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Abstract: Linear hybrid mechanical systems with switchings of force fields are stud-
ied. Some sufficient conditions are brought forward for the switched systems being
asymptotically stable for any switched law. The results are obtained based on two
approaches. The first one is called as the decomposition method, and the second one
consists in an explicit construction of the common Lyapunov functions for the fami-
lies of systems corresponding to the switched systems. Different cases of domination
concerning one of the force field components (e.g., velocity, gyroscopic, dissipative,
potential) are considered.
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1 Introduction

The stability analysis of hybrid systems which are described by differential equations with
switching right-hand sides is one of the most important problems in modern automatic
control theory [3–5, 9, 15]. In various cases, after the design of continuous controller has
been finished, it is required to verify the stability of the closed system for any admissible
switching law [7, 9, 17]. Such a situation naturally arises when the switching law is either
unknown or is too complex to consider in the stability investigation.
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A well-known approach for the stability analysis is to construct a common Lyapunov
function for the family of subsystems corresponding to the switched system. That is, the
function is positive and monotonically decreases along the solutions to each subsystem
from the family. However, the problem of the existence of a common Lyapunov function
is not completely solved until to now even for families of linear stationary systems [7,
8]. Only in some special cases, e.g., for two-dimensional or three-dimensional linear
systems [14, 15], necessary and sufficient conditions for the existence of common quadratic
Lyapunov function are found. For the linear systems with higher dimension, the existence
of common quadratic Lyapunov function is proved only under some additional conditions,
for instance, under commutativity of systems matrices [13].

This paper deals with mechanical systems with switching force fields. The switchings
can be caused by both intrinsic reasons, such as using computer or microprocessor in
control loop, and external reasons, for instance, when movement of mechanical system
occurs in environment with changeable resistance [4, 6, 10, 15]. Motion of mechanical
systems is usually described by differential equations of the second order, that results in
the occurrence of some special properties. In particular, in the presence of switchings in
acting force field, conditions of commutativity will be obviously broken. Therefore, the
corresponding results based on commutativity of systems matrices for the existence of
common quadratic Lyapunov functions are nonapplicable to mechanical systems. This
motives us to study extendedly the problem of the existence of common Lyapunov func-
tions for mechanical systems.

In the paper, we present two approaches for constructing common Lyapunov functions
for mechanical systems with switching force fields. The first one is to decompose the
original system consisting of n differential equations of the second order into two first-
order subsystems of the same dimension. The approach is also available for the systems
without switchings in the force fields since it allows one to solve stability problem on the
basis of analysis of matrices of twice smaller dimensions than that in the original system.
In the presence of switchings, decomposition makes it possible to use the conditions of
matrix coefficients commutativity, which guarantees the existence of a common quadratic
Lyapunov function for the family of systems corresponding to the switched system. The
second approach is to give out an explicit construction of the common Lyapunov functions
for the mechanical systems. These Lyapunov functions are constructed on the base
of elements possessing clear mechanical meaning. It should be noted that in certain
situations both approaches stated above are practically close to each other and lead to
similar stability conditions.

In sum, this paper provides some stability conditions on the basis of construction of
the common Lyapunov functions with essential use of mechanical system specificity. This
specificity impels us to investigate this special subclass of hybrid systems not following
the ordinal line of thought. Thus, the results obtained possess certain theoretical features
and are of undoubted practical interest.

2 Statement of the Problem

Consider a family of linear systems

Aq̈ + Fsq̇ + Csq = 0, s = 1, . . . , N, (1)

where q and q̇ are n-dimensional vectors of generalized coordinates and generalized ve-
locities, respectively; A, Fs, Cs are constant matrices, and matrix A is nonsingular. A
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switching law is the piecewise constant function σ : [0,+∞) → D = {1, . . . , N}. Thus,
the switched system generated by the family (1) and a switching signal σ is

Aq̈ + Fσ q̇ + Cσq = 0. (2)

In this paper, we assume that on every bounded time interval, the switching function has
finite number of discontinuities, which are called switching instants of time, and takes a
constant value on every interval between two consecutive switching instants. This kind
of switching law is called admissible.

We will look for the conditions to guarantee the switched system (2) is asymptotically
stable for any admissible switching law. As is well known, it is sufficient [7, 9] to construct
a common Lyapunov function for the family (1) such that it satisfies the assumptions of
Lyapunov asymptotic stability theorem.

