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1 Introduction

Given a time scale T, a collection of measurable real functions X = {X(t) : t ∈ T},
defined on a measurable space (Ω,F), will be referred to as a stochastic process indexed
by T [15, 19, 30]. We consider the Itô–Volterra dynamic equation of the form

∆X = (a ∗X)(t)∆t+ (b ∗X)(t)∆V, X(t0) = X0, (1.1)

where a, b : T → R, a ∗X is the convolution of a and X defined in Definition 2.2, V is
the solution of

∆V =
√

µ(t)∆W, V (t0) = V0, (1.2)

and X = {X(t) : t ∈ T} is a stochastic process indexed by an isolated time scale T,
and µ(t) = σ(t) − t with σ(t) = inf{s ∈ T : s > t}. In (1.2), W is one-dimensional
Brownian motion indexed by a time scale T which is defined as an adapted stochastic
process W = {W (t),F(t) : t ∈ T} on a probability space (Ω,F ,P), with the following
properties: (a) W (t0) = 0 a.s.; (b) if t0 ≤ s < t and s, t ∈ T, then the increment
∆W (t) = W (σ(t))−W (t) is independent of F(s) and is normally distributed with mean
zero and variance µ(t).
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Since V ∆(t) = ∆V (t)/∆t = ∆W (t)/
√
µ(t), we observe that {V ∆(t) : t ∈ T} are i.i.d.

random variables which generate a natural filtration {F(t) : t ∈ T} on some probability

space (Ω,F ,P) with E[V ∆(t)] = 0 and E

[(
V ∆(t)

)2]
= 1, where E is the expectation

with respect to the probability measure P. Throughout the paper we assume that X(τ)
is independent of V ∆(t) for τ ∈ [t0, t).

For time scale calculus we refer to [14]; for integral equations of Volterra type we
refer to [16,23,24]. Stability and convergence of solutions of Volterra equations, likewise,
has been discussed in [2–6, 17, 18, 20–22, 25–29]. For improper integrals and multiple
integration on time scales we refer to [1, 7, 8, 10, 11, 13], and for partial differentiation on
time scales we refer to [9].

The organization of the paper is as follows. Section 2 presents core definitions and
concept of convolution on a time scale. In Section 3, we derive new conditions that
guarantee the mean square stability of (1.1) on an isolated time scale. Our attempt is
to make the mathematical discussion that follows as self contained as is practical.

2 Convolution

Convolution on time scales was introduced by Bohner and Guseinov in [12]. In this
section we present a brief survey. Let supT = ∞ and fix −∞ < t0 ∈ T.

Definition 2.1 For b : T → R, the shift (or delay) b̃ of b is the function b̃ : T×T → R

given by

b̃∆t(t, σ(s)) = −b̃∆s(t, s), t, s ∈ T, t ≥ s ≥ t0,

b̃(t, t0) = b(t), t ∈ T, t ≥ t0,
(2.1)

where ∆t is the partial ∆-derivative with respect to t.

Example 2.1 For the forward difference operator, the problem (2.1) takes the form

µ(s)∆tb̃(t, σ(s)) = −µ(t)∆sb̃(t, s), t, s ∈ T, t ≥ s ≥ t0,

b̃(t, t0) = b(t), t ∈ T, t ≥ t0.
(2.2)

Example 2.2 For T = R, the problem (2.1) takes the form

∂b̃(t, s)

∂t
= −

∂b̃(t, s)

∂s
, b̃(t, t0) = b(t), (2.3)

and its unique solution is b̃(t, s) = b(t− s+ t0).

Example 2.3 For T = Z, the problem (2.1) takes the form

b̃(t+ 1, s+ 1)− b̃(t, s+ 1) = −b̃(t, s+ 1) + b̃(t, s), b̃(t, t0) = b(t), (2.4)

and its unique solution is again b̃(t, s) = b(t− s+ t0).

Lemma 2.1 If b̃ is the shift of b, then b̃(t, t) = b(t0) for all t ∈ T.
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Definition 2.2 The convolution of two functions b, r : T → R, b ∗ r is defined as

(b ∗ r)(t) =

∫ t

t0

b̃(t, σ(s))r(s)∆s, t ∈ T, (2.5)

where b̃ is given by (2.1).

