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Abstract: We establish an oscillation criteria for a class of second-order linear dif-
ferential equations

(p(t)x′(t))′ + q(t)x(t) = 0, t ∈ [0, ∞),

via Levin’s comparison theorem. We employ an interval oscillation technique for
oscillation of the above equation. This approach depends only on the behavior of q
in certain interval. In this study, we allow the sign-changing nature of q. Using this
approach, we also ascertain to answer the oscillatory behavior of a number of linear
differential equations.
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1 Introduction

We consider the second-order linear differential equations of the form

(p(t)x′(t))′ + q(t)x(t) = 0, (1)

where p, q ∈ C([0,∞), R), p(t) > 0 and p x′ ∈ C1([0, ∞), R). When p(t) ≡ 1, (1)
reduces to

x′′(t) + q(t)x(t) = 0. (2)

There is an extensive literature for the oscillation/non-oscillation of (1) and (2) (see [1–
12]). Most of these results require the integral of the function q on the entire half interval
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[0, ∞). Also, it is well-known that if q(t) is of mean value zero and q(t) 6= 0, then (2)
is oscillatory, (cf. [1]). We emphasize that the behavior of nonoscillatory solutions to
certain second-order functional differential equations can be ascertained in terms of the
oscillatory behavior of (2) (see [9]). Assuming the nonoscillation of (1), Tunc obtained
some nonoscillation theorem for third-order nonlinear differential equations (see [7]). Let
us recall the definition of interval oscillation.

If for each given solution of (1), we find a sequence of intervals [τn, ηn], τn → ∞, ηn <

τn+1 such that the given solution has at least one zero in (τn, ηn), for each n ∈ N, then
the solution is oscillatory.

By the above approach El–Sayed [2], gave some interval oscillation criteria for forced
second-order linear differential equations. In the present study, the ideas of [2] are used
to establish an interval oscillation criteria for (1). This approach depends only on the
behavior of q in certain interval. Also, we do not restrict the sign of q. By this approach,
we ascertain to answer the oscillatory behavior of a number of linear differential equations.
Section 2 contains the preliminaries. Section 3 is devoted to the main result and its
applications.

2 Preliminaries

We need the following lemmas for the proof of our main result. We consider

(p1(t)x
′(t))′ + q(t)x(t) = 0, (3)

(p2(t)y
′(t))′ + r(t)y(t) = 0, α ≤ t ≤ β, (4)

where p1, p2, q, r ∈ C([α, β], R), p1(t) > 0, p2(t) > 0 and p1x
′, p2x

′ ∈ C1([α, β], R).

Lemma 2.1 Let p2(t) ≥ p1(t) > 0, ∀ t ∈ [α, β]. Let x and y be nontrivial solutions

of (3) and (4), respectively such that x(t) does not vanish on [α, β], y(α) 6= 0 and the

inequality

−p1(α)x
′(α)

x(α)
+

∫ t

α

q(s)ds >

∣

∣

∣

∣

−p2(α)y
′(α)

y(α)
+

∫ t

α

r(s)ds

∣

∣

∣

∣

, (5)

holds for all t ∈ [α, β]. Then y(t) does not vanish on [α, β] and

−p1(t)x
′(t)

x(t)
>

∣

∣

∣

∣

p2(t)y
′(t)

y(t)

∣

∣

∣

∣

, α ≤ t ≤ β.

Proof Since x(t) does not vanish on [α, β], so w(t) = − p1(t)x
′(t)

x(t) on [α, β] transforms

(3) to

w′(t) = q(t) +
(w(t))2

p1(t)
,

which is equivalent to the integral equation

w(t) = w(α) +

∫ t

α

q(s)ds+

∫ t

α

(w(s))2

p1(s)
ds.

Since y(α) 6= 0, so with the substitution z(t) = − p2(t)y
′(t)

y(t) on some interval [α, γ], α <

γ ≤ β and using the hypothesis that p2(t) ≥ p1(t) > 0, the proof of Lemma 2.1 is similar
to the proof of Theorem 1.35 [6]. We omit the proof for the sake of brevity.
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Lemma 2.2 Let p2(t) ≥ p1(t) > 0, ∀ t ∈ [α, β]. Let x and y be nontrivial solutions
of (3) and (4), respectively such that x(t) does not vanish on [α, β], y(β) 6= 0 and the
inequality

p1(β)x
′(β)

x(β)
+

∫ β

t

q(s)ds >

∣

∣

∣

∣

∣

p2(β)y
′(β)

y(β)
+

∫ β

t

r(s)ds

∣

∣

∣

∣

∣

, (6)

holds for all t ∈ [α, β]. Then y(t) does not vanish on [α, β] and

p1(t)x
′(t)

x(t)
>

∣

∣

∣

∣

p2(t)y
′(t)

y(t)

∣

∣

∣

∣

, α ≤ t ≤ β.

Proof The proof of this lemma is similar to the proof of Theorem 1.36 [6]. For
convenience, we give a brief sketch. We define new functions x1, y1, q1, r1, p

∗
1 and p∗2 on

[α, β] by

x1(t) = x(α + β − t), y1(t) = y(α+ β − t).

q1(t) = q(α+ β − t), r1(t) = r(α+ β − t).

p∗1(t) = p1(α+ β − t), p∗2(t) = p2(α + β − t).

