . , n.

G3. For all r, v ∈ R |gi(r) − gi(v)| ≤ li|r − v|, i = 1, 2, . . . , n.

Note that under conditions G1–G3 there exists a unique solution of problem (5), (6)
on [t0,+∞)T for all initial data (t0, x0) ∈ Tτ × R

n [4].
Futher we shall need the following result.

Lemma 2.1 Assume that gi ∈ C2(R), gi(0) = 0, i = 1, 2, . . . , n, and constants

Ki > 0, i = 1, 2, . . . , n, exist so that |g′′i (u)| ≤ Ki for all u ∈ R. Then the vector-

function g(y) can be represented as g(y) = Hy+ g̃2(y), where H = diag{g′i(0)} ∈ R
n×n,

g̃2 : R
n → R

n and the estimate

‖g̃2(y)‖ ≤ K‖y‖2, (7)

holds true, where K = maxi{Ki}/2.
Proof Decomposing the functions gi(yi) by the Maclaurin formula we easily prove

the Lemma.



402 A.A. MARTYNYUK, T.A. LUKYANOVA AND S.N. RASSHYVALOVA

3 Main Results

In this section we consider stability of a neural network on time scale. Let x∗ be the
equilibrium state of system (1). Designate by b = min{bi}, b = max{bi}, L = max{li}.

Theorem 3.1 For system (1) assume that assumptions S1–S4 are valid and there

exists a constant µ∗ ∈ M such that µ(t) ≤ µ∗ for all t ∈ Tτ . If the inequality

2b− 2L‖T ‖− µ∗(b + L‖T ‖)2 > 0,

is satisfied, the equilibrium state x = x∗ of system (1) is uniformly asymptotically stable.

Proof It is clear that the behavior of solution x(t) of system (1) in the neighborhood
of the equilibrium state x∗ is equivalent to the behavior of solution y(t) of system
(5) in the neighborhood of zero. For the proof we shall apply the Lyapunov function
V (y) = yTy. If y(t) is ∆-differentiable in the point t ∈ T

k, for the derivative of function
V (y(t)) we have the expression

V ∆(y(t)) = (yT(t) y(t))∆ = yT(t) y∆(t) + [yT(t)]∆y(σ(t))

= yT(t) y∆(t) + [yT(t)]∆[y(t) + µ(t)y∆(t)].

For the derivative of function V along solutions of system (5) we get

V ∆(y(t))|(5) = 2yT(t) y∆(t) + µ(t)[y∆(t)]Ty∆(t)

= 2yT(t)[−By(t) + Tg(y(t))] + µ(t)‖ −By(t) + Tg(y(t))‖2

≤ −2λm(B)‖y(t)‖2 + 2‖y(t)‖ ‖T ‖ ‖g(y(t))‖+ µ∗(‖B‖ ‖y(t)‖+ ‖T ‖ ‖g(y(t))‖)2

= −2b ‖y(t)‖2 + 2‖T ‖ ‖y(t)‖ ‖y(t)‖+ µ∗(b ‖y(t)‖+ ‖T ‖ ‖g(y(t))‖)2.

Using obvious estimation ‖g(y(t))‖ ≤ L ‖y(t)‖ as a result we have

V ∆(y(t))|(f−11) ≤ −2 b‖y(t)‖2 + 2L‖T ‖ ‖y(t)‖2 + µ∗
(
b ‖y(t)‖+ L‖T ‖ ‖y(t)‖

)2

= −
(
2b− 2L‖T ‖ − µ∗(b+ L‖T ‖)2

)
‖y(t)‖2.

Hence it follows that all conditions of Corollary 4.2 from the paper [3] are satisfied.
Therefore, the equilibrium state y = 0 of system (5) is uniformly asymptotically stable.
This is equivalent to the uniform asymptotic stability of the equilibrium state x = x∗ of
system (1).

Theorem 3.2 Let the following conditions be satisfied:

(1) for system (1) on time scale T assumptions S1–S4 are valid;

(2) functions si ∈ C2(R) and there exist constants Ki > 0 such that |s′′i (r)| ≤ Ki for

all r ∈ R, i = 1, 2, . . . , n;

(3) there exists a constant µ∗ ∈ M such that µ(t) ≤ µ∗ for all t ∈ Tτ ;

(4) there exists a positive definite symmetric matrix P ∈ R
n×n such that the inequality

λM (PB1 + BT
1 P ) + µ∗‖P‖‖B1‖2 < 0 holds true, where B1 = −B + TH, H =

diag{s′i(0)} ∈ R
n×n.
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Then the equilibrium state x = x∗ of system (1) is uniformly asymptotically stable.