Linear systems (1) can be represented in the form

ẋ = Psx, s = 1, . . . , N, (3)

where x = (qT , q̇T )T ,

Ps =

(

0 I
−A−1Cs −A−1Fs

)

,

and I denotes the identity matrix. Thus, one can investigate the stability of (3) for the
general switched linear systems, and some well known conditions of the existence of a
common quadratic Lyapunov function [8, 9, 13] can be used.

However, we point out that such approach is not always effective, partly owing to the
following difficulties:

1) The transformation of (1) to the form (3) lose the mechanical meaning of the
conditions;

2) The dimension of (3) becomes higher;
3) Systems (1) possess a special structure, therefore known results obtained for the

linear switched systems of general form may be nonapplicable for (3).
For instance, commutativity of matrices P1, . . . , PN in the family (3) is a simple

condition of the existence of common Lyapunov function [13]. But due to the special
structure of matrices of P1, . . . , PN in systems (3), the commutativity results in the
equalities Fs = Fr, Cs = Cr, s, r = 1, . . . , N , which is a trivial case.

In the paper, we consider two approaches for the stability analysis of switched me-
chanical system (2). The first one is based on a decomposition procedure, and the second
one consists in an explicit construction of the Lyapunov functions for the switched system.

3 Decomposition Approach for Stability Analysis of Linear Mechanical

Systems

In the section, we consider the decomposition conditions for mechanical systems without
switchings.

3.1 Systems with the domination of velocity forces

The systems with the domination of velocity forces are described by the following diffe-
rential equations

Aq̈ + hF q̇ + Cq = 0. (4)
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This kind of equations are generally considered as the linearized ones of motions for gy-
roscopic systems [18], where q and q̇ are n-dimensional vectors of generalized coordinates
and generalized velocities respectively; A, F and C are constant matrices; h is a large
positive parameter. We assume that all the matrices in (4) are nonsingular.

System (4) is linear and stationary one. Therefore, some well-known criteria, for
instance, the Hurwitz criterion or equivalent ones [12], can be used to determine the
stability conditions for this system. However, in the case of high dimension of (4) or
under the uncertainties in the matrices A, F , C this approach may be inefficient or even
nonapplicable in practice.

Another way to investigate the stability in such situations is to decompose the system
into several simpler systems, to study each of them separately, and then to appropriately
apply the obtained results to the original system [1, 16].

V. I. Zubov has proposed the following result, which allows one to decompose, for
sufficiently large values of parameter h, the problem of stability analysis of system (4)
consisting of n differential equations of the second order into two analogical problems for
the first-order systems of the same dimension.

Theorem 3.1 [18] Let the following isolated subsystems

F ẏ + Cy = 0, (5)

Aż + Fz = 0 (6)

be asymptotically stable. Then there exists h0 > 0 such that for any h > h0 system (4)
is also asymptotically stable.

In applications, it is important to get the estimation of the lower bound h0 for ad-
missible values of h. Theorem 3.1 in [18] was proved on the base of the first Lyapunov
method and by means of the expansion of the roots of the characteristic equation for (4)
in the series with respect to the negative powers of h. However, this process did not give
constructive estimation of h0 value.

In this paper, we suggest another approach to prove Theorem 3.1, which is based
on using Lyapunov direct method. The new proof contains a constructive procedure for
determining the set of admissible values of large parameter h.

Proof Making the substitution of variables

q̇ = z, Aq̇ + hFq = hFy, (7)

we transform (4) into

F ẏ = − 1
h
Cy + 1

h2CF−1Az,

Aż = −hFz − Cy + 1
h
F−1Az.

(8)

From the asymptotic stability of isolated subsystems (5) and (6), it follows [1] the exis-
tence of quadratic forms V1(y) and V2(z) such that the inequalities

a11‖y‖
2 ≤ V1 ≤ a12‖y‖

2, a21‖z‖
2 ≤ V2 ≤ a22‖z‖

2,

∥

∥

∥

∥

∂V1

∂y

∥

∥

∥

∥

≤ a13‖y‖,

∥

∥

∥

∥

∂V2

∂z

∥

∥

∥

∥

≤ a23‖z‖, V̇1

∣

∣

(5)
≤ −a14‖y‖

2, V̇2

∣

∣

(6)
≤ −a24‖z‖

2
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are valid for any y, z ∈ Rn, where aij are positive constants, i = 1, 2, j = 1, 2, 3, 4.
Construct the function V (y, z) = εh2V1(y) + V2(z), where ε is a positive parameter.
Differentiating V (y, z) along the solutions to (8), we get that the inequality

V̇
∣

∣

(8)
≤ −a14εh‖y‖

2 −

(

ha24 −
b1
h

)

‖z‖2 + (b2ε+ b3)‖y‖‖z‖

holds for any y, z ∈ Rn, where b1 = a23‖A
−1CF−1A‖, b2 = a13‖F

−1CF−1A‖, b3 =
a23‖A

−1C‖. Hence, if the condition

h >

√

(b2ε+ b3)2

4εa14a24
+

b1
a24

(9)

is satisfied, function V̇
∣

∣

(8)
is negative definite.

