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1 Introduction

In this paper, we are concerned with the following strongly damped wave equation in-
volving nonlocal boundary conditions

∂2w

∂t2
(x, t)−

∂3w

∂x2∂t
(x, t)−

∂2w

∂x2
(x, t) = g(x, t), (x, t) ∈ (0, 1)× [0, T ], (1)

with the initial conditions

w(x, 0) = w0(x),
∂w

∂t
(x, 0) = w1(x), x ∈ [0, 1], (2)
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and the integral boundary conditions

∫ 1

0

w(x, t)dx = m(t),

∫ 1

0

xw(x, t)dx = k(t), (x, t) ∈ (0, 1)× [0, T ], (3)

where 0 < T < ∞, the map g is defined from (0, 1) × [0, T ] into R. Such type of the
equations aries in the motion of mechanical systems. Our aim is to apply the method
of semi-discretization in time, also known as the method of lines or Rothe’s method, to
establish the existence, uniqueness of a weak solution.

In [1] Bahuguna studied a strongly damped wave equation as an abstract differential
equation in a Banach space and established the existence and uniqueness of a strong
solution with the help of Rothe’s method. Beilin [13] has considered the wave equation
with an integral condition using the method of separation of variables and Fourier series.
Pulkina [14] has dealt with a hyperbolic problem with two integral conditions and has
established the existence and uniqueness of the generalized solutions using the fixed point
arguments. Bouziani and Merazga [10] have considered the quasilinear wave equation
with the two integral boundary conditions and proved the existence and uniqueness of
a solution by Rothe’s method. The initial work on the nonlocal boundary conditions
(integral conditions) has been carried out by Cannon [12]. Subsequently, similar studies
have been carried out by Kamynin [16], Ionkin [15] and others.

Recently, the study of an initial boundary value problem with the integral boundary
conditions has received considerable attention of researchers. For relevant references with
the consideration of the nonlocal boundary conditions we refer to the papers [2, 3, 5, 8,
9, 10, 11] and the references cited in these papers. In these papers authors have used the
method of semi-discretization in time and have established the existence and uniqueness
of a weak solution. Our analysis is motivated by the works of Bahuguna [1], Bahuguna
and Dabas [2, 3, 5] and Bouziani and Merazga [9, 10]. For more references on Rothe’s
method we refer to the papers [4, 6, 7] and the references cited in these papers.

Using the transformation u(x, t) = w(x, t) − r(x, t) we reduce the nonhomogeneous
integral boundary conditions in the problem (1)–(3) into homogeneous boundary con-
ditions. We look for r(x, t) := χ(t)x + ξ(t), where χ and ξ are to be chosen suitably,
with

∫ 1

0

r(x, t)dx = m(t) and

∫ 1

0

xr(x, t)dx = k(t). (4)

From (4), we have

1

2
χ(t) + ξ(t) = m(t), (5)

1

3
χ(t) +

1

2
ξ(t) = k(t). (6)

Hence the linear system (5)-(6) is uniquely solvable and χ(t) and ξ(t) are given by

χ(t) = 12k(t)− 6m(t), (7)

ξ(t) = 4m(t)− 6k(t). (8)
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By using this transformation problem (1)–(3) equivalently reduces to the problem

∂2u

∂t2
(x, t) −

∂3u

∂x2∂t
(x, t)−

∂2u

∂x2
(x, t) = f(x, t), (x, t) ∈ (0, 1)× [0, T ], (9)

u(x, 0) = U0(x),
∂u

∂t
(x, 0) = U1(x), x ∈ [0, 1], (10)

∫ 1

0

u(x, t)dx = 0,

∫ 1

0

xu(x, t)dx = 0, (x, t) ∈ (0, 1)× [0, T ], (11)

where f(x, t) = g(x, t)+ ∂2r
∂t2

, U0(x) = w0(x)−r(x, 0) and U1(x) = w1(x)−
∂r
∂t
(x, 0). Hence

the solution of the problem (1)–(3) will be directly obtained by w(x, t) = u(x, t)+r(x, t).
In the next section we define some function spaces required to establish the exis-

tence and uniqueness of weak solution to (9)–(11). The definition of weak solution and
assumptions are also stated in this section.

2 Preliminaries

The problem (9)–(11) may be treated as an abstract equation in the real Hilbert space
H = L2(0, 1) of square-integrable functions defined from (0, 1) into R with the inner
product and the norm respectively

(u, v) =

∫ 1

0

u(x)v(x) dx, ‖u‖2 =

∫ 1

0

|u(x)|2 dx, u, v ∈ H.

For k ∈ N, the Sobolev space Hk is the Hilbert space of all functions u ∈ H such that
the distributional derivative u(j) ∈ H with the inner product and the norm respectively

(u, v)k =

k
∑

j=0

(u(j), v(j)), ‖u‖2k =

k
∑

j=0

‖u(j)‖2, u, v ∈ Hk.

We shall incorporate the integral condition (11) with the space itself under consideration
by taking V ⊂ H defined by

V =

{

u ∈ H :

∫ 1

0

u(x) dx =

∫ 1

0

xu(x)dx = 0

}

. (12)

V is a closed subspace of H and hence is a Hilbert space itself with the inner product
(., .). and the corresponding norm ‖.‖.

For any Banach space X with the norm ‖.‖X and an interval I = [a, b], −∞ < a <
b < ∞, we shall denote C(I;X) the space of all continuous functions u from [a, b] into
X with the norm

‖u‖C(I;X) = max
a≤t≤b

‖u(t)‖X .