Proof We apply the function V (y) = yTPy. For the derivative of function V along
solutions of system (5) we have

V ∆(y(t))|(5) = yT(t)Py∆(t) + [yT(t)]∆Py(σ(t)) = yT(t)Py∆(t) + [yT(t)]∆Py(t)

+ µ(t)[y∆(t)]TPy∆(t) = yT(t)P
[
B1y(t) + T g̃2(y(t))

]
+
[
B1y(t) + T g̃2(y(t))

]T
Py(t)

+ µ(t)
[
B1y(t) + T g̃2(y(t))

]T
P
[
B1y(t) + T g̃2(y(t))

]
≤ yT(t)

[
PB1 +BT

1 P
]
y(t)

+ 2yT(t)PT g̃2(y(t)) + µ(t)‖P‖ ‖B1y(t) + T g̃2(y(t))‖2 ≤
(
λM (PB1 +BT

1 P )

+ µ(t)‖P‖ ‖B1‖2
)
‖y(t)‖2 + 2‖P‖ ‖T ‖ ‖g̃2(y(t))‖ ‖y(t)‖+ µ(t)‖P‖ ‖g̃2(y(t))‖2‖T ‖2

+ 2µ(t)‖P‖ ‖B1‖ ‖T ‖ ‖g̃2(y(t))‖ ‖y(t)‖.

Using inequality (7) and condition (3) of Theorem 3.2 we get

V ∆(y(t))|(5) ≤
(
λM (PB1 +BT

1 P ) + µ∗‖P‖ ‖B1‖2
)
‖y(t)‖2 + 2K‖P‖ ‖T ‖ ‖y(t)‖3

+ 2µ∗K‖P‖ ‖B1‖ ‖T ‖ ‖y(t)‖3 + µ∗K2‖P‖ ‖T ‖2‖y(t)‖4.

Designate

ψ(‖y‖) = a‖y‖2,
a = −

(
λM (PB1 +BT

1 P ) + µ∗‖B1‖‖P‖2
)
> 0,

m(ψ) = 2a−
1
3K‖P‖‖T ‖ (1 + µ∗‖B1‖)ψ

1
3 + µ∗a−2K2‖P‖‖T ‖2ψ.

For the derivative of function V along solutions of system (5) we obtain the inequality

V ∆(y(t))|(5) ≤ −ψ(‖y‖) +m(ψ(‖y‖)).

Since the function ψ ∈ K-class, lim
ψ→0

m(ψ) = 0, all conditions of Corollary 4.2 from

[3] are satisfied and therefore, the equilibrium state y = 0 of system (5) is uniformly
asymptotically stable. This is equivalent to the uniform asymptotic stability of the
equilibrium state x = x∗ of system (1).

Theorem 3.3 Let the following conditions be satisfied

(1) for system (1) assumptions S1-S3 hold true.

(2) functions si ∈ C2(R) and there exist constants Ki > 0 such that |s′′i (r)| ≤ Ki for

all r ∈ R, i = 1, 2, . . . , n.

(3) there exist a positive definite symmetric matrix P ∈ R
n×n and a constant M > 0

such that |1 + µ(t)A(t)| ≥ M for all t ∈ Tτ , where B1 = −B + TH, H =
diag{s′i(0)} ∈ R

n×n, A(t) = λM (PB1 +BT
1 P ) + µ(t)‖P‖ ‖B1‖2.

Then, if

(a) lim sup
t→∞

βA(t) = q < 0, the equilibrium state x = x∗ of system (1) is exponentially

stable;
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(b) sup {βA(t) : t ∈ Tτ} = q < 0, the equilibrium state x = x∗ of system (1) is

uniformly exponentially stable.

Proof We shall apply function V (y) = yTPy and for the derivative of function V
along solutions of system (5) we shall use the expression obtained in the previous theorem

V ∆(y(t))|(5) ≤
(
λM (PB1 +BT

1 P ) + µ(t)‖P‖ ‖B1‖2
)
‖y(t)‖2

+ 2‖P‖ ‖T ‖ ‖g̃2(y(t))‖ ‖y(t)‖+ 2µ(t)‖P‖ ‖B1‖ ‖T ‖ ‖g̃2(y(t))‖ ‖y(t)‖
+ µ(t)‖P‖ ‖g̃2(y(t))‖2‖T ‖2 ≤

(
λM (PB1 +BT

1 P ) + µ(t)‖P‖ ‖B1‖2
)
‖y(t)‖2

+
(
2K‖P‖ ‖T ‖ ‖y(t)‖+ 2µ(t)K‖P‖ ‖B1‖ ‖T ‖ ‖y(t)‖

+ µ(t)K2‖P‖ ‖T ‖2|y(t)‖2
)
‖y(t)‖2 = A(t)‖y(t)‖2 +Φ(t, V (y)),

where Φ(t, V ) =
[
2K‖P‖ ‖T ‖(1+ µ(t)‖B1‖)

√
V + µ(t)K2‖P‖ ‖T ‖2V

]
V .