To complete the proof, it remains to find a ε0 > 0 such that for ε = ε0 (9) gives
us the largest region of admissible values of h. It is easy to show that ε0 = b3/b2, and
estimation (9) becomes h >

√

b2b3/(a14a24) + b1/a24. 2

3.2 Systems with the domination of gyroscopic forces

Along with (4), the following equations

Aq̈ + (B + hG)q̇ + Cq = 0 (10)

are also used as a linear approximation for the equations of motions of gyroscopic sys-
tems [11], where q, q̇ ∈ Rn; A, B, G, C are constant matrices; h is a large positive
parameter. It is assumed [11] that A is symmetric and positive definite matrix of inertial
characteristics; B is symmetric matrix of dissipative and accelerating forces; G is skew-
symmetric and nonsingular matrix of gyroscopic forces. Thus, the dominating forces in
(4) are the velocity ones, while in (10) they are the gyroscopic ones.

The conditions of decomposition for (10) have been established in [11]. As mentioned
above, in [11] as well as in [18], for justifying the possibility of decomposition, the first
Lyapunov method was used, and the constructive estimation for the admissible values of
large parameter was not obtained.

Next we propose the same approach based on Lyapunov direct method as in the proof
of Theorem 3.1 to study the stability analysis of system (10).

Consider the isolated subsystems

Gẏ + Cy = 0, (11)

Aż + (B + hG)z = 0. (12)

Theorem 3.2 Let the matrix B be positive definite and subsystem (11) be asymp-
totically stable. Then there exists h0 > 0 such that for any h > h0 system (10) is also
asymptotically stable.

Proof By using the substitution of variables q̇ = z, Aq̇ + (B + hG)q = (B + hG)y,
we transform (10) into the following system

ẏ = − 1
h
G−1Cy + 1

h
(B + hG)−1BG−1Cy + (B + hG)−1C(B + hG)−1Az,

Aż = −(B + hG)z − Cy + C(B + hG)−1Az.
(13)
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From the asymptotic stability of (11), it follows that for this subsystem there exists
a quadratic Lyapunov function V1(y) satisfying all the assumptions of the Lyapunov
asymptotic stability theorem. If the matrix B is positive definite, then subsystem (12)
is asymptotically stable for any h > 0, and let V2(z) = zTAz be its Lyapunov function.

Construct the function V (y, z) = εh2V1(y)+V2(z), ε = const > 0. Let h̄ be a positive
number. Differentiating V (y, z) along the solutions to (13), one gets that the inequality

V̇
∣

∣

(13)
≤ −ε(a1h− a2)‖y‖

2 −
(

a3 −
a4
h

)

‖z‖2 + (a5ε+ a6)‖y‖‖z‖

holds for h ≥ h̄ and for all y, z ∈ Rn, where ai are positive constants, i = 1, . . . , 6. It
should be noted that values of a2, a4 and a5 depend on the chosen value of h̄. Hence, if
the conditions h ≥ h̄, h > a2/a1 and

(a1h− a2)
(

a3 −
a4
h

)

>
(a5ε+ a6)

2

4ε
(14)

are satisfied, function V̇
∣

∣

(13)
is negative definite.

It is easy to verify that for ε = a6/a5 inequality (14) gives out the largest region of
admissible values h: (a1h− a2) (a3 − a4/h) > a5a6. 2

4 Decomposition of Switched Mechanical Systems

Now we turn to consider the linear mechanical system with switching positional forces

Aq̈ + hF q̇ + Cσq = 0. (15)

The corresponding family of systems are

Aq̈ + hF q̇ + Csq = 0, s = 1, . . . , N, (16)

where q, q̇ ∈ Rn; A, F , Cs are constant nonsingular matrices; h is a large positive
parameter.

The decomposition method stated above is still used to obtain the asymptotic stability
conditions for (15). We point out that in this case the approach suggested in [18] for
justifying the possibility of decomposition can not anymore be used for switched system
(15) since the negativeness of real parts of all roots of characteristic equations for systems
(16) does not provide asymptotic stability of (15) [9].