The space L2(I;X) consists of all square-Bochner integrable functions (equivalent classes)
u such that with the norm

‖u‖2L2(I;X) =

∫ b

a

‖u(t)‖2X dt.
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Similarly L∞(I;X) is the Banach space of all essentially bounded functions from I into
X with the norm

‖u‖L∞(I;X) = ess sup
t∈I

‖u(t)‖X ,

and the Banach space Lip(I;X) is the space of all Lipschitz continuous functions from
I into X with the norm

‖u‖Lip(I;X) = ‖u‖C(I;X) + sup
t,s∈I; t6=s

‖u(t)− u(s)‖

|t− s|
.

In addition, to the spaces mentioned above, we need the space B1
2(0, 1) introduced

by Merazga and A. Bouziani [9] being the completion of the space C0(0, 1) of all real
continuous functions having compact supports in (0,1) with the inner product

(u, v)B1

2

=

∫ 1

0

(
∫ x

0

u(ξ)dξ

)(
∫ x

0

u(ξ)dξ

)

dx.

It is clear that v ∈ B1
2(0, 1) if and only if

∫ x

0 v(ξ)dξ ∈ L2(0, 1) and the corresponding

norm ‖u‖2
B1

2

=
∫ 1

0

(∫ x

0 u(ξ)dξ
)2

dx. It follows that the inequality ‖v‖2
B1

2

≤ 1
2‖v‖

2 holds

for every v ∈ L2(0, 1), and the embedding L2(0, 1) → B1
2(0, 1) is continuous.

Given a function h : (0, 1)× [a, b] → R such that for each t ∈ [a, b], h(., t) : [a, b] → H,
we may identify it with the function h : [a, b] → H given by h(t)(x) = h(x, t). We assume
the following conditions:

(A1) The function f : [0, T ]×H → H satisfies the Lipschitz condition, i.e., there exists
a positive constant Lf such that

‖f(t)− f(s)‖B1

2

≤ Lf |t− s| for t, s ∈ [0, T ] and u, v ∈ H.

(A2) U0(x), U1(x) ∈ H2(0, 1) and U0(x), U1(x) ∈ V , i.e.

∫ 1

0

U0(x)dx =

∫ 1

0

xU0(x)dx = 0, and

∫ 1

0

U1(x)dx =

∫ 1

0

xU1(x)dx = 0.

Definition 2.1 By a weak solution of the problem (9)–(11) we mean a function
u : [0, T ] → H such that

1. u ∈ Lip([0, T ], V ),

2. u has a.e. in [0, T ] a strong derivative du
dt

∈ L∞([0, T ];V )∩Lip([0, T ], B1
2(0, 1)), and

d2u
dt2

∈ L∞([0, T ], B1
2(0, 1)),

3. u satisfying the initial boundary conditions (2) and the integral conditions (11),

4. also the following integral identity is satisfied

(

d2u(t)

dt2
, v

)

B1

2

+

(

du(t)

dt
, v

)

+ (u(t), v) = (f(t), v)B1

2

. (13)

for all v ∈ L2([0, T ], V ) and a.e. t ∈ [0, T ].
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We have the need of the following lemma due to Sloan and Thomme [17] for latter
use.

Lemma 2.1 Let {wl} be a sequence of nonnegative real numbers satisfying

wl ≤ αl +

l−1
∑

i=0

βiwi, l > 0,

where {αl} is a nondecreasing sequence of nonnegative real numbers and βl ≥ 0. Then

wl ≤ αl exp{

l−1
∑

i=0

βi}, l > 0.

3 Discretization Scheme and Priori Estimates

In this section we discretized the problem (9)–(11) and established the estimates. We
shall prove Theorem 5.1 given in the last section with the help of Lemma 3.2 and 4.2
stated and proved in subsequent sections. For a positive integer n, we consider the
discretization

[tnj−1, t
n
j ], tnj = jhn, hn =

T

n
, j = 0, 1, 2, . . . , n;

of the interval [0, T ]. We call un an approximate solution and set un
0 = U0,

un
−1(x) = U0(x) − hnU1(x), (14)

un
−2(x) = h2

n

[

f(0) +
d2U0

dx2
+

d2U1

dx2

]

+ U0 − 2hnU1, (15)

for all n ∈ N. For j = 1, 2, . . . , n, we define un
j the unique solutions of each of the

equations

δ2un
j −

d2δun
j

dx2
−

d2un
j

dx2
= fn

j , x ∈ (0, 1), (16)

∫ 1

0

un
j (x)dx = 0, (17)

∫ 1

0

xun
j (x)dx = 0, (18)

where

δun
j =

un
j − un

j−1

hn

, δ2un
j =

δun
j − δun

j−1

hn

, fn
j = f(tnj ). (19)

The existence of unique un
j ∈ H2 satisfying (16)− (18) is ensured similarly as estab-

lished in [8] Lemma 3.1.

Lemma 3.1 For each n ∈ N and each j = 1, . . . , n, the problem (16)–(18) admits a
unique solution uj ∈ H2(0, 1).

Proof For this purpose, we introduce the following functions

qnj = un
j + δun

j , j = 1, . . . , n. (20)
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If we solve this for un
j we have

un
j =

hn

1 + hn

qnj +
1

1 + hn

un
j−1, j = 1, 2, . . . , n.