Consider the set T = {t ∈ Tτ : µ(t) 6= 0}. If there exists sup T < +∞ then there
exists t1 ∈ Tτ such that µ(t) = 0 for all t ∈ [t1,+∞)T. If the set T is not bounded, the
condition lim sup

t→∞

βA(t) = q < 0 implies that there exists a sufficiently large t2 ∈ Tτ ∩T
such that for all t ∈ [t2,+∞)T ∩ T inequality βA(t) < 0 holds true. This yields that for
all t ∈ [t2,+∞)T ∩ T the inequality

log
∣∣1 + µ(t)(λM (PB1 +BT

1 P ) + µ(t)‖P‖‖B1‖2)
∣∣ < 0

is true. Then

µ(t)(λM (PB1 +BT
1 P ) + µ(t)‖P‖ ‖B1‖2)− 1 < 1,

‖P‖ ‖B1‖2µ2(t) + λM (PB1 +BT
1 P )µ(t)− 2 ≤ 0.

Since D = λM (PB1+B
T
1 P )

2+8‖P‖‖B1‖2 ≥ 0, we obtain the estimate µ(t) ≤ µ1 for all
t ∈ [t2,+∞) ∩ T , where µ1 = (−λM (PB1 + BT

1 P ) +
√
D)/2‖P‖‖B1‖2 ≥ 0. Hence, one

can conclude that µ(t) ≤ µ1 for all t ∈ [t3,+∞)T, t3 = max{t1, t2}. If t ∈ [τ, ρ(t3)] ∩ T

then µ(t) ≤ t3. This implies the estimate µ(t) ≤ µ∗ = max{µ1, t3} for all t ∈ Tτ . Since

Φ(t, V )

V
= 2K‖P‖ ‖T ‖(1+ µ(t)‖B1‖)

√
V + µ(t)K2‖P‖ ‖T ‖2V

≤ 2K‖P‖ ‖T ‖(1+ µ∗‖B1‖)
√
V + µ∗K2‖P‖ ‖T ‖2V,

we get Φ(t, V )/V → 0 for V → 0 uniformly in t. According to Theorem 2 from the
paper [13] we conclude that the equilibrium state y = 0 of system (5) is exponentially
stable. This is equivalent to the exponential stability of the equilibrium state x = x∗ of
system (1).

Now we shall prove the second part of the theorem. Condition sup{βA : t ∈ Tτ} =
q < 0 for t ∈ T implies

log|1 + µ(t)(λM (PB1 +BT
1 P ) + µ(t)‖P‖‖B1‖2)| ≤ µ(t)q < 0

for all t ∈ T . Hence, we get

µ(t) ≤ −λM (PB1 +BT
1 P ) +

√
D

2‖P‖‖B1‖2
= µ∗, µ∗ ≥ 0, t ∈ T .
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That is that µ(t) ≤ µ∗ for all t ∈ Tτ . Then, similar to the above, we have Φ(t, V )/V → 0
for V → 0 uniformly in t.

Therefore, all conditions of Theorem 2 from the paper [13] are satisfied and the
equilibrium state y = 0 of system (5) is uniformly exponentially stable. This is equivalent
to the uniform exponential stability of the equilibrium state x = x∗ of system (1).

Remark 3.1 Consider the scale T = N (µ(t) ≡ 1). In this case system of equa-
tions (1) is equivalent to system (4) and the condition of uniform asymptotic stability
of the equilibrium state of system (1) established in Theorem 3.1 for µ∗ = 1 becomes

2b− 2L‖T ‖− (b + L‖T ‖)2 > 0.

This result coincides completely with the below result for discrete system (4).

Theorem 3.4 For neural discrete system (4) let assumptions S2, S3 be satisfied.

Then the equilibrium state x = x∗ of system (4) is uniformly asymptotically stable,

provided that

2b− 2L‖T ‖− (b + L‖T ‖)2 > 0.

Proof Consider function y(k) = x(k)− x∗ and rewrite equations (4) as

y(k + 1) = (−B + I)y(k) + Tg(x(k)), k ∈ Tτ , (8)

where I is an identity n× n -matrix and for the first difference of function V (y) = yTy
we get the estimate

∆V (y(k))|(8) = yT(k + 1)y(k + 1)− yT(k)y(k)

= [(−B + I)y(k) + Tg(y(k))]T[(−B + I)y(k) + Tg(y(k))]− yT(k)y(k)

= yT(k)BTBy(k)− 2yT(k)BTy(k)− 2y(k)TBTg(y(k))

+ 2yT(k)Tg(y(k)) +GT(y(k))TTTg(y(k))

≤ ‖B‖2‖y(k)‖2 − 2λm(B)‖y(k)‖2 + 2L‖B‖ ‖T ‖ ‖y(k)‖2

+ 2L‖T ‖ ‖y(k)‖2 + ‖T ‖2‖g(y(k))‖2

≤
[
b
2 − 2b+ 2Lb‖T ‖+ 2L‖T ‖+ ‖T ‖2L2

]
‖(y(k))‖2

= −
[
2b− 2L‖T ‖− (b + L‖T ‖)2

]
‖(y(k))‖2.