Example 2.4 For T = N0 and n ∈ N0, (2.5) reduces to

(b ∗ r)(n) =

n−1∑

i=0

b(n− i− 1)r(i). (2.6)

Theorem 2.1 The shift of a convolution is given by the formula

(b̃ ∗ r)(t, s) =

∫ t

s

b̃(t, σ(l))r̃(l, s)∆l. (2.7)

Example 2.5 For T = N0 and m,n ∈ N0, (2.7) reduces to

(b̃ ∗ r)(n,m) =

n−1∑

i=m

b(n− i− 1)r(i −m). (2.8)

Theorem 2.2 The convolution is associative, that is,

(a ∗ f) ∗ r = a ∗ (f ∗ r). (2.9)

Proof We use Theorem 2.1. Then

((a ∗ f) ∗ r)(t) =

∫ t

t0

(ã ∗ f)(t, σ(s))r(s)∆s

=

∫ t

t0

∫ t

σ(s)

ã(t, σ(u))f̃ (u, σ(s))r(s)∆u∆s

=

∫ t

t0

∫ u

t0

ã(t, σ(u))f̃(u, σ(s))r(s)∆s∆u

=

∫ t

t0

ã(t, σ(u))(f ∗ r)(u)∆u

= (a ∗ (f ∗ r))(t),

where on the second equality we have used (2.7). Hence, the associative property holds.

Theorem 2.3 If r is delta differentiable, then

(r ∗ f)∆ = r∆ ∗ f + r(t0)f (2.10)

and if f is delta differentiable, then

(r ∗ f)∆ = r ∗ f∆ + rf(t0). (2.11)
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Proof First note that

(r ∗ f)∆(t) =

∫ t

t0

r∆t(t, σ(t))f(s)∆s + r̃(σ(t), σ(t))f(t).

From here, since r̃(σ(t), σ(t)) = r(t0) by Lemma 2.1, and since

r̃∆(t, s) = r̃∆t(t, s),

the first equal sign of the statement follows. For the second equal sign, we use the
definition of r̃ and integration by parts:

(r ∗ f)∆(t) = −

∫ t

t0

r̃∆s(t, s)f(s)∆s+ r(t0)f(t)

= −

∫ t

t0

(
(r̃(t, ·)f)∆ − r̃(t, σ(s))f∆(s)

)
∆s+ r(t0)f(t)

= −r̃(t, t)f(t) + r̃(t, t0)f(t0) +

∫ t

t0

r̃(t, σ(s))f∆(s)∆s+ r(t0)f(t)

= (r ∗ f∆)(t) + r(t)f(t0).

This completes the proof.

3 Mean-Square Stability

In this section we study the mean-square stability of (1.1).

Definition 3.1 A stochastic process indexed by a time scale X = {X(t) : t ∈ T} and
defined on some probability space (Ω,F ,P) is mean square stable if E

[
X2
]
∈ L1

∆(T),
i.e., ∫

T

E
[
X2(τ)

]
∆τ < ∞,

where E is the expectation with respect to the probability measure P.

In the definition above and henceforth, Lp
∆(T) for p > 0 would represent the space of

all functions f : T → R, such that
∫
T
|f |p(τ)∆τ < ∞.

Theorem 3.1 If X(t) is represented as

X(t) = r(t)X0 + (r ∗ f)(t), (3.1)

where

r∆(t) = (a ∗ r)(t), r(t0) = 1, (3.2)

and

f(t) = (b ∗X)(t)V ∆(t). (3.3)

then X is a solution of the Itô–Volterra dynamic equation

∆X = (a ∗X)(t)∆t+ (b ∗X)(t)∆V, X(t0) = X0. (3.4)
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Proof From (3.1) we have

∆X(t) = r∆(t)X0∆t+ (r ∗ f)∆(t)∆t

= (a ∗ r)(t)X0∆t+ (r∆ ∗ f)(t)∆t+ f(t)∆t

= (a ∗ (rX0))(t)∆t + (r∆ ∗ f)(t)∆t+ f(t)∆t

= (a ∗ (X − r ∗ f))(t)∆t + (r∆ ∗ f)(t)∆t+ f(t)∆t

= (a ∗X)(t)∆t− (a ∗ (r ∗ f))(t)∆t+ ((a ∗ r) ∗ f)(t)∆t+ f(t)∆t

= (a ∗X)(t)∆t+ f(t)∆t

= (a ∗X)(t)∆t+ (b ∗X)(t)∆V (t),

where on the second equality we have used (2.10) and on the sixth equality we have used
Theorem 2.2.

Lemma 3.1 If f is given by (3.3), then E[f(t)] = 0 and

E[f(t)f(s)] =





∫ t

t0

∫ t

t0

b̃(t, σ(t1))b̃(t, σ(t2))E [X(t1)X(t2)] ∆t1∆t2 =: φ(t) if s = t

0 if s 6= t.