And also

δun
j =

1

1 + hn

(qnj − un
j−1), δ2un

j =
1

1 + hn

(δqnj − δun
j−1), j = 1, . . . , n. (21)

Then the problem (16)–(18) is equivalent to the following problem

−
d2qnj
dx2 + 1

hn(1+hn)
qnj = fn

j + 1
1+hn

[δun
j−1 +

1
hn

qnj−1], x ∈ (0, 1), (22)
∫ 1

0 qnj (x)dx = 0,
∫ 1

0 xqnj (x)dx = 0. (23)

For solving the system (22)–(23) we use an idea from [8]. Details are as follows. We
first solve the equation (22) with classical Dirichlet boundary conditions

qnj (0) = λ, and qnj (1) = µ, (24)

where (λ, µ) is for the moment an arbitrary fixed ordered pair of real numbers. For j = 1,
we have

F1 = f1 +
1

1 + hn

[δun
0 +

1

hn

qn0 ] ∈ H,

the Lax-Milgram Lemma guarantees the existence and uniqueness of a strong solution
qn1 ∈ H2(0, 1) of the problem (22)–(24). Step by step each qj is then uniquely determined
in terms of U0, U1, q

n
1 , . . . , q

n
j−1. Let us show that the parameters λ and µ can be chosen

in a way such that the corresponding function qnj (., λ, µ) is also a solution of the problem
(22)–(23) provided that n is large enough. The function qnj (., λ, µ) shall be a solution to
problem (22)–(23) if and only if the pair (λ, µ) satisfies

∫ 1

0

qnj (x, λ, µ)dx = 0, (25)

∫ 1

0

xqnj (x, λ, µ)dx = 0. (26)

Solving (25)–(26) will provide all the solutions to the problem (22)-(23). Let us write
qnj (., λ, µ) as the sum of two functions

qnj (x, λ, µ) = qnj (x, 0, 0) + qnj (x, λ, µ),

where qnj (x, 0, 0) and qnj (x, λ, µ) are solutions to the following problems, respectively:

{

−
d2qnj
dx2 + 1

hn(1+hn)
qnj = Fj ,

qnj (0) = 0 = qnj (1),

{

−
d2qnj
dx2 + 1

hn(1+hn)
qnj = 0, x ∈ (0, 1),

qnj (0) = λ, qnj (1) = µ.
(27)

The solution of the second problem is given by

qnj (x) = a1e
px + a2e

−px, where p =
1

√

hn(1 + hn)
, (28)
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using the boundary conditions, we find the constants as

a1 =
µ− λe−p

ep − e−p
, a2 =

µ− λep

e−p − ep
.

Now putting the function qj(x, λ, µ) in (25)–(26), we have

λ+ µ =
p sinh p

cosh p− 1

∫ 1

0

qj(x, 0, 0)dx, (29)

(p− sinh p)λ+ (sinh p− p coshp)µ = p2 sinh p

∫ 1

0

qj(x, 0, 0)dx. (30)

Determinant of the coefficient of the above system is

D(hn) = 2 sinh p− p cosh p− p.

It can be shown that the real function D(hn) admits a unique real root for all hn > 0,
hence the system (16)-(18) which is equivalent to (22)-(23) is uniquely solvable. This
completes the proof of the lemma. 2

We first obtain the estimates for δun
j and difference quotients {

δun
j −δun

j−1

hn
} using (A1)

and (A2) which in turn imply the uniform bounds of {un
j }. To derive the estimates first

we reformulate the discretized problem in the variational form. Let v be any function
from the space V and

∫ x

0

(x − ξ)v(ξ)dξ = =2
xv, ∀x ∈ (0, 1), (31)

where

=xv =

∫ x

0

v(ξ)dξ, and =2
xv = =x(=xv) =

∫ x

0

dξ

∫ ξ

0

v(s)ds, (32)

with x = 1 in (31), for any v ∈ V we have =2
1v = 0. Now multiplying (16) by =2

xv,
j = 1, 2, . . . , n, and integrating over (0, 1), we get

∫ 1

0 δ2un
j (x)=

2
xv dx−

∫ 1

0

d2δun
j

dx2 (x)=2
xvdx −

∫ 1

0

d2un
j

dx2 (x)=2
xvdx

=
∫ 1

0 fn
j (x)=

2
xvdx. (33)

Now integrating by parts for each term in (33) we have
∫ 1

0

δ2un
j (x)=

2
xv dx =

∫ 1

0

d

dx

(

=x(δ
2un

j )
)

=2
xvdx

= =x(δ
2un

j )=
2
xv|

x=1
x=0 −

∫ 1

0

=x(δ
2un

j )=xvdx

= −(δ2un
j , v)B1

2

.

∫ 1

0

d2δun
j

dx2
(x)=2

xvdx =
dδun

j

dx
(x)=2

xv|
x=1
x=0 −

∫ 1

0

dδun
j

dx
(x)=xvdx

= −

∫ 1

0

dδun
j

dx
(x)=xvdx

= −δun
j (x)=xv|

x=1
x=0 +

∫ 1

0

δun
j (x)v dx

= (δun
j , v),
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and
∫ 1

0

d2un
j

dx2
(x)=2

xvdx = (uj , v),

∫ 1

0

fn
j =

2
xv dx = −(fn

j , v)B1

2

.

Finally, we have the following variational identity

(δ2un
j , v)B1

2

+ (δun
j , v) + (un

j , v) = (fn
j , v)B1

2

. (34)

Throughout, C will represent a generic constant independent of j, hn and n and CT,CeCT

are again replaced by C.

Lemma 3.2 Assume that the hypotheses (A1) and (A2) are satisfied. Then there
exists a positive constant C, independent of j, hn and n such that

‖δun
j ‖ ≤ C, (35)

‖δ2un
j ‖B1

2

≤ C, (36)

n ≥ 1 and j = 1, . . . , n.

Proof For 2 ≤ j ≤ n, putting v = δ2un
j , in (34) we have

(δ2un
j − δ2un

j−1, δ
2un

j )B1

2

+ hn(δ
2un

j , δ
2un

j ) + (δun
j , δu

n
j − δun

j−1)

= (fn
j − fn

j−1, δ
2un

j )B1

2

.