This yields the assertion of the theorem.

The regressivity of function f(x) = −Bx+Ts(x)+u is one of conditions for existence
of solution of problem (1), (2). Here we give some sufficient regressivity conditions for
the function f(x).

Theorem 3.5 Let assumption S3 be fulfilled. If for every fixed t ∈ T the matrix

(I − µ(t)B)Λ−1 − µ(t)|T | is an M -matrix, the function f(x) = −Bx + Ts(x) + u is

regressive.

Proof We fix t ∈ T and consider the mapping R : Rn → R
n given by the formula

R(x) = x+ µ(t)f(t, x) = (I − µ(t)B)x + µ(t)Ts(x) + µ(t)u.
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Designate by B̃ = (I − µ(t)B), T̃ = µ(t)T and ũ = µ(t)u. Then we get

R(x) = B̃x+ T̃ s(x) + ũ.

Since the matrix B̃Λ−1 − |T̃ | is an M -matrix, the mapping R : R
n → R

n is a homeo-
morphism [17]. Hence follows the reversibility of the mapping R(x) which is equivalent
to the reversibility of the operator I + µ(t)f(t, ·) : Rn → R

n.

4 Example

On the time scale P1,γ =
⋃∞

j=0[j(1 + γ), j(1 + γ) + 1], γ > 0, we consider a neural
network

x∆1 (t) = −b1x1(t) + t11s(x2(t)) + t12s(x2(t)) + u1,

x∆2 (t) = −b2x1(t) + t21s(x1(t)) + t22s(x2(t)) + u2,
(9)

where x1, x2 ∈ R, u1, u2 ∈ R, b1 = b2 = 1, T =
(
0.1 −0.5
0.5 0.1

)
, s(u) = tanhu.

For the time scale P1,γ the granularity function

µ(t) =

{
0, t ∈ ⋃∞

j=0 [j(1 + γ), j(1 + γ) + 1) ,

γ, t ∈
⋃∞

j=0 {j(1 + γ) + 1} .

We take matrix P = diag{0.5, 0.5} and write out all the functions and constants men-
tioned in the conditions of Theorem 3.3

M1 =M2 = L1 = L2 = 1, A(t) = −0.9 + 0.53 γ,

K1 = K2 = 8
∣∣∣e

2+
√

3

2 − e−
2+

√

3

2

∣∣∣
/(

e
2+

√

3

2 + e−
2+

√

3

2

)3

,

βA(t) =






γ−1 log |1 + γ(−0.9 + 0.53 γ)|, t ∈
∞⋃
j=0

{j(1 + γ) + 1} ,

−0.9 + 0.53 γ, t ∈
∞⋃
j=0

[j(1 + γ), j(1 + γ) + 1) .

The regressivity condition has the form of the inequalities

{
1− 1.1 γ > 0,

(1− 1.1γ)2 − 0.25 γ2 > 0,

which yields γ < 0.625. Since 1 + γ(−0.9 + 0.53 γ) ≥ 1 + γ0(−0.9 + 0.53 γ0), γ0 =
0.9/(2 · 0.53) for any γ, we can take for the constant M the following value: M =
1 + γ0(−0.9 + 0.53 γ0) = 0.61.

For γ < 1.69 the system of inequalities

{
M ≤ |1 + γ(−0.9 + 0.53 γ)| < 1,

−0.9 + 0.53 γ < 0

is satisfied. This implies that supt βA(t) = max{γ−1 log |1 + γ(−0.9 + 0.53 γ)|,−0.9 +
0.53} < 0. Since the matrix BΛ−1−|T | =

(
0.9 −0.5

−0.5 0.9

)
is anM -matrix, for 0 < γ < 0.625

system (9) possesses a unique equilibrium state for any u1, u2 ∈ R and this equilibrium
state is uniformly exponentially stable.
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Figure 1: Dependence of the function x(t) on time t obtained by numerical solution of system
of equations (9).

We shall consider a model example for this problem. We take the following values
of the constants: u1 = 2, u2 = −1, γ = 0.5. The result of numerical solution of system
(9) is shown in Figure 1. It is seen from the figure, for arbitrary chosen initial con-
ditions (1,−0.5), (1.5,−1.5), (2.5,−1.5), (3,−0.5), (2.5, 0.5), (1.5, 0.5) the function x(t)
approaches asymptotically with time t to the equilibrium state (x∗1, x

∗
2)

T= (2.35,−0.56)T.
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