Now we show that the approach proposed in the proof of Theorem 3.1 allows us to
obtain decomposition conditions for the systems with switching positional forces.

Consider the isolated subsystem

Aż + Fz = 0 (17)

and the family of isolated subsystems

F ẏ + Csy = 0, s = 1, . . . , N. (18)

Theorem 4.1 Let the following conditions be fulfilled:
(a) Subsystem (17) is asymptotically stable;
(b) Subsystems (18) are asymptotically stable, and moreover the family (18) admits a

common quadratic Lyapunov function satisfying the assumptions of the Lyapunov asymp-
totic stability theorem.
Then, for sufficiently large values of h and for any switching law, system (15) is asymp-
totically stable.
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Proof By using the substitution (7), we transform (16) into the systems

F ẏ = − 1
h
Csy +

1
h2CsF

−1Az,

Aż = −hFz − Csy +
1
h
CsF

−1Az, s = 1, . . . , N.
(19)

Let V1(y) be a common quadratic Lyapunov function of family (18), and V2(z)
be a quadratic Lyapunov function of (17), respectively, both of which satisfy all the
assumptions of the Lyapunov asymptotic stability theorem. Construct the function
V (y, z) = εh2V1(y) + V2(z), where ε is a positive parameter. By the analogy with
the proof of Theorem 3.1, it is easy to show that, for sufficiently small values of ε and
for sufficiently large values of h, the derivative of V (y, z) along the solution to each of
the systems in (19) is negative definite. Thus, V (y, z) is a common Lyapunov function
for family (19). It implies that, for any switching law σ, the zero solution of the system

F ẏ = − 1
h
Cσy +

1
h2CσF

−1Az,

Aż = −hFz − Cσy + 1
h
CσF

−1Az

is asymptotically stable. Hence, the zero solution of (15) possesses the same property.
2

Now we turn to consider the linear mechanical system with the dominating gyroscopic
forces and with the switching positional forces

Aq̈ + (B + hG)q̇ + Cσq = 0. (20)

The corresponding family of systems has the form

Aq̈ + (B + hG)q̇ + Csq = 0, s = 1, . . . , N,

where q, q̇ ∈ Rn; A, B, G, Cs are constant matrices; h is a large positive parameter. We
assume that A is symmetric and positive definite matrix, B is symmetric matrix, G is
skew-symmetric and nonsingular matrix.

Theorem 4.2 Let the following conditions be fulfilled:
(a) Matrix B is positive definite;
(b) Subsystems

Gẏ + Csy = 0, s = 1, . . . , N, (21)

are asymptotically stable, and for family (21) there exists a common quadratic Lyapunov
function satisfying the assumptions of the Lyapunov asymptotic stability theorem.
Then, for sufficiently large values of h and for any switching law, system (20) is asymp-
totically stable.

The proof of Theorem 4.2 is similar to that one of Theorem 3.2.

Remark 4.1 Just as in Section 3, the suggested approach permits one to develop a
constructive procedure for the estimation of lower bounds of admissible values of param-
eter h in systems (15) and (20).

Remark 4.2 As mentioned in Section 2, for systems (15) and (20), the direct ap-
plication of known results on the existence of a common Lyapunov functions may be
ineffective or even impossible. Theorems 4.1 and 4.2 provide a possibility to reduce the
problem of constructing a common Lyapunov function for system of dimension 2n with
the special structure to the analogical problem for the subsystem of dimension n which,
generally, does not possess the special structure.
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For instance, in Section 2, it has been shown that well-known commutativity con-
dition is nonapplicable to system (15). However, according to Theorem 4.1, under the
sufficiently large values of parameter h, instead of (15), one can consider subsystem (17)
and family of subsystems (18). In fact, for (18), the commutativity condition becomes
CsF

−1Cr = CrF
−1Cs, s, r = 1, . . . , N .

5 Construction of the Common Lyapunov Functions

5.1 Domination of potential forces

Consider the linear switched mechanical system

Aq̈ + (Bσ +Gσ) q̇ + (hK + Pσ) q = 0. (22)

The corresponding family of systems is described as follows

Aq̈ + (Bs +Gs) q̇ + (hK + Ps) q = 0, s = 1, . . . , N, (23)

where A, Bs, Gs, K, Ps are constant matrices, h is positive parameter. We assume
that matrices K and Bs are symmetric, while matrices Gs and Ps are skew-symmetric.
Moreover, here and in what follows it is assumed that A is symmetric and positive definite
matrix.