Using the identity
2(u, u− w) = ‖u‖2 − ‖w‖2 + ‖u− w‖2,

we obtain

‖δ2un
j ‖

2
B1

2

− ‖δ2un
j−1‖

2
B1

2

+ ‖δ2un
j − δ2un

j−1‖
2
B1

2

+ hn‖δ
2un

j ‖
2

+ ‖δun
j ‖

2 − ‖δun
j−1‖

2 + ‖δun
j − δun

j−1‖
2 = 2(fn

j − fn
j−1, δ

2un
j )B1

2

. (37)

We neglect the third, forth and the last terms on the left hand side of the equation (37)
to get

‖δ2un
j ‖

2
B1

2

+ ‖δun
j ‖

2 ≤ ‖δ2un
j−1‖

2
B1

2

+ ‖δun
j−1‖

2 + 2(fn
j − fn

j−1, δ
2un

j )B1

2

≤ ‖δ2un
j−1‖

2
B1

2

+ ‖δun
j−1‖

2 + 2‖fn
j − fn

j−1‖B1

2

‖δ2un
j ‖B1

2

.

Repeating the above inequality, we obtain

‖δ2un
j ‖

2
B1

2

+ ‖δun
j ‖

2 ≤ ‖δ2un
1‖

2
B1

2

+ ‖δun
1‖

2 + 2

j−1
∑

i=2

‖fn
j − fn

j−1‖B1

2

‖δ2un
j ‖B1

2

.

Using the Cauchy inequality 2ab ≤ 1
ε
a2 + εb2, a, b ∈ R, ε > 0, with ε = hn and using

assumption (A1), we have the estimate

‖δ2un
j ‖

2
B1

2

+ ‖δun
j ‖

2 ≤ ‖δ2un
1‖

2
B1

2

+ ‖δun
1‖

2 +
1

hn

j−1
∑

i=2

‖f(tnj )− f(tnj−1)‖
2
B1

2

+ hn

j−1
∑

i=2

‖δ2un
j ‖

2
B1

2

≤ ‖δ2un
1‖

2
B1

2

+ ‖δun
1‖

2 + CT + hn

j−1
∑

i=0

‖δ2un
j ‖

2
B1

2

. (38)
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From Lemma 2.1 we get the estimate

‖δ2un
j ‖

2
B1

2

+ ‖δun
j ‖

2 ≤
[

‖δ2un
1‖

2
B1

2

+ ‖δun
1‖

2 + CT
]

exp{(j − 1)hn}. (39)

To estimate the right hand side in (39), we use the variational identity (34) for j = 1

and v = δ2un
1 =

δun
1
−U1

hn
, to obtain

(δ2un
1 , δ

2un
1 )B1

2

+ (δun
1 , δ

2un
1 ) +

(

u1,
δun

1 − U1

hn

)

= (fn
1 , δ

2un
1 )B1

2

. (40)

Rearranging the terms, we get

‖δ2un
1‖

2
B1

2

+ hn‖δ
2un

1‖
2 + (δun

1 , δu
n
1 − U1) = (fn

1 , δ
2un

1 )B1

2

− (δu0, δ
2un

1 )

−(U0, δ
2un

1 ). (41)

Again by using the equality 2(u, u− w) = ‖u‖2 − ‖w‖2 + ‖u− w‖2, we have

‖δ2un
1‖

2
B1

2

+ hn‖δ
2un

1‖
2 + 1

2{‖δu
n
1‖

2 + ‖δun
1 − U1‖

2 − ‖U1‖
2}

= (fn
1 , δ

2un
1 )B1

2

− (U1, δ
2un

1 )− (U0, δ
2un

1 ). (42)

The second term on the right hand side of (42) gives us

(U1, δ
2un

1 ) =

∫ 1

0

U1(x)
d

dx
(=xδ

2un
1 )dx

= U1(x)=xδ
2u1|

x=1
x=0 −

∫ 1

0

dU1

dx
(x)=xδu

n
1dx

= −

∫ 1

0

dU1

dx
(x)=xδu

n
1dx. (43)

Using =x(
d2U1

dx2 ) = dU1

dx
(x) − dU1

dx
(0), for all x ∈ (0, 1), in equation (43) we obtain

(U1, δ
2un

1 ) = −

(

d2U1

dx2
, δ2un

1

)

B1

2

.

Similarly, we may write

(U0, δ
2un

1 ) = −

(

d2U0

dx2
, δ2un

1

)

B1

2

.

From (42), we obtain

2‖δ2un
1‖

2
B1

2

+ ‖δun
1‖

2

≤ ‖U1‖
2 + 2

[

∥

∥

∥

∥

fn
1 +

d2U1

dx2
+

d2U0

dx2

∥

∥

∥

∥

B1

2

]

‖δ2un
1‖B1

2

≤ ‖U1‖
2 +

∥

∥

∥

∥

fn
1 +

d2U1

dx2
+

d2U0

dx2

∥

∥

∥

∥

2

B1

2

+ ‖δ2un
1‖

2
B1

2

. (44)
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Thus, from (44), we have

‖δ2un
1‖

2
B1

2

+ ‖δun
1‖

2 ≤ ‖U1‖
2 +

∥

∥

∥

∥

fn
1 +

d2U1

dx2
+

d2U0

dx2

∥

∥

∥

∥

2

B1

2

= C1. (45)

Finally we estimate (39) as

‖δ2un
j ‖

2
B1

2

+ ‖δun
j ‖

2 ≤ C1 exp{CT }. (46)

This completes the proof of the lemma. 2

Remark 3.1 Estimates of Lemma 3.2 imply that for all n and j = 1, 2, . . . , n, ‖un
j ‖ ≤

C.