Then x1(t) does not vanish on [α, β], y1(α) = y(β) 6= 0 and

−p∗1(α)x
′
1(α)

x1(α)
+

∫ α+β−t

α

q1(s)ds =
p1(β)x

′(β)

x(β)
+

∫ β

t

q(s)ds,

−p∗2(α)y
′
1(α)

y1(α)
+

∫ α+β−t

α

r1(s)ds =
p2(β)y

′(β)

y(β)
+

∫ β

t

r(s)ds.

It is easy to observe that inequality (6) is equivalent to inequality (5) of Lemma 2.1 and
using the fact that t ∈ [α, β] ⇔ α+ β − t ∈ [α, β], the required conclusion follows from
Lemma 2.1.

Lemma 2.3 Let y be a nontrivial solution of (4) satisfying the conditions y(α) =
0 = y(β) = y′(γ), α < γ < β. Let p2(t) ≥ p1(t) > 0, ∀ t ∈ [α, β]. If the inequalities

∫ γ

t

q(s)ds ≥
∣

∣

∣

∣

∫ γ

t

r(s)ds

∣

∣

∣

∣

,

∫ t

γ

q(s)ds ≥
∣

∣

∣

∣

∫ t

γ

r(s)ds

∣

∣

∣

∣

hold for all t ∈ [α, γ] and [γ, β] respectively, then every solution of (3) has at least one

zero on [α, β].

Proof The proof of this lemma is similar to the proof of Theorem 1.37 [6] with the
account of Lemmas 2.1 and 2.2. We omit the details.

3 Main Result

In this section, we prove the main result on oscillation for second-order linear differential
equations.
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Theorem 3.1 Let there exist a monotonic sequence {τn} ⊂ R
+ such that τn → ∞,

as n → ∞ and a sequence {kn} of positive numbers such that

∫ τn+
π

2

√
kn

t

q(s)ds ≥ kn

(

τn +
π

2
√
kn

− t

)

, ∀ t ∈
[

τn, τn +
π

2
√
kn

]

, (7)

∫ t

τn+
π

2

√
kn

q(s)ds ≥ kn

(

t− τn − π

2
√
kn

)

, ∀ t ∈
[

τn +
π

2
√
kn

, τn +
π√
kn

]

, (8)

∀n ∈ N. Also, let 0 < p(t) ≤ 1, ∀ t ∈ [τn, τn + π√
kn

]. Then (1) is oscillatory.

Proof We prove this theorem by contradiction. Let x be a nontrivial solution of
(1). Suppose x has finitely many zeros on [0, ∞), so there exists a τ0 > 0 such that
x(t) 6= 0, ∀ t ≥ τ0. We consider

y′′(t) + kny(t) = 0, t ∈ [τn, τn +
π√
kn

], τn ≥ τ0 for some n ∈ N. (9)

(9) has a solution y(t) = sin
√
kn(t− τn) which has two consecutive zeros at t = τn and

at t = τn + π√
kn

. Also, y′(t) = 0 at t = τn + π

2
√
kn

. From (7) and (8), it is easy to observe

that the hypotheses of Lemma 2.3 are fulfilled. An application of Lemma 2.3 yields that
x has at least one zero on [τn, τn+

π√
kn

], which leads to a contradiction. Hence the proof

is complete.

Remark 3.1 We introduce Liouville’s transformation x(t) =
√
t y(s), s = log t,

which converts (2) to
y′′(s) +Q(s)y(s) = 0, (10)

where Q(s) = q(es)e2s − 1
4 . Let q ∈ C([0, ∞], R) and satisfies (7) and (8) ∀n ∈ N, then

(10) is oscillatory.

Remark 3.2 Let P ∈ C2([0, ∞), (0, ∞)). The substitution x(t) = y(t)P
1

2 (t) con-
verts (2) to

(P (t)y′(t))′ +Q(t)y(t) = 0, (11)

where Q(t) = P ′′(t)
2 +P (t)q(t)− (P ′(t))2

4P (t) . An oscillation criteria for (2) gives an oscillation

criteria for (11) and conversely.

Remark 3.3 Consider the equation

x′′(t) +
1

t2
x(t) = 0. (12)

Let {τn} ⊂ R
+ be any monotonic, divergent sequence. We choose

kn =
1

(τn + π

2
√
kn

)(τn + π√
kn

)
, n ∈ N,

or after simplifying we have kn = 8+5π2+3π
√
π2+16

8τ2
n

. With this choice of τn and kn, it is

easy to satisfy the hypotheses of Theorem 3.1. So, an application of Theorem 3.1 implies
that (12) is oscillatory, while none of the known criteria (see [4, 5, 12]) can be applied to
(12).
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Example 3.1 Consider the differential equation

((1− α sin2 t)x′(t))′ + (1 + 2 cos t)x(t) = 0, 0 ≤ α < 1. (13)

(13) can be viewed as (1) with p(t) = 1− α sin2 t, q(t) = 1 + 2 cos t. With the choice of
τn = 2nπ, kn = 1

16 , inequalities (7) and (8) are converted to

2 sin t+
15t

16
≤ 15

16
(2nπ + 2π), ∀ t ∈ [2nπ, (n+ 1)2π], (14)

2 sin t+
15t

16
≥ 15

16
(2nπ + 2π), ∀ t ∈ [(n+ 1)2π, (n+ 2)2π]. (15)

By simple calculus, it is easy to verify the inequalities (14) and (15). An application of
Theorem 3.1 implies that (13) is oscillatory.

Remark 3.4 In (13), q(t) = 1 + 2 cos t, which mean value is non-zero and therefore
the result given in [1] cannot apply to (13).
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