Theorem 5.1 Let the following conditions be fulfilled:
(a) Matrices B1, . . . , BN are positive definite;
(b) Matrix K is positive definite;
(c) The value of parameter h is sufficiently large.

Then, for any switching law of all components of force field, with the exception of potential
component, system (22) is asymptotically stable.

Proof Construct the common Lyapunov function for the family (23) in the form

V (q, q̇) =
1

2
q̇TAq̇ +

h

2
qTKq + εqTAq̇, (24)

where ε > 0 is sufficiently small positive number.
For arbitrary symmetric matrix M , let λmin(M) and λmax(M) be the minimal

and maximal eigenvalues of M , respectively. Introduce the following notations: k1 =
λmin(K), k2 = λmax(K), a1 = λmin(A), a2 = λmax(A),

b1 = min
s=1,...,N

λmin(Bs), b2 = max
s=1,...,N

λmax(Bs),

p = max
s=1,...,N

√

λmax (PT
s Ps), g = max

s=1,...,N

√

λmax (GT
s Gs).

For all q, q̇ ∈ Rn the estimations

a1
2
‖q̇‖2 − εa2‖q‖‖q̇‖+

h

2
k1‖q‖

2 ≤ V (q, q̇) ≤
a2
2
‖q̇‖2 + εa2‖q‖‖q̇‖+

h

2
k2‖q‖

2 (25)

are valid. Differentiating the Lyapunov function (24) along the solution to sth system in
family (23), we get

V̇ = −q̇TBsq̇ + εq̇TAq̇ − εhqTKq − q̇TPsq − εqT (Bs +Gs) q̇

≤ (−b1 + εa2)‖q̇‖
2 − εhk1‖q‖

2 + (p+ ε(b2 + g))‖q‖‖q̇‖.
(26)
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By using the estimations (25) and (26), it is easy to show that, for sufficiently large
value h and sufficiently small value ε, function (24) is positive definite, while its derivative
along the solutions to any system in (23) is negative definite.

For instance, if ε = b1/(2a2), then we have the following condition for h:

h > max

{

b21
4a1k1

;
(2pa2 + b1(b2 + g))2

4a2b21k1

}

.

For these values of parameters, there exist positive numbers β1, β2, β3 such that for all
q, q̇ ∈ Rn the inequalities

β1

(

‖q̇‖2 + ‖q‖2
)

≤ V (q, q̇) ≤ β2

(

‖q̇‖2 + ‖q‖2
)

, V̇
∣

∣

(22)
≤ −β3

(

‖q̇‖2 + ‖q‖2
)

hold. Hence, system (22) is asymptotically stable. 2

5.2 Domination of dissipative forces

Now we consider the switched system

Aq̈ + (hB +Gσ) q̇ + (Kσ + Pσ) q = 0. (27)

The corresponding family of systems has the form

Aq̈ + (hB +Gs) q̇ + (Ks + Ps) q = 0, s = 1, . . . , N, (28)

where A, B, Gs, Ks, Ps are constant matrices, h is positive parameter. We assume that
matrices B and Ks are symmetric, while matrices Gs and Ps are skew-symmetric.

Theorem 5.2 Let the following conditions be fulfilled:
(a) Matrices K1, . . . ,KN are positive definite;
(b) Matrix B is positive definite;
(c) The value of parameter h is sufficiently large.

Then, for any switching law of all components of force field, with the exception of dissi-
pative component, system (27) is asymptotically stable.

Proof After constructing the common Lyapunov function for the family of systems
(28) in the form

V (q, q̇) =
1

2
q̇TAq̇ +

h

2
qTBq + qTAq̇,

the subsequent proof is similar to that one of Theorem 5.1. 2

5.3 System with small nonconservative forces

Next consider the switched system with the small parameter at the nonconservative forces

Aq̈ + (Bσ +Gσ) q̇ + (K + εPσ) q = 0, (29)

and the corresponding family of systems

Aq̈ + (Bs +Gs) q̇ + (K + εPs) q = 0, s = 1, . . . , N, (30)

where A, Bs, Gs, K, Ps are constant matrices, ε is small positive parameter. Assume
that matrices K and Bs are symmetric, while matrices Gs and Ps are skew-symmetric.
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Theorem 5.3 Let the following conditions be fulfilled:
(a) Matrices B1, . . . , BN are positive definite;
(b) Matrix K is positive definite;
(c) The value of parameter ε is sufficiently small.