Definition 3.1 We define Rothe’s sequence {Un} and {V n} of functions from [0, T ]
into H2 ∩V, given by

Un(t) = un
j−1 + (t− tnj−1)δu

n
j , t ∈ [tnj−1, t

n
j ], j = 1, 2, . . . , n,

V n(t) = δun
j−1 + (t− tnj−1)δ

2un
j , t ∈ [tnj−1, t

n
j ], j = 1, 2, . . . , n.

Furthermore, we define another set of sequences {Xn}, {Y n} and {Ỹ n} of step functions
given by

Xn(t) = U0, t ∈ (−hn, 0], Xn(t) = un
j , t ∈ (tnj−1, t

n
j ],

Y n(t) = U1, t ∈ (−hn, 0], Y n(t) = δun
j , t ∈ (tnj−1, t

n
j ],

Ỹ n(t) = δ2un
1 , t = 0, Ỹ n(t) = δ2un

j , t ∈ (tnj−1, t
n
j ].

for j = 1, 2, . . . , n.

Remark 3.2 From Lemma 3.2 it follows that

1. The functions {Un(t)} and {V n(t)} are Lipschitz continuous on [0, T ] with uniform
Lipschitz constant C, i.e.

‖Un(t)− Un(s)‖ ≤ C|t− s|, ‖V n(t)− V n(s)‖B1

2

≤ C|t− s|.

2. The sequences {Un(t)}, {Xn(t)} are bounded in the space L2([0, T ];V ) and the
sequences {V n(t)}, {Y n(t)} are bounded in the space L2([0, T ];B1

2(0, 1)) uniformly
for all t ∈ [0, T ] and n ∈ N. Also we have

∥

∥

∥

∥

dUn

dt
(t)

∥

∥

∥

∥

≤ C,

∥

∥

∥

∥

dV n

dt
(t)

∥

∥

∥

∥

B1

2

≤ C.

3. The sequence Xn(t)− Un(t), Un(t)−Xn(t− hn) and Y n(t) − Y n(t− hn) → 0 in
L2([0, T ], V ) as n → ∞. Also the sequence Y n(t)−V n(t) → 0 in L2([0, T ], B1

2(0, 1))
as n → ∞. These results follow due to the following inequalities

∥

∥

∥

∥

V n(t)−
dUn

dt
(t)

∥

∥

∥

∥

B1

2

≤ Chn,

‖Xn(t)− Un(t)‖ ≤
C

n
, and ‖Un(t)−Xn(t− hn)‖ ≤

C

n
,

‖Y n(t)− V n(t)‖B1

2

≤ Chn, and ‖Y n(t)− Y n(t− hn)‖ ≤ Chn.
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4 Convergence and Existence Result

In this section we establish the existence and uniqueness of a weak solution to (9)–(11).

Lemma 4.1 There exist two functions u ∈ L2([0, T ];V ) ∩ L∞([0, T ];V ) with u′ ∈
L2([0, T ];B1

2(0, 1))∩L
∞([0, T ];B1

2(0, 1)) and w ∈ L2([0, T ];B1
2(0, 1))∩L

∞([0, T ];B1
2(0, 1))

with w′ ∈ L2([0, T ];B1
2(0, 1)) such that

Unp ⇀ u in L2([0, T ];V ), (47)

V np ⇀ w, in L2([0, T ];B1
2(0, 1)). (48)

Furthermore, we have that

dUnp

dt
⇀

du

dt
in L2([0, T ];B1

2(0, 1)), (49)

du

dt
= w on [0, T ] and

d2u

dt2
=

dw

dt
a.e. on [0, T ], (50)

where “ ⇀ ” stands for the weak convergence.

Proof Remark 3.2 we know that the sequences {Xn} and {Y n} are bounded in
L2([0, T ];V ), while the sequence {Ỹ n} is bounded in L2([0, T ];B1

2(0, 1)). It follows that
subsequences {Xnp}, {Y np} and {Ỹ np} can be found such that

Xnp ⇀ u in L2([0, T ];V ),

Y np ⇀ w in L2([0, T ];B1
2(0, 1)),

Ỹ np ⇀ w̃ in L2([0, T ];B1
2(0, 1)).

Similarly as in the preceding chapters, one finds that

Unp ⇀ u in L2([0, T ];V ),

dUnp

dt
⇀

du

dt
in L2([0, T ];V ),

V np ⇀ w in L2([0, T ];B1
2(0, 1)).

Now, we show that w = du
dt
. For all v ∈ L2([0, T ], B1

2(0, 1)), we have
(

V np −
du

dt
, v

)

L2([0,T ];B1

2
(0,1))

=

(

V np −
dUnp

dt
, v

)

L2([0,T ];B1

2
(0,1))

+

(

dUnp

dt
−

du

dt
, v

)

L2([0,T ];B1

2
(0,1))

≤

∥

∥

∥

∥

V np −
dUnp

dt

∥

∥

∥

∥

L2([0,T ];B1

2
(0,1))

‖v‖L2([0,T ];B1

2
(0,1))

+

(

dUnp

dt
−

du

dt
, v

)

L2([0,T ];B1

2
(0,1))

. (51)

From Remark 3.2 and dUnp

dt
⇀ du

dt
in L2([0, T ];V ), we have

(

V np −
du

dt
, v

)

L2([0,T ];B1

2
(0,1))

≤ Chn‖v‖L2([0,T ];B1

2
(0,1))

+

(

dUnp

dt
−

du

dt
, v

)

L2([0,T ];B1

2
(0,1))

. (52)
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Hence we conclude that as p → ∞,

V np ⇀
du

dt
in L2([0, T ];B1

2(0, 1)).