Proof We first note that

E[f(t)] = E

[∫ t

t0

b̃(t, σ(τ))X(τ)V ∆(t)∆τ

]

=

∫ t

t0

b̃(t, σ(τ))E[X(τ)V ∆(t)]∆τ

=

∫ t

t0

b̃(t, σ(τ))E [X(τ)]E[V ∆(t)]∆τ

= 0,

by the assumption that X(τ) is independent of V ∆(t) for τ ∈ [t0, t) and E
[
V ∆(t)

]
= 0.

Next, we consider

E[f(t)f(s)]

= E

[∫ t

t0

b̃(t, σ(t1))X(t1)V
∆(t)∆t1

∫ s

t0

b̃(s, σ(t2))X(t2)V
∆(s)∆t2

]

= E

[∫ t

t0

∫ s

t0

b̃(t, σ(t1))b̃(s, σ(t2))X(t1)X(t2)V
∆(t)V ∆(s)∆t1∆t2

]

=

∫ t

t0

∫ s

t0

b̃(t, σ(t1))b̃(s, σ(t2))E
[
X(t1)X(t2)V

∆(t)V ∆(s)
]
∆t1∆t2

=

∫ t

t0

∫ s

t0

b̃(t, σ(t1))b̃(s, σ(t2))E [X(t1)X(t2)]E
[
V ∆(t)V ∆(s)

]
∆t1∆t2

=





∫ t

t0

∫ t

t0

b̃(t, σ(t1))b̃(t, σ(t2))E [X(t1)X(t2)] ∆t1∆t2 if s = t

0 if s 6= t,

where on the fourth equation we have used the assumption that X(τ) is independent of
V ∆(t) for τ ∈ [t0, t) and on fifth equation we have used E[V ∆(t)] = 0 and E[(V ∆(t))2] =
1 > 0.
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Lemma 3.2 If X(t) = r(t)X0 + (r ∗ f)(t), then

E[X(l)X(m)] = r(l)r(m)X2
0 +

∫ l∧m

t0

r̃(l, σ(s))r̃(m,σ(s))φ(s)∆s,

where φ is as in Lemma 3.1 and l ∧m = min(l,m).

Proof From (3.1) we have,

E[X(l)X(m)] = E [{r(l)X0 + (r ∗ f)(l)}{r(m)X0 + (r ∗ f)(m)}]

= r(l)r(m)X2
0

+

∫ l

t0

∫ m

t0

r̃(l, σ(s1))r̃(m,σ(s2))E [f(s1)f(s2)] ∆s1∆s2

= r(l)r(m)X2
0 +

∫ l∧m

t0

r̃(l, σ(s))r̃(m,σ(s))E
[
f2(s)

]
∆s

= r(l)r(m)X2
0 +

∫ l∧m

t0

r̃(l, σ(s))r̃(m,σ(s))φ(s)∆s,

where on the second equality we have used the fact that E [f(t)] = 0 and on the third
equality we have used Lemma 3.1.

Lemma 3.3 The function φ defined in Lemma 3.1 is given by

φ(t) = (b ∗ r)2(t)X2
0 +

∫ t

t0

(b̃ ∗ r)2(t, σ(s))φ(s)∆s.

Proof Using Lemma 3.1, Lemma 3.2 and (2.5), we have

φ(t) =

∫ t

t0

∫ t

t0

b̃(t, σ(l))b̃(t, σ(m))E [X(l)X(m)]∆l∆m

=

∫ t

t0

∫ t

t0

b̃(t, σ(l))b̃(t, σ(m))r(l)r(m)X2
0∆l∆m

+

∫ t

t0

∫ t

t0

b̃(t, σ(l))b̃(t, σ(m))

∫ l∧m

t0

r̃(l, σ(s))r̃(m,σ(s))φ(s)∆s∆l∆m

=

∫ t

t0

∫ t

t0

b̃(t, σ(l))b̃(t, σ(m))r(l)r(m)X2
0∆l∆m

+

∫ t

t0

∫ t

t0

∫ l∧m

t0

b̃(t, σ(l))b̃(t, σ(m))r̃(l, σ(s))r̃(m,σ(s))φ(s)∆s∆l∆m

=

(∫ t

t0

b̃(t, σ(l))r(l)∆l

)2

X2
0

+

∫ t

t0

∫ t

σ(s)

∫ t

σ(s)

b̃(t, σ(l))b̃(t, σ(m))r̃(l, σ(s))r̃(m,σ(s))φ(s)∆m∆l∆s

= (b ∗ r)2(t)X2
0 +

∫ t

t0

(∫ t

σ(s)

b̃(t, σ(l))r̃(l, σ(s))∆l

)2

φ(s)∆s

= (b ∗ r)2(t)X2
0 +

∫ t

t0

(b̃ ∗ r)2(t, σ(s))φ(s)∆s,



NONLINEAR DYNAMICS AND SYSTEMS THEORY, 11(1) (2011) 83–92 89

where on the last equality we have used Theorem 2.1.