Then, for any switching law of all components of force field, with the exception of potential
component, system (29) is asymptotically stable.

Proof Construct the Lyapunov function in the form

V (q, q̇) =
1

2
q̇TAq̇ +

1

2
qTKq + εqTAq̇. (31)

It is easy to verify that, for sufficiently small values of ε, function (31) is positive definite,
and its derivative along the solutions of each system from (30) is negative definite. 2

5.4 Domination of gyroscopic forces

Next we consider the switched system in the form

Aq̈ + (Bσ + hG) q̇ + (K + P ) q = 0. (32)

The corresponding family of systems is

Aq̈ + (Bs + hG) q̇ + (K + P ) q = 0, s = 1, . . . , N, (33)

where A, Bs, G, K, P are constant matrices, h is positive parameter. We assume that
matrices Bs and K are symmetric, while matrices G and P are skew-symmetric, and
moreover matrix G is nonsingular.

Theorem 5.4 Let the following conditions be fulfilled:
(a) Matrices B1, . . . , BN are positive definite;
(b) The subsystem

ẏ = −G−1(K + P )y (34)

is asymptotically stable;
(c) The value of parameter h is sufficiently large.

Then, for any switching law of dissipative forces, system (32) is asymptotically stable.

Proof The asymptotic stability of subsystem (34) implies that for any given sym-
metric positive definite matrix D, there exists a symmetric positive definite matrix L
such that

LG−1(K + P ) + (K + P )T
(

G−1
)T

L = D.

Construct the Lyapunov function

V (q, q̇) =
1

2
q̇TAq̇ +

1

2
qTLq −

1

h
qTFAq̇, (35)

where F = (K − P − L)G−1. Differentiating V (q, q̇) along the solutions of sth system
from the family (33), one gets

V̇ = −q̇TBsq̇ −
1

2h
qTDq −

1

h

(

q̇TFAq̇ − qTFBsq̇
)

.

Hence, for sufficiently large values of h, (35) is a common Lyapunov function for family
(33). 2
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Remark 5.1 The approach for the Lyapunov function construction, which was used
in the proof of Theorem 5.4, is a generalization of that one suggested in [2].

Remark 5.2 Theorem 5.4 is similar to Theorem 4.2. However, switching forces in
system (20) are positional ones, while in system (32) they are the dissipative ones.

Remark 5.3 The Lyapunov functions considered in the present section are con-
structed on the base of elements possessing clear mechanical meaning (kinetic energy,
potential, matrices of acting forces).

Remark 5.4 By the use of the Lyapunov functions constructed the estimations for
the admissible values of parameters h and ε in the systems investigated can be obtained.

6 Conclusion

Theorems 3.1 and 3.2 about decomposition of linear mechanical systems with a large
parameter are very significant for the justification of precession theory of gyroscopic de-
vices. These theorems were proved primarily in [11, 18] on the base of the first Lyapunov
method by means of the expansion of the roots of the characteristic equations for systems
considered in the series with respect to negative powers of parameter. However, it is not
convenient in applying such approach, since in [11, 18] no constructive estimations for
the lower bounds of the admissible values of large parameter were given. Furthermore,
for mechanical system with switching force fields, negativity of real parts of all char-
acteristic equation roots doesn’t guarantee the stability of equilibrium position. This
paper presents new proofs of the above theorems, which are based on Lyapunov direct
method. The Lyapunov functions found for an auxiliary isolated subsystems are used for
constructing the common Lyapunov function, which guarantees the asymptotic stability
of the equilibrium position for the mechanical system with switching force fields.

For mechanical systems with two degrees of freedom and with switching linear force
fields, Theorems 4.1 and 4.2 permit one to use the necessary and sufficient conditions
of the existence of a common quadratic Lyapunov function for family of switched two-
dimensional systems [14]. Direct application of the criterion in [14] to the system with
two degrees of freedom is impossible since, in this case, dimension of full system is equal to
four. Moreover, decomposition allows one to use for switched linear isolated subsystems
the commutativity conditions guaranteeing the existence of a common Lyapunov function
for them [13]. We note that these conditions can not be used directly for full original
system.

In the present paper, linear systems are studied. However, the theorems proved guar-
antee exponential stability of equilibrium positions. Hence, these theorems determine the
asymptotic stability conditions for nonlinear systems by the linear approximation. By
the way, the decomposition method can also be utilized for the mechanical systems with
essentially nonlinear forces. We will deal with them in our future work. Moreover, the
results obtained can be used for the design of stabilizing controls for mechanical systems.
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