Since V np ⇀ w as p → ∞, we have w = du
dt

and also w̃ = dw
dt

= d2u
dt2

. This can also be
achieved by another way by considering the following equalities

Unp(t)− U0 =

∫ t

0

Y np(s)ds in L2([0, T ];V ), (53)

V np(t)− U1 =

∫ t

0

Ỹ np(s)ds in L2([0, T ];B1
2(0, 1)). (54)

The above equalities can be ensured directly from the construction of Un, V n, Y n and
Ỹ n. It follows due to the above convergence result that

u(t)− U0 =

∫ t

0

w(s)ds in L2([0, T ];V ), (55)

w(t) − U1 =

∫ t

0

w̃(s)ds in L2([0, T ];B1
2(0, 1)), (56)

which imply that u ∈ C([0, T ];V ) and strongly differentiable a.e. in [0, T ] with

w = du
dt

and also w̃ = dw
dt

= d2u
dt2

. Now we show that u ∈ L∞([0, T ];V ) and
u′, w ∈ L∞([0, T ];B1

2(0, 1)). The estimate ‖un
j ‖ ≤ C, implies that the Rothe’ sequence

{Un} is bounded in L∞([0, T ];V ). Hence a subsequence {Unk} of {Un} can be found
converging weakly to a function z ∈ L∞([0, T ], V ), which is easily shown to be equal to
the function u. The second assertion u′, w ∈ L∞([0, T ];B1

2(0, 1)) is obtained similarly.
This completes the proof of the lemma. 2

Thus, from Lemma 4.1 we conclude the following:

u ∈ AC([0, T ];V ),

u′ ∈ L2([0, T ];V ) ∩ AC([0, T ];B1
2(0, 1)),

u′′ ∈ L2([0, T ];B1
2(0, 1)),

u(0) = U0 and u′(0) = U1 in C([0, T );B1
2(0, 1)),

where AC([0, T ];V ) denotes a space of all absolutely continuous functions from [0, T ]
into V .

For the notational convenience, let

fn(0) = f0, fn(t) = f(tnj ), t ∈ (tnj−1, t
n
j ], 1 ≤ j ≤ n.

Then (34) may be rewritten as
(

dV n

dt
(t), v

)

B1

2

+ (Y n(t), v) + (Xn(t− hn), v) = (fn(t), v)B1

2

, (57)

for all v ∈ V and a.e. t ∈ (0, T ].

Lemma 4.2 There exist u ∈ C([0, T ];V ) and w ∈ C([0, T ];B1
2(0, 1)) such that

‖Un − u‖C([0,T ];V ) → 0 and ‖V n − w‖C([0,T ];B1

2
(0,1)) → 0, (58)

as n → ∞. Moreover u and w are Lipschitz continuous on [0, T ].
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Proof For m > n > n0, we consider the Rothe functions Un and Um corresponding
to the step lengths hn = T

n
and hm = T

m
. From (57) taking v = Y n(t)− Y m(t), we have

(

d

dt
(V n(t)− V m(t)), Y n(t)− Y m(t)

)

B1

2

+ (Y n(t)− Y m(t), Y n(t)− Y m(t))

+ (Xn(t− hn)−Xm(t− hm), Y n(t)− Y m(t))

= (fn(t)− fm(t), Y n(t)− Y m(t))B1

2

. (59)

Now the first term of the left hand side in (59) can be written as
(

d

dt
(V n(t)− V m(t)), Y n(t)− Y m(t)

)

B1

2

=

(

d

dt
(V n(t)− V m(t)), Y n(t)− V n(t) + V m(t)− Y m(t)

)

B1

2

+

(

d

dt
(V n(t)− V m(t)), V n(t)− Vm(t)

)

B1

2

. (60)

Similarly we may write the third term of (59) as

(Xn(t− hn)−Xm(t− hm), Y n(t)− Y m(t))

= (Xn(t− hn)− Un(t) + Um(t)−Xm(t− hm), Y n(t)− Y m(t))

+ (Un(t)− Um(t), Y n(t)− Y m(t)). (61)

Combining the equations (60)–(61) and using the fact that Y n(t) = dUn

dt
(t), equation

(59) becomes

1

2

d

dt
‖V n(t)− V m(t)‖2B1

2

+
1

2

d

dt
‖Un(t)− Um(t)‖2 + ‖Y n(t)− Y m(t)‖2

=

(

d

dt
(V n(t)− V m(t)), V n(t)− Y n(t) + Y m(t)− V m(t)

)

B1

2

+ (Xn(t− hn)− Un(t) + Um(t)−Xm(t− hm), Y m(t)− Y n(t))

+ (fn(t)− fm(t), Y n(t)− Y m(t))B1

2

. (62)

The first term on the right hand side of (62) is estimated as
(

d

dt
(V n(t)− V m(t)), V n(t)− Y n(t) + Y m(t)− V m(t)

)

B1

2

≤

[

∥

∥

∥

∥

dV n(t)

dt

∥

∥

∥

∥

B1

2

+

∥

∥

∥

∥

dV m(t)

dt

∥

∥

∥

∥

B1

2

]

[

‖V n(t)− Y n(t)‖B1

2

+ ‖Y m(t)− V m(t)‖B1

2

]

≤ C(hn + hm). (63)

Similarly, we have

(Xn(t− hn)− Un(t) + Um(t)−Xm(t− hm), Y m(t)− Y n(t))

≤ [‖Xn(t− hn)− Un(t)‖+ ‖Um(t)−Xm(t− hm)‖] [‖Y m(t)‖+ ‖Y n(t)‖]

≤ C(hn + hm). (64)
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The last term in (62) is estimated as