Theorem 3.2 If X is a solution of (3.4), then

E
[
X2(t)

]
= r2(t)X2

0 +

∫ t

t0

r̃2(t, σ(s))φ(s)∆s.

Proof Squaring both sides of (3.1), we have

X2(t) = r2(t)X2
0 + 2r(t)X0(r ∗ f)(t)

+

∫ t

t0

r̃(t, σ(s1))f(s1)∆s1

∫ t

t0

r̃(t, σ(s2))f(s2)∆s2

= r2(t)X2
0 + 2r(t)X0 (r ∗ f)(t)

+

∫ t

t0

∫ t

t0

r̃(t, σ(s1))r̃(t, σ(s2))f(s1)f(s2)∆s1∆s2.

Now taking the expectation on both sides of the above expression, we have

E
[
X2(t)

]
= r2(t)X2

0 + 2r(t)X0

∫ t

t0

r̃(t, σ(s))E[f(s)]∆s

+

∫ t

t0

∫ t

t0

r̃(t, σ(s1))r̃(t, σ(s2))E[f(s1)f(s2)]∆s1∆s2

= r2(t)X2
0 +

∫ t

t0

r̃2(t, σ(s))φ(s)∆s,

where on the second equality we have used Lemma 3.1.

Theorem 3.3 Suppose X is a solution of (3.4) and r is a solution of (3.2). Then

r, r̃(·, s), and b ∗ r ∈ L2
∆(T) (3.5)

and ∫
∞

σ(s)

(b̃ ∗ r)2(t, σ(s))∆t ≤ k < 1 for all s ∈ T, (3.6)

imply that E
[
X2
]
∈ L1

∆(T).

Proof From Lemma 3.3, we have

∫
∞

t0

φ(t)∆t = X2
0

∫
∞

t0

(b ∗ r)2(t)∆t+

∫
∞

t0

∫ t

t0

(b̃ ∗ r)2(t, σ(s))φ(s)∆s∆t

= X2
0

∫
∞

t0

(b ∗ r)2(t)∆t+

∫
∞

t0

∫
∞

σ(s)

(b̃ ∗ r)2(t, σ(s))φ(s)∆t∆s

≤ X2
0

∫
∞

t0

(b ∗ r)2(t)∆t+ k

∫
∞

t0

φ(s)∆s.

Simplifying and using the fact that b ∗ r ∈ L2
∆(T), we have

∫
∞

t0

φ(t)∆t ≤
X2

0

1− k

∫
∞

t0

(b ∗ r)2(t)∆t < ∞, (3.7)
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which implies that φ ∈ L1
∆(T). Then from Theorem 3.2, we have

∫
∞

t0

E
[
X2(t)

]
∆t = X2

0

∫
∞

t0

r2(t)∆t +

∫
∞

t0

∫ t

t0

r̃2(t, σ(s))φ(s)∆s∆t

≤ α+

∫
∞

t0

∫
∞

σ(s)

r̃2(t, σ(s))φ(s)∆t∆s

≤ α+ β

∫
∞

t0

φ(s)∆s

< ∞,

where α, β ∈ R such that

X2
0

∫
∞

t0

r2(t)∆t < α

and ∫
∞

σ(s)

r̃2(t, σ(s))∆t < β,

and this concludes the proof.

Example 3.1 For T = N0, equation (3.5) reduces (with redundancy) to

∞∑

n=0

r2(n) < ∞,

∞∑

n=m+1

r2(n−m) < ∞, for all m ∈ N0,

and
∞∑

n=1

(
n−1∑

i=0

b(n− i− 1)r(i)

)2

< ∞.

Similarly, equation (3.6) reduces to

∞∑

n=m+1

(
n−1∑

i=m+1

b(n− i− 1)r(i −m− 1)

)2

≤ k < 1 for all m ∈ N0.

Remark 3.1 For T = R, t0 = 0, and supT = ∞, equations (3.5) and (3.6) reduce to

∫
∞

0

r2(τ)dτ < ∞,

∫
∞

s

r2(τ − s)dτ < ∞ for all s ∈ T,

∫
∞

0

(∫ τ

0

b(τ − s)r(s)ds

)2

dτ < ∞,

and ∫
∞

s

(∫ t

s

b(t− τ)r(τ − s)dτ

)2

dt ≤ k < 1 for all s ∈ T.
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