(fn(t)− fm(t), Y n(t)− Y m(t))B1

2

≤ ‖fn(t)− fm(t)‖B1

2

‖Y n(t)− Y m(t)‖B1

2

≤
1

2
‖fn(t)− fm(t)‖2B1

2

+
1

2
‖Y n(t)− Y m(t)‖2B1

2

≤ εnm +
1

2
‖V n(t)− V m(t)‖2B1

2

, (65)

where

εnm = C(hn + hm) + C(hn + hm)2 + C(hn + hm)‖V n(t)− V m(t)‖B1

2

,

is a sequence of real numbers tending to zero as n,m → ∞. Now using (63)–(64) and
(65), (62) becomes

d

dt
‖V n(t)− V m(t)‖2B1

2

+
d

dt
‖Un(t)− Um(t)‖2

= ε1nm + ‖V n(t) − Vm(t)‖2B1

2

+ ‖Un(t)− Um(t)‖2, (66)

where ε1nm is another sequence of numbers tending to zero as n,m → ∞. Integrating
the last inequality over (0, t) and using Un(0) = Um(0) = U0, V

n(0) = V m(0) = U1, we
have

‖V n(t)− Vm(t)‖2B1

2

+ ‖Un(t)− Um(t)‖2

= ε1nmT +

∫ t

0

‖V n(s)− V m(s)‖2B1

2

ds+

∫ t

0

‖Un(s)− Um(s)‖2ds. (67)

Application of Gronwall’s inequality implies that

‖V n(t)− Vm(t)‖2B1

2

+ ‖Un(t)− Um(t)‖2 ≤ (ε1nmT ) exp{T }. (68)

Taking the supremum over t ∈ [0, T ] we conclude that there exist functions u ∈
C([0, T ];V ) and w ∈ C([0, T ];B1

2(0, 1)) such that Un → u and V n → w as n → ∞.
By Remark 3.2 it follows that u, and w are Lipschitz continuous functions. This com-
pletes the proof of the lemma. 2

5 Main Result

In this section we conclude our main result. We summarize the result so far obtained by
previous Lemmas 4.1 and 4.2 in Remark 5.1 below.

Remark 5.1 By Remark 3.2 and Lemma 4.2, we conclude the following:

1. u ∈ L2([0, T ];V ) ∩ Lip([0, T ];V );

2. u is strongly differentiable a.e. in [0, T ] and du
dt

∈ L∞([0, T ];V );

3. Xn(t) ⇀ u(t) in V for all t ∈ [0, T ]; and dUn

dt
⇀ du

dt
in L2([0, T ];V );

4. w ∈ Lip([0, T ];B1
2(0, 1)); w is strongly differentiable a.e in [0, T ] and

dw
dt

∈ L∞([0, T ];B1
2(0, 1));
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5. Y n(t) ⇀ w(t) in V for all t ∈ [0, T ]; and dV n

dt
⇀ dw

dt
in L2([0, T ];B1

2(0, 1)).

Thus, by the definition of weak solution stated in Definition 2.1 the function u(t)
possesses several characteristic properties. Since u ∈ L2([0, T0];V ) we have for almost all
t ∈ [0, T ], u ∈ V . Hence the integral boundary conditions (11) are satisfied. The initial
condition is fulfilled in the sense of the equations (55) and (56). Now the question is in
what sense the given differential equation equation (9) is satisfied. The answer to this
question lies in the proof of the main theorem of this article.

Theorem 5.1 Suppose that the conditions (A1) and (A2) are satisfied. Then prob-
lem (9)–(11) has a unique weak solution on [0, T ]. For the sets of data (U i

0, U
i
1, f

i), the
corresponding solutions ui, i = 1, 2, satisfy the following estimate

∥

∥

∥

∥

d

dt
(u1(t)− u2(t))

∥

∥

∥

∥

2

B1

2

+
∥

∥u1(t)− u2(t)
∥

∥

2

≤

(

‖U1
1 − U2

1 ‖
2
B1

2

+ ‖U1
0 − U2

0 ‖
2 +

∫ t

0

‖f1(s)− f2(s)‖2B1

2

ds

)

exp{t} (69)

which shows the continuous dependence of the solutions on the data.

Proof Now we prove the existence on [0, T ]. Integrating the identity (57) over (0, t) ⊂
[0, T ] and invoking the fact that V n(0) = U1, we have

(V n(t)− U1, v)B1

2

+
∫ t

0 (Y
n(s), v) ds+

∫ t

0 (X
n(s), v) ds

=
∫ t

0
(fn(s), v)B1

2

ds. (70)

Since V n(t) ⇀ du(t)
dt

in V for all t ∈ [0, T ], we have

(V n(t)− U1, v)B1

2

→

(

du(t)

dt
− U1, v

)

B1

2

, as n → ∞. (71)

The linear functionals (Y n(s), v) and (Xn(s), v) are bounded onV, hence by the bounded
convergence theorem as n → ∞,

∫ t

0

(Y n(s), v)ds →

∫ t

0

(

du(s)

dt
, v

)

ds, ∀ t ∈ [0, T ], (72)

∫ t

0

(Xn(s), v)ds →

∫ t

0

(u(s), v)ds, ∀ t ∈ [0, T ]. (73)

Assumption (A1) implies that ‖fn(s)− f(s)‖B1

2

≤ C
n

a.e. in [0, T ]. Hence

‖fn(s)− f(s)‖L2([0,T ];B1

2
(0,1)) → 0 as n → ∞. (74)

This implies that fn(s) → f(s) in L2([0, T ];B1
2(0, 1)) as n → ∞. Now, by taking into

account the convergence result (71)–(74) and passing to the limit as n → ∞, in (70) we
have

(

du

dt
(t)− U1, v

)

B1

2

+

∫ t

0

(

du

dt
(s), v

)

ds+

∫ t

0

(u(s), v)ds =

∫ t

0

(f(s), v)B1

2

ds,
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for all v ∈ V and t ∈ [0, T ]. Differentiating the above identity we get the desired result,
(

d2u

dt2
(t), v

)

B1

2

+

(

du

dt
(t), v

)

+ (u(t), v) = (f(t), v)B1

2

.

Uniqueness: Let u1 and u2 be two such solutions of (9)-(11). Let we denote the
difference of these two solutions by u(t) = u1(t) − u2(t), Then from (13), by taking

v = du(t)
dt

, we have

(

d2u(t)

dt2
,
du(t)

dt

)

B1

2

+

∥

∥

∥

∥

du(t)

dt

∥

∥

∥

∥

2

+

(

u(t),
du(t)

dt

)

= 0. (75)

Since
(

d2u(t)

dt2
,
du(t)

dt

)

B1

2

=
1

2

d

dt

∥

∥

∥

∥

du(t)

dt

∥

∥

∥

∥

2

B1

2

and

(

u(t),
du(t)

dt

)

=
1

2

d

dt
‖u(t)‖2.

Then, (75) is written as

1

2

d

dt

∥

∥

∥

∥

du(t)

dt

∥

∥

∥

∥

2

B1

2

+

∥

∥

∥

∥

du(t)

dt

∥

∥

∥

∥

2

+
1

2

d

dt
‖u(t)‖2 = 0. (76)

Integrating over (0, s) for 0 ≤ s ≤ t ≤ T and using the fact that u(0) ≡ 0 and du(0)
dt

= 0,
we get

∥

∥

∥

∥

du(t)

dt

∥

∥

∥

∥

2

B1

2

+

∫ t

0

∥

∥

∥

∥

du(s)

ds

∥

∥

∥

∥

2

ds+ ‖u(t)‖2 = 0,

consequently
∥

∥

∥

∥

du(t)

dt

∥

∥

∥

∥

2

B1

2

+ ‖u(t)‖2 ≤ 0.

Application of the Gronwall’s inequality implies that u ≡ 0 on [0, T ].

Continuous dependence: let u1 and u2 be two weak solutions of the problem (9)–
(11), corresponding to (U1

0 , U
1
1 , f

1) and (U2
0 , U

2
1 , f

2), respectively and the initial data
satisfy the assumptions (A1) and (A2), from (13), putting v = d

dt
(u1(t)−u2(t)), we have

(

d2

dt2
(u1(t)− u2(t)),

d

dt
(u1(t)− u2(t))

)

B1

2

+

∥

∥

∥

∥

d

dt
(u1(t)− u2(t)

∥

∥

∥

∥

2

+

(

u1(t)− u2(t),
d

dt
(u1(t)− u2(t)

)

=

(

f1(t)− f2(t),
d

dt
(u1(t)− u2(t)

)

B1

2

.

Similarly, as in the uniqueness we may drop the middle term, we get

d

dt

∥

∥

∥

∥

d

dt
(u1(t)− u2(t))

∥

∥

∥

∥

2

B1

2

+
d

dt
‖u1(t)− u2(t)‖2

≤ 2‖f1(t)− f2(t)‖B1

2

∥

∥

∥

∥

d

dt
(u1(t)− u2(t))

∥

∥

∥

∥

B1

2

≤ ‖f1(t)− f2(t)‖2B1

2

+

∥

∥

∥

∥

d

dt
(u1(t)− u2(t))

∥

∥

∥

∥

2

B1

2

.
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Integrating over (0, s) for 0 ≤ s ≤ t ≤ T and using the fact that ui(0) = U i
0 and

dui(0)/dt = U i
1, for i = 1, 2, we get

∥

∥

∥

∥

d

dt
(u1(t)− u2(t))

∥

∥

∥

∥

2

B1

2

+ ‖u1(t)− u2(t)‖2

≤ ‖U1
1 − U2

1 ‖
2
B1

2

+ ‖U1
0 − U2

0 ‖
2 +

∫ t

0

‖f1(s)− f2(s)‖2B1

2

ds

+

∫ t

0

∥

∥

∥

∥

d

dt
(u1(s)− u2(s))

∥

∥

∥

∥

2

B1

2

ds+

∫ t

0

‖u1(s)− u2(s)‖2ds.

Application of the Gronwall inequality leads to the estimate
∥

∥

∥

∥

d

dt
(u1(t)− u2(t))

∥

∥

∥

∥

2

B1

2

+ ‖u1(t)− u2(t)‖2

≤ {‖U1
1 − U2

1 ‖
2
B1

2

+ ‖U1
0 − U2

0 ‖
2 +

∫ t

0

‖f1(s)− f2(s)‖2B1

2

ds} exp {t}.

This completes the proof of the theorem. 2

6 Application

Example 6.1 In this example we consider the following problem

∂2u

∂t2
(x, t)−

∂3u

∂t∂x2
(x, t) −

∂2u

∂x2
(x, t) = sinx cos t, (x, t) ∈ (0, π)× [0, T ], (77)

u(x, 0) = 0,
∂u

∂t
(x, 0) = sinx, x ∈ (0, π), (78)

∫ π

0

u(x, t)dx = 2 sin t,

∫ π

0

xu(x, t)dx = π sin t, t ∈ [0, T ]. (79)

We notice that u = sinx sin t is an exact solution of the above problem. The results of
the earlier sections may be used to ensure the well-posedness of this model. We shall
be dealing with the problem involving the Neumann condition together with nonlocal
integral conditions of first kind in our subsequent study.
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